Natural Products Chemistry of Marine Organisms - MarBEF

13 downloads 2203 Views 11MB Size Report
➢More than 18.000 New metabolites. ➢0,1% lead structures. ➢More than 400 patents. Marine Natural Products. Therapeutical. Potential. (1) FUSETAMI N (ed),  ...
Natural Products Chemistry of Marine [email protected] Organisms

CHO H

OH

H

OH

HO H

OHOH OH O H H

H OH CH2OH

GLUCOSIO

H HO

OH H H

Emil Fisher Premio Nobel 1902

NH

O

O HO

O

O OH

O

OH

H

OH

NH

OH

NH2

discodermolide

N

N O

OMe

MeO

HO N

NH

O

HN O

N

cyclomarine

HN

HN

H

HN

NH

O

N

H

O

O

OH O

isogranulatimide

H

OCOCH3

O

O OCH3

eleutherobin

H

O

O N H3C

N

O

O O

O

H

O

NH OH

O O

O

HO

O

H

O

HN

Lamellarin I O

O

O

O

O OMe

granulatimide O

OMe MeO

N

N

O

O MeO

O

O

H

O

O

OH OH

OH

O

H

H

O H

Halichondrin B

H

Drugs from the Sea

Marine Natural Products From 1967:

(1)

¾More than 18.000 New metabolites ¾0,1% lead structures ¾More than 400 patents

Therapeutical Potential (1) FUSETAMI N (ed), DRUGS FROM THE SEA, Basel, Karger, 2000, 1-15

®

Zalypsis

OMe O O MeO

N

O

N O

OH OAc

Jorunna funebris

jorumycin

•Zalypsis® (PM00104/50) is PharmaMar's fifth new marine derived compound that has begun Phase I clinical trials for the treatment of solid tumours. •Zalypsis® is a novel chemical entity related to the marine natural compounds Jorumycin and the family of Renieramycins, obtained from molluscs and sponges, respectively. Zalypsis binds to DNA and is cytotoxic; however, it does not activate the “DNA damage checkpoint” response. Thus, Zalypsis has cytotoxic effects dependent on DNA binding that are not associated with DNA damage. •In pre-clinical trials, Zalypsis demonstrated strong in vitro and in vivo antitumoural activity in a wide variety of solid and haematological tumour cell lines and human transplantable breast, gastric, prostate and renal xenografted tumours. Zalypsis also demonstrated a manageable and reversible preclinical toxicology profile.

Transcription

DNA

Translation

RNA

Protein

Transcription

DNA

Translation

RNA

Protein

Metabolites

The metabolite pattern (metabolome) reflects the cell’s status. It is the totality of metabolic processes including anabolism and catabolism, as well as all the related cellular processes such as absorption, distribution, and detoxification of natural and xenobiotic materials, energy utilization, signal transduction, and regulation. It results from the expression of the genome and proteome in response to the cellular environment. While the Genome is representative of what might be, and the Proteome is what is expressed, it is the Metabolome that represents the current status of the cell or tissue.

Predicting Life Processes: Reverse Engineering Living Systems (storage)

DNA

Transcription Gene Expression Translation

Proteins Environment

Proteomics

Biochemical Circuitry Metabolomics

Phenotypes (Traits)

CNR - Institute of Biomolecular Chemistry

Guido Cimino

Margherita Gavagnin Emiliano Manzo Maria Letizia Ciavatta Marianna Carbone (PhD Student) Guido Villani Ernesto Mollo

Adele Cutignano Giuliana d’Ippolito (PhD student) Antonio Maiello Angelo Fontana Consiglio Nazionale delle Ricerche

Memorie storiche sugli opistobranchi 1890

Il prof. Herdman pose alcuni esemplari vivi di Ancula cristata sulla lingua del suo assistente dr. Moore

1960

T.E. Thompson J. Mar. Biol. U.K. 39, 115 a) b)

mollusc with shell mollusc without shell

c) opisthobranch

1976

J. Ros Oecologia aquatica 3, 153 "bad taste of the nudibranchs" "ignorance of the chemical mechanisms"

spugne cnidari

briozoi

alghe

tunicati

- bio-accumulation - bio-transformation - bio-synthesis

Multifunctional metabolites in Dendrodoris limbata AcO

O

CHO CHO

OAc

olepupuane AcO

O

polygodial R C O O

O

7

7-deacetoxy-olepupuane anche da una spugna del genere Dysidea Garson et al. J. Nat. Prod.. 55, 364, 1992

Experientia 47, 56, 1991

Ecological activity: aposematic colours of marine opisthobranchs

Ecologica activity: aposematic colours in marine opisthobranchs Thalassoma Thalassomapavo pavo 10 10esemplari esemplari

25 modelli

a) non aposematici b) aposematici con tossine c) aposematici senza tossine

O

Hypselodoris

+ furodysinin

% 100

a

b

c

a

b

c

attacca rifiuta 1° giorno

12° giorno

T. pavo remembers the external features of ptentially dangerous preys

Dietary origin of bioactive molecules Alicante

SPAIN Mar Menor

gg.

Hypselodoris webbi (nudibranco)

O O

longifolin O

Dysidea fragilis (spugna)

(-)-furodysinin longifolin

0

0 (pura longifolin)

7

3,8

35

13,0

(-)-furodysinin

MDF

Experientia 50, 510, 1994

Bio-transformation of dietary metabolites

MDF 0.4 mm

C. mollior AcO

CHO C HO

AcO

HO

17

H H

H. orsini MDF

H. orsini O

AcO

HO

H

H

H

H H

6

O

H

H

H

H

O Experientia 49, 482, 1993

Biosynthesis in Tethys fimbria

cerata

Mucus, mantle, cerata O

O O 15

HO

17

1

OH

O

15

HO

defense defense

1

COOH

17

muscle muscle contraction contraction PGE-lattone

PGE

HO 11

O

O 15

C H3C O

17

1

O

O 9 11

PGF-lattone

HO

O 15 17

mantle PGF-lattone

ovotestis, eggs

1

O

Biosynthesis

the way in which a natural product is produced by in a living organism O HO

acetate

G U A C C G U G A G

DNA

OH O O

O

OH

O

O

O

O

O

O O

HO O

O

O

O

O

O

HO

HO

O OH O

O OH

O

OH

O

O

HO

NaO

HO

S

O O

HO

OH

OH O

O

OH

O

OH HO

O O

O

ONa OH

OH O OH

O HO

S

HO

O

O HO

O HO

O

O

O HO

HO HO HO

HO

Biosynthetic Capacity and Chemical Markers order

Cephalaspidea

chemical class

chemicals

ω-aryl-methylchetones

navenone-B

O

Sacoglossa

polypropionates

O

O

OCH3

O

elysione O

acetogenins

O HO

Nudibranchia

O

PGE2- 1,15-lactone

terpenes

OHC O

luteone

Biosynthetic Capacity and Evolutionary Scenario polypropionates

C. cristallina P. dendritica C. mediterranea E. funerea E. timida

polypropionates

T. hopei E. viridis diterpenoids

B. mimetica

E. translucens

O. olivacea sesquiterpenoids L. serradifalci A. fragilis Cimino & Ghiselin, Chemoecology, 8, 51, 1998

Isolation and structure elucidation •Faulkner DJ Stallard MO Fayos J Clardy J 1973 A novel monoterpene from the sea hare; Aplysia californica. J. Am. Chem. Soc. 95 3413 •Kato Y Scheuer PJ 1974 Aplysiatoxin and debromoaplysiatoxin; constituents of the marine mollusk Stylocheilus longicauda. J. Am. Chem. Soc. 96 2245

Chemical ecology Scheuer PJ 1977 Chemical communication of marine invertebrates. Bioscience 27 664 •Kinnel RB Dieter RK Meinwald J Van Engen D Clardy J Eisner T Stallard MO Fenical W 1979 Brasilenyne and cis-dihydrorhodophytin; antifeedant mediumring haloethers from a sea hare (Aplysia brasiliana) Proc. Natl. Acad. Sci. U. S. A. 76 3576

Biosynthetic studies •Ireland CM Scheuer PJ 1979 Photosynthetic marine mollusks: in vivo 14C incorporation into metabolites of the sacoglossan Placobranchus ocellatus Science (Washington DC) 205 922 •Sleeper HL Fenical W 1977 Navenones A-C: trail-breaking alarm pheromones from the marine opisthobranch Navanax inermis J. Am. Chem. Soc. 99 2367

Biosynthesis of Secondary Metabolites in Opisthobranchs Phylum

Mollusca

Class

Gastropoda Opisthobranchia

Subclass

Order

Gymnosomata Acochlidea Thecosomata Rhodopemorpha Cephalaspidea Sacoglossa Navanax inermis Haminoea cymbalum Bulla striata

Anaspidea

Placobranchus ocellatus Elysia viridis Cyerce cristallina Ercolania funerea Oxynoe viridis

Notaspidea Nudibranchia

Biotransformation of Caulerpenyne? mucus Oxynoe olivacea

Caulerpa prolifera AcO

10 10 ppm ppm

AcO

AcO

13

13

11 ppm ppm H

caulerpenyne

1

OAc

AcO

0.1 0.1 ppm ppm CHO

H

2

CHO CHO

1

oxytoxin-1

1

13

oxytoxin-2

toxicity toxicity to to G. G. affinis affinis Experientia 46, 767, 1990

Could the Direct Observations be Misleading? • selective bio-accumulation of minor dietary metabolites Pietra Pietra et et al., al., Helv. Helv. Chim. Chim. Acta Acta 78, 78, 1759, 1759, 1995 1995

• enzymatic structural modifications in the injuried tissues of the prey Pohnert Pohnert and and Jung, Jung, Org. Org. Lett. Lett. 26, 26, 509, 509, 2003 2003

Addition of Caulerpenyne to Oxynoe homogenate caulerpenyne

OAc 1 13

AcO H OAc

preoxytoxin-2 POXY-2

15’’

Oxynoe homogenate

OAc

CHO OXY-2

CHO CHO

15’ POXY-2 OXY-2

oxytoxin-2

Org. Org. Biomol. Biomol. Chem. Chem. 2004, 2004, 2, 2, 001 001 -- 005 005

Wound-activated Hydrolysis in Caulerpa prolifera OAc 1

CYN

13

AcO H OAc

15’’

after grinding of the alga

CYN

OXY-1

OXY-2

POXY-2

15’ OXY-2

CYN POXY-2

Selective Lipases are Active in Oxynoe olivacea OAc

CHO

1 13

LIP -2

AcO

AcO H OAc

H OAc

oxytoxin-1

caulerpenyne LIP -1

LIP -1

OAc 1

LIP -2

CHO

CHO CHO

13

preoxytoxin-2

oxytoxin-2 Org. Biomol. Chem., 2004, 2, 001-005

Metabolite Compartmentalization in Cephalaspideans Les glandes palléales de défense chez le Scaphander lignarius Perrier and Fisher Séanc. Ac. Sci. Paris 146, 1163, 1908

OH

N

3-alkyl-pyridines

Haminoea fusari

O

O O OH

polypropionates

Bulla striata

O

ω-aryl-methyl-chetones Scaphander lignarius

6 CoA-SH O 6x

O

SCoA

CO2H

o

N

2

11

1

CoA N O

N

11

2

1

CO2

Assembly of haminol on Haminoea’s modular enzyme KR ER KS

KS DH O

PKS

KR

KR

10

O

PKS

O

PKS

KR ER O

TE

PKS

O

PKS

O

AcO

2

2

O

CO2H O

O 10

N

2 x KS DH

KS DH

PKS

O

DH KS

10

N

release N

O N

10 10

10

10

N N

N

N

haminol-2

2

H3C CH2

H C HO O

C C H2N C

O SH

ACP

C S

C

PCP A

H CH3

H R SH

SH

KS

ACP AT

KR

H3C CH2

H C HO O

C C H2N C

O SH

ACP

C A

C

H CH3

H R

SH

S

SH

PCP

KS

ACP AT

KR

H3C CH2

H C HO O

C C

H CH3 O

H2N C O SH

ACP

C A

C

O

H

C C

R

O

C

SH

S

S

PCP

KS

ACP AT

KR

H CH3 H

H3C CH2

H C HO O

C C H2N C

O

C

H CH3

H R

O O

C C

O

SH

ACP

C A

C

SH

S

S

PCP

KS

ACP AT

KR

CH3 H

Biosynthesis in Bulla striata

9µCi [1-14C]-propionic acid 3 specimens – 3 days 3 chromatographic steps

O

O

O

O O

aglajne-1 520 cpm/mg

O OH

aglajne-3 394 cpm/mg Tetrahedron Lett 45, 6847, 2004

Bulla O

O

O

release decarboxylation

O O O

PKS

O

O

PKS

O

PKS

O O

PKS

O

2 cycles KR ER

KR KS

KS DH

PKS

KR

ER

DH

O

KS

KS DH

KS

KR

DH

2x

KS

2x

KS

3 cycles KS

O

KR ER

KR

KR KS

DH

KS DH

PKS

O

KR

PKS

KS

KR

KS

DH

O

PKS

O

DH

PKS

O

PKS

O

O HO

O

O

release

HO

Smaragdinella

decarboxylation

HO

HO

HO

Current Org. Chem., 2005, in press

Metabolites from: Mediterranean Pleurobranchoidea

Intertidal Molluscs O

O

O

O

Pleurobranchus membranaceous

O

Tetrah. Lett.

O

O

O

Siphonaria maura Manker and Faulkner J. Org. Chem. 54, 5374, 1989

34, 6791, 1993

membrenone-C

vallartanone-B

CHO

OH

13

Pleurobranchaea meckelii

Trimusculus reticulatus Rice J. Exp. Mar. Biol. 93, 83, 1985

OH

Tetrahedron 36, 8673, 1995

8

OH O 8β-hydroxy- labd-13E-en-15-al

Pleurobranchus testudinarius

H

O

O

O Lottia limatula (limpet) Albizati et al. J. Org. Chem. 50, 3428, 1985

H O

OH

OH

HO testudinariol-A

HO

O

limatulone 6

Biosynthetic studies of Nudibranchs Nudibranchia

Order:

Doridina

Suborder:

Superfamily:

Family:

Arminina

Dendronotina

Anadoridoidea

Eudoridoidea

Dorididae Chromodorididae Dendrodorididae

Sclerodoris tanya Diaulula sandigensis Cadlina Doris verrucosa luteomarginata Archidoris montereyensis Archidoris odhneri Austrodoris keguelenensis

Aeolidina

Dendrodoris limbata Dendrodoris grandiflora Dendrodoris arborescens Doriopsilla areolata

Onchidorididae

Triopha catalinae Acanthodoris nanaimoensis

Tethydidae

Tethys fimbria Melibe leonina

Doriopsilla areolata biosynthetizes typical sponge sesquiterpenoids with opposite A/B ring junction AcylO O

A

OH

H

drimane esters

th n CO2- osy i b o v o n mevalonate OH

B

de

s esi

O

A

B H

(-)-pallescensin-A Tetrahedron 57: 8913, 2001 J Org Chem 68, 2405, 2003

lateral gene transfer (Faulkner) retrosynthetic mode (Ghiselin)

Purification of the enzyme is currently planned in order to address the molecular aspects of the process in the nudibranch (and in the sponge)

O

Experientia 49, 268, 1993 Tetrahedron 21, 797, 1980; Tetrahedron 25, 11, 1984;

O O O

OH O

OH

OAc

H

O

OH

O

OH

Archidoris tubercolata

Tetrahedron Lett. 11, 6093, 1990; Tetrahedron 53, 797, 1491;

O

Doris verrucosa Archidoris odhneri A. montereyensis Doris freterae Doris fontaini Austrodoris kerguelenensis

OAc 15 O

OAc O O Experientia 49, 268, 1993

O 3'

OH

O O 3'

S

1'

OH

1'

OAc OH

Tetrahedron 47, 9743, 1991; Tetrahedron 59, 5579, 2003

before

after OAc

H

O

OH

O

Hydra vulgaris

Terpenoid acyglycerols are feeding-deterrent and ichthyotoxic. Like the classical diacyglycerols, these compounds are activators of protein kinase C and, in vivo, show morphogenic effects Experientia, 52, 874, 1996

Glycerol Origin in Verrucosins

OAc

[6 -1313C] -glucose [6C]-glucose

O O

C-2’

C-3’

C-1’

OH

C-1’ C-3’

Natural intensity of glycerol 13C signals

Eur J Org Chem 16, 3104, 2003

Experiment with Antarctic Austrodoris kerguelenensis

H HO H H

CHO OH H OH OH OH

CHO H OH OP

OH O OP

[6-13C]-glucose 45 mg/specimen

O O

3'

1'

OAc

OH labelling position to determine

HO

OR H OP Unpublished results

Experiment with Antarctic Austrodoris kerguelenensis Despite the de novo biosynthesis, specimens of the same population show different metabolites

O O 3'

OAc

OAc

1'

OAc OH

15 O

O 3'

S

15 O

1'

O 3'

OH

S

1'

OH

Such a diversity is analogous to that described in a restricted group of terrestrial plants (e.g., Polyathia longifolia), thus suggesting a similar enzymatic arsenal Tetrahedron, 59, 5579, 2003

ƒOpisthobranchs possess the ability to produce al large number of unique secondary metabolites, some of which (e.g. 3-alkylpyridine and polypropionates) are unlike those found in any terrestrial species. ; ƒ Our knowledge of the biosynthetic processes leading to these products is still in its infancy – only a few genera have been investigated; ƒ The tremendous progress of genetic and genomic techniques is expected to bring a crucial contribution, although these studies alone will not provide all the answers since the expression of a gene may have no definitive relationship to the ultimate production of the metabolites. This emphasizes the need for traditional biosynthetic work as prerequisite for the full exploration of the biochemical aspects of the secondary metabolism in these organisms; ƒ Characterization of enzymes involved in synthesis of ecological mediators is likely the next step for the comprehension of secondary metabolic pathways and ecological interactions (Biochemical Ecology) in marine organisms, either betnhic and planktonic;