New Bounds and Optimal Binary Signature Sets ... - Semantic Scholar

2 downloads 1893 Views 414KB Size Report
squared correlation (PTSC) of binary antipodal signature sets for any number of ... G. N. Karystinos is with the Department of Electronic and Computer. Engineering ..... correlation structure of the initial template matrix in order to achieve the.
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 4, APRIL 2011

1123

New Bounds and Optimal Binary Signature Sets–Part I: Periodic Total Squared Correlation Harish Ganapathy, Student Member, IEEE, Dimitris A. Pados, Member, IEEE, and George N. Karystinos, Member, IEEE

Abstractβ€”We derive new bounds on the periodic (cyclic) total squared correlation (PTSC) of binary antipodal signature sets for any number of signatures K and any signature length L. Optimal designs that achieve the new bounds are then developed for several (𝐾, 𝐿) cases. As an example, it is seen that complete (𝐾 = 𝐿 + 2) Gold sets are PTSC optimal, but not, necessarily, Gold subsets of 𝐾 < 𝐿 + 2 signatures. In contrast, arguably against common expectation, the widely used Kasami sets are not PTSC optimal in general. The optimal sets provided herein are in this sense better suited for asynchronous and/or multipath code-division multiplexing applications. Index Termsβ€”Binary sequences, code-division multiple access (CDMA), cyclic correlation, Gold sequences, Karystinos-Pados bounds, Kasami sequences, periodic correlation, signature design, total squared correlation, Welch bound.

I. I NTRODUCTION N code-division multiplexing applications, for example direct-sequence code-division multiple-access (DS-CDMA) cellular communication systems, each of the K participating signals/users is equipped with a unique identifying signature vector sπ‘˜ ∈ ℂ𝐿 , ∣∣sπ‘˜ ∣∣ = 1, π‘˜ = 1, 2, . . . , 𝐾. All signatures put together in the form of a matrix define what we call the signature matrix (or signature set)

I

β–³

S = [s1 s2 . . . s𝐾 ] ∈ ℂ𝐿×𝐾 .

(1)

In synchronous code-division multiplexing transmissions over well-behaved Nyquist channels, we are interested in using a signature set with the smallest possible total squared correlation (TSC) value [1]-[12] β–³

TSC(S) =

𝐾 βˆ‘ 𝐾 βˆ‘  𝐻 2 s𝑖 s𝑗 

(2)

𝑖=1 𝑗=1

Paper approved by G. E. Corazza, the Editor for Spread Spectrum of the IEEE Communications Society. Manuscript received July 23, 2009; revised August 1, 2010. This work was supported in part by the National Science Foundation under Grant CCF-0219903, and the U.S. Air Force Office of Scientific Research under Grant FA9550-04-1-0256. Material in this paper was presented at the IEEE Military Communications Conference (MILCOM), Atlantic City, NJ, October 2005. H. Ganapathy was with the Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA. He is now with the Department of Electrical and Computer Engineering, The University of Texas, Austin, TX 78712 USA (e-mail: [email protected]). D. A. Pados is with the Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA (e-mail: [email protected]). G. N. Karystinos is with the Department of Electronic and Computer Engineering, Technical University of Crete, Chania, 73100 Greece (e-mail: [email protected]). Digital Object Identifier 10.1109/TCOMM.2011.020411.090404

where H denotes the Hermitian operator. For complex/realvalued signature sets S ∈ ℂ𝐿×𝐾 or ℝ𝐿×𝐾 , if 𝐾 β‰₯ 𝐿, 2 TSC(S) β‰₯ 𝐾𝐿 [2]; of course, TSC(S) β‰₯ 𝐾 if 𝐾 < 𝐿. Over2 loaded (𝐾 β‰₯ 𝐿) sets with TSC equal to 𝐾𝐿 have been known as Welch-bound-equality (WBE) sets. Algorithms and studies for the design of complex or real WBE signature sets can be found in [3]-[12]. In digital transmission systems, however, it is necessary to have finite-alphabet signature sets. Recently, new bounds were derived on the TSC of binary antipodal signature sets together with optimal designs for almost all1 signature lengths and set sizes [13]-[15]. The sum capacity, total asymptotic efficiency, and maximum squared correlation of minimum-TSC optimal binary sets were evaluated in [16]. The sum capacity of several other signature set designs under potentially a binary or quaternary alphabet was examined in [17]. In this present paper, all developments that follow 𝐿×𝐾 . refer to binary antipodal signature sets in {Β±1} When asynchronous code-division multiplexing is attempted and/or the channel exhibits multipath behavior, apart from the total squared correlation between signatures we are also concerned about the individual periodic (cyclic) autocorrelation and the periodic (cyclic) cross-correlation values [18]. For notational simplicity, let sπ‘‡π‘˜βˆ£π‘™ (T is the transpose operator) denote the cyclic right-shifted version of sπ‘‡π‘˜ ∈ 1×𝐿 {Β±1} , π‘˜ = 1, 2, . . . , 𝐾, by 𝑙 bit positions, 𝑙 = 0, 1, 2, . . . (hence, sπ‘˜βˆ£0 = sπ‘˜βˆ£πΏ = . . . = sπ‘˜ ). First, we define the 𝐿×𝐾𝐿 cyclic extension matrix Sc ∈ {Β±1} of the signature set 𝐿×𝐾 S ∈ {Β±1} β–³ [ Sc = s1∣0 s2∣0 . . . s𝐾∣0 s1∣1 s2∣1 . .]. s𝐾∣1 . . . (3) . . . s1βˆ£πΏβˆ’1 s2βˆ£πΏβˆ’1 . . . sπΎβˆ£πΏβˆ’1 . Then, we define the periodic total squared correlation (PTSC) of the signature set S as the TSC of Sc , β–³

PTSC(S) = TSC(Sc ),

(4)

and calculate PTSC(S) explicitly in (5). A detailed derivation of (5) is provided in the Appendix. The first two terms of the PTSC expressions in (5) (for L odd or L even) contain all periodic auto-correlation contributions. The third, triple summation term contains all periodic cross-correlation contributions. Minimizing PTSC2 1 The case 𝐾 = 𝐿 ≑ 1 (mod 4) remains open. Ding, Golin, and Klπœ™ve [14] showed that the Karystinos-Pados TSC bound [13] is tight for 𝐾 = 𝐿 = 5 or 13, but not for 𝐾 = 𝐿 = 9. What happens when 𝐾 = 𝐿 = 17, 21, . . . is still unknown. 2 The PTSC metric has been referred to as mean periodic correlation in the past [19].

c 2011 IEEE 0090-6778/11$25.00 ⃝

1124

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 4, APRIL 2011

⎧  𝑇 2 2 βˆ‘ βˆ‘ πΏβˆ’1 βˆ‘πΏβˆ’1  𝑇  2   + 2𝐿 βˆ‘πΎ βˆ‘πΎ  ⎨ 𝐾𝐿3 + 2𝐿 𝐾 π‘˜=1[ 𝑙=1 sπ‘˜ sπ‘˜βˆ£π‘™ 𝑖=1 𝑗=1,𝑖 0 . Case 1: 𝐾 = 2, 𝐿 ∈ β„³G Set S to be a Golay set of size (2, 𝐿) [30], [31]. Then, 𝐾𝐿 ≑ 0 (mod 4), the Golay sets are PCS, therefore, PTSCoptimal. β–‘ Another simple case of four-user (𝐾 = 4) PTSC-optimal sets can come from R. J. Turyn’s [31] β€œbase sequences” b1 , b2 ∈ {Β±1}𝑀+1 , b3 , b4 ∈ {Β±1}𝑀 that have been found/tabulated for 𝑀 ≀ 32 [32], [33] and can be used to construct directly β€œaperiodic complementary quadruples” for all lengths in ∞ { } βˆͺ β€² β–³ 2 π‘š 𝑀 : 𝑀 ∈ β„³T where (16) β„³T =

Below, we develop two more involved design procedures with proofs of optimality included in the Appendix.

Case 4: 𝐾 = 2 or 𝐾 ≑ 0 (mod 4), 𝐿 ≑ 0 (mod 2), 𝐾 β‰₯ 𝐿2 Calculate π‘Ÿ = 𝐿 βˆ’ 𝐾. Obtain a Hadamard matrix H𝐾 and create the initial template matrix Ξ˜πΏΓ—πΎ = [H𝐾 h1 h2 . . . hπ‘Ÿ ]𝑇 . Define the diagonal correction matrix

(18)

6

⎧ ⎑⎑ βŽ€π‘‡ ⎑ βŽ€π‘‡ ⎀⎫ ⎨ ⎬ ⎦ ⎣1 βˆ’ 1 1 βˆ’ 1 . . . 1 βˆ’ 1⎦ ⎦ . C=diag Vec ⎣⎣1 1 . . . 1  

  ⎩ ⎭ 𝐾

π‘Ÿ

(19)

Calculate the PTSC-optimal set S by S𝑇 = Ξ˜π‘‡ C. Proof of optimality of S is included in the Appendix.

(20) β–‘

A small but arguably worth mentioning side result from Case 3a is the design of a PTSC-optimal set of size 𝑇 (𝐾 = 3, 𝐿 = 4). The length-four signature [βˆ’1 1 1 1] is single-user PTSC-optimal (cf. (13)). A three-user, length-four PTSC-optimal set is produced below. Case 5: 𝐾 = {1, 3}, 𝐿 = 4 β€² Obtain the signature set S𝐿×(πΎβˆ’1) from Case 3a and form the set ] [ β€² 𝑇 (21) S𝐿×𝐾 = S [βˆ’1 1 1 1] . By (13), the set is PTSC-optimal.

β–‘

In some of our PTSC-optimal set designs that follow we utilize specific well-known types of individual seβ„³T = {(2𝑝 + 1) : 𝑝 ∈ {1, 2, 3, . . . , 32} βˆͺ β„³G } quences, namely Cyclic Hadamard, Barker [34], Lempelβˆͺ {(2𝑝 + 1)(2π‘ž + 1) : 𝑝, π‘ž ∈ {1, 2, 3, . . . , 32} βˆͺ β„³G , 𝑝 βˆ•= π‘ž} Cohn-Eastman [35], and Ding-Helleseth-Martinsen [36] seβˆͺ {3𝑝 βˆ’ 1 : 𝑝 ∈ {1, 2, 3, . . . , 24}}. (17) quences. Cyclic Hadamard sequences g ∈ {Β±1}𝑀 of length 𝑀 Case 2: 𝐾 = 4, 𝐿 ∈ β„³T 6 In our work, we identify and use such matrices to suitably modify the Set S to be an β€œaperiodic complementary quadruple” set of correlation structure of the initial template matrix in order to achieve the size (4, 𝐿) [32], [33]. Then, 𝐾𝐿 ≑ 0 (mod 4), the aperiodic PTSC bounds. β€²

π‘š=0

1126

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 4, APRIL 2011

𝑀 ≑ 3 (mod 4) have ideal two-level periodic auto-correlation β€”hence, Cyclic Hadamard sequences are single-user PTSCoptimal,β€” 𝑇 g𝑀 g𝑀 βˆ£π‘š =

{

𝑀, βˆ’1,

π‘š = 0, 𝑀 ≑ 3 (mod 4), π‘š = 1, 2, . . . , 𝑀 βˆ’ 1, (22)

and have been used in the past to construct Cyclic Hadamard matrices [37]-[39]. In particular, if β–³

β„³CH = {𝑀 : (i) 𝑀 prime congruent to 3 (mod 4) or (ii) 𝑀 congruent to 3 (mod 4) and product of 𝑛

β€œtwin primes” 𝑝 and 𝑝 + 2 or (iii) 𝑀 = 2 βˆ’ 1, = 2, 3, . . . } , (23) then there exists at least one systematic method [37]-[39] (reproduced in the Appendix) to construct a Cyclic Hadamard sequence g𝑀 when 𝑀 ∈ β„³CH . We also utilize Barker sequences (which are single-user PTSC-optimal with the same correlation spectrum as in (22)) of length five and length 𝑀 thirteen, specifically, g𝑀 ∈ {Β±1} , 𝑀 ∈ β„³B with β–³

β„³B = {5, 13}.

(24)

All known Barker sequences are tabulated in [40]. Finally, we 𝑀 use Lempel-Cohn-Eastman (LCE) sequences g𝑀 ∈ {Β±1} of lengths 𝑀 ∈ β„³LCE where β–³

β„³LCE = {𝑀 : 𝑀 ≑ 2 (mod 4), 𝑀 = 𝑝𝑛 βˆ’ 1 where 𝑝 is an odd prime and 𝑛 = 1, 2, . . .} (25) and Ding-Helleseth-Martinsen (DHM) sequences g𝑀 𝑀 {Β±1} of lengths 𝑀 ∈ β„³DHM where β–³

β„³DHM = {𝑀 : 𝑀 = 2𝑝, 𝑝 ≑ 5 (mod 8)}.

⌈√ βŒ‰ ⌈ βŒ‰ Case 7a: 𝐾 ≑ 1 (mod 8) and 8 84𝐿 + 1 ≀ 𝐾 < 4 𝐿8 , 𝐿 ∈ β„³LCE βˆͺ β„³DHM ⌈ βŒ‰ 7b: 𝐾 ≑ 1 (mod 4) and 𝐾 β‰₯ 4 𝐿8 + 1, 𝐿 ∈ β„³LCE βˆͺ β„³DHM β€² For Case 7a, obtain the signature set S𝐿×(πΎβˆ’1) from Case 3b. β€² For Case 7b, obtain the signature set S𝐿×(πΎβˆ’1) from Case 4. Then, form the PTSC-optimal set (cf. (13)) ] [ β€² S𝐿×𝐾 = S gπΏβˆ£π‘™1 (29) where shift 𝑙1 ∈ {0, 1, . . . , 𝐿 βˆ’ 1} is selected such that the first 𝐾 2 or 𝐾 elements of vector gπΏβˆ£π‘™1 , for Case 7a and 7b, respectively, contain an unequal number of ones and minus ones. β–‘ ⌈√ βŒ‰ Case 8: 𝐾 ≑ 1 (mod 8), 𝐾 β‰₯ 8 84𝐿 + 1, 𝐿 ∈ β„³CH βˆͺ β„³B β€² Obtain the signature set S𝐿×(πΎβˆ’1) from Case 3b and form the PTSC-optimal set (cf. (13)) ] [ β€² S𝐿×𝐾 = S gπΏβˆ£π‘™1 (30) where shift 𝑙1 ∈ {0, 1, . . . , 𝐿 βˆ’ 1} is selected such that the first 𝐾 2 elements of vector gπΏβˆ£π‘™1 contain an unequal number of ones and minus ones. β–‘ Case 9: 𝐾 = 𝐿, 𝐿 ∈ β„³CH βˆͺ β„³B Set 𝑁 = 𝐾 + 1, obtain a Hadamard matrix H𝑁 and remove β€² its first row and column. Call the resulting size-K matrix H𝑁 . β€œCorrect” with the diagonal matrix C = diag {g𝐿 }

∈ to obtain the set

β€²

S𝑇 = H𝑁 C.

(26)

Both LCE and DHM sequences are single-user PTSC-optimal with periodic auto-correlation { 𝑀, π‘š = 0, 𝑇 g𝑀 gπ‘€βˆ£π‘š = (27) Β±2, π‘š = 1, 2, . . . , 𝑀 βˆ’ 1, where 𝑀 ∈ β„³LCE βˆͺ β„³DHM . Construction procedures for LCE and DHM sequences can be found in [41]. We continue with the presentation of the design cases. ⌈√ βŒ‰ Case 6: 𝐾 ≑ 2 (mod 8) and 𝐾 β‰₯ 8 84𝐿 + 2, 𝐿 ∈ β„³CH βˆͺ β„³B

By (13), the set is PTSC-optimal.

(31) (32) β–‘

Case 10: 𝐾 ∈ {𝐿 βˆ’ 4, 𝐿 βˆ’ 2} , 𝐿 ∈ β„³CH βˆͺ β„³B Design directly the PTSC-optimal set (cf. (13)) ⎀ ⎑⎑ βŽ€π‘‡ βŽ₯ ⎒ S𝐿×𝐾 = ⎣⎣1 1 . . . 1 βˆ’ 1⎦ g𝐿 g𝐿∣1 . . . gπΏβˆ£πΎβˆ’2 ⎦ . (33) πΏβˆ’1

β–‘ Next, we proceed with the presentation of our optimal designs for overloaded systems.

β€²

Obtain the signature set S𝐿×(πΎβˆ’2) from Case 3b and form the set ] [ β€² (28) S𝐿×𝐾 = S gπΏβˆ£π‘™1 gπΏβˆ£π‘™2 where shifts 𝑙1 , 𝑙2 ∈ {0, 1, . . . , 𝐿 βˆ’ 1}, 𝑙1 βˆ•= 𝑙2 , are selected such that the first 𝐾 2 elements of vectors gπΏβˆ£π‘™1 and gπΏβˆ£π‘™2 contain an unequal number of ones and minus ones. By (13), the set is PTSC-optimal. β–‘

B. Overloaded Systems (𝐾 > 𝐿) Case 1a: 𝐾 ≑ 0 (mod 2), 𝐿 ∈ β„³G 1b: 𝐾 ≑ 0 (mod 4), 𝐿 βˆ•βˆˆ β„³G Calculate 𝑁 = 4⌊ 𝐾 4 βŒ‹, obtain a Hadamard matrix H𝑁 and keep only the first 𝐿 columns, h1 , h2 , . . . , h𝐿 . Design the 𝐿× 𝑁 set 𝑇 (34) S𝐿×𝑁 = [h1 h2 . . . h𝐿 ] . For Case 1a, if 𝐾 ≑ 0 (mod 4), then S in (34) is an 𝐿 Γ— 𝐾 PTSC-optimal signature set. If 𝐾 ≑ 2 (mod 4), β€² design a PTSC-optimal set S𝐿×(πΎβˆ’2) as above and obtain

GANAPATHY et al.: NEW BOUNDS AND OPTIMAL BINARY SIGNATURE SETS–PART I: PERIODIC TOTAL SQUARED CORRELATION β€²β€²

S𝐿×2 from Underloaded Case 1 or Case 3 (if 𝐿 ∈ β„³G β€²β€² or 𝐿 = 2𝑛 , 𝑛 = 1, 2, . . . , respectively). Append S𝐿×2 to β€² S to form the 𝐿 Γ— 𝐾 PTSC-optimal signature set ] [ 𝐿×(πΎβˆ’2) β€² β€²β€² S S . For Case 1b, S in (34) is directly an 𝐿 Γ— 𝐾 PTSC-optimal signature set.7 Proof of PTSC optimality is given in the Appendix. β–‘ Case 2: 𝐾 ≑ 2 (mod 4), 𝐿 ∈ β„³CH βˆͺ β„³B Set 𝑁 = 𝐾 βˆ’ 2, obtain a Hadamard matrix H𝑁 and keep only β€² the first 𝐿 columns. Call the resulting matrix H𝑁 . Then, ] [ ′𝑇 (35) S𝐿×𝐾 = H𝑁 g𝐿 g𝐿∣1 is PTSC-optimal. The proof is given in the Appendix.

β–‘

Case 3: 𝐾 ≑ 1 (mod 4), 𝐿 ∈ β„³LCE βˆͺ β„³DHM βˆͺ β„³CH βˆͺ β„³B Set 𝑁 = 𝐾 βˆ’ 1, obtain a Hadamard matrix H𝑁 and keep β€² only the first 𝐿 columns. Call the resulting matrix H𝑁 . Then, ] [ ′𝑇 (36) S𝐿×𝐾 = H𝑁 g𝐿 β–‘

is PTSC-optimal.

Case 4: 𝐾 ≑ 3 (mod 4), 𝐿 ∈ β„³LCE βˆͺ β„³DHM βˆͺ β„³CH βˆͺ β„³B Set 𝑁 = 𝐾 + 1, obtain a Hadamard matrix H𝑁 and remove the first row and 𝑁 βˆ’ 𝐿 columns. Call the resulting matrix β€² H𝑁 . β€œCorrect” with the diagonal matrix C = diag {g𝐿 } β€²

to {1, 2, . . . , 256} (at present, it does not appear of much practical interest to consider code-division applications outside this parameter range), we can calculate that Underloaded Cases 1 through 10 and Overloaded Cases 1 through 4 together represent 36.23% of all possible combination pairs 2 (𝐾, 𝐿) ∈ {1, 2, . . . , 256} . Certainly, tightness of the bounds and optimal PTSC designs under the remaining cases is an important open research problem. Direct comparison of our PTSC-optimal designs with the TSC bounds and optimal sets in [13]–[15], shows that Underloaded Case 3 when 𝐿 ≑ 0 (mod 𝐾), Underloaded Cases 7, 11, and all Overloaded cases except Case 2 are doubly, both PTSC and TSC, optimal. Furthermore, we can now establish that the familiar Gold sets [44], which have been widely used for their periodic correlation properties [18], are PTSC-optimal when full-sized (complete). To that respect, we recall [18], [44] that complete Gold sets are defined for 𝐾 = 𝐿 + 2, 𝐿 = 2𝑛 βˆ’ 1, 𝑛 β‰₯ 3 and 𝑛 βˆ•β‰‘ 0 (mod 4), and for every 𝑖 βˆ•= 𝑗, 𝑖, 𝑗 = 1, . . . , 𝐾, the periodic signature cross𝑛+2 𝑛+2 correlations have value βˆ’1, βˆ’ 2⌊ 2 βŒ‹ βˆ’ 1, or 2⌊ 2 βŒ‹ βˆ’ 1. Consider such a Gold set G𝐿×𝐾 = [g1 g2 . . . g𝐾 ] where g1 , g2 are the two preferred m-sequences [45] with g𝑗𝑇 gπ‘—βˆ£π‘™ = βˆ’1, 𝑙 = 1, . . . , 𝐿 βˆ’ 1 and 𝑗 = 1, 2.

(39)

The signatures g𝑗 , 𝑗 = 3, . . . , 𝐿 + 2, are constructed by the operation [18]

(37)

g𝑗 = g1 βŠ™ g2βˆ£π‘—βˆ’2 , 𝑗 = 3, . . . , 𝐿 + 2,

(38)

where βŠ™ represents the Hadamard product (i.e. element-wise multiplication). We denote the cyclic extension matrix of G𝐿×𝐾 by G𝑐 and the rows of the extension matrix G𝑐 by dπ‘‡π‘˜,𝑔 . Then, by (7),

to obtain the PTSC-optimal set S𝑇 = H𝑁 C.

1127

β–‘ In the following section, we discuss these design findings and present some examples.

2

3

PTSC(G) = TSC(G𝑐 ) = 𝐾 𝐿 + 2𝐿

πΏβˆ’1 2 +1

βˆ‘   d𝑇1,𝑔 d𝑗,𝑔 2 . 𝑗=2

IV. D ISCUSSION AND E XAMPLES In asynchronous code-division multiplexing communication  applications all possible periodic correlations s𝑇𝑖 sπ‘—βˆ£π‘™  , 𝑖, 𝑗 = 1, 2, . . . , 𝐾, 𝑙 = 0, 1, . . . , 𝐿 βˆ’ 1, may appear in the sufficient statistic of the maximum likelihood multiuser detector [42]. This is also the case in synchronous codedivision multiplexing communications over multipath propagation channels when the number of chip-level resolvable paths is greater than or equal to ⌈ 𝐿+2 2 βŒ‰. The PTSC metric captures precisely the contribution of all periodic correlations and PTSC optimization aims at minimizing their negative effect in individual signal recovery by means of optimal maximum-likelihood multiuser detection or otherwise (signature matched-filtering, decorrelation, minimum-mean-squareerror filtering or else [43]). The PTSC-optimal design cases presented in the previous section constitute proof-by-construction of the tightness of the corresponding PTSC bounds developed in Section II. To acquire a quantitative feeling of the extend/coverage of the presented designs, if we restrict the domain of 𝐾, 𝐿 7 Hence, interestingly, overloaded direct Hadamard designs as described herein are optimal under both the PTSC and TSC metric as shown in [13].

(40)

(41) From (8) and (40) using the notation [π‘₯]+ = min{π‘₯, 𝐿 βˆ’ 𝐿 π‘₯, 2𝐿 βˆ’ π‘₯}, we calculate the row correlations of G𝑐 in (42), where the last equality follows from (39). Substituting (42) in (41), we obtain PTSC(G) = 𝐾 2 𝐿3 + 𝐿(𝐿 βˆ’ 1), which is equal to the bound in (13). Hence, complete (𝐾 = 𝐿 + 2) Gold signature sets are PTSC-optimal. In contrast, maybe against common belief among codedivision multiplexing practitioners, the bounds and designs of Sections II and III show that Gold subsets (choice of 𝐾 < 𝐿 + 2 sequences) are not PTSC-optimal in general. Fig. 1 shows as an example a (16, 31) Gold subset which has PTSC = 8213760 together with our optimal (16, 31) design (under Underloaded Case 3b) with minimum PTSC = 𝐾 2 𝐿3 = 7626496. Other signature sets well known for their periodic correlation properties are the small and largeset Kasami designs [18], [46]. We recall that small-set Kasami designs are defined for lengths 𝐿 = 2𝑛 βˆ’ 1, 𝑛 ≑ 0 (mod 2), 𝑛 and have size 𝐾 ≀ 2 2 . The attained periodic cross-correlation 𝑛 𝑛 values are βˆ’1, βˆ’ 2 2 βˆ’ 1, 2 2 βˆ’ 1, but their frequency of occurrence is not known in closed form as a function of 𝑛. Fig. 2 presents a (2, 15) small-set Kasami design with calculated PTSC = 15300 together with our optimal (2, 15)

1128

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 4, APRIL 2011

d𝑇 1, 𝑔 d𝑗,

𝑔

=

2 βˆ‘ π‘˜=1

gπ‘˜π‘‡ gπ‘˜βˆ£π‘—βˆ’1 +

𝐿+2 βˆ‘ π‘˜=2

gπ‘˜π‘‡ gπ‘˜βˆ£π‘—βˆ’1 = βˆ’2 +

𝐿+2 𝐿 βˆ‘βˆ‘ π‘˜=2 𝑖=1

+ + 𝑔1 (𝑖)𝑔2 ([𝑖 + (π‘˜ βˆ’ 2)]+ 𝐿 )𝑔1 ([𝑖 + (𝑗 βˆ’ 1)]𝐿 )𝑔2 ([𝑖 + (π‘˜ βˆ’ 2) + (𝑗 βˆ’ 1)]𝐿 )

)( ) ( g2𝑇 g2βˆ£π‘—βˆ’1 = βˆ’2 + g1𝑇 g1βˆ£π‘—βˆ’1

(42)

= βˆ’1

G31Γ—16

βŽ‘βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + + + + + βˆ’ βˆ’ + βˆ’ βˆ’βŽ€

⎑ + + + + + + + + + + + + + + + +⎀

βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ ⎦

+ βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’βŽ₯ ⎒+ βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ +βŽ₯ ⎒+ + + + βˆ’ βˆ’ βˆ’ βˆ’ + + + + βˆ’ βˆ’ βˆ’ βˆ’βŽ₯ ⎒+ βˆ’ + βˆ’ βˆ’ + βˆ’ + + βˆ’ + βˆ’ βˆ’ + βˆ’ +βŽ₯ ⎒+ + βˆ’ βˆ’ βˆ’ βˆ’ + + + + βˆ’ βˆ’ βˆ’ βˆ’ + +βŽ₯ ⎒+ βˆ’ βˆ’ + βˆ’ + + βˆ’ + βˆ’ βˆ’ + βˆ’ + + βˆ’βŽ₯ ⎒+ + + + + + + + + + + + + + + + +βŽ₯ βŽ’βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’ +βŽ₯ ⎒+ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’βŽ₯ βŽ’βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’βŽ₯ ⎒+ + + + βˆ’ βˆ’ βˆ’ βˆ’ + + + + βˆ’ βˆ’ βˆ’ βˆ’βŽ₯ βŽ’βˆ’ + βˆ’ + + βˆ’ + βˆ’ βˆ’ + βˆ’ + + βˆ’ + βˆ’βŽ₯ ⎒+ + βˆ’ βˆ’ βˆ’ + + + + βˆ’ βˆ’ βˆ’ βˆ’ + +βŽ₯ ⎒ ++βˆ’+βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ + βˆ’ βˆ’ +βŽ₯ = βŽ’βˆ’ + + + + + + + + + + + + + + + +βŽ₯ ⎒+ βˆ’ + βˆ’ + βˆ’ + + βˆ’ + βˆ’ + βˆ’ + βˆ’βŽ₯ βŽ’βˆ’ βˆ’ + + βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + βˆ’ βˆ’ + +βŽ₯ βŽ’βˆ’ + + βˆ’ βˆ’ + + βˆ’ + + βˆ’ βˆ’ + + βˆ’βŽ₯ ⎒+ + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’βŽ₯ ⎒+ βˆ’ + βˆ’ βˆ’ + βˆ’ + + + βˆ’ + βˆ’ βˆ’ + βˆ’ +βŽ₯ βŽ’βˆ’ βˆ’ + + + + βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’βŽ₯ βŽ’βˆ’ + + βˆ’ + βˆ’ βˆ’ + βˆ’ + + + βˆ’ + βˆ’ βˆ’ +βŽ₯ ⎒+ + + + + + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’βŽ₯ ⎒+ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ +βŽ₯ ⎒+ + βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ βˆ’ + +βŽ₯ ⎒+ βˆ’ βˆ’ + + βˆ’ βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’βŽ¦ ⎣+ + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + + +++

βˆ’++βˆ’βˆ’ βˆ’+++βˆ’ βˆ’βˆ’+++ βˆ’+βˆ’++ βˆ’++βˆ’+ ++βˆ’βˆ’+ βˆ’βˆ’+++ +++βˆ’βˆ’ βˆ’++βˆ’+ βˆ’+++βˆ’ +βˆ’βˆ’βˆ’βˆ’ +βˆ’+βˆ’βˆ’ +βˆ’++βˆ’ βˆ’βˆ’βˆ’βˆ’βˆ’ βˆ’βˆ’βˆ’βˆ’βˆ’ βˆ’+βˆ’βˆ’βˆ’ +βˆ’βˆ’++ βˆ’βˆ’βˆ’+βˆ’ βˆ’+βˆ’βˆ’+ βˆ’βˆ’+βˆ’βˆ’ βˆ’βˆ’βˆ’+βˆ’ βˆ’+βˆ’βˆ’+ ++βˆ’++ ++βˆ’βˆ’+ ++βˆ’βˆ’βˆ’ ++βˆ’βˆ’βˆ’ +βˆ’βˆ’βˆ’βˆ’ βˆ’βˆ’βˆ’++ +βˆ’++βˆ’ βˆ’βˆ’βˆ’βˆ’βˆ’

⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ =⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎒ ⎣

βˆ’βˆ’+++++ βˆ’βˆ’βˆ’++++ βˆ’βˆ’βˆ’βˆ’+++ +βˆ’βˆ’βˆ’βˆ’++ ++βˆ’βˆ’βˆ’βˆ’+ βˆ’βˆ’βˆ’++++ βˆ’+++βˆ’βˆ’βˆ’ βˆ’+βˆ’βˆ’βˆ’++ ++βˆ’+++βˆ’ +++βˆ’+++ +βˆ’βˆ’βˆ’+βˆ’βˆ’ βˆ’+βˆ’βˆ’βˆ’+βˆ’ βˆ’βˆ’+βˆ’βˆ’βˆ’+ +++βˆ’+++ βˆ’+++βˆ’++ βˆ’βˆ’+++βˆ’+ +++βˆ’βˆ’βˆ’+ βˆ’βˆ’βˆ’βˆ’+++ βˆ’βˆ’βˆ’βˆ’βˆ’++ +βˆ’βˆ’βˆ’βˆ’βˆ’+ βˆ’+βˆ’βˆ’βˆ’βˆ’βˆ’ βˆ’βˆ’+βˆ’βˆ’βˆ’βˆ’ βˆ’++βˆ’+++ +βˆ’++βˆ’++ ++βˆ’++βˆ’+ βˆ’++βˆ’++βˆ’ βˆ’βˆ’++βˆ’++ +++βˆ’βˆ’+βˆ’ βˆ’βˆ’βˆ’βˆ’++βˆ’ +++++βˆ’βˆ’

βˆ’βˆ’+βˆ’ +βˆ’βˆ’+ ++βˆ’βˆ’ +++βˆ’ ++++ βˆ’βˆ’βˆ’βˆ’ βˆ’+++ ++βˆ’βˆ’ βˆ’βˆ’βˆ’+ βˆ’βˆ’βˆ’βˆ’ βˆ’+++ βˆ’βˆ’++ βˆ’βˆ’βˆ’+ βˆ’+++ +βˆ’++ ++βˆ’+ βˆ’βˆ’βˆ’+ βˆ’+++ +βˆ’++ ++βˆ’+ +++βˆ’ βˆ’+++ ++βˆ’βˆ’ +++βˆ’ ++++ ++++ βˆ’+++ βˆ’+βˆ’βˆ’ ++βˆ’+ +βˆ’βˆ’+

+βˆ’+βˆ’+βˆ’+βˆ’+βˆ’+βˆ’+βˆ’+βˆ’

Sopt 31Γ—16

+βˆ’+βˆ’βˆ’+βˆ’+βˆ’+βˆ’++βˆ’+βˆ’ ++βˆ’βˆ’βˆ’βˆ’++βˆ’βˆ’++++βˆ’βˆ’

(b)

(a) opt

Fig. 1. (a) G31Γ—16 Gold subset with PTSC = 8213760. (b) Optimal signature set S31Γ—16 designed under Underloaded Case 3b with PTSC = (16)2 (31)3 = 7626496.

βŽ‘βˆ’ βˆ’βŽ€

Kss 15Γ—2

βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + βˆ’ + + + +

⎒ ⎒ ⎒ ⎒ ⎒ =⎒ ⎒ ⎒ ⎒ ⎣

(a)

+ + + + + + βˆ’ + + + βˆ’ + βˆ’ βˆ’

βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ ⎦

βŽ‘βˆ’ +⎀

Sopt 15Γ—2

++ ++ +βˆ’ βˆ’+ ++ +βˆ’ βˆ’βˆ’ βˆ’+ +βˆ’ βˆ’+ +βˆ’ βˆ’βˆ’ βˆ’βˆ’ βˆ’βˆ’

⎒ ⎒ ⎒ ⎒ ⎒ =⎒ ⎒ ⎒ ⎒ ⎣

βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ βŽ₯ ⎦

(b)

Fig. 2. (a) Kss 15Γ—2 small-set Kasami with PTSC = 15300. (b) Optimal opt signature set S15Γ—2 designed under Underloaded Case 5 with PTSC = (2)2 (15)3 + 4(15)(14) = 14340.

design (under Underloaded Case 5) with minimum PTSC = 𝐾 2 𝐿3 + 4𝐿(𝐿 βˆ’ 1) = 14340. We directly conclude that, in general, small-set Kasami designs are not PTSC-optimal. Large-set Kasami designs [18], [46] are defined for 𝐿 = 𝑛 2𝑛 βˆ’ 1 and even 𝑛. If 𝑛 ≑ 2 (mod 4), 𝐾 ≀ 2 2 (2𝑛 + 1); 𝑛 if 𝑛 ≑ 0 (mod 4), 𝐾 ≀ 2 2 (2𝑛 + 1) βˆ’ 1. Fig. 3(a) shows a (67, 15) large-set Kasami design that has PTSC = 15157785. Fig. 3(b) shows our PTSC-optimal set Sopt 15Γ—67 designed under Overloaded Case 4 with minimum PTSC value 15150585. Hence, in general, large-set Kasami are not optimal either. Arguably, in future communication systems overloaded code-division will be of primary interest. The overloaded signature set results presented in this paper constitute an early contribution toward improving our understanding and tools for this problem [47]-[50]. We conclude this section with an example of an overloaded (42 user signatures of length

31) PTSC-optimal design Sopt 31Γ—42 given in Fig. 4. The set is designed by our Overloaded Case 2 procedure and has minimum PTSC value 52555044. V. C ONCLUSIONS We derived new bounds on the periodic (cyclic) total squared correlation (PTSC) of binary signature sets for any signature length 𝐿 and set size 𝐾 and provided optimal constructions for a variety of 𝐾, 𝐿 values that establish the tightness of the corresponding bounds. The constructions include underloaded (𝐾 ≀ 𝐿) and overloaded (𝐾 > 𝐿) design cases and cover, as an example, 36.23% of all possible combinations of 𝐾, 𝐿 in {1, 2, . . . , 256}. Side results of the presented research include proof of the PTSC optimality of full-sized Gold sets. In contrast, Gold subsets were readily seen to lack optimality. PTSC-optimal constructions described herein for small and large-set Kasamicompatible (𝐾, 𝐿) pairs, establish that the Kasami sets are not PTSC-optimal in general. In view of these findings, the developed PTSC-optimal sets take precedence whenever the periodic correlation properties of signatures is of concern in code-division multiplexing applications. This is particularly true for the new overloaded PTSC-optimal sets as candidates for future overloaded code-division communication applications.

GANAPATHY et al.: NEW BOUNDS AND OPTIMAL BINARY SIGNATURE SETS–PART I: PERIODIC TOTAL SQUARED CORRELATION

1129

βŽ‘βˆ’ + + + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + βˆ’ + + + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ βˆ’ + +⎀ βˆ’βˆ’+++++βˆ’+βˆ’βˆ’+βˆ’βˆ’βˆ’+++βˆ’βˆ’βˆ’βˆ’βˆ’+βˆ’++βˆ’+++βˆ’βˆ’βˆ’+++++βˆ’+βˆ’βˆ’+βˆ’βˆ’βˆ’+++βˆ’βˆ’βˆ’βˆ’βˆ’+βˆ’++βˆ’+++βˆ’βˆ’++

Kls15Γ—67

+ βˆ’ + + + βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’ + βˆ’ + + + βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ +βŽ₯ βŽ’βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + βˆ’ + βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + βˆ’ βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + +βŽ₯ ⎒+ + βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + βˆ’ + + + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + βˆ’ + + + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’βŽ₯ ⎒+ βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ βˆ’ + + + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + βˆ’ + + + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + βˆ’ βˆ’βŽ₯ βŽ’βˆ’ βˆ’ βˆ’ + + + + + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + + + + + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ + + + βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ + + + βˆ’ + βˆ’ βˆ’βŽ₯ ⎒ βˆ’+βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’ + βˆ’ + + + βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’ + βˆ’ + + + βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ +βŽ₯ = ⎒+ + βˆ’ βˆ’ + βˆ’ + + βˆ’ + βˆ’ + βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + βˆ’ βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’ βˆ’βŽ₯ βŽ’βˆ’ + + + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + βˆ’ βˆ’ + + + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + βˆ’ βˆ’ +βŽ₯ βŽ’βˆ’ + + + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ βˆ’ + + + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + βˆ’ βˆ’βŽ₯ ⎒+ + βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ βˆ’ + + + + + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + + + + + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ + +⎦ βŽ£βˆ’ + βˆ’ + + + βˆ’ βˆ’+βˆ’+βˆ’++βˆ’βˆ’βˆ’βˆ’+βˆ’+++βˆ’+βˆ’+βˆ’++βˆ’βˆ’βˆ’+βˆ’+βˆ’βˆ’βˆ’+βˆ’+βˆ’+βˆ’βˆ’++++βˆ’+βˆ’βˆ’βˆ’+βˆ’+βˆ’+βˆ’βˆ’+++βˆ’+βˆ’ +βˆ’βˆ’+βˆ’βˆ’++βˆ’+βˆ’+βˆ’βˆ’++βˆ’++βˆ’++βˆ’βˆ’+βˆ’+βˆ’++βˆ’βˆ’+βˆ’βˆ’+βˆ’βˆ’++βˆ’+βˆ’+βˆ’βˆ’++βˆ’++βˆ’++βˆ’βˆ’+βˆ’+βˆ’++βˆ’βˆ’+βˆ’βˆ’ βˆ’+++βˆ’++βˆ’βˆ’+βˆ’βˆ’βˆ’++βˆ’+βˆ’βˆ’βˆ’+βˆ’βˆ’++βˆ’+++βˆ’βˆ’++βˆ’βˆ’βˆ’+βˆ’βˆ’++βˆ’+++βˆ’βˆ’+βˆ’+++βˆ’++βˆ’βˆ’+βˆ’βˆ’βˆ’++βˆ’++βˆ’

(a) ⎑+ + + + + + βˆ’ + + + βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + + + + + βˆ’ βˆ’ βˆ’ + + + βˆ’ + βˆ’ + βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ βˆ’ +⎀ +++βˆ’βˆ’++βˆ’++βˆ’++βˆ’+βˆ’+βˆ’βˆ’+++βˆ’+βˆ’βˆ’+βˆ’++βˆ’βˆ’+++βˆ’βˆ’βˆ’βˆ’+βˆ’+βˆ’+++++βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’+βˆ’+βˆ’+βˆ’βˆ’βˆ’+βˆ’βˆ’++

opt

S15Γ—67

+ + βˆ’ + βˆ’ βˆ’ + + + + + βˆ’ + + βˆ’ + βˆ’ βˆ’ + + + + + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + + βˆ’ +βŽ₯ βŽ’βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + + βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ + + + βˆ’ βˆ’ + + βˆ’ + + + + + + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ + + + βˆ’ + βˆ’ βˆ’βŽ₯ βŽ’βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ + + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + + βˆ’ + βˆ’ βˆ’ + + + + + + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ + +βŽ₯ βŽ’βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ βˆ’ + + + βˆ’ + + βˆ’ βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ + + + + + + + + + + βˆ’ + βˆ’ βˆ’ + βˆ’ + βˆ’ + +βŽ₯ ⎒+ βˆ’ + βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ + + + βˆ’ + + + + βˆ’ βˆ’ βˆ’ + + + βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + + + + + + βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’βŽ₯ ⎒ βˆ’βˆ’ βˆ’ βˆ’ + βˆ’ + + + βˆ’ βˆ’ + + + + βˆ’ + βˆ’ βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ + βˆ’ + + + βˆ’ + + + βˆ’ + +βŽ₯ = βŽ’βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + + + + + βˆ’ + + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ + βˆ’ + + + βˆ’ + + + βˆ’ +βŽ₯ ⎒+ + βˆ’ βˆ’ + + + βˆ’ βˆ’ + βˆ’ + βˆ’ + + + βˆ’ βˆ’ + + + + βˆ’ βˆ’ + βˆ’ + + βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ + + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + + + + βˆ’ + βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + + βˆ’ + + βˆ’βŽ₯ ⎒+ + βˆ’ + βˆ’ + βˆ’ βˆ’ + + βˆ’ + + + βˆ’ + + + βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ + + + βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + + βˆ’ βˆ’ + βˆ’ + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ + + βˆ’βŽ₯ βŽ’βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’ + + βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’ + + βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ + + βˆ’ + + + βˆ’ + + + βˆ’ + βˆ’ βˆ’ βˆ’ βˆ’ + + + βˆ’ +⎦ ⎣+ + βˆ’ βˆ’ βˆ’ βˆ’ + ++βˆ’+++βˆ’++++βˆ’βˆ’+βˆ’++++βˆ’+βˆ’βˆ’βˆ’++βˆ’βˆ’+βˆ’βˆ’++βˆ’βˆ’βˆ’++βˆ’βˆ’++βˆ’βˆ’βˆ’+βˆ’++++βˆ’βˆ’βˆ’βˆ’βˆ’++βˆ’βˆ’ βˆ’βˆ’βˆ’+βˆ’βˆ’+βˆ’βˆ’βˆ’βˆ’++βˆ’βˆ’+βˆ’+βˆ’βˆ’++++βˆ’βˆ’+βˆ’++βˆ’+βˆ’βˆ’+βˆ’++++++βˆ’βˆ’βˆ’βˆ’++++βˆ’βˆ’++++βˆ’βˆ’βˆ’βˆ’+βˆ’+βˆ’+βˆ’+ +++++++βˆ’+βˆ’+++βˆ’βˆ’+βˆ’++βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’+++++βˆ’+βˆ’βˆ’βˆ’++βˆ’βˆ’+βˆ’++βˆ’βˆ’βˆ’βˆ’βˆ’+βˆ’+++βˆ’βˆ’βˆ’+++++βˆ’βˆ’βˆ’

(b)

Fig. 3. (a) Kls15Γ—67 large-set Kasami with PTSC = 15157785. (b) Optimal signature set Sopt 15Γ—67 designed under Overloaded Case 4 with PTSC = (672 )(153 ) + (15)(14) = 15150585.

1β‰€π‘Ÿβ‰€

A PPENDIX A D ERIVATION OF PTSC EXPRESSION IN (5) From (4), PTSC(S) =

𝐾 βˆ‘ 𝐾 πΏβˆ’1 2 βˆ‘ βˆ‘ πΏβˆ’1 βˆ‘   sπ‘‡π‘–βˆ£π‘™1 sπ‘—βˆ£π‘™2  .

(43)

𝑖=1 𝑗=1 𝑙1 =0 𝑙2 =0

We split the quadruple summation in (43) into periodic autoand cross-correlations, 𝐾 πΏβˆ’1 2 βˆ‘ βˆ‘ πΏβˆ’1 βˆ‘   PTSC(S) = sπ‘‡π‘–βˆ£π‘™1 sπ‘–βˆ£π‘™2  𝑖=1 𝑙1 =0 𝑙2 =0

+

𝐾 βˆ‘

𝐾 βˆ‘

(44)

πΏβˆ’1 βˆ‘ πΏβˆ’1 βˆ‘

𝑖=1 𝑗=1, π‘–βˆ•=𝑗 𝑙1 =0 𝑙2 =0

2  𝑇  sπ‘–βˆ£π‘™1 sπ‘—βˆ£π‘™2  .

Since for 𝑙1 ≀ 𝑙2 , 𝑙1 , 𝑙2 = 0, 1, 2, . . . , 𝐿 βˆ’ 1, 𝑖, 𝑗 = 1, 2, . . . , 𝐾, sπ‘‡π‘–βˆ£π‘™1 sπ‘—βˆ£π‘™2

= =

sπ‘‡π‘–βˆ£0 sπ‘—βˆ£π‘™2 βˆ’π‘™1 sπ‘‡π‘—βˆ£0 sπ‘–βˆ£πΏβˆ’(𝑙2 βˆ’π‘™1 )

(45)

and s𝑇𝑖 s𝑖 = 𝐿, 𝑖 = 1, 2, . . . , 𝐾, we can simplify (44) to PTSC(S) = 𝐿

𝐾 πΏβˆ’1 𝐾 2 βˆ‘ βˆ‘  βˆ‘  s𝑇 𝑖 sπ‘–βˆ£π‘™  + 𝐿 𝑖=1 𝑙=0

= 𝐾𝐿3 + 𝐿

𝐾 βˆ‘

πΏβˆ’1 βˆ‘

𝑖=1 𝑗=1, π‘–βˆ•=𝑗 𝑙=0

𝐾 πΏβˆ’1 𝐾 2 βˆ‘ βˆ‘  βˆ‘  s𝑇 𝑖 sπ‘–βˆ£π‘™  + 2𝐿 𝑖=1 𝑙=1

2  𝑇  s𝑖 sπ‘—βˆ£π‘™ 

𝐾 βˆ‘

(46)

πΏβˆ’1 βˆ‘

𝑖=1 𝑗=1, 𝑖 𝐿) Case 1a: 𝐾 ≑ 0 (mod 2), 𝐿 ∈ β„³G 1b: 𝐾 ≑ 0 (mod 4), 𝐿 βˆ•βˆˆ β„³G Recalling that the concatenation of two PCS sets is a PCS set [27], to establish optimality of the designs for both Cases 1a and 1b it suffices to prove that S in (34) is PTSC-optimal. Consider the cyclic  extension matrix Sc of S; all crosscorrelations d𝑇1 d𝑗  of Sc , 𝑗 = 2, 3, . . . , 𝐿, are zero by (9). We conclude that S is PTSC-optimal with PTSC(S) = 𝑁 2 𝐿3 . Case 2: 𝐾 ≑ 2 (mod 4), 𝐿 ∈ β„³CH βˆͺ β„³B ′𝑇 Partition set S into two sets S1 = H𝑁 and [ the signature ] S2 = gπΏβˆ£π‘™1 gπΏβˆ£π‘™2 . Consider the cyclic extension matrices S ) , and S2,c of ( c ,𝑇 S1,c ( S, S)1 , and S2 , respectively. Then, d1 d𝑗 S1,c = 0 and d𝑇1 d𝑗 S2,c = βˆ’2, 𝑗 = 2, . . . , πΏβˆ’1 2 + 1. (   𝑇 )  Hence,  d1 d𝑗 Sc  = 2, 𝑗 = 2, . . . , πΏβˆ’1 2 + 1. We conclude that S is PTSC-optimal with PTSC(S) = 𝐾 2 𝐿3 + 4𝐿(𝐿 βˆ’ 1). A PPENDIX D C ONSTRUCTION OF C YCLIC H ADAMARD SEQUENCES g𝑀 , 𝑀 ∈ β„³CH Binary antipodal sequences g𝑀 = [ g𝑀 (0) g𝑀 (1) . . . 𝑇 g𝑀 (𝑀 βˆ’ 1)] , 𝑀 ∈ β„³CH in (23), with ideal 2-level autocorrelation can be constructed as follows. (i) If 𝑀 is a prime congruent to 3 (mod 4) [51], ⎧ βˆ’1, if 𝑖 = 0,   ⎨ +1, if 𝑖 ∈ {1, 2, . . . , 𝑀 βˆ’ 1} is a quadratic g𝑀 (𝑖) = residue mod 𝑀,   ⎩ βˆ’1, otherwise. (48) (ii) If 𝑀 is a prime congruent to 3 (mod 4) and product of twin primes 𝑝 and 𝑝 + 2 [52], define i//p to be +1 if 𝑖 is a

quadratic residue mod p and βˆ’1 otherwise. Calculate ⎧ +1, if 𝑖 = 0 or a multiple of   ⎨ 𝑝 + 2, g𝑀 (𝑖) = βˆ’1, if 𝑖 is a multiple of 𝑝,   ⎩ 𝑖//𝑝 𝑖// (𝑝 + 2) , otherwise. (49) (iii) If 𝑀 = 2𝑛 βˆ’ 1, 𝑛 = 1, 2, . . ., let g𝑀 be an msequence [45] of length 𝑀 . ACKNOWLEDGMENT The authors wish to express their gratitude to the three anonymous reviewers whose comments and keen insight helped improve significantly the quality of this manuscript. In particular, many thanks are extended to Reviewer 1 for the suggested simplification of the derivation of (13) and calculation of (42). R EFERENCES [1] M. Rupf and J. L. Massey, β€œOptimum sequence multisets for synchronous code-division-multiple-access channels," IEEE Trans. Inf. Theory, vol. 40, pp. 1261-1266, July 1994. [2] R. L. Welch, β€œLower bounds on the maximum cross correlation of signals," IEEE Trans. Inf. Theory, vol. IT-20, pp. 397-399, May 1974. [3] P. Vishwanath, V. Anantharaman, and D. N. C. Tse, β€œOptimal sequences, power control, and user capacity of synchronous CDMA systems with linear MMSE multiuser receivers," IEEE Trans. Inf. Theory, vol. 45, pp. 1968-1983, Sep. 1999. [4] S. Ulukus and R. D. Yates, β€œIterative construction of optimum signatures sequences sets in synchronous CDMA systems," IEEE Trans. Inf. Theory, vol. 47, pp. 1989-1998, July 2001. [5] C. Rose, β€œCDMA codeword optimization: interference avoidance and convergence via class warfare," IEEE Trans. Inf. Theory, vol. 47, pp. 2368-2382, Sep. 2001. [6] C. Rose, S. Ulukus, and R. D. Yates, β€œWireless systems and interference avoidance," IEEE Trans. Wireless Commun., vol. 1, pp. 415-428, Mar. 2002. [7] P. Viswanath and V. Anantharam, β€œOptimal sequences for CDMA under colored noise: a Schur-Saddle function property," IEEE Trans. Inf. Theory, vol. 48, pp. 1295-1318, June 2002. [8] P. Cotae, β€œSpreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation criterion," EURASIP J. Wireless Commun. Netw., vol. 2004, no. 1, pp. 4-11, Aug. 2004.

GANAPATHY et al.: NEW BOUNDS AND OPTIMAL BINARY SIGNATURE SETS–PART I: PERIODIC TOTAL SQUARED CORRELATION

[9] O. Popescu and C. Rose, β€œSum capacity and TSC bounds in collaborative multibase wireless systems," IEEE Trans. Inf. Theory, vol. 50, pp. 2433-2440, Oct. 2004. [10] J. A. Tropp, I. S. Dhillon, and R. W. Heath Jr., β€œFinite-step algorithms for constructing optimal CDMA signature sequences," IEEE Trans. Inf. Theory, vol. 50, pp. 2916-2921, Nov. 2004. [11] G. S. Rajappan and M. L. Honig, β€œSignature sequence adaptation for DS-CDMA with multipath," IEEE J. Sel. Areas Commun., vol. 20, pp. 384-395, Feb. 2002. [12] P. Xia, S. Zhou, and G. B. Giannakis, β€œAchieving the Welch bound with difference sets," IEEE Trans. Inf. Theory, vol. 51, pp. 1900-1907, May 2005. [13] G. N. Karystinos and D. A. Pados, β€œNew bounds on the total squared correlation and optimum design of DS-CDMA binary signature sets," IEEE Trans. Commun., vol. 51, pp. 48-51, Jan. 2003. [14] C. Ding, M. Golin, and T. Klπœ™ve, β€œMeeting the Welch and KarystinosPados bounds on DS-CDMA binary signature sets," Des., Codes Cryptogr., vol. 30, pp. 73-84, Aug. 2003. [15] V. P. Ipatov, β€œOn the Karystinos-Pados bounds and optimal binary DSCDMA signature ensembles," IEEE Commun. Lett., vol. 8, pp. 81-83, Feb. 2004. [16] G. N. Karystinos and D. A. Pados, β€œThe maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum total-squaredcorrelation binary signature sets," IEEE Trans. Inf. Theory, vol. 51, pp. 348-355, Jan. 2005. [17] F. Vanhaverbeke and M. Moeneclaey, β€œSum capacity of equal-power users in overloaded channels," IEEE Trans. Inf. Theory, vol. 53, pp. 228-233, Feb. 2005. [18] D. V. Sarwate and M. B. Pursley, β€œCrosscorrelation properties of pseudorandom and related sequences," Proc. IEEE, vol. 68, pp. 593619, May 1980. ˘ [19] M. Stular and S. Toma˘zi˘c, β€œMean periodic correlation of sequences in CDMA," in Proc. IEEE Region 10 Conf. Electric. Electron. Tech., vol. 1, Aug. 2001, pp. 287-290. [20] D. Y. Peng and P. Z. Fan, β€œGeneralised Sarwate bounds on the periodic autocorrelations and cross-correlations of binary sequences," Electron. Lett., vol. 38, pp. 1521-1523, Nov. 2002. [21] B. J. Wysocki and T. A. Wysocki, β€œModified Walsh-Hadamard sequences for DS CDMA wireless systems," Intern. J. Adaptive Control Signal Process., vol. 16, pp. 589-602, Sep. 2002. [22] J. L. Massey and T. Mittelholzer, β€œWelch’s bound and sequence sets for code-division multiple-access systems," Sequences II, Methods in Communication, Security, and Computer Sciences, R. Capocelli, A. De Santis, and U. Vaccaro, editors. Springer-Verlag, 1993. [23] L. BΓΆmer and M. Antweiler, β€œBinary and biphase sequences and arrays with low periodic autocorrelation sidelobes," in Proc. IEEE Intern. Conf. Acoust,. Speech, Signal Process., Apr. 1990, vol. 3, pp. 1663-1666. [24] J. E. Stalder and C. R. Cahn, β€œBounds for correlation peaks of periodic digital sequences," Proc. IEEE, vol. 52, pp. 1262-1263, Oct. 1964. [25] D. V. Sarwate and M. B. Pursley, β€œPerformance evaluation for phasecoded spread-spectrum multiple-access communication–part II: code sequence analysis," IEEE Trans. Commun., vol. 25, pp. 795-799, Aug. 1977. [26] B. Schmidt, β€œCyclotomic integers and finite geometry," J. Amer. Math. Soc., vol. 12, pp. 929-952, 1999. [27] L. BΓΆmer and M. Antweiler, β€œPeriodic complementary binary sequences," IEEE Trans. Inf. Theory, vol. 36, pp. 1487-1494, Nov. 1990. [28] W. H. Mow, β€œOptimal sequence sets meeting Welch’s lower bound," in Proc. IEEE Intern. Symp. Inform. Theory, Sep. 1995, p. 90. [29] K. Feng, J.-S. Shiue, and Q. Xiang, β€œOn aperiodic and periodic complementary binary sequences," IEEE Trans. Inf. Theory, vol. 45, pp. 296-303, Jan. 1999. [30] M. Golay, β€œComplementary series," IEEE Trans. Inf. Theory, vol. IT-7, pp. 82-87, Apr. 1961. [31] R. J. Turyn, β€œHadamard matrices, Baumert-Hall units, four symbol sequences, pulse compression and surface wave encodings," J. Combin. Theory, Series A, vol. 16, pp. 313-333, 1974. [32] D. Ε½. DokoviΒ΄c, β€œNote on periodic complementary sets of binary sequences," Des., Codes and Cryptogr., vol. 13, pp. 251-256, Mar. 1998. [33] D. Ε½. DokoviΒ΄c, β€œAperiodic complementary quadruples of binary sequences," J. Combin. Math. and Combin. Comput., vol. 27, pp. 3-31, 1998. [34] R. H. Barker, β€œGroup synchronizing of binary digital sequences," in Commun. Theory, pp. 273-287, W. Jackson editor. Butterworths, 1953. [35] A. Lempel, M. Cohn, and W. L. Eastman, β€œA class of balanced binary sequences with optimal autocorrelation properties," IEEE Trans. Inf. Theory, vol. IT-23, pp. 38-42, Jan. 1977.

1131

[36] C. Ding, T. Helleseth, and H. Martinsen, β€œNew families of binary sequences with optimal three-level autocorrelation," IEEE Trans. Inf. Theory, vol. 47, pp. 428-433, Jan. 2001. [37] H.-Y. Song and S. W. Golomb, β€œOn the existence of cyclic Hadamard difference sets," IEEE Trans. Inf. Theory, vol. 4, pp. 1266-1268, July 1994. [38] S. W. Golomb and H.-Y. Song, β€œA conjecture on the existence of cyclic Hadamard difference sets," J. Statist. Planning and Inference, vol. 62, pp. 39-41, 1997. [39] L. D. Baumert, β€œCyclic difference sets," in Lecture Notes in Mathematics, vol. 182. Springer-Verlag, 1971. [40] S. W. Golomb and R. A. Scholtz, β€œGeneralized Barker sequences," IEEE Trans. Inf. Theory, vol. IT-13, pp. 619-621, Oct. 1967. [41] H. D. Luke, H. D. Schotten, and H. Hadinejad-Mahram, β€œBinary and quadriphase sequences with optimal autocorrelation properties: a survey” IEEE Trans. Inf. Theory, vol. 49, pp. 3271-3282, Dec. 2003. [42] S. Verdu, β€œMinimum probability of error for asynchronous Gaussian multiple-access channels," IEEE Trans. Inf. Theory, vol. IT-32, pp. 8596, Jan. 1986. [43] S. Verdu, Multiuser Detection. Cambridge University Press, 1998. [44] R. Gold, β€œOptimal binary sequences for spread spectrum multiplexing," IEEE Trans. Inf. Theory, vol. IT-13, pp. 619-621, Oct. 1967. [45] N. Zierler, β€œLinear recurring sequences," J. Soc. Ind. Appl. Math., vol. 7, pp. 31-48, Mar. 1959. [46] T. Kasami, β€œWeight distribution formula for some class of cyclic codes," Coordinated Science Laboratory, University of Illinois, Urbana, tech. rep. R-285 (AD632574), 1966. [47] S. P. Ponnaluri and T. Guess, β€œSignature sequence and training design for overloaded CDMA systems," IEEE Trans. Wireless Commun., vol. 6, pp. 1337-1345, Apr. 2007. [48] G. Romano, F. Palmieri, and P. K. Willett, β€œSoft iterative decoding for overloaded CDMA," in Proc. IEEE Intern. Conf. Acoust., Speech, Signal Process., Mar. 2005, vol. 3, pp. 733-736. [49] M. K. Varanasi, C. T. Mullis, and A. Kapur, β€œOn the limitation of linear MMSE detection," IEEE Trans. Inf. Theory, vol. 52, pp. 4282-4286, Sept. 2006. [50] J. H. Cho, Q. Zhang, and L. Gao, β€œA comparison of frequency-division systems to code-division systems in overloaded channels," IEEE Trans. Commun., vol. 56, pp. 289-298, Feb. 2008. [51] S. W. Golomb, Shift Register Sequences. Holden-Day, 1967; Aegean Park Press, 1982 (revised edition). [52] R. G. Stanton and D. A. Sprott, β€œA family of difference sets," Canadian J. Math., vol. 10, pp. 73-77, 1958.

Harish Ganapathy (S’05) was born in Chennai, India, on March 8, 1983. He received his B.S. and M.S. degrees in electrical engineering from the State University of New York at Buffalo in May 2003 and May 2005, respectively. He is currently a Ph. D. candidate in electrical engineering at The University of Texas, Austin. His current research interests lie broadly in optimization as applied to wireless networks, including both physical layer and networking aspects. His industry experience includes internships at Qualcomm Inc. in the years 2006 and 2008, and at Freescale Semiconductor Inc. in 2007.

Dimitris A. Pados (M’95) was born in Athens, Greece, on October 22, 1966. He received the Diploma degree in computer science and engineering (five-year program) from the University of Patras, Greece, in 1989, and the Ph.D. degree in electrical engineering from the University of Virginia, Charlottesville, VA, in 1994. From 1994 to 1997, he held an Assistant Professor position in the Department of Electrical and Computer Engineering and the Center for Telecommunications Studies, University of Louisiana, Lafayette. Since August 1997, he has been with the Department of Electrical Engineering, State University of New York at Buffalo, where he is presently a Professor. He served the Department as Associate Chair in 2009-2010. Dr. Pados was elected three times University Faculty Senator (terms 2004-06, 2008-10, 2010-12) and served on the Faculty Senate Executive Committee in 2009-10.

1132

His research interests are in the general areas of communication systems and adaptive signal processing with an emphasis on wireless multipleaccess communications, spread-spectrum theory and applications, coding and sequences, cognitive channelization and networking. Dr. Pados is a member of the IEEE Communications, Information Theory, Signal Processing, and Computational Intelligence Societies. He served as an Associate Editor for the IEEE Signal Processing Letters from 2001 to 2004 and the IEEE Transactions on Neural Networks from 2001 to 2005. He received a 2001 IEEE International Conference on Telecommunications best paper award, the 2003 IEEE Transactions on Neural Networks Outstanding Paper Award, and the 2010 IEEE International Communications Conference Best Paper Award in Signal Processing for Communications for articles that he coauthored with students and colleagues. Professor Pados is a recipient of the 2009 SUNY-system-wide Chancellor’s Award for Excellence in Teaching.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 4, APRIL 2011

George N. Karystinos (S’98-M’03) was born in Athens, Greece, on April 12, 1974. He received the Diploma degree in computer science and engineering (five-year program) from the University of Patras, Greece, in 1997 and the Ph.D. degree in electrical engineering from the State University of New York at Buffalo in 2003. In August 2003, he joined the Department of Electrical Engineering, Wright State University, Dayton, OH as an Assistant Professor. Since September 2005, he has been an Assistant Professor with the Department of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece. His current research interests are in the general areas of communication theory and adaptive signal processing with an emphasis on wireless and cooperative communications systems, low-complexity sequence detection, optimization with low complexity and limited data, spreading code and signal waveform design, and sparse principal component analysis. Dr. Karystinos received a 2001 IEEE International Conference on Telecommunications best paper award and the 2003 IEEE Transactions on Neural Networks Outstanding Paper Award. He is a member of the IEEE Communications, Signal Processing, Information Theory, and Computational Intelligence Societies and a member of Eta Kappa Nu.