Neutrinos, Dark Matter and Nuclear Structure

5 downloads 0 Views 3MB Size Report
Neutrinos, Dark Matter and Nuclear Structure. Jouni Suhonen ..... Neutrino-nucleus charged-current scattering (science fiction?) Two-neutrino double beta decay ...
Neutrinos, Dark Matter and Nuclear Structure Jouni Suhonen Department of Physics University of Jyväskylä

14th Nuclear Physics Workshop “Marie and Pierre Curie”, Kazimierz Dolny, Poland, 26-30 September, 2007 Contents: Intro DBD N.M.E.’s: Present Status Independent Probes of DBD N.M.E.’s Detection Rates for the CDM Jouni Suhonen (JYFL, Finland)

Kazimierz-07

1 / 33

JYFL Theory Group ⇔ European Environment Non-Accelerator Physics Double beta decay CDM searches

m Underground Experiments and Collaborations JYFL is a member in running experiments NEMO3, COBRA future large-scale experiments, e.g. SuperNEMO EU-IDEA = Integrated Double-beta-decay European Activities EU-ILIAS = Integrated Large Infrastructures for Astroparticle Science

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

2 / 33

INTRO: Neutrino Properties from Underground Experiments Neutrino Properties from Oscillation Experiments: From solar-neutrino, atmospheric-neutrino and reactor-neutrino data (SuperKamiokande, SNO, KamLAND): Squared mass differences of neutrinos Matrix elements of the neutrino mixing matrix (flavour eigenstates in terms of mass eigenstates)

Complementary Experiments: Tritium beta decay (absolute neutrino mass) Double beta decay (nature, absolute mass and hierarchy of neutrinos)

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

3 / 33

INTRO: Double Beta Decay (Isobars A = 76) -60.0

-60.0

A=75

Kr -65.0

Ga

Br

-70.0

Ge

Mass excess [MeV]

Zn Mass excess [MeV]

A=76 Zn

-65.0

Ga

Kr Br

-70.0

Se

As

As

Ge

-75.0

Se

-75.0 30

31

32

33

34

Z Jouni Suhonen (JYFL, Finland)

35

36

30

31

32

33

34

35

36

Z Kazimierz-07

4 / 33

INTRO: Two-Neutrino Double Beta Decay of 76Ge -

(3 ) (4 ) transition + (1 ) ? (3 ) ? (1 ) + (1 )

Virtual

p

FINAL NUCLEUS p (Z,N-2)

e-2

2

INTERMEDIATE STATES

+

(1 ) +

(1 )

e-1

1

-

0

2

+

2 76

Ge

- +

76

Jouni Suhonen (JYFL, Finland)

As

76

Se

0

n

n (Z,N-2) INITIAL NUCLEUS Kazimierz-07

5 / 33

INTRO: Neutrinoless Double Beta Decay of 76Ge Virtual

-

(3 ) (4 ) + (1 ) ? (3 ) ? (1 ) + (1 )

transition

MASS MODE p

FINAL NUCLEUS p (Z,N-2)

e-2 helicities L=2

+

(1 )

m =0 INTERMEDIATE STATES

+

(1 ) e-1

-

0

2

+

0 76

Ge

helicities

- +

76

Jouni Suhonen (JYFL, Finland)

As

76

Se

0

n

n (Z,N-2) INITIAL NUCLEUS Kazimierz-07

6 / 33

INTRO: About Experiments

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

7 / 33

INTRO: Experiments Searching for 0νββ Decays: Major Running Experiments: Heidelberg–Moscow (76 Ge) NEMO3 (76 Ge 82 Se 96 Zr Cuoricino

100 Mo 116 Cd

...)

(128,130 Te)

Future Experiments: SUPERNEMO (82 Se 100 Mo. . . ), GERDA (76 Ge), MAJORANA (76 Ge), CAMEOII,III (116 Cd), CUORE (128,130 Te), MOON (100 Mo), EXO (136 Xe), COBRA (70 Zn 106,114,116 Cd 128,130 Te), ZORRO (96 Zr)

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

8 / 33

INTRO: Inauguration Day of NEMO3, 12 July 2002

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

9 / 33

INTRO: The ZORRO Experiment

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

10 / 33

INTRO: The Standard Model

• Only massless neutrinos • Only Dirac neutrinos • Lepton number is conserved

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

11 / 33

INTRO: Example of a Theory with Massive Neutrinos

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

12 / 33

SUMMARY: The POWER of Neutrinoless ββ Decay

0νββ Decay is Able to:

Reveal if the neutrino is a Majorana particle Probe the absolute mass scale of the neutrino Probe the mass hierarchies and CP phases

Problem: NUCLEAR MATRIX ELEMENTS!

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

13 / 33

Compilation of the Calculated 0νββ Half-Lives → 2006 MASS MODE

(0 )

T1/2

hmν i = 0.1 eV

28

10

« „ h i hmν i 2 (0ν) −1 (0ν) , T1/2 = Cmm me

27

10

(0ν)

(0ν)

Cmm = G1

Nuclear Models: The nuclear SM The pnQRPA Higher pnQRPA’s

26

10

25

10

” “ (0ν) 2 MGT (1−χF )2 .

95 00

48

Ca

95 00

76

Ge

95 00

82

Se

95 00

96

Jouni Suhonen (JYFL, Finland)

Zr

95 00

100

Mo

95 00

116

Cd

95 00

128

Te

95 00

130

Te

95 00

136

Xe Kazimierz-07

14 / 33

Calculations of 0νββ N.M.E.’s: Recent Advances Nucleon-nucleon short-range correlations: one has to prevent the two decaying nucleons to overlap −→ Use a short-range correlator, like Jastrow (traditional) or UCOM (applied in 2007 by the Jyväskylä group)

Other improvements: finite nucleon size (form factors) and higher-order terms in nucleonic weak current and use the pnQRPA or the nuclear shell model Jouni Suhonen (JYFL, Finland)

Kazimierz-07

15 / 33

Compilation of the Calculated 0νββ Half-Lives in 2007 h

(0ν) MASS MODE: T1/2

i−1

(0ν)

= Cmm



hmν i me

2 Three Schools of Thought:

2

T1/2 [yr/( m [eV]) ]

2 25

10

UCOM Jastrow

Tubingen ISM

The nuclear SM (StrasbourgMadrid) The pnQRPA (Jyväskylä) The pnQRPA and pnRQRPA (TübingenBratislavaCaltec)

5 2 24

10

5 2

10

23 76

Ge

82

Se

Jouni Suhonen (JYFL, Finland)

96

Zr

100

Mo

116

Cd

128

Te

130

Te

136

Xe Kazimierz-07

16 / 33

Status of the 0νββ N.M.E. Calculations: Conclusion

Finally we have CONVERGENCE in the calculation of the N.M.E.’s!

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

17 / 33

0νββ Matrix Element: Decomposition in the pnQRPA (0ν)

MGT =

X

(0ν)

MGT (Jπ ) ,



(0ν)

MGT (Jπ ) =

X

(0+ k f



Xˆ ˜ σj Fλ (rj ) J t− kJπ n ) j

40.0

DECOMPOSITION OF (0 ) -MGT

j

× (Jπ n k

Xˆ ˜ σj Fλ (rj ) J t− k0+ ) j i

30.0

j

20.0

0.4

M

(2 )

(tot)

0.2

10.0

Exp.

0.0 Exp. -0.2

0.0

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

-

-0.4 -0.6

-10.0

0.5

0.6

0.7

0.8

0.9

gpp

Jouni Suhonen (JYFL, Finland)

1.0

1.1

1.2

gpp = 0.89 gpp = 1.00

gpp = 0.96 gpp = 1.05

Kazimierz-07

18 / 33

New Challenges

Question:

HOW CAN WE PROBE THE VIRTUAL TRANSITIONS?

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

19 / 33

Independent Probes for 0νββ Matrix Elements

Possible Experimental Probes: Beta decays (Need more data!) ↔ Measurements of EC branches using the TITAN ion trap facility at TRIUMF

Charge-exchange reactions [β + -type (d,2 He) reactions at KVI, Groningen; β − -type (3 He,t) reactions at RCNP]

Neutrino-nucleus charged-current scattering (science fiction?) Two-neutrino double beta decay (The T-B-C recipe) Ordinary muon capture (now experimentally feasible ↔ the MEDEX’07 Workshop)

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

20 / 33

Example of Available Data on Beta Decays +

1 2

logft = ?

+

0

76

+

1 25

76

As

logft = ?

+

logft = 9.7

Ge

0

Br logft = 8.9

82

Se

+

0

76

82

Se

-

2 + 1 +

0

logft = 4.45

Kr

-

?

2 + 1

100

Tc

100

Mo

100

Jouni Suhonen (JYFL, Finland)

? 106

Ag

logft = 4.6

+

0

Ru

+

0

82

+

0

logft = 4.9

logft > 4.2 106

+

0

Cd

106

Pd Kazimierz-07

21 / 33

M(0ν) for 76 Ge: Running Sum for 1+ Contributions 1.6 76

+

gpp=1.02 gpp=1.06

Ge, 1

(0 )

0.8

−M

(0 )

(J )

1.2

0.4

0.0 0

5

10

15

20

25

Ex [MeV] 0.8

Jouni Suhonen (JYFL, Finland)

Kazimierz-07

22 / 33

M(0ν) for 76 Ge: Running Sum for 2− Contributions 1.6

2

-

gpp=1.02 gpp=1.06

0.8

−M

(0 )

(J )

1.2

0.4

0.0 5

0

5

10

15

20

25

Ex [MeV] Jouni Suhonen (JYFL, Finland)

Kazimierz-07

23 / 33

Try this!

NUCLEAR

AS A PROBE Jouni Suhonen (JYFL, Finland)

Kazimierz-07

24 / 33

Ordinary Muon Capture on 76Se 76

Se + µ− →

76

As + νµ

-

OMC

(3 ) (4 ) + (1 ) ? (3 ) ? (1 ) + (1 )

mµ c2 ≈ 105 MeV

Note: Forbidden OMC is not forbidden in the sense of beta decay The induced currents are activated

+

(1 ) +

(1 )

0 76

Ge

2

+

76

As

Jouni Suhonen (JYFL, Finland)

Experiments:

-

76

0

+

Paul Scherrer Institute (PSI)

Se Kazimierz-07

25 / 33

OMC as a Powerful Tool to Probe the 2νββ Decay 2νββ decay of 48 Ca and OMC on 48 Ti

|M

(2 )

+

(1 n) |

FPMCC

WOMC

WOMC

|M

(2 )

+

(1 n) |

FPBP

0

3

6

9

Ex [MeV]

Jouni Suhonen (JYFL, Finland)

12

15

0

3

6

9

12

15

Ex [MeV]

Kazimierz-07

26 / 33

Conclusions and Outlook Conclusions: Analysis of the results of the (near) future large-scale ββ-decay experiments needs the input of nuclear matrix elements Recent advances in nuclear matrix element calculations encouraging! But: work is still needed to clarify the differences in the results of the SM and the pnQRPA Outlook: We need new clever truncation methods and good effective two-body interactions for shell-model calculations We need to strengthen the power of new independent probing tools Otherwise the experimentalists will kill us (theorists)! Jouni Suhonen (JYFL, Finland)

Kazimierz-07

27 / 33

PART II: CDM Searches

NUCLEAR STRUCTURE & SEARCH for the CDM Jouni Suhonen (JYFL, Finland)

Kazimierz-07

28 / 33

Constituents of the DM

Baryonic matter MACHOs brown dwarfs jupiters stellar black-hole remnants white dwarfs neutron stars

Jouni Suhonen (JYFL, Finland)

Nonbaryonic matter HDM light ν’s

CDM axions WIMPs

• heavy ν’s • neutralinos • sneutrinos

Kazimierz-07

29 / 33

CDM Detector Process WIMP-nucleon neutralcurrent scattering in the detector ⇓ Measure Nuclear and electron recoil signatures m Signature Phonons, ionization, scintillation Jouni Suhonen (JYFL, Finland)

Kazimierz-07

30 / 33

MOTIVATION

Our Motivation: Contradiction between the DAMA and the rest m NUCLEAR-STRUCTURE EFFECT?

Cross-section [cm2] (normalised to nucleon)

-40

10

http://dmtools.brown.edu/ Gaitskell&Mandic

-41

10

-42

10

-43

10

-44

10

050215000701

10

ASSUME: WIMP=LSP=Lightest Supersymmetric Particle≡ χ ˜ + βW ˜ 3 + γH ˜ 1 + δH ˜2 χ = αB Jouni Suhonen (JYFL, Finland)

1

2

10 WIMP Mass [GeV]

3

10

DATA listed top to bottom on plot COSME 2001 Exclusion Limit, 72.7 kg-days CRESST - Gran Sasso Run 28 (CaWO4 9 kg-days) Preliminary Analysis (Apr 2004) DAMA 2000 58k kg-days NaI Ann.Mod. 3sigma,w/o DAMA 1996 limit ZEPLIN I Preliminary 2002 result Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge CDMSII (Soudan) projected 050215000701

Kazimierz-07

31 / 33

CDM Detection: Summary and Outlook Folding Procedure for Event Rates The computed LSP-nucleus cross sections are folded with the LSP velocity distribution ⇓ Obtain event rates in units of events/year/kg ⇓ Results of Large-Scale Shell-Model Calculations: Neat separation of the SUSY and nuclear-physics inputs Sensitivity of the spin-dependent channel depends strongly on the future

adopted SUSY =⇒ SUSY classification ?

⇓ Solves the DAMA mystery? Calculation of event rates for inelastic channels is in progress Jouni Suhonen (JYFL, Finland)

Kazimierz-07

32 / 33

Finally: I am Most Indebted to my Local Group!

Sami Peltonen

Markus Kortelainen

Jouni Suhonen (JYFL, Finland)

Jenni Kotila

Jussi Toivanen

Jouni Suhonen

Mika Mustonen

Kazimierz-07

33 / 33