Multiplicity of positive radial solutions of p-Laplacian problems with ...

3 downloads 0 Views 2MB Size Report
approach relies on the Avery-Peterson fixed point theorem. ... Keywords: p-Laplacian; nonlinear gradient term; radial solution; Avery-Peterson ..... Indiana Univ.
Pei et al. Boundary Value Problems (2017) 2017:36 DOI 10.1186/s13661-017-0770-4

RESEARCH

Open Access

Multiplicity of positive radial solutions of p-Laplacian problems with nonlinear gradient term Minghe Pei, Libo Wang* and Xuezhe Lv *

Correspondence: [email protected] School of Mathematics and Statistics, Beihua University, JiLin City, 132013, P.R. China

Abstract In the present paper, we prove the existence of at least three radial solutions of the p-Laplacian problem with nonlinear gradient term 

p v + f (|x|, v, |∇v|) = 0 in , v = 0 on ∂,

and the corresponding one-parameter problem. Here  is a unit ball in RN . Our approach relies on the Avery-Peterson fixed point theorem. In contrast with the usual hypotheses, no asymptotic behavior is assumed on the nonlinearity f with respect to φp (·). MSC: 35J92; 35J62; 35A09 Keywords: p-Laplacian; nonlinear gradient term; radial solution; Avery-Peterson fixed point theorem

1 Introduction In the present paper, we are concerned with the multiplicity of positive radial solutions to the quasilinear elliptic p-Laplacian problem with nonlinear gradient term ⎧ ⎨ v + f (|x|, v, |∇v|) =  p ⎩v =  on ∂,

in ,

(.)

and the corresponding one-parameter problem ⎧ ⎨ v + λf (|x|, v, |∇v|) =  in , p ⎩v =  on ∂,

(.)

where  ⊂ RN is a unit ball in RN , p u = div(|∇u|p– ∇u) is the p-Laplacian with p > , and f : [, +∞) × [, +∞) × [, +∞) → [, +∞) is continuous with f (r, s, t) >  for all (r, s, t) ∈ (, ] × (, +∞) × [, +∞). © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Pei et al. Boundary Value Problems (2017) 2017:36

Page 2 of 7

In recent years, the elliptic p-Laplacian problems with nonlinear gradient term have been extensively studied via different methods [–], for example, critical point theory, Schauder’s fixed point theorem, Schaefer’s fixed point theorem, sub- and supersolutions, and so on. However, most of these results are concerned with the existence of one or two solutions, and a few works refer to the existence of three solutions for problems (.) and (.). In , Bueno et al. [] considered the p-Laplacian problem with dependence on the gradient ⎧ ⎨– v = ω(x)f (v, |∇v|) in , p ⎩v =  on ∂,

(.)

where  ⊂ RN (N > ) is a smooth bounded domain, ω :  → R is a continuous nonnegative function with isolated zeros, and the C  -nonlinearity f : [, ∞) × [, ∞) → [, ∞) satisfies some local hypotheses. By applying the Schauder fixed point theorem and suband supersolutions, the authors showed that problem (.) has a positive solution. Moreover, as an application, the authors obtained that there exits λ∗ >  such that the p-growth one-parameter problem ⎧ ⎨– u = λuq– ( + |∇u|p ) p ⎩v =  on ∂,

in ,

with  < q < p has a positive solution for each λ ∈ (, λ∗ ]. When the nonlinearity f does not depend on the gradient, He [] considered the pLaplacian problem ⎧ ⎨ v + f (v) =  in , p ⎩v =  on ∂, and using the Leggett-Williams fixed point theorem, established the existence of at least three radial solutions. For other works concerned with p-Laplacian problems, we refer the reader to [–, , ]. Motivated by the above works, the aim of this paper is to study the multiplicity of positive radial solutions of problems (.) and (.). Under the hypothesis that f has a local behavior and need not satisfy superlinear condition at the origin and sublinear condition at +∞ with respect to φp (s) := |s|p– s, s ∈ R, by using the Avery-Peterson fixed point theorem we obtain the existence of triple radial solutions of the above problems. To the best of our knowledge, problems (.) and (.) have not been studied via this fixed point theorem.

2 Main results In order to present existence results of positive radial solutions for problems (.) and (.), setting r = |x| and v(x) = u(r), problems (.) and (.) become respectively ⎧ ⎨(rN– φ (u )) + rN– f (r, u, |u |) = , p ⎩u () = , u() = ,

r ∈ (, ),

(.)

Pei et al. Boundary Value Problems (2017) 2017:36

Page 3 of 7

and ⎧ ⎨(rN– φ (u )) + λrN– f (r, u, |u |) = , p ⎩u () = , u() = .

r ∈ (, ),

(.)

Our approach on problem (.) relies upon the Avery-Peterson fixed point theorem, which we recall here for the convenience of the reader. Let γ and θ be nonnegative continuous convex functionals on P, α be a nonnegative continuous concave functional on P, and ψ be a nonnegative continuous functional on P. Then for positive real numbers a, b, c, and d, we define the convex sets   P(γ , d) = x ∈ P : γ (x) < d ,   P(γ , α, b, d) = x ∈ P : b ≤ α(x), γ (x) ≤ d and   P(γ , θ , α, b, c, d) = x ∈ P : b ≤ α(x), θ (x) ≤ c, γ (x) ≤ d and the closed set   R(γ , ψ, a, d) = x ∈ P : a ≤ ψ(x), γ (x) ≤ d . The following fixed point theorem due to Avery and Peterson is fundamental in the proofs of our main results. Lemma . ([]) Let P be a cone in a real Banach space E. Let γ and θ be nonnegative continuous convex functionals on P, α be a nonnegative continuous concave functional on P, and ψ be a nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for  ≤ λ ≤  such that, for some positive numbers M and d, α(x) ≤ ψ(x) and x ≤ Mγ (x) for all x ∈ P(γ , d). Suppose that A : P(γ , d) → P(γ , d) is completely continuous and there exist positive numbers a, b, and c with a < b such that (i) {x ∈ P(γ , θ , α, b, c, d) : α(x) > b} = ∅ and α(Ax) > b for x ∈ P(γ , θ , α, b, c, d); (ii) α(Ax) > b for x ∈ P(γ , α, b, d) with θ (Ax) > c; (iii)  ∈/ R(γ , ψ, a, d) and ψ(Ax) < a for x ∈ R(γ , ψ, a, d) with ψ(x) = a. Then, A has at least three fixed points x , x , x ∈ P(γ , d) such that γ (xi ) ≤ d

for i = , , ,

a < ψ(x )

with α(x ) < b,

b < α(x ); ψ(x ) < a.

Remark . In Lemma ., if γ (u) ≤ d and u ∈ P imply that θ (u) ≤ c and u ∈ P, then assumption (i) implies assumption (ii). We further take E = (C  [, ], · ) with the maximum norm 

x = max max u(r) , max u (r) ≤r≤

≤r≤

Pei et al. Boundary Value Problems (2017) 2017:36

Page 4 of 7

and define the cone P ⊂ E by   P = u ∈ E : u(r) is nonnegative and nonincreasing on [, ], u () = u() =  . Now we define the nonlinear operator A on P as follows: (Au)(r) =





φq r



 t N–

t

 

τ N– f τ , u(τ ), u (τ ) dτ dt,

u ∈ P.



Then (Au)(r) ≥  for all r ∈ [, ], and (Au) () = (Au)() = , which implies A(P) ⊂ P. Moreover, by a standard argument it is easy to show that A : P → P is completely continuous. In addition, it can be easily proved that u is a solution of problem (.) if u ∈ P is a fixed point of the nonlinear operator A. Define the nonnegative continuous concave functional α, the nonnegative continuous convex functionals θ , γ , and the nonnegative continuous functional ψ on the cone P by γ (u) = max u (r) ,

ψ(u) = θ (u) = max u(r) ,

≤r≤

α(u) = min u(r) , ≤r≤–η

≤r≤

where η ∈ (, ). Then it is easy to see that α(u) ≤ ψ(u) and u ≤ γ (u) for u ∈ P. Theorem . Assume that there exist constants a, b, d, and η with  < a < b ≤ ηd such that (H ) f (r, s, t) ≤ Nφp (d) for all (r, s, t) ∈ [, ] × [, d] × [, d]; N b (H ) f (r, s, t) ≥ (–η) N φp ( η ) for all (r, s, t) ∈ [,  – η] × [b, d] × [, d]; (H ) f (r, s, t) ≤ Nφp (a) for all (r, s, t) ∈ [, ] × [, a] × [, d]. Then, problem (.) has at least three radial solutions u , u , u satisfying max ui (r) ≤ d

b < min u (r) ;

for i = , , ,

≤r≤

a < max u (r) with ≤r≤

≤r≤–η

min u (r) < b,

max u (r) < a.

≤r≤–η

(.)

≤r≤

Proof Choosing c = d, we divide the proof into three steps. Step . We show that A : P(γ , d) → P(γ , d). To do this, let u ∈ P(γ , d). Then –d ≤ r  u (r) ≤  for r ∈ [, ], and thus  ≤ u(r) =  u (s) ds ≤  |u (s)| ds ≤ d for r ∈ [, ]. Hence, from assumption (H ) it follows that γ (Au) = max φq ≤r≤



≤ max φq ≤r≤

 rN–  rN–



r

τ

N–

 f τ , u(τ ), u (τ ) dτ





r

τ N– Nφp (d) dτ 



= max φq φp (d)r ≤ d, ≤r≤

Therefore, A : P(γ , d) → P(γ , d).

∀u ∈ P(γ , d).



Pei et al. Boundary Value Problems (2017) 2017:36

Page 5 of 7

Step . We check assumption (i) of Lemma .. To do this, let u(r) ≡ b/η on [, ]. Then γ (u) =  < d, θ (u) = b/η ≤ d = c, α(u) = b/η > b. Hence, {x ∈ P(γ , θ , α, b, c, d) : α(x) > b} = ∅. Let u ∈ P(γ , θ , α, b, c, d). Then γ (u) ≤ d, θ (u) ≤ c = d, α(u) ≥ b, and thus –d ≤ u (r) ≤ ,

∀r ∈ [, ],

b ≤ u(r) ≤ d,

∀r ∈ [,  – η].

So from (H ) we have





α(Au) =

φq –η









φq





τ

N–

   f τ , u(τ ), u (τ ) dτ dt

 –η

τ 

–η

> ηφq

t

τ

t N– t N–

–η







N–



N–

   f τ , u(τ ), u (τ ) dτ dt

  b N dτ φp N ( – η) η

 b = b, = ηφq φp η

∀u ∈ P(γ , θ , α, b, c, d).

Step . We check assumption (iii) of Lemma .. Notice that ψ() =  < a, and thus  ∈/ R(γ , ψ, a, d). Let u ∈ R(γ , ψ, a, d) with ψ(u) = a. Then γ (u) ≤ d and ψ(u) = a, and hence –d ≤ u (r) ≤  and  ≤ u(r) ≤ a for all r ∈ [, ]. It follows from (H ) that





ψ(Au) =

φq 







φq 

=



 sN–  sN–



s

 

τ N– f τ , u(τ ), u (τ ) dτ ds

s

 τ N– Nφp (a) dτ ds





 φq φp (a)s ds



(–η) N φp ( η ), ∀(r, s, t) ∈ [,  ] × [, ] × [, ]; (iii) f (r, s, t) ≤  = Nφp (a), ∀(r, s, t) ∈ [, ] × [, ] × [, ]. Hence, by Theorem . the Dirichlet problem (.) has at least three radial solutions u , u , u satisfying max ui (r) ≤  for i = , , ,

≤r≤

 < min u (r) ;

 < max u (r) with min u (r) < , ≤r≤

≤r≤/

≤r≤/

max u (r) < .

≤r≤

Noticing that f (r, , ) ≡  on [, ], we have that the three radial solutions u , u , u are positive.

Competing interests The authors declare that they have no competing interests.

Pei et al. Boundary Value Problems (2017) 2017:36

Page 7 of 7

Authors’ contributions All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript. Acknowledgements The authors thank the referee for valuable suggestions, which led to improvement of the original manuscript. This work was supported by the Education Department of JiLin Province ([2016]45).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 12 November 2016 Accepted: 8 March 2017 References 1. Bueno, H, Ercole, G, Zumpano, A, Ferreira, WM: Positive solutions for the p-Laplacian with dependence on the gradient. Nonlinearity 25, 1211-1234 (2012) 2. Bueno, H, Ercole, G: A quasilinear problem with fast growing gradient. Appl. Math. Lett. 26, 520-523 (2012) 3. Faraci, F, Motreanu, D, Puglisi, D: Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc. Var. Partial Differ. Equ. 54, 525-538 (2015) 4. Filippucci, R, Pucci, P, Rigoli, M: On entire solutions of degenerate elliptic differential inequalities with nonlinear gradient terms. J. Math. Anal. Appl. 356, 689-697 (2009) 5. Iturriaga, L, Lorca, S, Sánchez, J: Existence and multiplicity results for the p-Laplacian with a p-gradient term. Nonlinear Differ. Equ. Appl. 15, 729-743 (2008) 6. Iturriaga, L, Lorca, S, Ubilla, P: A quasilinear problem without the Ambrosetti-Rabinowitz-type condition. Proc. R. Soc. Edinb., Sect. A 140, 391-398 (2010) 7. He, X: Multiple radial solutions for a class of quasilinear elliptic problems. Appl. Math. Lett. 23, 110-114 (2010) 8. Ambrosetti, A, Brezis, H, Cerami, C: Combined effects of concave and convex nonlinearities in some problems. J. Funct. Anal. 122, 519-543 (1994) 9. Ambrosetti, A, Azorero, JG, Peral, I: Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137, 219-242 (1996) 10. Ambrosetti, A, Garcia, J, Peral, I: Quasilinear equations with a multiple bifurcation. Differ. Integral Equ. 24, 37-50 (1997) 11. Dai, G, Ma, R: Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian. J. Differ. Equ. 252, 2448-2468 (2012) 12. Dai, G, Ma, R, Lu, Y: Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition. J. Math. Anal. Appl. 397, 119-123 (2013) 13. Dai, G: Bifurcation and one-sign solutions of the p-Laplacian involving a nonlinearity with zeros. Discrete Contin. Dyn. Syst. 36, 5323-5345 (2016) 14. De Figueiredo, DG, Lions, P-L: On pairs of positive solutions for a class of semilinear elliptic problems. Indiana Univ. Math. J. 34, 591-606 (1985) 15. Garcia, J, Peral, I: Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43, 941-957 (1994) 16. Garcia, J, Manfredi, J, Peral, I: Sobolev versus Hölder minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2, 385-404 (2000) 17. Iturriaga, L, Massa, E, Sánchez, J, Ubilla, P: Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros. J. Differ. Equ. 248, 309-327 (2010) 18. Prashanth, S, Sreenadh, K: Multiplicity results in a ball for p-Laplace equation with positive nonlinearity. Adv. Differ. Equ. 7, 877-896 (2002) 19. Avery, RI, Peterson, AC: Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 42, 313-322 (2001) 20. Ma, R: On a conjecture concerning the multiplicity of positive solutions of elliptic problems. Nonlinear Anal. 27, 775-780 (1996) 21. Marcos do Ó, J, Ubilla, P: Multiple solutions for a class of quasilinear elliptic problems. Proc. Edinb. Math. Soc. 46, 159-168 (2003)