nasa technical note nasa tn d-8090 a vortex-lattice

1 downloads 0 Views 7MB Size Report
vortex to point on left panel being influenced; measured from left panel,. _' ...... 3d. IM=LM*2. DG3. 33. DO. 1. I=I,IM. DG3. 34. CDRAG(1)=O. DG3. 35. DO. 1.
NASA

TECHNICAL

NOTE

NASA TN D-8090

O

!

Z I--

Z

A VORTEX-LATTICE FOR OF

THE

TRIMMED

WITH

John

MEAN

METHOD CAMBER

NONCOPLANAR

MINIMUM

VORTEX

SHAPES PLANFORMS DRAG

E. Lamar

Langlo, HamDton,

Research Va.

Center

_.QO_'UT/O4z

23665 Z_7 S ._gl

NA1iONAL

AERONAUTICS

AND

SPACE ADMINISTRATION

-

WASHINGTON,

D.

C.

°

_

JUNE 1976

1. Report

No.

2.

NASA 4.

Title

TN

and

Government

Accession

No.

Subtitle

A VORTEX-LATTICE SHAPES

OF

MINIMUM

METHOD

TRIMMED

FOR

THE

NONCOPLANAR

VORTEX

MEAN

9.

E.

Performing

Sponsoring

Name

Va.

National

PLANFORMS

Abstract

Name

WITH

a vortex

This

method

mum

drag,

required

Code

8.

Performing

Orgamzation

Report

10.

Work

'11.

Contract

or

13.

Type

Report

505-06-II-05 Grant

of

No.

and

Technical

and

Space

method

lattice uses then

Administration

has

been

noncoplanar and

14.

solves

for

Sensitivity

analysis

mean

the

surface

wing

and

mean

minimum

Period

Covered

Note

Sponsoring

Agency

the

Code

chord

wing,

other

This

loading

which

can

be

method

specification.

span

theories,

a wing-winglet

surface

drag.

optimum

of the with

camber

vortex

with

determine

comparisons

a tandem

which

difficulties to

camber

studies,

include

by with

previous

plane the

developed planforms

overcomes

a Trefftz

which

(Suggested

camber

loading

will and

combination

for

provide

minithe

applications have

been

to made

by

Author(s))

18.

Distribution

Statement

surface Unclassified-

flow

Vortex-lattice

Unlimited

method

Interacting surfaces Optimization Security

Classif.

(of

No.

No.

presented.

Subsonic

19.

Unit

20546

loading.

are

Words

Organization

Address

trimmed

configurations

Mean

Performing

Address

Center

subsonic for

uses

Key

1976

6.

Notes

A new

17.

and

D.C.

determined

and

and

Aeronautics

16.

Date

June

23665

Washington, Supplementary

No.

DRAG

Research

Agency

15

Report

Catalog

L-10522

Langley

Hampton,

12.

5.

Lamar

Organization

NASA

Recipient's

CAMBER

7. Author(s)

John

3.

D-8090

this

Subject

reportl

20.

Unclassified

Security

Classif.

(of

this

page)

21.

sale by

the

National

Technical

of

Pages

22.

Category Price"

$7.00

185

Unclassified

For

No.

Information

Service,

Springfield,

Virginia

22161

02

A VORTEX-LATTICE

METHOD

OF TRIMMED

FOR

THE MEAN

NONCOPLANAR

WITH

MINIMUM John

Langley

CAMBER

SHAPES

PLANFORMS

VORTEX

DRAG

E. Lamar Research

Center

SUMMARY

A new subsonic be determined method

for

uses

This

for

the

Sensitivity and

are

The

versatility

canard

overcomes

method

uses

a Trefftz

then

solves

loading. at the

studies

of vortex-lattice

previous plane

for

the

design

minimum

analysis mean

camber vortex

difficulties

with

surface

drag.

chord

to determine

camber

loading

the

surface

can

This

optimum

of the

wing,

or root-bending-moment

arrangement

with

method

is demonstrated

(3) a tandem

the mean

span which

constraints

lift coefficient.

Comparisons

configurations,

with

Pitching-moment

as well

of the

by which

planforms

and

drag,

presented.

developed

noncoplanar

required

can be employed

been

lattice

minimum

will provide

has

trimmed

a vortex

specification. loading

method

other

wing,

have

theories

show

by applying and

been

made

generally

with good

method

agreement.

it to (1) isolated

(4) a wing-winglet

this

wings,

(2) wing-

configuration.

INTRODUCTION

Configuration which

the

body

design

and

located

by taking

highly

maneuverable

increased

together

specified

lift

Single better ref. sented also

called 1) and

in changing

the

Such

planform

design

local

at supersonic

presented

1 was

in reference

control

design

order

methods

speeds

developed

with

with

the tails

are

With

surfaces,

multiple

there

and

advent has

an

be

drag

that

of

been

could

induced

requires

after

sized

the

surfaces

minimum

approach

the wing,

at some

the mutual

inter-

initially. available for

example, from

1, by using

then

lifting

so that

design

are

surface, (for

and

configuration

a combined

begins

requirements.

coupled

be considered

elevation

usually

into account, and

closely

a trimmed

surfaces

in reference

taken

having

lifting

transports

stability

aircraft

to yield

the

are

account

coefficient.

of the

subsonic

effects

into

interest

designed

ference

its

for

the

to optimize

wings

flying

refs.

2 and

an established same

the

mean

at subsonic 3). analysis

mathematical

The

camber

speeds design

method model,

(for

surface, example,

method

pre-

(Multhopp

but the

design

type),

methodsolves for the local meanslope rather than the lifting pressures. In the usual implementation of reference 1, the design lifting pressures are taken to be linear chordwise, but must be represented in this solution by a sine series which oscillates about them. An example presentedherein demonstrates that corresponding oscillations may appear in pressure distributions measured on wings which havebeen designedby the methodof reference 1. The methoddevelopedherein overcomes this oscillatory lifting pressure behavior by specifying linear chord loadings at the outset. The developmentapproachused in the two-planform design problem will be similar to that used for a single planform. The analytic methodemployed, selected because of its geometric versatility, is the noncoplanartwo-planform vortex-lattice methodof reference 4. The design procedure is essentially an optimization or extremization problem. Subsonicmethods(for example, see refs. 5 and6) are available for determining the span load distributions on bent lifting lines in the Trefftz plane, but they do not describe the necessary local elevation surface. This is one of the objectives of the present method which will utilize the Lagrange multiplier technique (also employedin refs. 2 and 3). The methodof reference 4 is usedto provide the neededgeometrical relationships betweenthe circulation andinducednormal flow for complex planforms, as well as to computethe lift, drag, andpitching moment. This paper also presents the results of precision studies and comparisons with other methodsand data. Several examples of solutions for configurations of recent interest are also presented. The FORTRANcomputer program written to perform the computation is described (appendixA), along with details of the program input data (appendixB) andoutput data (appendixC). Listings andtypical running times of example configurations are given (appendixD), anda FORTRANprogram listing is provided (appendixE). AppendixF provides details concerning the changesneededto substitute a root-bendingmomentconstraint for the basic constraint on configuration pitching-moment balance. SYMBOLS The geometric description of planforms is basedon the body-axis system. (See fig. 1 for positive directions.) For computational purposes the planform is replaced by a vortex lattice which is in a wind-axis system. Both the bodyaxes andthe wind axes have their origins in the planform plane of symmetry. (Seesketch (a) for details.) The axis system of a particular horseshoevortex is wind oriented and referred to the origin of that horseshoevortex (fig. 1). For the purpose of the computer program, the length dimension is arbitrary for a given case; angles associated with the planform are always in degrees. (The variable namesusedfor input data in the computer program are described in appendixB.) 2

m

element

A/,n

of influence

tains

induced

strength;

AR

aspect

linearly

i

normal

flow

matrix

A,

at lth point

total

number

of elements

is

chord

location

where

chord

value

toward

zero

scaling

polynomial

Fw,/,

n - Fv,l, n tan

4n due to nth horseshoe

_bl

, which

vortex

con-

of unit

N x N 2 2

ratio

fractional

ai,bi,c

function

varying

coefficients

in spanwise

b

wing

CB

root-bending-moment

CD

drag

coefficient,

CD, o

drag

coefficient

CL

lift coefficient,

load

changes

at trailing

from

constant

value

edge

span

o

coefficient

about

X-axis,

Root

bending q_Sref(b/2)

Drag q_Sref

at

CL = 0

Lift q_Sref

C m

pitching-moment

CN

normal-force

ACp

lifting

c

chord

cl

section

Cref

reference

coefficient

coefficient,

pressure

lift

coefficient

coefficient

chord

about

Y-axis,

Normal force q_Sref

Pitching

moment

q_SrefCref

moment

to

influence function which geometrically relates inducedeffect of nth horseshoevortex to quantity which is proportional to induceddownwash or sidewashat slope point l (see sketch (a) and also eqs. (5)

Fw,l,n' Fv,/,n

and

Fw,l,n, Fv,l,n

sum

(6))

of influence

planform left

wing

panel

denoted

G

function

_- Nca ;

maximum

L

lift

N+

about

of span

maximum mum

denoted

1 - n

(see

(see

eq.

indicate

of spanwise

Mach

reference

N

vortex

(brackets

moment

free-stream

number

i

number

pitching

n]

by

Fw,/, n

or

Fv,/, n

by two symmetrically

to be extremized

+ 0.75

K

function

caused

by fig.

n

and right

point

l

on

horseshoe

vortices,

wing

vortex

panel

1)

(19))

"take

the

scaling

coordinate

at slope

located

greatest

terms

integer")

(see

eqs.

(25) to (27))

origin

number

stations

where

pressure

modes

are

defined

as used

in

1

number number

of elemental of chordal

in reference

panels

on both

control

points

from

leading

rows

in spanwise

sides

at each

of configuration;

of

m

span

stations

maxias used

1

m

Nc

number

Ns

total

of elemental

number

panels

of (chordwise)

on configuration

qo_

free-stream

Sref

reference

area

S

horseshoe

vortex

4

to trailing

edge

direction

in chordwise

of elemental

semispan

dynamic

pressure

semiwidth

in plane

of horseshoe

(see

fig.

2)

row

panels

U

free-stream

velocity

X,Y,Z

axis

of given

system

horseshoe

vortex

(see fig.

body-axis

system

for

planform

(see

fig.

wind-axis

system

for

planform

(see

sketch

distance

1)

1)

(a))

along

X-,

Y-,

and

Z-axis,

respectively

along

X-,

Y-,

and Z-axis,

respectively

= distance

incremental

movement

of

X-Y

coordinate

c/4

midspan

x-location

of quarter-chord

X3c/4

midspan

_-location

of three-quarter-chord

y*,z*

y

and

z

distances

symmetry,

canard

local

as viewed

height

with

elevation

height,

positive

Prandtl-Glauert

_n

vortex

independent

to wing

by local

slope

in vector

located

to points

plane,

chord,

panel

on right

on left

positive

half

of plane

of

panel

down

referenced

to local

trailing-edge

_z/_x)

of

N/2

elements

(see

eq.

(1))

deg correction

flow,

strength

behind,

panel

of elemental

vortices

direction

down

local

of attack,

subsonic

respect

in streamwise

of elemental

image

from

normalized

/th elemental

angle

from

origin

factor

to account

for

effect

of

N/2

of compressibility

_1 - Moo 2

of nth element

variable

in vector

in extremization

(F)

process

elements

in

incidence

77

A

leading

edge

spanwise

coordinates,

nondimensional

spanwise

coordinate

planform

leading-edge

Lagrange

multiplier

along

fractional

dihedral

(see angle

constraint in

quarter-chord

in

= tan- 1/_--_

left

(see plane

also X-Y

where

vortex

eqs.

used

plane,

_'

wing

angle

(21)); panel,

on right

of elemental

as sweep

angle

deg

)

canard

design

i,j,k

indices

to vary

le

leading

edge

6

over

semispan

deg

chord

mean

camber

on left

panel

measured

(20) and

on left

angle

to point

Subscripts:

C

planform

plane,

by local

of point

panel,

dihedral

sweep

assumption,

X-Y

normalized

trailing

from

vortex

in

on local

height

is to be

(28))

from

Y-Z

b/-"-2

(19))

location

eq.

up, deg

based

angle

eq.

chord

function

horseshoe

ment

(see

local

measured

angle

sweep

chordwise

computed

0", 0 "_

positive

nondimensional

distance

4'

angle,

the

range

indicated

also

from

being

right

horseshoe

influenced;

panel

vortex

dihedral

deg wing

panel;

panel,

because

of spanwise

qS' = -_b, deg

of small horseshoe

angle vortex

fila-

associated

l_n

with

1 to L

left

R

right

w

wing

Matrix

and horseshoe

vortex,

reslSectively,

ranging

from

leg

trailing

root-chord

vortex

point

N/2

trailing

v

slope

leg location

notation:

()

column

vector

[]

square

matrix

r-\

X

Flow

angle at each

of attack determined slope point

/

"w-., _t

g

/ v- Typical /_

spanwise

vortex

filament

U

Vortex-lattice angle

Sketch THEORETICAL

This

section

camber-surface have

dihedral.

respect ble;

to their

however,

trailing

filame

of attack

presents design

For chord vertical

the

application

of two lifting

a given lines

displacements

DEVE LOPMENT

of vortex-lattice

pIanforms

planform, in the

(a)

local

wing

axis

of the

which vertical (see

methodology

may

be separated

displacements sketch

solution

(a)) are

surfaces

of the assumed

to the vertically surfaces

meanand with

to be negligi-

due to planform

separation 7

or dihedral are included. The wakes of these bent lifting planforms are assumedto lie in their respective extendedbent chord planes with no roll up. For a two-planform configuration the resulting local elevation surface solutions are those for which both the vortex drag is minimized at the design lift coefficient and the pitching moment is constrained to be zero aboutthe origin. For an isolated planform no pitching-moment constraint is imposed. Thus, the solution is the local elevation surface yielding the minimum vortex drag at the designlift coefficient. Lagrange multipliers together with suitable interpolating andintegrating procedures are used to obtain the solutions. The details of the solution are given in the following five subsections. Relationship BetweenLocal Slope and Circulation From reference 4, the distributed circulation over a lifting system is related to the local slope by

r

where technique

the matrix

"1

LAJ is the aerodynamic

described

in reference

4.

influence This

matrix

coefficient has

matrix

elements

based

on

the paneling

of

m

Al,n

which,

because

=lIFw,l,n(X',Y,Z,S,_P',dP)

of the

Fw,l,n(X

'

assumed

,y,z,s,_

-

spanwise

'

,_b) -

F

v,l,n(X

symmetry

w,/,n(X

-I- F

F

'

of loading,

'

,y,z,s,_

w,l, N+l-n(x

,Y,Z,S,g2,dp)

_

tan

leads

c_ll

(2)

to

,4_)lef t panel

"

'Y'Z'S'_"_b)right

panel

(3)

and

Fv,t,n- (x',y,z,s,_P',_b)

- Fv,/,n(X',y,z,s,gT,_))lef

+ Fv,l,N+

8

l_n(x',

t panel

y, z, s, gJ', qS)right

panel

(4)

where

(y tan Fw(x',y,z,s,@',O

¢,' - x')

cos

) = (x') 2 + (y sin

4))2 + cos2

do(y2 tan2

$'

+ z2 sec2

_'

_'

+ (y + s cos

- 2yx'

tan

_')

- 2z cos

_ sin

4_(Y + x' tan

_')

(x J(x'

+ s cos

, u.l

e_ i 0 ,..I

).

oo

-

I

_

Z

_ _

Q e

m. _0

oOOOOoooO_oooooooooo_ooO_OOO_OOOOoooooooo .%

_

el

,' N

?,

m. 0_

I

2 m o i I 4" o ,.-i o I e_ N e_ o II

o

0

68

e_eee

eeee_e

eeeeee

APPENDIX

D

N

° ,.4 ! 0D

o !

o o e

O

,0

00 o

oO

2 ,0

cK O -r

_

• m

PIcK

I

o_ I" Z

,O



°=

_

II

co

_.

ooo_g_g_

).

ooooo__ _

oooo__ooo__

_" i* _' o' o" _ _" o" i" i' _" o" i' o" _" _' ," i" _" _" i" _" _' _" ," i" _" _" _" _' n"," _' i' i" _ _' ," ," o'_

00000000000000000000000000000000000000000

__°_°_°__ _

r"l

o_o_o_o__°_°_°_°_°_°__o_o_

_0_0

_



I*

69

APPENDIX Input

C 0000000001

O

L

U

M

Data

N

N

and

U

M

Sketch

D

8

E

R

S

for

F

O

Sample

R

I

N

Case

P

U

2

T

D

12345678901234567890123450789012345678Q01234567890123K.5678901234567_901 GROUP

O_E 1,0

9,18

3,0

Oo

O,

O,

lW.b?

O.

O,

I,

5,73

-6.73

O,

I.

_,29

-6.13

O.

I,

5,77

O,

3.0

O.

O.

O.

5.29

O.

O.

I.

O. O,

I. 1.

-W.45 -6.61

-I0. -10,

-8,12

160,0

O. GROUP 16, 0.6

TWO 15,

DATA .3

.2

0.8

X

I

70

T

A _-3_*_67890

DATA

2,0

Z.

A

I 11 l 11 l 112222222227_333333333344L*44_4,U.K,_,5555555555666506bb_517777777778

APPENDIX D

o o o 0 o

0 0 o o o

II

)-

o

o

_

o o

zu

0 o

WL_

0

GO _'U

._ ..4.w

o

_

,,

000

Ot-_O

_

ooo



oo oo

000 U..I LD Z

"JEZ

OCDO

J cL

r_

:_ _

Z

g

u

_

t

r/1 _D

(:3

o

Ul _j

*



_

g

_ __

ud

z _

0000

,,.I

O

O'DOO

>

c_ m

O

o

I

X

_

i



m •

g w

....

0

w_

uJ

u3_ C_

=

w



°_

u.

d "g

I

I

!

I

I

_D

I

L9 ul

C_ r_ I U

C_

71

APPENDIX

D

Z C9

,-4

04

o

o

g

f

_

z

g

J

o o

e_w

ooo

oo "Do

_j(._

0 00, •

_

ooo

ooooo 0,9

o

° _2

o,_9 •

0'900

u.

_u

m

g

._ •el "r

z o

u_

gggg

O

112 _.1

0 o

_

4-

0,

e,

ee,e "r

t--

,0"4"

g 0

g

e,l

-,1-

z _u kz

u. z

OOO 0000

_

OOOOO O0

0000

_

OOOOO

ooo

C3

oo_

w

oooo

_

_00

O0 o

''

'77

g

ii

x OOOO

O_

o z

OOOO

O_OOO

-J

llll

_g

72

APPENDIX D

o o

Oo

_# _ X_

00000000000000000000_0000_0000000000000000_0 eeeeeeeeeeeeoeeoeeeeeeeeeeeeeeeeeeeeeeeeeeee

ooOoOoo_oo_00o ooooooo oooooooooooooo ooooooooo0oo0o oooooo0ooooooo

oo

o0o

g4_ddgdgdggddd

e_

Agg2j_g_gl_Zdg2_Zg_g2;g_

_2_2,_

_000 _0000 0000000000000000000_0_000000_000000_00000000

oooooo__°°__°°°_

O0

000

• _ooooooo4oooooooooooooo_ooo4o4o_o_

____o

o

o

' _ooggo ""

ooooo

'

___ oo

II|II}IIIIIIIII|IIIIIIIIIIIIIII

|lllllillt

73

APPENDIX

ooooooo •

D

oooooooo_;_°°°_

oooo__~_

eeoeeoe*oeoeeeoeeeeoeeeeeoeeooeeeeee

ooooooo oooo_oo



ooooooo Oooo oo oooo

oooo ooo

el

oooooo _oooo

000000000000000000000_0_0_0_0_0__

OOOOO eeeee



ooooo ooo .....

o

..........

doggdgdd_ddd;ggggggddgd&4d4_gdgdd4dddgogoggo_ddgdog







oooo OOOO oooo_



e







e



e

oooooo OOOOOO oooo__ O0



,

oo_o__ooo__oo oooo__°°°__ °°°°

ooo 000

0'0_ °°

oo_ O0 oo_

"00000_000000_00000000_00000000000000000000000000000

I

IllllJllllllllllllrlllllllllllllilllltlll

Iltlltl

OO_



'74







e





APPENDIX

g_oooo _oooo____oo_ooo_ooooooo oooo

oooooo

D

ooooooo_oooooo

oooooo

000000000000000000000000000000000000000000000000000

eeeoeeoe

eo

,eooeoe



oeeeeeeoeeeoeeeoee

eeo_

ooooooo°°oo°o° oooooooOoO _o_ o oOOOOOOOoooooooo °°°°°o°°oo_ °°°°°°°°°_°°°°°°°°° 000 OOOOOOO

000000000 OOOOOO

OOOO

OOO

OOOOOOOO

O

O.'9O OOOOOOOOOOOOOOOOOO

°°°°o°°°o°°°°°°°°°ooo oooo_oooOOOO _o°°° oooooo_°°o°o°o oooo _°ooo°o°o°°o°ooooooo°o°°oo°o° oo oooooo dddgdggdoddggdgddgdoddgdgdddg_ddgdddgggddggdgoddddd

¢n_O_O



_o

75

D

APPENDIX

OOO'9OOOOOOt'_ •









OOOOOOO_OOOOOOOOOOOOO_OOOOOO_OO_OO ,



I



t

e



oogooooooooooooo ooooooo_o O'_

C)

,_

O

_'_O

O

OO'90

'D"_

O

O

O

O

,9OOOOOOC)

"0 N COO'MO0

"O

"%

O_

ed

_

_4

u'% ,0

O





0,e0e0e0eele00ee0e0ee0e0e0ee,eeeee

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO oOoc_

° O

OOOO

O

OOO

O

U_

oo°o°o° O0

mmmmmL_mmm

m

m_lnmmmm_m_mm_

_m_mm_m

mmmmmmmm

,04)

oo_°°oo

_

_ooooo_g_oo_oooo_oooooo_g_

00000000000000

oo_OOoo

_

000000000

Zgg4dgdZZg,4ddd

_

ggggg4dgddgg4gggdggddggZdgdgddgdgd

00000

O0

000000000000000000

0

oo°°°_°°_°°°°°°°oooo _

__

_°°°°

_ooooo

,,,,,,,,,,,,

,',,,',,',,',,,,,: _N____

__o_o_ _o-_ NN_OO_mm_m OIIlllll

N_

0_ _aD

cO

a0 _

co_aD

mmmm_mmm_mmmmm_N_ IIIIIIII

76

Illlllllllllllllllllllllll

__

_

D

APPENDIX

.............

_

R_

._ .....

q..

000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000_00 000000000000000 O0

ooo_oo_oooo_oo_oooo_ooooo_ O0

0000000000

0000

O0

0000

00000

000000000000000000000000000000000000000000000000000

dg_ggdd_g;dgd_ggdgd&d_gdg4dddddgoddggoo4_dd&ddddd

__oooo__ooooo_oo_oo_ooooo ooooo __ooo_g_ooooog_ooooo_oooooo_OOooooo 0000

oo

_RRR ooooo_____°°°°oooo _oooo

oo

000

00000

0000000000000000000000000000000

00_000

O0

°

00000

gO00

O0

0

OO O0

OO

O0

ggdgdggdgdggddgddgddgdggg&ggdddggdogdgdoodddgdd&dgg

_ • _ .....

_:____ 000_

_¢¢¢¢_,_2 ......... I

I

I

I

I

I

I

I

I

(_0

_,.___ ___o. ...... --

, , , , ,7?,TT,

I

I

I

I

I

I

..............

"

I

I

._._ :, ,....................... , , , , , ,, , ,,, , , , , , , , , , ,,

_,, , , ,7, , ,7gT,

, , ,?,_77,,,

, , ,, ,

, ,TTTTTT_~7,?? ,, , ,

77

APPENDIX D

_o_o_

ooooooo_



eeee,ll

ooooo_OOOOOOOOO_oooooo _ooooo ooooo_ 00000000_

00000_00_

00000000000000000000_0



_

o_o_ •

oooooooo_oooo



eeeeoeee

oooooo_

_

_oooooo

eeeO

ooo _oo_oo _ _oooo°_

00000_

00

000_00

00000

00

0000

_0_00000000000000000000000000

oooo_ooooo oooo ooooo__

ooo__oooo °°°

_ooo__OOoo

__

000000000000000000000000000000000000000000000000000 O0

000

__oooooooooooooooo__ ____i

"i_ili£1111_ii_iiJi_i_$

Itlllltllllllllllll_llllllllJllllllllllllllllJ!

_.

???T

,

0



lllIll

_

,

°

_ ?llllllllllllll

........................................... II

78

IIIIIIIIIIIIII

,











*



,



,

.



Illl?Illlllll

I|II

IIIIIIlllllll

Illl

.

0

,

APPENDIX



eeoeoeeeeeeeeeeeol_eeeee



D

oeoeooeeeeeele,

eeeee

oooo

_oooooo_oooooo

oooooooo

_ooo ooo_

_°°°°_°° oooo

OOOO

OOOOOOOOOOOO

OOOOOOOO

OOOOOOO

_OOOOOO_OOOOO

oooo°°°°__°°°°°°_°°°°°=°°oooooooooooooo_oo__°°°°°°° oo

oo_ _

OOOOOOO

u_O

•-2 +g _,_ "_ ...............

oooo__oooooo

oooooo_°°°°°°°°_°°__ °°°°°oooooooo

oo

OOOOO

OOOOOOOOOOOO_OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

ogogddgdgdddgddgddddggdd&Ydododddddddgddddggjodddg;

+++ "_'0

"0"0

oooo°°_°o

"0 "_ ;_ '_ O

O

O

O

O

O

O

O

O

O

°o°° O"3

O

O

O

m. _.. h- i_. h- I-.

O

O

.... O

_

_n ,_ _n _n _n _

I-- I_ p- O

,-_ O

O

_

:n _n _

O

_

_

_

,., ,_ _ _ _ _ _ _,,. _,_ i _ i _,., i I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

_NO

I

I

I

I

I

I

I

I

I

I

I

_

en ,0,0

_° "° "_ "° "_

OO

I

I

I

I

I

I

I

/

IiIiI

...... I

I

I

I

I

I

!

I

I

I

I

I

I

I

_

_eeeeeeeeee,ele_eeee,eeeeee,e,eee,eeeeeee,eeeee,eee IIIIIIii

_

IIIlllll

illlllllll.iI

_

IIIll

_o__

_

IIIIIIIIIII

Illlllllll

IIIIi

_o,_

IIIII

79

APPEND_

D

gooooooogoooooooogooooooooooooooOOOOOoOooooooo_gg_oooo 0000 O0 000"_ 0 00000 000 O

O

OO

OOOO

OO

_

OOO

O

OO

O

O

O

_JOO

O

O

_'J O

OO

O

OO

OOO

O"J

O

ooooo°o ° O

O

OO

OOOO

O

OOO

O

O

O

go°°°°°_°°o°°°°°°°°_g°_°_°°°_ °_°°oooo _o ooo_o oooo°°o°go°°_ooo°°°o°o°°_°°o_°°°°°_°_ooo ................ ooo _;oooooo ooo _; _;o_o_;oooo4 ................. o_;ooo ...... o&oo_ooooo&oo4 oooooooo_

_oooooooooo_oo_oo___

..................

IIIIlllIIllIllllIIllIlllIIIllIIIllI!

_g ii111

I

I

80

................

2_ lllllliIIl

I

I

I

I

I

I

....................... lllilllll

I

I

I

I

I

I

I

I

I

IiIIlllll

I

I

I

I

I

I

I

I

I

I

I

I

I

I

APPENDIX D

o0

o o

z I U _r

of o [.9

__)

z

z o e4,o NU"%

c_

-

oo

0 O_ ua4" 0'9

cD tU

N

e_

,,:[

0

..J I z II z (DO

oo 0D

I.L I.L ZZ

zg

0

_j

_io,omi,,o,

........

,,.i

_._. _.-_. • .

C3

o o u') u'_ o .4

u_n



_) IT

IT o

o

ZZ

__°_o

ZZ C_C3 f_

C-,C_ Lmu., O. 0. (:DO o o

I1!

IIIII

U_

O0 _1

u,,_ i.,u => > ww

z

ktl

I

I

I

I

I

I

t

I

I

I

I

I

I

0

I WlJJ

0

u,. Lu

t_ I.k N

2 tu

e_

It Z

d, o_

0

o_

81

APPENDIX

u%

o" e

0

A "I" _3

J/J 0_ CD

b.o

(7,

z o

fD

r...o _z ,0 •

U. b I.-z

_

g

0 ,,,4 _-

,0"

"_c)

,13

O

,%

o,

'_c

-t

'-_G

4-

w i_.

I 0,

_

g

r_ exl

82

_ o'_ 4-

,4" o" 0

u3

,.9 _

D

APPENDIX

o

D

4"

...4

o,c[

0 rn pI.'% t I

_

o_

_

C I--

I _0 o_..-

_ ,o

o

I

_

OtL

0

O

OOOO

OO

o 4"

eO

*

Z O

JO



LU

0_--)

0

0 -d

ec._

m

I



_oooooOOOOOOOOOOOOOOOOOOoooo_oooooooooo _O_o_omo_O_omOmomo_OmomomO_omo_omo_o_o

fxl_

_

"4"

N

_

m_o_m_O

m_o_m_o_m_o

,0 I'M

0

,4"

,4"

,4" 0

83

APPENDIX D

co

0

o •

J

o._

..............................

.

oooo

OOoo _

IllllllllltllllllllllllJllllO I.-

.-II--

o

,O

I o

Z o

............. _

oz.O

,.0

o

,-_

g

ou

o

o

m ox

,4-

_ .........

w

o_

.

2'2_"

L)

__ooo__oooo ooo

oooo__

°°°°°°o°°°°o 000000000000

IIIIIIIIIIIIIIIIIIIIIIIIIII10 -

v, c uJ

z

_ _

N

_

e .t _

_

_

(3,D r-I

84

_m •

ej o

_,4

4"

0o

r-

,-,

,

















.



,





,



,











,





,











,



,

,



,

APPEND_

D

o_

o O_

CD :Ii

O_

" " " ," _',"

O

I ,OO

k-

e,Jell--

_

°_. '_.

0

I

0

eo

I'

,',','," .

I'

,'_"

I_

,','

,',','

I'

,',','_"

,','_'_',','i',',',"

_ _',','_

_

o

!

o

_1-

,4-

o ooooooo___°°°°°°° °°°°°°° .'.,',.,;,.,',,.',',.,',,,, -

......,',,

__ ,,,,,,,

_ _g_ _.ooo _°°°_ ,',';,';;(,,'(,';

o(.__ I Z

oooo

o_o_o_o_o

o_o_

m

4" 0

N

,-.-I

_

°

g

o,

85

APPENDIX D

m(_

OOOOOOOO_OOOOOOOOOOOOOOOOO_OO_OOO_OO_ "eelieeeeleeI,eee,.ileeeleeeeeee.e,e.lle, CD

|lllllllllllllllllllllllllllllllllllllll

ol CD

_

O.

_

__.

o

o

I o

_

_

_

I-Z

QZ oQ

_

NU

_'J

_

oJ

ooooooo_ooooooooooooo_oooooooooo_ooo_ooo • eilele e,eI.eeeee,ee .ele,l,,., lllIlllllIlllIlllllllllll,

tel II

* t,.-

_

m

r,J

_

_

-4"

-

g i

86

lllllllllllllliO

eee

ell

APPENDE(D

0, 0, ,4" .@

4" (7, i° :_

0_

e

"r l.) _D I--

! tmO e4b.-

t,J

00

jjlel|eljejlll|eiJl|'_iel"llelJellellelel_llelJJel_ellelO 0_ ,O

00

d -

-..

_

¢_X

'4"

oOoO_ooooooooooooooo_oooooooo_oooo •

iiiIiIiIIIIIIIIIIIIIIII

oooo ,,,o,,ee,_ii,

e,

_z

t_

t_ I

o

-,1"

_

-,t"

m

o

e4

t_ m

4,4-

o

4-

8'/

APPENDIX

I

I'

l

l

...... IIIIIIIIIIIIIIIIIIIIIIIIIit11111111111110

88

I"

I

O

I'

_

I

l

I

I

D

I

l

|

I

i

l'

_

I'

l"

_

I"

I"

I"

l"

l"

I'

......

I"

I"

I"

_

I"

|"

!

;

I"

I"

I'

I

_ooo_ooo_ OOO

OOO

I"

I

APPENDD[

D

o o (_

o e

A_

h-

-4" u.

o

u

,(D

u.

4"_U.

Iz

oz oC3

uJ

,tu oc i,.j

z o

h-

I

II N

,0 t._

ft. o ,l) u

c) -,4

..,4 _x

I

z

gm

o o .% 0 ..J un

ooooooooooooooooooooooooOoooooo_oooo_ooo_

oO

,ee,lee,lleeee,leeleeeeeee'eeee

eeeeee_ee

I o I 0"

I ,,1"

o

o o o

o

m N e'.l

89

APPENDIX D



cz C

o_

i,

t

a, _4_

,_ o_

II rL

t

0

*0



_

OZ '0

_'' ,', , ;, ,',;,',',',';_,',',','_,', ,';,',',',',',', _,',',';,'_

,0

lllllI)l|ililiiIlilllll$1iIllI)l|Illil|lO 00

g

II

o

oo

V

*

en

I*

,_.

I

90

o.

APPENDIXD

,4"

C_

O,

_,

l.,u

ol.u

co

(D

NO

0,

0 _

I N

; ,',','," ; ,"; ,',',',','," ; ; ,'*',',',','," { ; ; ,"i ,'," _ ( ; ,'," ; i ,'," ;d

0 ae

r-_

_r' m

g i..z

oz *o

_

• o_.)

o

>

ooo_®_, _oooooooooo

_ o

o

_

_

oooooo

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII10 -

.o I z

,oo

g

I"

"_

¢M

I _3_

N

°

I

9I

APPENDIX

D

II 0 0



I

• •

i



I0



*

i*iiiii*i I

i*

***+I*i*ii*+,**

II

Illll*lll*l*llllllllllllllll*l*

I*l*l*l*_O

Z 0

I

tU

Ot._ O 0

o

. OX

0 -40

+i+,I+++iii**i

_"



*i

*i*

IIIIIIiIIIIIIIIIIIIIIiIIIIllIIIIIIO -

Z

_

m

§a_°°°° o_o__oooooo oe .._

_

IU

*

u'_

4"

m

_

_

g

_ g

E ,t/,

13"

92

-,t"

i****i*+***.+*.ii***+i**i+*+i.ii*iii*I**i

o_o_o_ooooo

O0

_o_

00000

_

APPENDIX

Im -

¢xl

q"

; ,'o e4

,0 o

-,I" -,1-

o

94

0",

t--

u%

,-_

e4 •-_

c_ ,o

IIIIII

Ililililll;illllll_

l''tO

APPENDIX D

P-

--4

0_

O ,-4

I

_

01-" eZ I 0

t"-•

,0

m

u-

h-u_

_,

_

OZ *O

,0

O.

O,,_ "_'U

0(]'

_

0

U%

0

f--

_1

I

I

I

I

l

I

I

I

I

!

I

I

I

I

I I

I

I

I

;

I" I

I" I" I" I" I"

I

I' I

I

I" I" I

I" ;

I"

I O

m .J

,0

_

IIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllll

IllO

_

_

gexl

o

exl

r,l f_

_-

95

APPENDIX

D

o "ItD

oooo_ "',',',',',',',',',',',';,';,',',',.,'o.,',.,.,.,.,.,.,.,.;,.,.,.

OL_

C

,OCD

O"

_ 0

,2"

_

mku m

'4"

eO



• _

o

I" Z

00

*..J Q

OX

"4"

oooooooooooooooooooooo llllllllllllllllllllllllllllllllllllllO

Z

_

mO

,4"

OC) 0_

,4"

OOOOOOOOO_OOOOOOOOOOOOOO_OOOOOOO_OOOOOOO o

I

exl

O

c_J

u_

_4

0_

° un ,0 0,

96

0,.(3 ,,1.

_o_o_o__

APPENDIX D

n4

(3"

IN.

G_

o It

• I

c



..r

o

;

_m

o

I C

u.

rlmu_

o Iz

,4-

,.=o

z 0

oz JO

,o

m_j

o

*

_1

_

_

o ,0

g,

_

_

o,

o

O0

,,11"

IIIIIIllllllllllllllllllllllllllllllllllO

o,

g

,-j

o "

_ 0,

m

,4"

°

_

97

APPENDIX

D

-I"

-4

-,1"

....

I

o

"o

_

"4"

U-

_U-

_

_

_'_.

,

_

_

_

,,

_

_

_

,_. t._

O

r,j _

98

1" I" I•

i"

I•

I•

l"

I

I' I*

l"

,• i"

i•

_

I"

I"

l" I'

i"

l"

1" I•

i"

i,•,i

I

i'

,,• ,

;

,,,_,

I*

l*

* I" I.

I•

I*

,

oo3_°

1'

,,• ,

;

l"

I*

I

.

I* .

;

I*

1'

I_ ,"

;l'_

I* I

I* I*

I*

Z 0

0 .,..j

>-

oo

!•

._

um

ul

o,

0,

"

2

,0

4"

--I 000 I

I*

I*

0 • I

I•

0 I*

l*

O0 I' !*

000000. I*

I*

I*

l*

0 I*

I*

I

I* o*

APPENDIX D

f_-

0,

0_ _n4-

,',',", , , , ;,';,',',',,',, , , ,',';,;, ,', ,',',';;;t, ,';,d

I

r..l



b I-z

.

P-

eO

.

g

f_ oz oO

_o

,_

_

>

• .J

oo2o_oooooooo_o_o2oooooooooooo_ooooooooo IIIIIIIIItllllll_lllllllllllllll|lllllllO

ouJ

u_

m

_

1 u%

ii

o,

*

I •4" e_ _

,,t" .4m

g

,-

I r,%

,4"

o

g

N

,11 4"

99

APPENDIX

D

m-

_o

o I _J

Z 0

4 .... £_ .......................... w

100

APPENDIX D

I"

I

I"

I

I

I

I

I

I

I

I

I

I

I

I

I

I"

I'

I

I"

I'

I" I"

I"

I"

I"

I'

I"

I"

I"

I"

I'

I"

I"

I"

I"

I'

I"

I'0

z

w

oooooooooooooooooooo

_oooooo_ooo_o_o

oo

IIIIIIlllltlllllllltlllllllllllllllltlllO

o o

0% I

101

APPENDIX D

,',',',',';,',',',';,';,',',',',';;,',',',',',',',',',', ;,',',';,','_;g"

Z Q

W

_J

_J

. ...... I

102

I

I

I

I

I

_ o..o. ....... 0000000 .....

o.o.o.o.o.% o..o........ ___ I

t

I

I

I

I

I

I

I

I

I

I

t

I

I

I

I

I

I

I

I

I

I

|

I

I

I

e I

ooOoooooo, o_ •

!



I



I

,

I

I

I

0

APPENDIX

to-

0

O"

o ,.w

IB ,0

• Or"

t,"D

e_ (3"

•4" c_

C_

(D "TO

on ,o

,_ _

on _4 _

o

ao ,o n% o

_-

D

,9 _o o4

k

,',','," ; ,"; ,',',',',',',',',',',',','," ; ,',',',',','," ; ,',',','," ; ,','_,'d

I o ,0

O"

0

*Z I 0

U

eO

_n

" ............... ._._ .... _

_g

!

_............... ..... __

....

_j_

"_.

000000 00000000_00 ee_eee_illieeie_@e_eleie lllltitIllllll}llllllll}l_Illllll'llllllllO -

_

0 e_eeI

Ieeeeeel

Z

.4"O

,4"

o

_

N I

II >-

I

o,

o,

I

103

APPENDIX

D

r,t_ _r

o

Z

i I

_

._ I"

0

I

I

I"

I"

I

I

I"

I

;

I

I

I"

I

I"

I

I"

I

I"

I"

I"

I'

I'

I"

I"

I"

I

I

I"

I

I"

I

I"

I"

I'

I"

I"

I 0

I"

Z 0

ku

00

_0

_X

,4" II11111111111111111111111111111111111111o

_ _

_0

,4"

0C3 I m

_t

muA

_

I

m

m

I u'a

0_

I O"

,,1-

I

I

104

o

ooooooooo_o_oooooo_ooooooo o_o_o_o_o

ooooo

I

I'0

,=d

0

g,

i!

Lk_

,',',','_',',';,','o',',',',',';,',',', "0

o

_ I--

,,..., ,"., ,"., ,.,...;;,.,.;..

,,,.g

0"

,_ OZ

Z

_

eQ

0

0

o

o

oooooooo_;;

QOO00_O

ltllitllitlllllllllllllllltllllllllllltll Ililll|lllllllllllllllllllllllll|lllllllO "

'_

!

Z

qJZ

_

m

g

_

e,l

,,_ m

0

N t

.o ,...i

N

..

'2

.

,0

I

105

APPENDIX

_.1

IIIIIIIIIIIIIIIIIIIIIIIIIIIiII1|11111111_

106

D

APPENDIX

FORTRAN

This Data

program

Corporation

library

Minor

program

the

program

the

matrix

The

is

1120008

and

is

seven

to

on

for

an

the

computer

73 with

program

to

geometry

Each by

of

a three-digit

four

with

in

basic

77

to

features

and

79.

The

depending

on

CIRCULI

uses

uses

place

layout.

steps,

three

SUBROUTINE

following

CIRCUL3 automatically

vortex-lattice

each

and

PROGRAM

PROGRAM

takes

addition,

allow

characteristics.

dihedral

the

and

computers.

PROGRAM

PROGRAM

In

other

words,

selection

OVERLAY,

columns

on

Control

system

These

and

and

abbreviation.

number

use

uses

the

operating

ll20008

dihedral

The

for

aerodynamic

matrix

PROGRAM,

a three-letter

to

configuration

consists

3.0 to

the

configurations

the

2.3

stepping.

for

matrix.

of

program

75

for

SCOPE

510008

a well-conditioned

ill-conditioned

SUBROUTINES.

columns

the

for

from

without

technique

words

version

prior

technique

configurations

solution

words

This

sequenced

the

for

with

PROGRAM

vary

solution

language,

required

and

to

the

IV

be

UPDATE

and

LISTING

system may

requirements

630008

dependent

computer

using

technique

and

and

in

written

PROGRAM

FORTRAN

modifications

storage

words;

CIRCUL2

in

6000

conditioning

solution

510008

written

series

tape.

The

and

was

E

of

OVERLAYS is

these table

identified parts is

is an

index

listing: Name PROGRAM OVERLAY

Abbreviation

of part

Page

GEO

GEOMTRY

109

0 (WINGTL)

PROGRAM

}

WINGAL

119

DGO

SUBROUTINE

FTLUP

TLU

120

SUBROUTINE

SIMEQ

SEQ

122

SUBROUTINE

DRAGSUB

DGS

124

DGI

125

DG2

130

DG3

135

GIA

140

ZOC

148

OVERLAY

1 (WINGTL)

PROGRAM OVERLAY

CIRCUL1

A

)

I (WINGTL)

PROGRAM OVERLAY

CIRCUL2 1 (WINGTL)

PROGRAM

CIRCUL3

SUBROUTINE OVERLAY

GIASOS

2 (WINGTL)

PROGRAM

ZOCDETM

SUBROUTINE

INFSUB

INF

150

SUBROUTINE

SPLINE

SPL

151

SUBROUTINE

TRIMAT

TRI

153

DUM

153

PROGRAM aThe PROGRAM

DUMMY

PROGRAM

a DUMMY

is for

default

purposes

of

GEOMTRY. 107

APPENDIX JOS,I,lO00,063000,1000. JSER.LAMAR, JO"N

A4062 E

NURFL. JPDATE(F,I,N,C,L=O} RE*IND(NEWPL) JPDATE(Q,P=NEWPL,C,L=O) 4UN(S,,,COMPILt) 5ETINDF. _GO. RE,IND(NEWPL) REWIND(TAPE50) JPDArE(Q,I=TAPE50,P=NEWPL,L=O) RU_(S,,,COMPILE,,GLO) SET INDF. GLO. EXIT.

108

E R43|0

000503_00N

IO0110 38510

_1212

RIOI

APPENDIX

*DECK

C C C C C C

E

VLMCGEOM PROGRAM GEOMTRY(INPUT,OUTPUT,TAPE5:INPJT,TAPEB=OUTPUT,TAPE?5,TAPE5GEO I0) DIMENSION XREF(25), YREF(25), SAR(25), A(25), RSAR(25), X(2S), 15)9 BOTSV(2}, SA(2)9 VBORD(51}9 SPY(5092}9 KFX(2)9 IYL(50,2}9 25092) COMMON /ALL/ BOToMt8ETA,PTEST,QTEST,TBLSCW(50),O(_OO),PN(_OO),PV(_GEO IO0)oS(400),PSI(WOO},PHI(50},ZH(50),NSSW COMMON /MAINONE/ ICODEOFoTOTAL,AAN(2),XS(2),YS(2),KFCTS(2},XREG(25GEO 1,2),YREG(25,2),AREG(2592)9OIH(25,2}oMCD(25,2),XX(2592)oYY(2592),ASGEO 2(2592),TTWD(25,Z},MMCD(25,2)*A_(2),ZZ(?b,2),IFLAG COMMON /DNETHRE/ TWIST(2),CREF,SREF,CAVE,CLDES,STRUE,AR,ARTRUE,RTCGEO IDHT(2)oCONFIG,NSSWSV(2),MSV(?),KBOToPLAN, IPLAN,MACHoSSWWA(50) COMMON /CCRRDD/ CHORD(50),XTE(50),KBIT,TSPAN,TSPANA REAL MACH REWIND 50 PART

ONE

- GEOMETRy SECTION

COMPUTATIO_ OWE

-

I_PJT

OF

REFERENCE

WING

POSITION

ICODEOF=O TOTAL=PTEST=OTEST=TWIST(1)=TWIST(2)=O. IF (TOTAL.EQ.O.) RTCDHT(1)=RTCDHT(?)=O.O YTOL=I.E-IO AZY=I.E÷I3 PIT=I.5707963 RAD=57.2_578 IF (TOTAL.GT.O.) GO TO 7 C C C C C C C C C

! C C C C C C C C C

SET PLAN VARIABLE SET PLAN

EQUAL SWEEP EQUAL

SET TOTAL OF GROUP

EQUAL TWO

TO ]. FOR WING TO ?. FOR

A WING

ALONE

A WING

- TAIL

TO THE NUMBER DATA PROVIDED

OF

COMPuTAION

-

EVEN

FOP

A

COM_INATION

SETS

READ (5,98) PLAN,TOTAL,CREF,SREF IF(ENDFILE 5) 93,! !PLAN=PLAN

SET AAN(IT) DEFINE THE

EQUAL TO THE MAXIMUM PLANFOR_ PERIMETER OF

_UMHER OF CURVES THE (IT) PLANFORM.

SET RTCD_T(IT) EQUAL TO THE ROOT CHORD HEIGHT SURFACE (IT),WHOSE PERIMETER POINTS ARE BEING RESPECT TO THE WING ROOT CHORD HEIGHT WRITE (6,96) DO 6 IT=!,!PLAN READ (5,98) AAN(IT),XS(IT),YS(TT),RTCDHT(IT) N=AAN(IT) NI=N*I MAK=O IF (IPLA_.EQ.I} PRTCON=IOH IF (IPLA_.EQ.2.AND.IT.EO.I) oRTCDN=IOH IF (IPLA_.EQ.2.AND.IT.FO.2) PRTCDN=IOH

FIRST SECONO

REQUIRED

OF THE LIFTING READ I_, WITH

TO

GEO Y(2GEO IYT(GEO GEO GEO

GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO

I 2 3 5 6 7 8 9 I0 II 12 13 14 15 !7 18 19 2O ?I 22 ?3 2W 25 _6 27 ?B 29 3O 3! 32 _3 35 3b ]7 ]8 39 W0 42

,,5 _6 _8 w9 5O 51 52 53 5(* 55 56 57 58 59 b0

109

APPEND_

2

3

% C C C

5

b C C C C C C C C 7 C

B

I0

II

12

110

E

WRITE (6,97) PRTCON,N,RTCDHT(ITI,XS(IT),YS(IT) W_ITE (6,|091 DO 5 I=l,Nl READ (5,98) XREG(I,ITI,YREG(I,IT),DIH(I,IT),AMCD MCD(I,IT)=A_CD IF (I.EO.I) GO TO 5 IF (MAK._E.O.OR.MCD(I-I,IT).NE.21 GO T9 2 MAK:I-I IF (ASS(YREG(I-I,IT)-YREG(I,IT)).LT.YTDL) GO TO 3 AREG(I-I,IT)=(XREb(I-I,ITI-XREG(I,IT))/(YREG(I-I,ITI-YREG(I,ITI) ASWP:ATA_(AREG(I-I,IT))*RAD GO TO 4 YREG(I,II)=YPEG(I-I,ITI AREG(I-I,IT)=AZY ASWP=90. J:I-I WRITE

PLANFORM

PERIMETER

POINTS

AND

ANGLES

WRITE (6,106) i,XREG(J,|T),YREG(J, iT;,ASWW,DI,(J,II),MCU(J, DIH(J,ITI:TAN(OIH(J,IT)/RAD) CONTINUE KFCTS(IT):MAK WRITE (6,1061 NI,XREG(NI,IT),Y_EG(NI,IT) CONTINUE

READ

GROUP

SET SA(|),SA(2) CURVE(S) THAT READ(5,1051

2

PART l - SECTION 2 DATA AND COMPUTE DESIRED

EQJAL TO CAN CHANGE

THE SWEEP SWEEP FOR

wING

POSITION

ANGLE,IN DEGREES, EACH PLANFURM

FOR

CONFIG,SCW,VIC,MACH,CLOES,SA(1),SA(21

WRITE (6,99) CONFIG IF(ENOFILE 51 g3,8 IF (PTEST.NE.O..AND.OTEST.NE.O.I GO TO 95 IF (SCW.EQ.O.) GO TO I0 DO 9 I=l,50 TBLSCW(1)=SCW GO TO II READ (5,98) STA NSTA:STA READ (5,981 (TBLSCW(1),TBLSCW(I*I),TBLSCW(Io2),TSLSCW(I*3),TBLSCW(GEO IIo4),TBLSCW(I*5),TBLSCW(I*6),TSLSCW(I*7),I=I,_STA,8) DO 37 IT=I,IPLaN N=AAN(IT) Nl=N*l DO 12 I=l,y XREF(II=_REG(I,IT) YREF(1):YREG(I,IT) A(1)=AREG(I,IT) RSAR(1):ATAN(A(1)) IF (A(1).EQ.AZY} RSAR(1)=PIT CONTINUE XREF(NI)=XREG(_I,IT) YREF(NI)=YREG(NI,IT) IF (KFCTS(IT).GT.O) GO TO 13 K:I

GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO .... GEO IT) G£.0 GEO GEO GEO GEO GEO GEO GEO GEO GE0 GE0 THE FIRSTGEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO GEO

bl 62 63 64 65 b6 67 68 b9 70 71 72 13 14 75 76 77 78 79 HO 8l 82 83 84 85 H6 _7 88 89 90 91 92 93 94 95 96 97 98 99 I00 lO1 102 I03 104 I05 GEO I06 GEO I07 GEO I08 GEO I09 GEO II0 GEO III GEO I12 GEO I13 GEO I14 GEO I15 GEO ll6 GEO I17 GEO 118 GEO ]19 GEO 120

APPENDIX

13

15 16

C C C 17

IB C C

C 19

20 C C 21 22

23

2_

SA(IT)=RSAR(1)*RAO GO TO 14 K=KFCTS(IT) WRITE (6,102) K,SA(IT),IT S8=SA(IT)/RAD IF (ABS(SB-RSA_(K)).GT.(.I/RAD)} REFERENCE PLANFORM COORDINATES WITHOUT CHANGE IN SWEEP O0 16 I=I,N X(1)=XREF(I} Y(1)=YPEF(I} IF (RSAR(1).EQ.PIT) GO TO 15 A(I)=TAN(RSAR(1)) GO TO I6 A(I)=AZY SAR(1)=RSAR(1) X(NI)=XREF(NI) Y(NI):YREF(NI) GO TO 35 CHANGES

IN

WING

SWEEP

ARE

MADE

E

GO TO II ARE STORED

UNCHANGED

FOR

WINGS

HERE

IF (MCD(K,IT).NE.2) GO TO 94 KA=K-I DO 18 I=I,KA X(1)=XREF(1) Y(1)=YREF(1) SAR(I)=RSAR(1) DETERMINE LEADING EDGE INTERSECTION BETWEEN FIXED AND VARIABLE SWEEP WING SECTIONS SAR(K)=Sd A(K)=TAN(Sd) SAI=SB-RSAR(K) X(K*I)=XS(IT)÷(XREF(K,I}-XS(IT))*COS(SAI)*(YREF(K*I)-YS(IT))*SIN(SGEO IAI) y(K.I)=YS(IT)÷(yRE_(K÷I)-YS(ITj)*COS(SAI)-(XREF(K*I)-XS(ITJ)*SIN(&GEO IAI) IF (ABS(SH-SAR(K-I))oLT.(.I/RAD)) GO TO 19 y(K)=X(K÷I)-X(K-I}-A(K)*Y(K*I)*A(K-I)*Y(K-I) Y(K)=Y(K)I(A(K-I)-A{K)) X(K)=A(K)*X(K-I)-A(K-I)*X(K*I}*A(K-I)*A(K)*(Y(K,I)-Y(K-I)) X(K)=X(K)/(A(K)-A(K-I)) GO TO 20 ELIMINATE EXTRANEOJS BREAKPOINTS X(K)=XREF(K-I) Y(K)=YREF(K-I) SAR(K)=SAH(K-I) K=K*I SWEEP THE 8REAKPOINTS ON THE VARIABLE SWEEP PANEL (IT ALSO KEEPS SWEEP ANGLES IN FIRST OR FOURTH OIJADRANTS) K=K÷I SAR(K-I):SAI*RSAR(18 219

DO 29 NV=I,NSSW NSCW=TBLSCW(NV) NP=NR*I

OG3 DG3 DG3

720 221 P22

NR:NR÷NSCW PHIPR=ATAN(PHI(NV))_RAO

OG3 DG3

2_3 2_4

22

WNII=WNII*CORAG(J)_A(I,J)_PI_S_EF/(SNN_CSS_CRPHI) CONTINUE

23

WRITE (6,47) Y(1),CO_AG(1),WNII IF (I.EQ.NMA(1).AND.IPLAN.EQ.2) CONTINUE

_PlTE

(6,4W)

DO 26 I=I,IPLAN IUZ=NMA(1) DO

24

J=I,IUZ

JJ=J*(I-I)_NMA(1) ZZH(J)=Y(JJ) XTT(J)=CORAG(JJ) 24

25 2_

CONTINUE IUU=NSSWSV(1) DO 25 J=I,IUU JJ=J*(I-I)*NSSWSV(I) CALL FTLUP (YC(JJ),PPP(JJ),*I,IUZ,ZZH,XTT) CONTINUE

IF DO

(I.EQ.2) 27 J=_A,K8

D=XCFT

NSCW=TBLSCW(J) AI=NSCW_O*O.75 IMAX=INT(AI) DO 27 K=I,NSCW JK=JK÷| E=I. IF (K.GT.IMAX) 27 2U

E=(I.-(K-.75)/NSCW)/(I.-D)

CIR(JK)=PPP(J)_E CONTINUE CONTINUE WRITE NR=O

IF DO

(6,37)

CLDES

(NV.EQ.(NSSWSV(1)*I)) 29 [:NP,NR

WRITE

(5,38)

PNPR=PN(1)_BETA PVPR=PV(1)_HETA PSIPR=ATAN(BETA_TAN(PSI(1)))_RAO 29

WRITE CONTINUE WRITE WRITE

DG3

229

(6,39)

PNPR,_VPR,Q(1),ZH(NV),S(1),PSIPR,PHIPR,CIR(1)

(6,35) (6,3b)

DG3 OG3 DG3

230 231 2112

CREF,CAVE,STRUE,SREF,BOT,AR,ARTRUE,MACH

OG3 DG3 DG3

2 ]3 234 235

CLTOT=CMTOT=O. DO 31 I=I,NSSW IF (I.EQ.I) WRITE IF (I.EQ.(NSSWSV(1)*I)) SPANLD=O. DO 30 IJ=I,NSCWMIN IK=(I-I)*NSCwMIN÷IJ

138

OG3 225 DG3 226 OG3'227 DG3 228

(6,42) WRITE

(6,4])

DG3

236

DG3 DG3

237 238

OG3 DG3

239 240

APPENDIX

E

SPANLO=SPANLD*2.*CIR(IK)*COS(ATA_(PHI(1)))

DG3

74!

CLTOT=CLTOT*B.*S(I_)*CIR(IK)/SREF*COS(ATAN(PHI(1)))

DG3

?42

CMTOT=CMTOT+B.*S(I_)*CIR(IK)*P_(IK)*BEIA*COS(ATAN(PHI(1)})/(SREF*CDG3 IREF) 30

CONTINUE WRITE

(6,45)

(I.EQ.NSSWSV(1)) (I.EQ°NSSWSV(1)I

IF IF

(I,EQ.NSSWSV(1)) WRITE (I.EQ.NSSW.AND.IPLAN.EQ.2)

WRITE(6,40) C 3_

FORMAT FORMAT

35

38 39 (*0

28ER/) FORMAT

REF.

CHORO,GK,25HC

CLA,CM2

AVERAGE

AREA,gX,3H_/2,SX,THREF,

TRUE

AR,8X,7HTRUE

AREA

FORMAT IIAHCM

%2

IA O I FORMAT I0 A D FORMAT I

PLANFORM DESIGN

G//6OX,IHY,IIX,AHCL*C) (/IIIAOX,58HS E C 0 I _ G//6OX,I,Y,IIX,AHCL*C)

VORTEX

OESCR|PTIONS/)

=,_]O.6,SX,I?HCL V=,FIO.6)

N

D

DEVELOPED DEVELOPED

DG3 DO3

746 P41

DG3 DG3

?AIA 248

DG3 063 DG]

?49 25O P_I

DG3 DG3 0G3

252 253 254

DG3 DG3

?55 756

L

0

P A

A L

N

PLANFORM) PLANFORM)

W

I W

THIS THIS S

A

L

E S

H

ALONG

A N

F

0

R

M

S

P

A

N

L

PLANFORM=,FIO.6/ PLANFORM=,FIO.6) S C A ) /( U

L *

E C

0

F S

A I

C N

T E

0 (

R D

S I

257 258 259 260 961 262

DG3 063 063

?63 ?64 265

DG3

?66 _7

0G3 DG3

?60 ?69 770

0G3 DG3 DG3

771 ?72 PI3

DG3 0G3

274 ?lAA

DG3 DG3 OG3

275 216 777

DG3 DG3

2/8 279 2_0

DG3 DG3 063

281 ?82 783-

COMPUTED=,FIO.6,SX,DG3

COMPUTED=,FIO.6,SX,?gHNODG3 V=,FIO.6) A _ F 0 R M S P A N

P ON ON

2H E D R A L ) )//30X,23HDISTANCE 3HWN/(U*COS(PHI)) ) FORMAT (36XFIO.5,10XFIO.5,3XFIO._) (IOX,I_HFI_ST (IOX,IS_SEC3NO

PW4 745 745A

SWEDG3

Y

FORMAT (55XFIO.5,3XFIO.5) FORMAT(/////AX, 127HS I A N D ( N 0 R M

FORMAT FORMAT tNO

HORSESHOE

(/////15X,7HCL DES=,FIO.6,SX,12HCL MOMENT CDNSTRAINT,5X,SHCD (////40X,SGHF I R S T = L

(//50X,3OHCL 50X,3OHCM

DG3 DG3 OG3

063 DG3

(/////15X,IIHCL COMRUTED=,FIO.6,SX,SHCD

FORMAT PITCHINO FORwAT

?AZH 743

,AX,IDG3 NUMDG3

AR,WX,IIHMACH

(_F15.5)

27X,SHANGLE,AX,6HCLDES=,F7.4/) FORMAT (/W5X,45HSECONO FORMAT (17X,BF]2.5)

I

(+5 %6

CMA=CMTOT-CM! WRITE (6,44)

FORMAT (IHI,///25X,IHXIIX,IHX,IIX,IHY,IIX,IHZ,12X,IHS,SX,gHC/4 IEP,AX,SHOIHEDRAL,3X,IOHGAMMA/U AI/24X,3HC/4,9_,_H3C/W,WAX,SHANGLE.DG3

41

%3

(6,44) CLI,CWI CLA=CLTOT-CLI

CLDES,CLTOT,CMTOT,CD

(IOXlIO,IOXIIO) (////AX,IIH

14HREFERENCE

37

CLI=CLTOT CMI=CMTOT

CONTINUE CONTINUE RETURN

33

36

Q(IK),SPANLD

IF IF

IF (I.EQ.NSSW.AND°IPLAN.EQ.2) IF (I°EQ.NSSW.AND-IPLAN.EO.2) CONTINUE

31 C

2wAA OG3 DO3

PLANFORM,5X,THFACTORS,Sx,150G3

139

APPENDIX SUBROUTINE _________

C__ C C C C

PURPOSE

C C

M_TRIx

SINGULAR PERFUP_ING

PPOHLEM

VALUE THE

DECOhPOSITION OF A A:UOV (T) FACTO_IZATION,

RANK,TH_ SINGUI.AP VALUtS, IHE MOMU_ENOU_ SOLUTION , At_O A LFAST SOI.,A_ES SOLUTION

CALL

GIAO005 GIAO006

AN AND

THE FOR

GIAo007 GIAO008 GIAO009

THE

AX=H.

lOP

OPTION IOP=l

PANK

lOP:?

IN

WILL

bE

ThE

RFTIIPNEO

O_DEPtD

AI_I_ITION

HASIS FOP THF LAST

T(_

C C C C C

TO

I_F

ThE

AS

IQP:2.

WILL

BE

PETUHNEL)

IN

IN

WILL

IOP=I V

HE

RFTURNEU

_D[;ITI()N _AT_IX

TH_

IN

lOP=2, IN IN APLUS.

ADDITION

THF

PSEUDO

lOP=5

SAP_

AS

lOP=w,

ADDITION

T_E

LEAST

WILL

BE

RETURNED

IN

MATRIX

A,

ROW

DIMENSION

FOR

V

GIAO035 BIAO036

Ih_TEGER

SPECIFING

TMF

MAXIMU_

C C

M

INPUT

INTEGER

SPECIFING

THE

NUMBER

OF

ROWS

C C

N

INPUT

INTEGER

SPECIFING

TPE

NUMBER

OF

COLUMNS

A

AN

A

CONTAINS

NOS

NUMBER

C C

B

AN

OR

RIGHT

HA_D

INPUT

VALU_,

SIDES

TO

ON

INPUT,B

I_rTEGER

SPECIFING

IN T_E l'SEi; T(,

ELEMENTS DETERMINE

IAC.(_T.I3

H BE

TWO-DIMENSIONAL

lOP=5.

THI_5

PEAL _T LEAST w_ICH IS

PATRIX

C_N_INING TrE

7£Hn

IN

ARRAY

GIAO037 GIAOO3B _IA0039

A. IN

WITH

N. ON UESTROYEU.

EXCEPT

A. ROW

INPUT, ON

WHeN

f)IMEN-

GIAO0_O 6IAO0_I GIAO0_?

A OUTPUI

GIAO043 _IAO0_

IOP=I,

BIAO0_5 bIAO0_6

SOLVEO.

bIAO0_7 GIAO0_8

AR_AY(_D

CONTAINS

SYSTEM OF EQUATIONS THE LEAST SQUARES NOT BE DIMENSIONED

ACC_)PACY VALUE IS

IF

ISOMETRIC

INPUT/OUTPUT

IOP:3

AN

THE OF

FOR THE CONTAINS B NEED IAC

TWO-DIMENSIONAL

_

FOR

INPUT

C C

X

THE

NOS)

RIGHT

USED

FOR

GIAOO_g

_AND

SIDES

_IAO050

B

_IAO051 _IAO05? GIAO053

TO BE SOLVED, UN OU[PUT, SOLUTIONS FOR T_E EQUATIONS, FOR OTHER OPTIONS, THE

NUMBER

OF

OF THE INPUT THE TEST FOR

A

DECIMAL

DIGITS

MATRIX. [_IS ZERO SIngULAR

PANK, TEST

_IAO030 bIAO031

SOLUTIONS

DIMENSION

ND

A

_IA0028 _IA0029

ROW

MAXIMU

C C

HE

GIAO032 _IA0033 GIAO03_

THE

DIMENSION MATRIX

wILL

H.

SPECIFI_G

COLUWN INPUT

61A0023 _IAO02_ _IAO025

SOLUTIONS

SwUAPES

INTEGER

AND THE

(_IAO02I 61A0022

A.

INVF_SE

INPUT

INPUT/OUTPUT

IN

MATHIX

S_UAhES

MD

SION MD CONTAINS

_ETUHNEO THE U

_ILL

QGIAO018 GIAO019 _IAOO?O

GIAO026 GIAO027

SA_E AS RETURNED

.C C

IN

_.

IOP=_

IN

HETUHNE[)

URTMO_UNAL

WILL _E r_ATRIx.

LEAST

IN

_E

AN

SOLUTIO_ OF THE WILL

IN

P_U_HA_

VALUFS

OPTI()NS

.AIRIx

SAMF

CALLING

SID_GULAR

TPE HOmOGEnOUS N-IRANK COLH_N5

TPANSFEPMATION lOP:3

_IAO014 _IAO015 bIAo016 _IAO017

CODE

IRAh_,

C C

_IAO012 GIAO013

GIASOS(IOP,_D,NO,M,N,A,£,OS,N,IAC,O,V,IRAN_,APLUS,IERR)

C C C

140

D_ X

GIA0001 _IA00U_ GIAO003 GIAO00_

GIAO010 GIAOO]I

C C C C

C C C

HEAL

USE

C C

C C C

TME A:BY

WITH OPTIONS FOR THE ORTHOGOh'AL HASIS FOR PSEUDO INVERSE OF A

C C C C C

GIASOS(IOP,MD,ND,_tN,A,NOS,B,IAC,Q,V,IRAN_,APLUS,IERR)

TO COMPUTE N MATRIx

C C

E

OF

BIAO05_ @IAO055 @IAO056 GIAO057 GIAOOSB 6IA0059

HE

COMPUTED

USINb

THE

6IAOOBO

APPENDIX

E-NOPP

C C C C

IF

IAC,LT.13

OF

E

A

_ULTIPLIED

BY

THE ZERO TEST WILL RE E-NOkM OF A MULTIPLIED

2-*(-4_)

,

GIAOOBI

COMPUTEO USING BY IO**(-IAC),

GIAO062 GIAO063 GIAO064

THE

GIAO065 BIAO066

C C C C

A ONE ORDERED

C C

AN OUTPUT ORTHOGONAL

C C

UPON RETURN FROM THE SURROUTINE WILL CONTAIN AN ORTHOGONAL RASIS FOR THE HOPOGENOUS SOLUTIONS IN THE LAST N-IRANK COLUMNS FOR ALL OPTIONS EXCEPT i ,

GIAOO7| GIAOOT2 _IA0073

IRANK

RANK

GIAOO74 GIAO075 GIAO076

APLUS

AN

C C C C C C

IERR

THE

OUTPUT

ERROR

ARRAY VALUES,

TWO

WHICH

WILL

CONTAIN

THE

GIAO067 GIAO068 ARRAy WHEN

(ND

X N) lOP=I,

WHICH CONTAINS THE V MATRIX

IMPLIES

C C

K.GT.O K=-I

I_PLIES IMPLIES _E_T),

C C

LOWE_

C C C

(OUTPUT) APRAY

UF

MATRIx

(ND

A,

IF

X

M)

IOP

WHICH

UOES

CONTAINS

NOT

EQUAL A

UUMMy

WITHU,WITHV A(MD,_,)

NORI_AL KTH THAT THIS RANK T_E

,

_(MD,h!flS)

GIAO080 GIAO081

PETtlRN

SIKGUEAR t SIN(_ _DTPlX T_AN

GIAO084 6IA0085

VALU_ _OT FOUNI) AFTER 30 ITER, THE (_IVEN IAC(ACCUPACY REQUIREIS CLOSE TO A MATHIX wHICH IS OF

IPANK

RArJK

OF

V(Kfl,N)

ANU Thh

,(%(N)

IF

MATRIX

THE

ACCIJRACY MAY

ALSO

IS _E

REDUCED,

.E (?Sh)

THE

E-NnRM

OF

MATRI_

C

510

GO TO 7TEST

510 = ZTEST

ZTEST

=SQPT(SU_)*2,O_*(-48)

IF

(IOP,NE.I

El5

WITHU=,TRUE,

AS

ZERO

TEqT

FOR

SINGULAR

VALUES

GIAOI02 GIAOI03 GIAOI04

GIAOI07 GIAOIO8 GIA0109

J:I,N SU M + A(I,J)**2 = SQRT(SU_)

WITHU=.FALSE. WITHV=,FALSE, GO TO 520

A

GIA0105 GIA0106

l=l,M

IF (IAC.GT,13) GO TO ZTEST = ZTEST_IO,_(-IAC) 505

GIAOO90 GIAOO91 GIAOO92

GIAO099 GIA0100 GIAOIOI

COMPUTE

I)O 500 SLJI_ = 7TEST

GIAOOR9

_IA0097 GIAO098

,APLUS(NU,_')

SIZE=O,O NPI=N÷I

500

GIA0086 GIAOO87 _IA0088

GIAO094 GIAO095 GIAO096

TOL=I,OE-60

SUM: 0,0 r)O 5On

GIAO077 61A0078 GIAO079

GIAOO82 GIAOO83

REDUCED

C C

THEGIAO069 GIAO070

INDICATOR

K=O

DIMENSION

A

N

ARRAY NEE[) NOT NE DIMENSIONEU _UT MUST APPEA& I_ T_E CALLIr_6 SEQUENCE,

C C C

LOGICAL DIMENSION

SIZE

UI_ENSIO_AL

INVERSE

TPIS

OF

DIMENSIONAL MATRIX EXCEPT

MATRIX

PSEUDO

4 OR S PARAMETER

C C

TWO V

OF

THE

C C

DIMENSIONAL SINGULAR

_

)

50S

2,0_*(-_8)

GO

TO

515

GIAOllO GIAOlll GIAOll2 GIAOll3 GIAOII_ GIAOI15 GIAOll6 _IAOI17 GIA0118 GIAOll9 GIA0120

141

APPENDIX

E

WITHV=,TRUE, 520

GIAOI21 6IA0122 GIA0123

CONTINUE G 0,0 X -- 0,0 DO 30 I

=

HOUSEHOLDER

REDUCTION

3

J

THE =

I-TH

S + A(J,I)**? 0.0 .LT. TOL) SQRT(S)

F = IF(F H :

A(i,|) .GE. 0.0) F*G -S

=

F DO

S/H S K

=

A(K,J) CONTINUE Q(I) IF(I

: G .FQ.

S = 0.0 DO II J S = S *

GO

=

IF(F H =

16 17 19 20 30

142

DIA@ONAL.

GO

TO

GIA0137 GIAOI38 6IA0139

10

-G

GIAOI40 GIAOI4I GIAOI42

TO

10

GIAOI43 GIAO144 GIAOI45 GIAOI46 GIAOI_7 bIAO148 GIAOI49

I.M

N)

÷

Gb

THE

61A0150 bIA0151

F*A(_,I)

TO

I-TH

GIA0152 6IA0153 GIA0154

20 POw

TO

QIGHT

bO

TO

20

(_ =

.GE. 0.0) F*G -S F

-

- G

=

00 16 S = S DO ]7

= L,N A(J.K) = L,N

K + K

CONTINUE IF(.NOT.

wiThY)

GIAOI61 GIAOI6?

bIAO169

_IAOI70

L,M

A(J.K) = A(J.K) CONTINUE Y = AHS(Q(1)) ÷ IF(Y .GT. SIZE)

bIAO155 bIAO156 61A0157

GIAO166 bIAO167 GIAOI68

G

DO 15 J = L,_' E(J) : A(I,J)/,

DO ig d S = 0.0

SUPEP-r)IAG.

6IA0163 61A016_ _IA0165

A(I,I÷I)

=

OF

GIAO1S8 GIAOI59 GIA0160

= L,N A(I,J)**2

A(I.I÷]) 15

HELOW

GIAO131 GIAO132 GIAOI33 GIAO134

=

G

G = 0.0 IF (S .LT. TOt) G = SO_T(S) F

GIAOIB7 6IA0128

GIAO135 GIAO136

:A(_,J)

ANNIHILATE

II

COLUMN

DO 7 K = I,M S = S ÷A(K,I)*A(K,J)

7

10

FORM.

I,M

S = G = IF(S G =

A(I,I) = F-G IF(I .EQ. N) DO 9 J = L,N S = 0.0

8 9

BIDIAGONAL

GIAOI29 GIAOI30

ANNIHILATE DO

TO

= G 0.0 I.I

E(1) S = L =

3

GIA0124 GIA0125 GIAOI26

1,N

*

(_IAO[71 _IA0172 61A0173

A(I,K) ÷

A_