nicotinamide - ScienceDirect.com

18 downloads 0 Views 2MB Size Report
(2) obtained nicotinic acid amide (nicotinamide) from a coenzyme isolated from the red blood cells of the horse. This finding stimulated further studies on the.
NICOTINAMIDE

E z z a t M . Abdel Moety*, Mohammad T a r i q * * Abdullah A . Al-Bad?-*

* **

and

Department o f P h a r m a c e u t i c a l C h e m i s t r y , C o l l e g e o f Pharmacy, K i n g Saud U n i v e r s i t y , P.O. Box 2457, Riyadh-11451, Saudi A r a b i a . D e p a r t m e n t of P h a r m a c o l o g y , C o l l e g e o f Pharmacy, K i n g Saud U n i v e r s i t y , P.O. Box 2 4 5 7 , Riyadh-11451, Saudi A r a b i a .

ANALYTICAL PROFILES OF DRUG SUBSTANCES VOLUME 20

475

Copyright 0 1991 By Academic Press, Inc. All rights of reproduction in any form reserved.

EZZAT M. ABDEL MOETY ET AL

416

CONTENTS ____ 1. L .

INTRODUCTORY CESCRIFTION 2.7

:.

2.3 ?.? 4.

Nomenclature Formu 1 de Molecular Weight Appearance, Color, Odor and Taste

PHYSICAL CHARACTERISTICS 3.1 3.: 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11

Melting point Solubility pH-Range Optical Activity Moisture Content and Hygroscopicity Dissociation Constant Stabi 1 ity Storage Identification Spectral Properties Crystallographic Characteristics

4.

SLNTHESIS

5.

PHA,RMACOKINETICS 5.1 5.2

5.3

Absorption and Distribution Metabol ism Excretion AND SIDE EFFECTS

C.

TOXTCITY

7.

METHODS OF ANALYSIS 7.1

Qualitative Analysis (Identification) 7.11 7.12 7.13

7.2

Microchemical Tests Elemental Composition Pharmacopoeia1 Specifications

Quantitative Analysis (Determination) 7.21

Volumetry

NICOTINAMIDE

7.22

7.23 7.24

7.25 7.26

ACKNOWLEDGEMENTS

REFERENCE5

Electrochemical Methods Spectrophotometry Chromatography Gravimetry Automated A n a l y s i s

411

EZZAT M. ABDEL MOETY ETAL

47 8

NICOTINAMIDE

1.

INTRODUCTORY

Nicotinamide, a s u b s t i t u t e d p y r i d i n e d e r i v a t i v e , i s an a n t i p e l l a g r a a g e n t a n d i s c a l l e d V i t a m i n PP ( p e l l a g r a - p r e v e n t i n g ) . I t i s used f o r t r e a t i n g v i t a m i n d e f i c i e n c y i n h y p e r t e n s i v e p a t i e n t s ( 1 ) because i t l a c k s t h e v a s o d i l a t o r a c t i o n . Warburg and Associates ( 2 ) obtained n i c o t i n i c a c i d amide ( n i c o t i n a m i d e ) from a coenzyme i s o l a t e d from t h e r e d b l o o d c e l l s o f t h e horse. T h i s f i n d i n g s t i m u l a t e d f u r t h e r s t u d i e s on t h e n u t r i t i o n a l value o f n i c o t i n i c acid. L i v e r e x t r a c t s were known t o be h i g h l y e f f e c t i v e i n c u r i n g human p e l l a g r a and c a n i n e b l a c k t o n g u e . E l v e h j e m and Associates ( 3 ) prepared concentrates of l i v e r t h a t were h i g h l y e f f e c t i v e i n t h e treatment o f canine b l a c k t o n g u e , and i d e n t i f i e d t h e a c t i v e s u b s t a n c e as n i c o t i n a m i d e ( 3 ) . I t was f i r s t p r e p a r e d i n 1894 by r e a c t i n g e t h y l n i c o t i n a t e w i t h concentrated ammonia (4). The drug decomposes by h y d r o l y s i s and an obvious and e f f e c t i v e means o f s t a b i l i z a t i o n i s t o l i m i t access o f t h e d r u g t o w a t e r . I n such cases s o l i d dosage f o r m s a r e n o r m a l l y recommended (5). As t h e amide i s l a i a b l e t o h y d r o l y t i c c o n v e r s i o n t o t h e p r o t o t y p e n i c o t i n i c a c i d ; t h e a c i d can m a i n l y metabolized t o t h e corresponding amide. Nicotinarnide can a l s o be s y n t h e t i c a l l y obtained from n i c o t i n i c a c i d by s e v e r a l m o d i f i c a t i o n s . Most o f t h e p u b l i s h e d a n a l y t i c a l procedures deal with t h e s o l u t i o n o f t h e coexistance o f t h e two drug forms i n b u l k m a t e r i a l , dosage f o r m u l a t i o n s and/or i n b i o l o g i c a l specimens. T h i s demonstrates how i t i s important t o i n c l u d e b o t h t h e drug substances i n one p r o f i l e .

NICOTINAMDE

2.

479

DESCRIPTION 2.1

Nomenclature 2.11

Chemical Names

Nicotinamide: Pyridine-3-carboxamide; Nicotinic acid m i d e ; 3-Pyridine c a r b o x y l i c a c i d amide; 3-Pyridine carboxamide ( 6 ) . N i c o t i n i c acid: P y r i d i n e - 3 - c a r b o x y l i c a c i d ; 3-Pyrid i n e c a r b o x y l i c a c i d ; Pyridine-l3-carboxylic a c i d . 2.12

Generic Names

Nicotinamide: Niacinamide; midum; Vitamin PP; Vitamin P i l o n i n amide; Amide PP.

Nicotylamide; NicotinaAminocotin; Dipegyl;

B3;

N i c o t i n i c acid: Niacin; PP-(Pellagra Preventive) f a c t o r ; a n t i p e l l a g r a v i t a m i n ; Acidum Nicotinicum. 2.13

Trade Names

Nicotinamide: Nicamina; Nicobion; Nicosedine; N i c o v e l ; N i c o v i t ; Nicamindon; Nicotamide; N i c o f o r t ; Niozymin; Pelmine; B e n i c o t ; V i n i e o t y l ; Amisyn; Farmabion; N i c o t i n a m i d e ; P e l o ; A p i s a t e ( i n c o m b i n a t i o n ) and E f f i c o (6,7). N i c o t i n i c a c i d : Nico-400; Nicobid; Nicotinex; Nico-Span; N i c y l ; E q u i v e r t , P e r n i v i t , N i c o l a r , Niconacid; N i c a c i d ; Nicagin; Nicotene; N i c o t i n i p c a ; Akotin; D a s k i l ; N i c o l a r ; T i n i c ; and Wampocap. (6,7). 2.14

Chemical A b s t r a c t R e g i s t r y Number [ C A S l

Nicotinamide: N i c o t i n i c acid: 2.2

198-92-01

[59-67-61

Formulae 2.21

Empirical

N ic o t inami de: CsHsN2O N i c o t i n i c acld: CeH5N02

EZZAT M. ABDEL MOETY E T A L

480

2.22

2.23

Structural

@CONH2

@COOH

Nicotinamide

Nicotinic acid

Wiswesser

Line Notation

Nicotinamide: T6NJ CVZ ( 8 ) Nicotinic acid: T6NJ CVQ (8) 2.3

Molecular Weight

Nicotinamide: Nicotinic acid: 2.4

122.13 123.11

Appearance, Color, 0 d-x and Taste

Nicotinamide exists as colorless crystals or white crystalline powder; faint characteristic odor, salty and bitter taste ( 9 ) ; while nicotinic acid appears as needles or white t o creamy-white crystals or crystal 1 ine powder ( 7 ) . 3.

______ PHYSICAL ~CHARACTERISTICS 3.1

Melting Point

Nicotinamide: 128'-131°C ( 7 , 9 , 1 0 ) . Nicotinic acid: 236.6'C (6). 234-237 "C (7). 3.2

Solubility

Nicotinamide i s highly soluble in water and alcohols; 1 g dissolves in about 1 ml of water, in about 1 . 5 ml alcohol and in 10 ml glycerol. It is slightly soluble in ether and chloroform, while it is soluble in solutions o f alkali (9,1?,13). Nicotinic acid, 1 g,

NICOTINAMIDE

48 I

is soluble in 55 to 60 ml o f water and in 100 rnl o f ethanol, very slightly soluble in chloroform; practically insoluble in ether; soluble in alkaline solutions o f hydroxides and carbonates (7,111. 3.3

pH-Range

A 1.3% ( w / v ) aqueous solution of nicotinamide gives a pH 3-3.5; its 5% solution in water has a pH o f 6 to 7.5 and the 10% solution i n water is neutral to litmus (6,11,12). The pH o f saturated solution o f nicotinic acid is about 2 . 7 (6). 3.4

ODtical Activity

Both the drug substances are optically inactive because of the absence o f chemical asymmetry. 3.5

Moisture Content and HvgroscoPicity

Nicotinamide absorbs insignificant amounts o f moisture a t 2 5 ° C at relative humidities up to about 90% ( 4 ) . 3.6

Dissociation Constant

The dissociation constant, pK, of nicotinamide: 3.3 [ 2 O " C 1 (4); while the pK of nicotinic acid = 4 . 8 5 [25'Cl (61, pKa 2.00 (-N=), 4.80 (-COOH) [25'CI (7).

3.7

Stability

Nicotinamide is stable certain pH-changes (11). 3.8

in

air, light and at

Storage

Both drug substances shou d be stored containers ( 4 ) . 3.9

n air-tight

Identification 3.91

Color Test

To 2 ml of 0.1% solution o f nicotinamide or nicotinic acid add 6 ml o f cyanogen bromide solution and 1 ml of a 2 . 5 % v/v solution o f aniline golden yellow; i.e.

EZZAT M.ABDEL MOETY ET AL.

482

K o n i g ’ s r e a c t i o n . N i c o t i n a m i d e g i v e s brown-orange c o l o r w i t h Nessler’s reagent ( 7 ) . 3.92

Microcrystal

Test

Nicotinamide y i e l d s with gold c h l o r i d e s o l u t i o n dense r o s e t t e s ( s e n s i t i v i t y 1 i n 400) and w i t h p l a t i n i c i o d i d e s o l u t i o n a mass o f h a i r l i k e neeldes ( s e n s i t i v i t y : 1 i n 400) ( 7 ) .

-

3.10

SDectral P r o m r t i e s 3.101

U l t r a v i o l e t SDectrum

The u l t r a v i o l e t spectrum o f nicotinamide i n ethanol (using a Varian UV-vis spectrophotometer model DMS 90) i s shown i n F i g u r e 1. The spectrum o f t h e drug e x h i b i t s a maximum a t 261 nm [ A ( l % , lcm) = 451, E = 5.507 x l o 3 ] . The UV-running o f methanolic s o l u t i o n s of n i c o t i n i c a c i d e x h i b i t s a c h a r a c t e r i s t i c maximum a t about 263 nm [ A ( l % , lcm)) = 2 2 9 , E = 2.819 x 1031. 3.102

I n f r a r e d SDectrum

The i n f r a r e d spectrum o f nicotinamide, i n KBr d i s c , i s presented i n Figure 2, (recorded on Pye Unicam SP 1025 i n f r a r e d s p e c t r o p h o t o m e t e r ) . The f r e q u e n c i e s and s t r u c t u r a l assignments o f nicotinamide and n i c o t i n i c a c i d are shown below: Frequency (cm-r)

Assignment

1600- 1630

c

1700 1710

c c

3200

N

3100

0

3.103

-

C

=0

0

-H -H

( s t r e t c h , amide and a c i d ) (amide) (acid) ( s t r e t c h ; amide) (stretch, acid)

Proton Nuclear SDectrurn I’H-NHRl

The ’H-NMR runnings were undertaken f o r each drug substance. The l H - N M R spectrum o f n i c o t i n a m i d e i s shown i n Figure 3. Each drug substance was dissolved

NlCOTINAMIDE

200

Fig. 1:

250

300Wavelength 350

483

400

The ultraviolet (UV) scanning o f ethanolic solution

o f nicotinamide.

484

ioo

300

400

200

100

0

DHO

-

b

. .

I

8.0

I

.

7.0

I

.

6.0

.

.

I

5.0

.

.

I

6

4.0

.

.

.

I

.

3-0

.

.

.

t

-%/

.

.

.

.

l

1.o

2.0

~~

F i g . 3:

The proton nuclear magnetic resonance (1H-NMR) spectrum o f nicotinamide.

.

.

.

.

l

0

EZZAT M. ABDEL MOETY ETAL

486

i n deuterium oxide ( D 2 0 ) and i t s spectrum determined on a V a r i a n T 6 A NMR s p e c t r o m e t e r u s i n g DSS (sodium-2,2-dimethyl-2-silapentane-5-sulfonate) as t h e i n t e r n a l s t a n d a r d . The s t r u c t u r a l assignments a r e shown below:

Nicotinamide Chemical S h i f t (6,DDm)

MultiDlicitv

acid

Protop Assignment

7.60

mu1t ip l e t

H(3)

8.25

mult f p l e t

H(2)

8.72

:~ru1t i p l e t

H(4)

8.93

doub 1e t

H(1)

re

singlet

H ( 5 ) (amide)

9.14

singlet

H(6)

9.

3.104

The

Nicotinic

Carbon-13

(acid)

NHR SDectrum C13C-NHRI

13C-NMR spectra o f nicotinamide i n deuterium oxide

u s i n g DSS as t h e i n t e r n a l r e f e r e n c e were o b t a i n e d u s i n g J e o l FX 100 MHz s p e c t r o m e t e r a t an ambient temperature. F i g u r e 4 r e p r e s e n t s t h e 'H-decoupled spectrum of nicotinamide. (D20)

L: Fig. 4:

The carbonl3 nuclear magnetic resonance (13C-NMR) o f nicotinamide (carbon assignment see t e x t j .

~~~

~~~

EZZAT M. ABDEL MOETY ETAL.

488

Nicotinic acid

N i c o t inamide Chemical s h i f t

& PPEl

Acid+

~~

Mu1t i 01 ic it y

Carbon Assignment

A m i 3e

150.3

150.2

doublet

133.5

131.3

singlet

138.6

138.7

doublet

124.8

126.8

doublet

151.5

154.3

doub 1e t

173.8

172.0

singlet

+ E . Lecte; Bioorg. Chem.: 5 , 273 (1977); c f . M. Shamna

and D.M. Hindenlang (Eds.) i n : Carbon-13 NMR S l i g h t Assignments o f Amines and A l k a l o i d s , Plenum Press, New York (1979) p. 24. 3.105

Hass Spectrum

The e l e c t r o n impact (EI) mass spectrum o f n r c o t i n a m i d e a t 70 eL recorded on Varian Mat 311 mass spectrometer and t h e methdne d e r i v e d chemical i o n i z a t i o n ( C I ) mass spectrum s b t a i n e d with F i n n i g a n 4000 mass spectrometer a r e shown i n F i g u r e s 5 & 6 , r e s p e c t i v e l y . The EI spectrum shows 8 molecular ion peak a t m/e 122 (base p e d k ) . Othe: f r a g m e n t s a r e a t m/e 106 and 78 w h i c h correspond t o M-NHr and M-CONH2 r e s p e c t i v e l y . The C I spectrum, i s simple, t h e base peak (MH) i s t h e o n l y

NICOTINAMIDE

SCHEME

1

49 1

0

0

II

II

Nicotinic acid

-~ Nicotinamide

peak and i s a t m/e 123. Scheme 1 i l l u s t r a t e s t h e p o s s i b l e f r a g m e n t a t i o n p a t t e r n s o f n i c o t i n a m i d e and n i c o t i n i c acid. 3.11

CrYstallosraDhic Characteristics 3.11 1

X-Ray Powder D i f f r a c t i o n P a t t e r n s

The X-ray powder d i f f r a c t i o n p a t t e r n o f n i c o t i n a m i d e were determined u s i n g P h i l i p s f u l l y automated X-ray d i f f r a c t i o n spectrogoniometer equipped w i t h PW1730/10 generator. R a d i a t i o n was p r o v i d e d by a copper t a r g e t (Cu anode 2000W, I: = 1.5480 A ) h i g h i n t e n s i t y X-ray tube operated a t 40 KV and 35 MA. The monochromator was a c u r v e d s i n g l e c r y s t a l one (PW1752/00). D i v e r g a n c e s l i t and t h e r e c e i v i n g s l i t were 1 and 0 . 1 nm, r e s p e c t i v e l y . The s c a n n i n g speed o f t h e goniometer (PW1050/81) used as 0.02-28 p e r second. The instrument was combined w i t h P h i l i p s PM8210 p r i n t i n g recorder and connected w i t h b o t h analogue recorder and d i g i t a l p r i n t e r . The g o n i o m e t e r was a l i g n e d u s i n g s i l i c o n sample b e f o r e use ( 1 4 ) . The X-ray p a t t e r n i s demonstrated i n F i g . 7 .

EZZAT M. ABDEL MOETY ETAL

492

7065

Fig. 7:

55

45

35 2%

25

I5

5

The X-ray powder d i f f r a c t i o n p a t t e r n o f n i c o t i n a m i d e .

NICOTINAMIDE

Table 1:

493

The X-ray d i f f r a c t i o n a l p r i n c i p a l l i n e s o f nicotinamide

29

d(A)

5.351 11.052 11.215 14.731 19.045 19.521 19.867 22.197 22.653 23.203 24.659 25.286 25.664 27.138 21.364 29.331 30.093

16.5148 8.0057 7.8892 6.0133 4.6598 4.5473 4.4689 4.0048 3 9252 3.8334 3.6101 3.5221 3.4711 3.2857 3.2592 3.0450 2.9695 3.112

I/IoX100 10.62 3.33 4.10 100.00 6.35 8.50 9.85 35.04 3.32 2.77 4.10 8.22 21.02 15.50 9.70 2.25 3.20

20 32.478 33.586 34.122 34.459 35.716 36.947 38.625 39.097 39.618 40.134 40.955 41.372 41.554 48.740 49.188 50.346 52.250

d(A)

2.7565 2.6682 2.6275 2.6026 2.5139 2.4329 2.3310 2.3039 2.2748 2.2467 2.2036 2.1823 1.9121 1.8683 1.8523 I .8124 1,7507

D i f f e r e n t i a l Thermal Scanning

I / I0x 100 3.61 6.80 2.58 4.28 2.30 14.68 11.92 2.08 2.60 2.42 5.25 3.84 2.84 2.82 2.18 3.90 2.71

0

The DSC-curves f o r n i c o t i n a m i d e and n i c o t i n i c a c i d were obtained s e p a r a t e l y on a DuPont TA-9900 Thermal Analyzer attached t o a d a t a processing u n i t . F i g u r e 8 shows t h e DSC-curve o f nicotinamide. The runnings a r e between 120-270°C a t a h e a t i n g r a t e o f 10’C.min-l. The heat o f a c t i v a t i o n and t h e p u r i t y o f t h e samples were d e t e r m i n e d u s i n g p u r i t y program. The A H - v a l u e s a r e 22.7 and 25.6 KJ.mole-1 f o r n i c o t i n a m i d e and n i c o t i n i c a c i d , i n order. 4.

SYNTHESIS

Various s y n t h e t i c pathways have been demonstrated f o r p r e p a r a t i o n o f t h e n i c o t i n i c a c i d and/or i t s amide u t i l i z i n g v a r i o u s s t a r t i n g m a t e r i a l s and procedures. The p r o t o t y p e a c i d , i . e . n i c o t i n i c a c i d , can be o b t a i n e d f r o m q u i n o l i n e v i a o x i d a t i o n f o l l o w e d by decarboxylation. N i c o t i n a m i d e can be p r e p a r e d by conversion o f n i c o t i n i c a c i d through t h e treatment e i t h e r w i t h u r e a (15-18) o r ammonia (19-23). The n i c o t i n i c a c i d e s t e r s can be converted i n t o t h e amide

200

210

220

230

240

Temperature

F i g . 8:

Cc')

250

260

The DSC-scanning o f nicotinamide.

270

NICOTINAMIDE

495

by r e a c t i o n w i t h ammonia (4, 24). N i c o t i n a m i d e can a l s o be synthesized from t h e ammonium n i c o t i n a t e ( 2 5 ) o r a c e t y l p y r i d i n e (26) by t h e treatment w i t h ammonia. Reaction o f asparagine with glutamic a c i d can y i e l d n i c o t i n a m i d e (27). The v i t a m i n amide can be o b t a i n e d from n i c o t i n o n i t r i l e by adopting v a r i o u s h y d r o l y z i n g reagents and c o n d i t i o n s . Among t h e r e p o r t e d reagents are water ( 2 8 ) , aqueous NaOH (29-31), a l k a l i n e H202 (32-37), ammonia (38-40), d i l u t e a c i d (41 8, 4 2 1 , c o n c e n t r a t e d a c i d s (43-461, a n d o n m o i s t e n e d v i z i o n i t e AB-17, OH-form ( 4 7 ) . anion-exchanger; N i c o t i n i c a c i d and i t s amide can be s y n t h e t i c a l l y p r e p a r e d by vapor-phase o x i d a t i v e ammonolysis o f m i x t u r e s o f 3 - c y a n o p y r i d i n e and q u i n o l i n e ( 4 8 ) . Different pyridine derivatives including nicotinic a c i d and n i c o t i n a m i d e can be obtained s t a r t i n g from methane, ammonia and water by h i g h frequency e l e c t r i c discharge f o l l o w e d by TLC-separation on s i l i c a g e l G u s i n g AcOEt-MeOH-HCOnH, 75:20:5, by volumes ( 4 9 ) . Some o t h e r miscellaneous procedures have been described f o r t h e p r e p a r a t i o n o f a n t i p e l l a g r a a c i d / o r amide (50-54). 5.

PHARMACOKINETICS 5.1

AbsorDtion and Distribution

Nicotinamide i s r e a d i l y absorbed from a l l p o r t i o n s o f gastrointestinal t r a c t (2). Nicotinic acid i s also absorbed from t h e food c o n t e n t s i n t h e g a s t r o i n t e s t i n a l t r a c t , which a f f e c t s t h e b i o a v a i l a b i l i t y o f o r a l l y administered n i c o t i n a m i d e ( 5 5 ) . I n u n t r e a t e d human s u b j e c t s n i c o t i n i c a c i d plasma l e v e l s g e n e r a l l y r a n g e f r o m a b o u t 0.1-0.3 mg% ( 5 6 ) . Continuous biochemical i n t e r a c t i o n s a t v a r y i n g r a t e s between nicotinamide, n i c o t i n i c a c i d , t h e i r complexes and t h e i r m e t a b o l i t e s may predominate over t h e r a t e and completeness o f g a s t r o i n t e s t i n a l (GI) a b s o r p t i o n o f n i c o t i n a m i d e (57). The peak l e v e l i s achieved i n about 30 min f o l l o w i n g o r a l a d m i n i s t r a t i o n , and t h e i s 5 . 3 h o u r s and t h e d r u g b l o o d h a l f l i f e (T$) disappeared from t h e l i v e r w i t h a h a l f - l i f e o f 4 . 4 hours ( 4 ) . Nicotinamide l e v e l has been r e p o r t e d t o be h i g h e s t i n t h e k i d n e y and i n d e c r e a s i n g o r d e r , t h e 1 iv e r , muscle, i n t e s t i n e , h e a r t , s p l e e n and 1ungs

(58).

EZZAT M. ABDEL MOETY E T A L

496

a Y 0

SCHEME 2 --

OII

N ico t i n a m i d e &oxide

at-o~

0

Nicotinamiae

C-N&

ti 6-hyd rox y

HO 6- hyaroxy

n i c o t i n i c Zcid

C-NH2

nico t in a m I ae

CH3 N-met hyl nicotinamide

C-NH2 I

I

N-me thy[--3 -carboxamide 4 p y r idone

-

.

CY

O

..

C-NH2

I

CH3

N-me?hyI -2-pyridone-5-carboxamide ( 6 - pyr i done 1

NICOTINAMIDE

5.2

497

Metabolism

The metabolism o f n i c o t i n a m i d e i n human body t a k e s place i n t o f o u r pathways as mentioned i n Scheme 2 . (I) Formation o f n i c o t i n i c a c i d and 6-hydroxy n i c o t i n i c a c i d , (11) Formation o f N-methyl n i c o t i n a m i d e and s u b s e q u e n t c o n v e r s i o n o f t h i s compound t o N-methyl-3-carboxamide 4-pyridone and N-methyl-2-pyri(111) Formation o f done-5-carboxamide 6-pyridone, 6-hydroxy nicotinamide and ( I V ) Nicotinamide N-oxide. I n animals most o f the nicotinamide i s metabolized t o nicotinamide N-oxide, i n a d d i t i o n t o N-methylnicotinam i d e , 6 - p y r i d o n e and 4 - p y r i d o n e . The l e v e l o f n i c o t i n a m i d e i n l i v e r and t i s s u e c e l l s a r e under feedback c o n t r o l and mainly depends on d i e t a r y i n t a k e and metabolic u t i l i z a t i o n (55). Nicotinamide l e v e l s i n serum a r e b u f f e r e d by t h e l i v e r by b e i n g c o n v e r t e d i n t o storage form o f NAD. I n c e l l , t h e t u r n over o f nicotinamide i s proportional t o t h e formation o f poly-ADPR as shown i n scheme 3. There i s indeed deamination, since f r e e 6-hydroxynicotinic a c i d and n i c o t i n i c a c i d a r e seen i n t h e mouse and r a t a f t e r i n j e c t i o n o f nicotinamide (59-63). 5.3

Excretion

When t h e r a p e u t i c doses a r e a d m i n i s t e r e d o n l y s m a l l amounts o f the unchanged nicotinamide appear i n t h e u r i n e (61 & 62). When e x t r e m e l y h i g h doses o f t h i s v i t a m i n i s given, the unchanged v i t a m i n represent the major component i n the u r i n e (64). Chaykin e t a1 (65) have reported t h a t a minimum o f 98% o f r a d i o a c t i v i t y was present i n mouse u r i n e a f t e r t h e a d m i n i s t r a t i o n o f nicotinamide-7- 1 4 C , i t was found i n t h e form o f the f o l l o w i n g m e t a b o l i t e s : N1-methylnico- t i n a m i d e , n ic o t in i c a c i d , n ic o t inamide-N-ox i d e , N1 -methyl -4pyridine-3-carboxamide, N 1 - m e t h y l - 4 - p y r i d i n e - 3 - c a r boxamide, N1-methyl-2-pyridone-5-carboxamide and nicotinamide.

6.

TOXICITY &ND SIDE EFFECTS Nicotinamide has a LDso o f 1.68 g/kg body weight f o r r a t s (66-68) and 1.75 g/kg f o r mice. The t o x i c i t y does not vary g r e a t l y w i t h the route o f a d m i n i s t r a t i o n . I t has a stimulant a c t i o n on t h e c e n t r a l nervous system and does not increase the work output o f the perfused

L.

c

a

-a Z

.-V .-C

a

c

C

.-

0:

W

> 1 I

I I

I

I

I

I

I I

I I I

I

NICOTINAMIDE

499

f r o g g a s t r o i n e m i u s muscle (69). L e t h a l doses cause c o n v u l s i o n s (67) and s t i l l h i g h e r doses (0.5-1.0 mg/kg) i n j e c t e d i n t r a v e n o u s l y o r i n t r a p e r i t o n e a l l y cause a f a l l o f b l o o d pressure and a r i s e i n t h e h e a r t r a t e and increase t h e r a t i o and amplitude o f b r e a t h i n g The p a r e n t r a l and sometimes i n p u l s e r a t e ( 7 0 ) . a d m i n i s t r a t i o n o f n i c o t i n a m i d e i n l a r g e doses may cause f u r u n c u l o s i s and o t h e r s k i n l e s i o n s , malaise, a c t i v a t i o n o f p e p t i c u l c e r , j a u n d i c e and impairment o f l i v e r f u n c t i o n ( 6 4 ) . N i c o t i n a m i d e i s suspected o f being t e r a t o g e n i c i f taken i n excess by pregnant women i n the f i r s t trimester (1). 7.

METHODS

7.1

OF ANALYSIS

Q u a l i t a t i v e Analvsis ( I d e n t i f i c a t i o n ) 7.11

m r o c h e m i c a l Tests

G a u t i e r ( 7 1 ) i n v e s t i g a t e d a p r e c i p i t a t i n g spot t e s t u s i ng mercur ic c h l o r i d e t o d i f f e r e n t ia t e n ic o t inamide from t h e p r o t o t y p e n i c o t i n i c acid. The p r e c i p i t a t e d n i c o t i n i c a c i d o r i t s amide can be e a s i l y regained by microsublimation. Sandri ( 7 2 ) recommended b r o m o t h a l l i c a c i d as a p r e c i p i t a t i n g r e a g e n t t o d i f f e r e n t i a t e between s e v e r a l bases i n c l u d i n g n i c o t i n a m i d e . Ludy-Tenger ( 7 3 ) described what he c a l l e d " B i l e 1.5" r e a g e n t f o r c h a r a c t e r i z a t i o n of n i c o t i n a m i d e and n i c o t i n i c acid. Nicotinamide g i v e s c h a r a c t e r i s t i c and reproduc ib l e r e a c t i o n s w i t h d i f f e r e n t aldehydes , p a r t i c u l a r l y v a n i l l i n and benzaldehyde. Comparative reconimenda t ion o f b romot ha 1 1 ic ac id , b romop 1 a t in ic a c i d , bromoauric a c i d and sulfocyanides o f some metal ions was discussed f o r microchemical i d e n t i f i c a t i o n o f nicotinamide ( 7 4 ) . Konig's r e a c t i o n , i n v o l v i n g t h e r e a c t i o n of p y r i d i n e d e r i v a t i v e s w i t h cyanobromide and a n i l i n e , was s t u d i e d e x t e n s i v e l y on t h e example o f n i c o t i n i c a c i d and i t s amide by Ciusa and B a r b i r o l i (75). H i g h a b s o r p t i o n d a t a were shown i n aqueous media i n case of n i c o t i n i c a c i d and n i c o t i n a m i d e . Quantification o f the Konig's reaction f o r d e t e r m i n a t i o n o f n i c o t i n a m i d e i n u r i n e ( 7 6 ) and pharmaceutical f o r m u l a t i o n s (77-79) was evaluated t o o . Reaction o f n i t r i c a c i d with nicotinamide provides r a p i d p r e c i p i t a t i o n o f t h e n i t r a t e s a l t (m.p. 223-5'C) c h a r a c t e r i s t i c f o r t h e drug ( 8 0 ) . Zivanov e t a1 ( 8 1 ) r e p o r t e d t h a t on h e a t i n g n i c o t i n a m i d e w i t h m e t h y l

EZZAT M. ABDEL MOETY ET AL

500

i o d i d e [55-60:C, 40 m i n . ) o r e t h y l i o d i d e (80-85’C, 2 h r s ) i t g i v e s t h e quaternary s a l t s . The p r e c i p i t a t e d nicotinamide-Me1 (yellow, m.p. 201-6’C) and n i c o t i n a m i d e - E t I (yellow-green, m.p. 146-8’C) can be used f o r g r a v i m e t r i c q u a n t i f i c a t i o n o f t h e drug (81). Van d e r Wegen ( 8 2 ) d e s c r i b e d s e v e r a l m i c r o c h e m i c a l s p o t p r e c i p i t a t i n g r e a g e n t s f o r some b a s i c d r u g substances i n c l u d i n g n i c o t i n a m i d e . D o b r y (83) suggested R o u s s i n ’ s s a l t , [KFed(N0)7S2)] ( i r o n riitrosyl sulphidej, t o form c h a r a c t e r i s t i c p r e c i p i t a t i o n s w i t h many a m i n e s o f b i o l o g i c a l i n t e r e s t s including nicotinamide. Inorganic p r e c i p i t a t i o n can be used f o r g r a v i m e t r i c d e t e r m i n a t i o n s and as t h e p r e c i p i t a t e s a r e d e e p l y $ c o l o r e d , s u c h amines can be c o l o r i r n e t r i c a l l y determined; as l i t t l e as 106 1-(g o f n i c o t i n a m i d e can be determined by t h e proposed method (83). 7.12

Elemental C m D o s i t i o n C

H

H

(XI

(X)

(X)

0

- - - (XI

123.11):

58.53

4.09

11.38

25.99

(CBH8N20, 1 2 2 . 1 3 ) :

59.00

4.95

22.94

13.10

N i c o t i n i c a c i d (C6H5N02,

:iicotinamide

7.13

Pharmacopoeia1 S p e c i f i c a t i o n s

The USP X X I (10) s p e c i f i e s t h e comparison o f t h e I R - & UV-spectra o f n i c o t i n i c a c i d and n i c o t i n a m i d e samples w i t h t h e USP-reference s t a n d a r d o f t h e a c i d o r i t s amide, i n addition t o the identity test with 2,J-dinitrochlorobenzene and a l c . KOH (deep r e d t o wine r e d c o l o r a t i o n ) and t e s t w i t h copper sulphate on t h e n e u t r a l s o l u t i o n ( b l u e p r e c i p i t a t i o n ) i n case o f n i c o t i n i c acid. The BP-1988 (8 4 ) a l s o recommends t h e concordance o f t h e sample o f n i c o t i n i c a c i d o r i t s amide w i t h t h e corresponding I R - and CJV-spectra of t h e BP-reference drug substance. Color r e a c t i o n w i t h cyanogen bromide and a n i l i n e , i . e . K o n i g ’ s r e a c t i o n , (gives yellow coloration) i s also described f o r both drug substances, w h i l e t h e e v o l u t i o n ” o f ammonia vapours on h o t r e a c t i o n w i t h sodium hydroxide i s mentioned f o r the amide o n l y .

501

NICOTINAMIDE

7.2

Q u a n t i t a t i v e Analysis m t e r m i n a t l d 7.21

Volumetry 7 . 2 1 1 Determination i n b u l k m a t e r i a l

Krewson ( 8 5 ) d e s c r i b e d an a c i d - b a s e r e s i d u a l t i t r i m e t r i c method by i n v o l v i n g a c i d s p l i t t i n g o f t h e amide bonding t h e n f o l l o w e d by a l k a l i n i z a t i o n and d i s t i l l i n g the equivalent NH3 i n t o a known excess o f standard acid. The u n r e a c t e d a c i d c o u l d be a c i d i m e t r i c a l l y determined u s i n g methyl r e d as a suitable indicator. S r e e r a m and N a i d u (86) i n v e s t i g a t e d the non-aqueous t i t r a t i o n o f nicotinamide and n i c o t i n i c a c i d w i t h chlorosulphuric a c i d i n dioxan using c r y s t a l v i o l e t and photometric t i t r a t i o n a t 610 nm. B i a n c h i ( 8 7 ) d e s c r i b e d a s i m i l a r non-aqueous photometric t i t r a t i o n u t i l i z i n g 0.2% malachite green o r n i l e blue i n a c e t i c a c i d as i n d i c a t o r s . T i t r i m e t r i c q u a n t i f i c a t i o n o f n i c o t i n a m i d e i n nonaqueous medium has been i n v e s t i g a t e d by using HC104 as the standard and F e t t b l a u as the s u i t a b l e i n d i c a t o r (88). Helmstaedter ( 8 9 ) suggested a t i t r i m e t r i c procedure f o r q u a n t i t a t i v e determination o f n i c o t i n a m i d e v i a i t s p r e c i p i t a t i o n from aqueous By d i s s o l v i n g t h e s o l u t i o n s b y e x c e s s HgC12. p r e c i p i t a t e d mercury s a l t of t h e d r u g i n HC1, t h e t i t r a t i o n was then c a r r i e d out i n d i r e c t l y w i t h EDTA a f t e r rendering ammonical and using standard ZnS04 t o d e t e r m i n e t h e r e s i d u a l amount o f t h e c h e l a t i n g standard. To q u a n t i f y n i c o t i n i c a c i d by f o l l o w i n g t h e suggested procedure, CuSO4 was a d v i s e d f o r p r e c i p i t a t i o n instead o f HgCl2 i n case o f t h e amide. N e u t r a l i m e t r y w i t h 0.1 M NaOH was d e s c r i b e d by t h e BP-1988 ( 8 4 ) f o r n i c o t i n i c a c i d i n b u l k m a t e r i a l (using phenolphthalein) and i n t a b l e t s (using phenol red). 7.212 Determination Preparations

Pharmaceutical

A l l t h e v o l u m e t r i c methods d e s c r i b e d f o r t h e q u a n t i f i c a t i o n o f nicotinamide i n dosage formulations a r e c a r r i e d o u t i n non-aqueous media u t i l i z i n g standard H C l O 4 b u t d i f f e r e n t non-aqueous solvents and indicators. Table 2 summarizes t h e s o l v e n t s ( f o r

Table 2:

NOn-aQUeOUS determination ~~~

of nicotinamide

~~

Solvent Standard

Drug

Indicator (solvent)

Dosage form injections

Reference

Glacial acetic acid

Methyl violet (chlorobenzene)

Tablets

Dioxane CHCl3 (hot)

Methyl red

Dragees

91

Glacial acetic acid

Crystal violet (acetic acid)

Injections Tablets

84

&

90

92

503

NICOTINAMDE

s t a n d a r d and d r u g ) and non-aqueous procedure.

the

indicators

i n eacn

for The use o f 1,3-dibromo-5,5-dimethylhydantoin d i r e c t d e t e r m i n a t i o n o f n i c o t i n a m i d e i n some dosage f o r m u l a t i o n s by u s i n g m e t h y l r e d , m e t h y l orange. Vat Blue 1 ) o r amaranth (C.I. Acici Red indigo (C.I. 2 7 ) was compared w i t h i n d i r e c t i o d i m e t r y and those o f N-bromosuccinimide (NBS) a s w e l l as an o f f i c i a l methods ( 9 3 ) . 7.22

Electro.chemica1 Methods

7 . 2 2 1 0s.ci ll-lletry VaJYand and Pastor ( 9 4 ) recommended an o s c i l l o m e t r i c t i t r a t i o n procedure f o r q u a n t i f i c a t i o n o f some o r g a n i c amines i n c l u d i n g n i c o t i n a m i d e i n g l a c i a l a c e t i c a c i d . Reproducible r e s u l t s c o u l d be obtained i n case o f t h e H C l - s a l t o f t h e drug. 7.222 Potent-iw-t.

Nicotinamide can be p o t e n t i o m e t r i c a l l y t i t r a t e d u s i n g

H C l O 4 s o l u t i o n i n a c e t o n i t r i l e c o n t a i n i n g 1-30% water

as s t a n d a r d and g l a s s e l e c t r o d e , i . e . indicator electrode, w i t h a reference electrode containing Ag”/AgCl ( s ) / C l - . The e q u i 1 i b r i u m p o t e n t i a l of t h e c e l l reached i n 10-15 min. showed h i g h e r accuracy w i t h low p H - d e v i a t i o n t h a n when t h e t i m e was i n 1 min. (95). Grrybowska ( 9 6 1 i n v e s t i g a t e d a p o t e n t i o m e t r i c method f o r d e t e r m i n a t i o n o f n i c o t i n a m i d e a f t e r c o n v e r s i o n t o t h e p r o t o t y p e n i c o t i n i c a c i d by r e f l u x i n g w i t h NaOH t h e n a c i d i f y i n g w i t h HC1. The l i b e r a t e d a c i d i s d i s s o l v e d i n acetone and t i t r a t e d against standard e t h a n o l i c KOH-solution. P o t e n t i o m e t r i c a c i d i m e t r y , u s i n g s t a n d a r d HC1, was suggested by Subert e t a1 (97) f o r d e t e r m i n a t i o n o f n i c o t i n a m i d e i n medium o f MgCl2 o r NaC1. Tungsten rod c o u l d be used a s i n d i c a t o r e l e c t r o d e i n t h e p o t e n t i o m e t r i c t i t r a t i o n of s m a l l a m o u n t s of n i c o t i n a m i d e i n a m i x t u r e c o n t a i n i n g a c e t i c a c i d and a c e t i c anhydride ( 1 t 6 , v / v > ( 9 8 ) . Membrane g r a p h i t e e l e c t r o d e s , p r e t r e a t e d w i t h a c i d i f i e d KMn04 t o a t t a i n maximal improvement, was described f o r q u a n t i f i c a t i o n o f n i c o t i n a m i d e i n a c e t i c a c i d medium u s i n g standard The u t i l i t y o f t h e HC104 as t h e t i t r a n t ( 9 9 ) .

504

EZZAT M. ABDEL MOETY ETAL.

h a l f - n e u t r a l i z a t i o n p o i n t i n t h e p o t e n t i o m e t r y was investigated f o r the q u a n t i f i c a t i o n o f nicotinamide i n a medium o f c o n s t a n t i o n i c s t r e n g t h , 1 M aqueous s o l u t i o n i n NaC1, where t h e i o n i c s t r e n g t h o f t h e t i t r a n t was t o be 0.01M - 0.5M-HC1 (100). Abou-Ouf e t a1 (9 3 ) showed t h e a p p l i c a b i l i t y o f u s i n g t h e h a l o g e n a t i n g agent 1,3-dibromo-5,5-dimethylhydant o i n i n d i r e c t Dotentiometric determination o f n i c o t i n a m i d e i n some pharmaceutical p r e p a r a t i o n s .

7.223 Polarography S h i k a t a and T a c h i ( 1 0 1 ) f i r s t i n v e s t i g a t e d t h e behaviour o f n i c o t i n i c a c i d a t t h e dropping mercury e l e c t r o d e and o b t a i n e d a r e d u c t i o n s t e p w i t h a E t v a l u e o f - 1 . 6 V vs s a t u r a t e d c a l o m e l e l e c t r o d e (S.C.E.) from a 0.1 M sodium b i c a r b o n a t e s o l u t i o n o f pH 8.4. More p o s i t i v e p o t e n t i a l s were observed as t h e n i c o t i n i c a c i d c o n c e n t r a t i o n was increased. Tompkins and Schmidt ( 1 0 2 ) i n v e s t i g a t e d t h e b e h a v i o u r o f r i i c o t i n i c a c i d f r o m s e v e r a l base e l e c t r o l y t e s , b u t these authors recommended a b o r a t e b u f f e r o f pH 8 t o 9 also; however, t h e d i f f u s i o n c u r r e n t was n o t p r o p o r t i o n a l t o t h e n i c o t in i c a c i d c o n c e n t r a t i o n unless t h e b u f f e r c o n c e n t r a t i o n was a t l e a s t 0.6 M. F r o m a 0 . 6 M sodium b o r a t e s o l u t i o n t h e n i c o t i n i c a c i d step has a half-wave p o t e n t i a l o f - 1.66 V vs S.C.E. Nicotinamide was r e p o r t e d by Wenig and Kopecky ( 1 0 3 ) LO reduce a t t h e dropping mercury e l e c t r o d e from a 0.1 M sadium hydroxide s o l u t i o n producing a s t e p w i t h an E-, v a l u e o f - 1 . 8 2 V v s S . C . E . L a t e r Tompkins and Schmidt ( 1 0 4 ) observed a s t e p w i t h an E+ o f - 1 . 6 V vs t h e m e r c u r y - p o o l anode f r o m a 0 . 1 M t e t r a m e t h y l ammcmiun! bromide base s o l u t i o n and, i n general, t h e y obtained w e l l - d e f i n e d steps f o r nicotinamide from s o l u t i o n s w i t h ptl values i n t h e r e g i o n o f 8, whereas :.It 'uwet. pH v a l u e s t h e y e n c o u n t e r e d c o n s i d e r a b l e i n t e r f e r e n c e from t h e hydrogen step. The E+ values i n V 7s S . C . E . r e p o r t e d for- t h e n i c o t i n a m i d e s t e p s from v d i . 1 0 ~ base ~ s d l u t i o n s a r e as f o l l o w s : 0.1 M sodium a c e t a t e (pH 7 . 5 ) - 1 . 6 5 V ; 0.1 M sodium c i t r a t e (pH 7.9) - 1 . 6 7 V ; 0 . 1 M sodium b i c a r b o n a t e (pH 9 . 2 ) 1 . 4 0 ' J : 3 . 1 M sodium b o r a t e (pH 8 . 7 ) - 1.56 V . These lhali-wave p 3 t e n t - i a i values c l e a r l y v a r y w i t h t h e pH arid a l s o ! : l i g h t l y w i t h t h e n a t u r e o f t h e b u f f e r

NICOTINAMIDE

505

constituents. I n a1 1 cases, however, t h e step-hei ght p r o v e d t o be p r o p o r t i o n a l t o t h e n i c o t i n a m i d e concentration and independent o f t h e b u f f e r capacity o f the solution. Knobloch ( 1 0 5 ) observed a c o n s i d e r a b l y l a r g e r s t e p f o l l o w i n g t h e n i c o t i n a m i d e s t e p f r o m n e u t r a l and a c i d i c b u f f e r s o l u t i o n s , due t o t h e c a t a l y t i c e v o l u t i o n o f hydrogen a t t h e d r o p p i n g mercury electrode. Using a 5 X 10-5 M s o l u t i o n o f t h e amide t h e c a t a l y z e d s t e p w i t h a v e r y pronounced maximum f i r s t appeared a t about pH 7 . 2 4 and the h e l g h t o f t h i s s t e p i n c r e a s e d as t h e pH o f t h e f i n a l s o l u t i o n was decreased. A t pH 4 . 7 8 t h e maximum on t h e s t e p disappeared completely, r e s u l t i n g i n a well-defined c a t a l y t i c step, b u t a t lower pH values i t coalesced w i t h t h e s t e p owing t o t h e normal r e d u c t i o n o f hydrogen and i t consequently proved i m p o s s i b l e t o measure the height o f the c a t a l y t i c step under these circumstances (106). Cernatescu e t a1 ( 1 0 7 ) d e s c r i b e d t h e p o l a r o g r a p h i c determination o f nicotinamide ( E q = 1.6 V) alone and 1.2 V) i n i n t h e presence o f n i c o t i n i c a c i d ( € 3 = 0.1M NaCl o r KC1 s o l u t i o n s as t h e s u p p o r t i n g electrolytes. I n a l k a l i n e s o l u t i o n s t h e wave due t o t h e a c i d w i l l disappear a l l o w i n g the determination o f the amide i n the mixture. O s c i l l o g r a p h i c polarography w i t h an e l e c t r o n i c polaroscope and a streaming- o r dropping-Hg e l e c t r o d e d i f f e r e n t i a t e between nicotinamide, n i c o t i n i c acid, p i c o l i n i c , d i p i c o l i n i c , d i n i c o t i n i c , isocinchomeronic acids, n i c o t i n e , t r i g o n e l l i n e and isoniazide, i n i n d i v i d u a l form o r i n t h e i r mixtures (108). L i n d q u i s t and Farroha ( 1 0 9 ) i n v e s t i g a t e d t h e a p p l i c a b i l i t y o f d i f f e r e n t i a l pulse (D.P.P.) p o l a r o g r a p h y f o r d e t e r m i n a t i o n o f some v i t a m i n s i n c l u d i n g n i c o t i n a m i d e and n i c o t i n i c a c i d w i t h low d e t e c t i o n l i m i t s ( 0 . 0 1 - 1 p.p.m.; i.e. There a r e s e v e r a l o t h e r p o l a r o g r a p h i c pg, L - i 1. methods f o r i d e n t i f i c a t i o n and q u a n t i f i c a t i o n o f nicotinamide and n i c o t i n i c a c i d , the f o l l o w i n g t a b l e 3 c o l l e c t s such procedures.

-

la&

'J: Poiarograuhic charecteriratlon ancl aeternination

Analite forn

Elect rode

oi nlcotina~ioeand nicOtinlC acid

KIHI

Electrolyte

Scanning range

Id,

Rau materials N icot 1nan 1Ue Nicotinic acia

Dropping-Hg

Reference

cell

Conc. range

Reference

\)

0.111 NaOH containing geltin

110

Ni cot inanide Nicotinic acia

Buffer 1 1 2 , amide ano 0 . 7 , acid!

111

N1co:inanide Cicoti!ic acid

o.in HCI

(-

n 1coi inah I de

o.in LIOH

(- 1.5)

I > 1-10,

o.in

KOH

112

(- 1.8)

1.11

Ag/AgCi[S)jCl-

0.1-14 igx

113

- 10 1gx

114

Pharmaceutical preparations 1.5 to - 2 . 1 )

Nicot inanide

0.c. polarography With H-ceil.

0.M NaOH uith 0.0021 gelatin

(-

N 1cot in ani ae+

Cathoae-ray oolaro9raDhy

0.M KOH 8 0.05n KCI 15.1-61

I - 1.651

Table 3 Contined

..,

Nicotinaide'

CrODOing-Hg

O.IM WaOh

Nlcot 1nanide'

dropping-Hg with Hcei)

LC1-solution

(-1.5 to

-

Phosphate buffer PH 6.8 and ?.5n HaOH (12-131

I-

NiCotlnamidE+

31; KOH, Kolthoff buffer pH 8.6

I- 1.80

Nicotic acia

Kolthoff buffer PH 8.6

1-

Nicotinamide'

d i f f . puis poiarograpnv !OPP,

t i n arult ;v ;tamin nreparations.

1.91

117

alk. Ha-citrate (12)

H i cot inamine+

-

0.05 to

-

1.5)

0.8 to - 1.51

1.55)

- 1.55)

S.C.E.

118

Ag/AgGl(s)/CI- (sat)

119

120

EZZAT M. ABDEL MOETY ETAL.

508

7.23

@ectroDhotometry

7.2311

col>rimetric

Methods

D i Fferent

chromogens have been i n v e s t i g a t e d f o r c o l o r i m e t r i c q u a n t i f i c a t i o n o f n i c o t inamide and/or n i c o t i n i c acid. A l t h o u g h t h e c o l o r development i n most o f t h e q u a n t i t a t i v e procedures can be recommended f o r i d e n t i f i c a t i o n o f t h e d r u g substance, a l l t h e c o l o r spot t e s t s a r e n o t s u i t a b l e i n most cases f o r quantification. The most adopted c o l o r r e a c t i o n f o r q u a l i t a t i v e and q u a n t i t a t i v e analyses o f n i c o t i n a m i d e and n i c o t i n i c a c i d i n p u r e f o r m s , i n dosage f.zrmulations and i n b i o l o g i c a l f l u i d s i s t h e Konig’s r e . j c t i o n . The c o l o r f o r m a t i o n i n t h e Konig’s r e a c t i o n depends Gn o x i d a t i o n o f t h e p y r i d i n e - b a s e d d r u g s i n c l u d i n g n i c o t i n a m i d e and i t s p r o t o t y p e a c i d by cyanogen bromide (CNBr) t o t h e corresponding aldehyde f c l l o w e d by c o u p l i n g with a base l i k e a n i l i n e t o g i v e t l ! e c o l o r e d p r o d u c t s w h i c h can be e s t i m a t e d color imet r ic a l l y . There a r e d i f f e r e n t m o d i f i c a t i o n s o f K B n i g ’ s r e a c t i o n by changing t h e o x i d i z i n g agent and/or t h e coup1 irig base-species. Abdoh and Taufel ( 1 2 1 ) were t h e f i r s t , who a p p l i e d Koni’g’s c o l o r r e d c t i o n w i t h CNBr and a n i l i n e f o r t h e q u a n t i t a t i v e deterniination o f n i c o t i n a m i d e and n i c o t i n i c a c i d i n p u r e form and i n p l a n t o r a n i m a l t i s s u e s e x t r a c t s containing e i t h e r o f t h e t w o d r u g s . Since n i c o t i n a m i d e gives l e s s c o l o r i n t e n s i t y than n i c o t i n i c a c i d i f they where t r e a t e d according t o t h e Konig’s p r i n c i p l e u t i l i z i n g CNBr and a n i l i n e , t h e amide should be f i r s t hydrolyzed by h e a t i n g w i t h 2 . 5 M HC1 f o r 1.5 h r s a t 9 0 - 9 5 °C b e f o r e d e v e l o p i n g t h e c o l o r . Such m o d i f i c a t i o n enables accurate q u a n t i f i c a t i o n o f t h e d r u g i n u r i n e , t i s s u e s and blood ( 1 2 2 ) . The colored hydrazides formed by adding b e n z i d i n e t o t h e o x i d a t i o n products o f n i c o t i n a m i d e o r n i c o t i n i c a c i d w i t h CNBr were s t u d i e d f o r q u a n t i t a t i o n o f these drugs ( 1 2 3 ) . Spectrophotometric s t u d i e s on t h e a c t i o n o f CNBr on t h e p y r i d i n e nucleus i n n i c o t i n a m i d e and n i c o t i n i c a c i d i n t h e presence o f q u i n o l i n e showed t h e presence o f t y p i c a l f u n c t i o n a l grouping ( 1 2 4 ) . Q u a n t i t a t i v e m o d i f i c a t i o n o f Konig’s c o l o r i m e t r i c

NICOTINAMIDE

509

reaction has been investigated by coup1 ing barbituric acid for determination of nicotinamide in the presence of nicotinic acid (125). Ciusa and Barbiroli (75) compared the extinction coefficients (E) at 460-465 nm, of the Konig’s reaction products of nicotinamide and nicotinic acid in aqueous and ethanolic media. The €-values obtained in ethanol are depressed with respect to those in water for both d r u g substances. Mesnard (126) discussed the applicability of coupling 2-thiobarbituric acid to the oxidation products of nicotinamide and nicotinic acid with CNBr for the drug assay. The Konig’s reaction could be applied for determination o f n i c o t i n a m i d e i n urine a f t e r chromatographic separation from nicotinic acid and nicotinuric acid by ion-exchanging utilizing Amberlite IRA-400 (OH-form) and elution with acetone-Hz0 (2: 1, v/v) (127). Automation of Konig’s color reaction has been undertaken for vitamin analysis of nicotinamide at a flow-cell measuring at 4 2 0 nm (128). Nicotinamide contents in tablets could be accurately ( - 102%) determined by following the Konig’s reaction (75). A similar method to that o f Jeffus and Kenner (129) was applied for direct determination of nicotinamide in multivitamin preparations (130). Modified Konig’s reaction was carried out by using an excess of yeast nicotinamide deaminase to yield the nicotinic acid giving rise to relatively consistent quantitative results (131). Dessouky e t a1 (132) suggested the use o f 3-methyl-1-phenylpyrazolin-5-one as coupling reagent for the quantitative determination o f nicotinamide and nicotinic acid in tablets. Nicotinamide and nicotinic acid have been quantified in pharmaceutical formulations by automating the Konig’s reaction using barbituric acid and sulphanilic acid as the coupling reagents (133). The manual AOAC-colorimetric method No. 43.044, involving Konig’s reaction with CNBr and sulphanilic acid, was automated for determination o f nicotinamide and nicotinic acid in cereal products (134). Farsam and Mahmoudian (135) discussed the mechanistic possibility of the Konig’s reaction using sodium l-phenyl-2,3-dimethyl-5pyrazolone-4-methylaminomethansulphonate (dipyrone) in case o f nicotinamide. The possibility of coupling TLC-separation with spectrodensitometric determination of the color formed according to the Konig’s reaction gives good analytical way for quantitative separation and determination of nicotinamide in some multivitamin

510

EZZAT M. ABDEL MOETY ET AL

p r e p a r a t i o n s (77,781. K r i n g s t a d and Naess (136) advised t h e phosphate b u f f e r , pH 6.1, f o r best s t a b i l i z a t i o n o f t h e c o l o r maximally formed a f t e r 7 min. f o r c o l o r i m e t r i c determination o f nicotinamide and n i c o t i n i c a c i d according t o t h e Konig’s procedure. There are some other c o l o r i m e t r i c methods, r a t h e r than t h e Kljnig’s r e a c t i o n , adopted f o r q u a n t i f i c a t i o n o f n i c o t i n a m i d e and n i c o t i n i c a c i d . K h a t t a b ( 1 3 7 ) recommended t h e bromination o f nicotinamide by using aqueous bromine, where t h e formed N-bromoderivative was determined by r e a c t i o n w i t h starch-CdIe a t 600 nm. Pauer (138) d e t e r m i n e d t h e c y a n i d e c o n t e n t s i n n i c o t i n a m i d e and n i c o t i n i c a c i d by s e p a r a t i o n f o l l o w i n g m i c r o d i f f u s i o n and then determination w i t h 2% t a r t a r i c acid, 0.5% chloramine-T s o l u t i o n followed b y p y r i d i n e - p y r a z o l o n e r e a g e n t a t 6 2 0 nm. Dimethylglyoxine (DMG)-Fe2+ c h e l a t e was recommended as a c o l o r i m e t r i c reagent f o r q u a n t i f i c a t i o n o f n i c o t i n a m i d e (139). Reaction o f nicotinamide w i t h I-chloro-2,4-dinitrobenzene y i e l d s p y r i d i n i u m d e r i v a t i v e which y i e l d s on a l k a l i n e decomposition a measurable ye1 l o w i s h r e d c o l o r o f glutaconaldehyde (140). Nudelman and Nudelman (141) recommended a n e a r l y i d e n t i c a l method t o t h a t of Karrer and K e l l e r (140) by u t i l i z i n g l-~hloro,2,4,-dinitrobenzeneas t h e chromogen i n t h e presence o f a l c o h o l i c s o l u t i o n o f NaOH w i t h o u t i n t e r f e r e n c e s t h a t may be due t o n i c o t i n i c a c i d and some other vitamins. Nicotinamide i s the p r i n c i p a l metabolite of n i c o t i n i c acid i n u r i n e , which could be c o l o r i m e t r i c a l l y assayed a f t e r c o n v e r s i o n t o t h e amino-compound by h e a t i n g w i t h hypobromite, followed by d i a z o t i z a t i o n and coupling w i t h N-(1-naphthyl I e t h y l e n e d i a m i n e . 2HC1 t o g i v e t h e azodye (142). The method could be s u c c e s s f u l l y applied t o determine t h e u r i n a r y e x c r e t i o n o f nicotinamide i n t h r e e a d u l t volunteers. Walksmundzki and Romanowski (143) showed t h e s p e c i f i c i t y o f e p i c h l o r o h y d r i n as an a n a l y t i c a l reagent f o r d e t e c t i o n and determination o f nicotinamide i n t a b l e t s . Indemans and Rademakers (144) described a c o l o r i m e t r i c procedure by t r e a t i n g w i t h hypobromite-phenol, sulphamat and N-(1-naphthyl1ethylenediamine.2HCl t o y i e l d t h e diazonium s a l t measurable a t 500 nm. Domnas ( 1 4 5 ) recommended a mixture o f hypochlorite-phenol reagent f o r determination o f nicotinamide i n raw m a t e r i a l s and i n uptake studies o f the drug substance d u r i n g metabolism i n yeast. Nicotinamide, R, could be c o l o r i m e t r i c a l l y

Table 4: Coloriuetric Deteraination Substance H i Cot i n mi@ nicotinic acia

Specimen pure form. plant a

a nicotinamide and nicotinic acid in pure forr, dosage forrs and in biological fluids Chroaogen (Reagent! C#Br t aniline

Sjecial treatment

KIl

(nu)

Sensitivity range

l6'C/23 min. using

iiefetence i21

POI-buffer pH 6.16.j

Hi cot inanide Nicotinic acid

bulk form

CNBr t benr i d 1ne

Nicotinaaide

ray uaterials

CNEr t barbituric acii

Nicot inaaide Nicotinic acid

ram materiais

CNBR t 2-thiobarbit u f i t atid

Hicotinamide

biological fluids

CHBr t aniline

2 0 ' 9 2 0 #in.. uY

CNBr + H,I-oiethylD-pneny lenedianine

ambient, 2% tiaOH amofiia buffer

iuriner H i cot 1nami de

vitamins mixtures

125

20-i2'6/30

min.

using

PO4 - bu f fer M/ 15, vH 1 . 2 )

513

- i pg.nl-'

125

126

460

6.5-1

308

Recovery from v i n e . 91 18.91

12;

420

ionrinuea

I..

.

hico:!nasiaf

tabisrs

CWBr

b c f b i t u r i c acid

roam temDereure 3b

5.0

room teip.125-30 nin,

550

Bin, 0.ia KHzPOI

mu it ivi tam preparation

thBr t satc. o a r a i t u r i c acld i n j%KH?POt

Hicotinamide i Icot.:lic iC'0

miets S carwies

CNEr t D a r b m m c am 8 julphan;lic acid

s;ajle oiscretesanple autoiateo anaiys!s

:iico t :n am; oe

ray na:eriais

CNBr t sodium 1-pnenyl2, I-diaetnyi-5-pyrazok~ne-4-netnviaainomet hanesul DnaP Lie

anoientl5D nln.

Hi cot inanioe

j%I H z P G i

raw s a t e r i a l s ray materials

N

- HCN t ?I t a r t a r i c

aclE

t

0.5: chioramine-

1 + Pyridine pyrazolone

iicroaiffusioP (20 nri, reaction 30 nin.

rea;ent

raw Baterials

3inethyiglvoxine IONi- pH i.4-1:. c o l o r Fe" s t a b i l i t y t 30 min.

j90

Recovery

:

. 1028

5 ug.arl-;; recovery loo.!%

8-33 ug.mi-'

119

130

135

labie 4 Continued

... l-chiorc-2,4-Cinitrobenzene t 20% KOH

JO'Cil hr.-ethanol

tablets. capsules, syrups & eiexir

I-clloro-!,j-a!nitrobenzene t ln NaOH

8 0 ' W hrs.-ethanol

dr!ne

- NHZ, diarotization B

nicotinanide

ran

Hicotinamiae y".l r v i

,nanide

material:

504

couciing vitn h-ilbaphthy i i-etnyienedi-

5-10 pg,nl-i

140

. 4 ug.rni-1

141

1-50 kg

142

aiine

cn w

N icot i n a i iae

tab ieis i so iu: i ons eo 1 ch loroh ydr 1n

60'C/5 nrs.

H~COtinamioe

mu i t 1v it am1 n

heating

oreparations

NaOBr, CsHsOH, oiazotization 8 coupling With A-i 1-ncphtnyl

lened :aiine

-

'

10 pg.nl-I

143

500

*

10 pg.ai-l

1l a

655

lii-50 ug.ri-1

145

ii5

3-40 Lg.ni -1

I40

retng-

Yicoiinamide

raw paterials 3 uptake stucies

HaOGl

Hic3t:namiae

rac nateriais

cooait t hiocyanate conpiex, HziColSCH,rj

GrH5i)H

rOON

teRD./i hrs.,

G H C i 3 , or 2 4 hrs.

nitroso-r? sait soiut ion

530

Cant ined i , . . ,

Table 4 Conieuec Hicotinamifle

Micctlnanide

. . #

~narmaceutical m a r a t ions

H'-nydfOlpiS Irefiux. 1 hr. I t Ha 1,f-naphtnaouinone-4-suiphsnate t Ha?S?O?.

pnarnaceitical

4-diaethy1aminoben;aldenvne IPDAB!

preparations

80'611 hr. acetone

540

- 15 !g.nl-'

147

445

80-200 uq.al-'

148

NICOTINAMIDE

515

q u a n t i f i e d by u s i n g c o b a l t t h i o c y a n a t e complex, HZ [Co(SCN)4] t o g i v e (RH)2-[Co(SCN), I which e x e r t s t h e c o l o r (146). A c i d h y d r o l y s i s o f n i c o t i n a m i d e f o l l o w e d by r e a c t i o n w i t h sodium 1,2-naphtha-quinone4-sulphonate a t 80’C f o r 1 hr. g i v e s p u r p l e c o l o r a t i o n on adding t h i o s u l p h a t e ( 1 4 7 ) . The absorbance o f t h e complex formed between 3-aminopyridine, t h e p r o d u c t o f H o f f m a n n ’ s r e a c t i o n between n i c o t i n a m i d e and 4-dimethylaminobenzaldehyde was used f o r q u a n t i t a t i v e determination o f the drug i n pharmaceutical p r e p a r a t i o n s (148). Table 4 c o l l e c t s and compares i n a summa r ized form t h e d if f e r e n t c o l o r i m e t r i c procedures f o r i d e n t i f i c a t i o n and q u a n t i f i c a t i o n o f t h e mentioned drug substances. M a r s h a l and Kenner ( 1 4 9 ) compared t h e d i r e c t s p e c t r o p h o t o m e t r y a t 262 nm o f a c i d e x t r a c t s o f n i c o t i n a m i d e s e p a r a t e d f r o m c a p s u l e s , s y r u p s and e l i x i r s , w i t h o t h e r two c o l o r i m e t r i c methods by u s i n g e i t h e r bromothymol b l u e , measured a t 430 nm, o r w i t h c y a n o g e n b r o m i d e and b a r b i t u r i c a c i d s o l u t i o n s , measured a t 550 nm. T a b l e 4 c o l l e c t s t h e v a r i o u s c o l o r i m e t r i c methods described f o r d e t e r m i n a t i o n o f n i c o t i n a m i d e and/or n i c o t i n i c a c i d i n dosage f o r m u l a t i o n s and i n b i o l o g i c a l specimens. 7.2312

UV-SDectrgphotometrv

The USP X X I ( 1 0 ) recommends t h e UV-measurement a t 262 nm f o r n i c o t i n a m i d e and n i c o t i n i c a c i d i n b u l k forms GI- i n i n j e c t i o n s and t a b l e t s , w h i l e t h e BP 1988 ( 8 4 ) s p e c i f i e s t h e same wavelength f o r t h e q u a n t i f i c a t i o n o f o n l y nicotinamide i n i t s t a b l e t s . Spectrophotonietr i c determination o f nicotinamide i n admixtures with thiamine, r i b o f l a v i n and p y r o d i x i n e , is undertaken by measuring A a t 267 nm f o r s o l u t i o n s a t pH 2 & 7 ( 1 5 0 ) . Estimation o f nicotinamide i n a d m i x t u r e s w i t h t h i a m i n e and p y r i d o x i n e by d i r e c t measurement a t 2 4 7 nm, 260 nm and 290 nm was o n l y p o s s i b l e a f t e r removal o f any r i b o f l a v i n by t h e use o f ion-exchange r e s i n ( D e c o l o r i t e anion-exchanger) (151 & 152), presence o f panthenol does n o t i n t e r f e r e because o f i t s n u l l a b s o r p t i o n s a t t h e wavelengths mentioned I n d i r e c t spectrophotometric a n a l y s i s o f above ( 1 5 3 ) . n i c o t i n a m i d e and a s c o r b i c a c i d i n e t h a n o l c o n t a i n i n g cysteine.HC1 t o p r o t e c t t h e a c i d c o u l d be c a r r i e d o u t a t 2 6 3 nm and 245 nm, i n o r d e r ( 1 5 4 ) . S i m i l a r method

5 16

EZZAT M. ABDEL MOETY ETAL.

was described f o r q u a n t i f i c a t i o n o f n i c o t i n a m i d e a t 2 6 2 nm i n t h e presence o f t h i a m i n e and p y r i d o x i n e (155). Nicotinamide i n a quaternary m i x t u r e w i t h thiarnine-HCI, r i b o f l a v i n phosphate and pyridoxine-HC1 and chloramphenicol c o u l d be i n v e s t i g a t e d by a d o p t i n g i n d i r e c t spectrophotometry (156). Resolved n i c o t i n i c a c i d and i t s amide on s i l i c a g e l G, u s i n g a c e t i c (5:5:20:70), c o u l d be acid-acetone-methanol-benzene determined i n t h e presence o f thiamine.HC1, pyr-idoxine.HC1 and p-aminobenzoic a c i d by means o f UV-ref lectance spectrometry ( 157 I . Nicotinic acid c o u l d be q u a n t i f i e d a t 2 6 2 nm a f t e r i t s s e p a r a t i o n from dosage f o r m u l a t i o n s on a c t i v a t e d polyamide powder i n a microcclumn ( 1 5 6 ) . Among o t h e r 30 d i f f e r e n t ci~mpounds w i t h p y r i d i n e chromophores, t h e e f f e c t of s u b s t i t u t i o n and s o l v e n t on t h e U V - s p e c t r o photomet r - i i: behaviour o f n i c o t inamide was s t u d i e d f o r clrug c c n t r o l ( 1 5 9 ) . D i r e c t UV-measurement o f rlicot;namidi! a t 2 6 2 nm c o u l d be u n d e r t a k e n i n admixtures w i t h i n o s i n e and u r i d i n e 5-phosphate a f t e r TLC-separation on s i l i c a g e l G F 2 5 4 u s i n g b u t a n o l - a c e t i c acid-5% ammonia s o l u t i o n ( 7 : 2 : 2 ) (160). P a r t i t i o r i chromatography, between a diatomaceous earth-water column and c h l o r o f o r m , was a p r e l i m i n a r y s t e p f o r s e p a r a t i o n o f n i c o t i n a m i d e from oharmaceutical p r e p a r a t i o n b e f o r e i t s UV-measurement a t 2 6 2 nm ( 1 4 9 ) . Paczek and Wardynska ( 1 6 1 ) a l s o adopted t h e chromatographic s e p a r a t i o n o f n i c o t i n a m i d e from some o t h e r water-soluble v i t a m i n s i n m u l t i v i t a m i n drageks before i t s q u a n t i f i c a t i o n v i a d i r e c t D i r e c t UV-measurement a t i-Yd-measurement a t 262 nm. ; 4 t nm & 2h2 nm a t pH = 2 has been d e s c r i b e d f o r d e t e r r n i n a t l a r i o f n i c o t i n a m i d e w i t h some o t h e r w a t e r - s o l u b l e v i t a m i n s (,162).

7.23 13

Spect r o f luor i&.Lry

Scudi ( l b 3 ' ) described t h e a d d i t i o n o f an a l k a l i t o t h e s o l u t i o n o f n i c o t i n a m i d e and cyanogen b r o m i d e t o A q u a n t i f y t h e d r u g spectrofluorimetrically. f l u o r i m e t r i c method f o r q u a n t i f i c a t i o n o f 1 - m e t h y l n i c o t i n a m i d e and n i c o t i n a m i d e i n serum was recammended by C l a r k e t a7 ( 1 6 4 ) by d e v e l o p i n g t h e fluorescence i n 9% f o r m i c a c i d ; EX: 370 nm, EM: 450 nm. M o d i f i e d Hankder s p e c t r o f l u o r i m e t r i c procedure Itas been recommended by M e s t r e s ( 1 6 5 ) t o d e t e r m i n e q i c s t i n a m i d e ; t h e fluorescence f o r m a t i o n t a k e s p l a c e

NICOTINAMIDE

517

by KCN-buffered s o l u t i o n and chloramine-T, EM: 462 nm. N i c o t i n a m i d e can be d e t e r m i n e d i n a c i d e x t r a c t s o f homogenized f o o d p r o d u c t s by measuring t h e Mohran ( 1 6 7 ) d e s c r i b e d fluorescence a t 426 nm ( 1 6 6 ) . a s p e c t r o f l u o r i r n e t r i c procedure f o r e s t i m a t i n g n i c o t i n a m i d e i n t a K e , based on t h e d e t e r m i n a t i o n o f plasma l e v e l s o f one t o i t s m e t a b o l i t e s , namely N’-methyl-4pyridone-3-carboxamide, w h i c h causes fluorescence on U V - i r r a d i a t i o n . N i k o l i c e t a7 ( 1 6 8 ) demonstrated fluorescence r e a c t i o n s f o r d e t e r m i n a t i o n o f a v a r i e t y o f n a t u r a l and s y n t h e t i c drugs i n c l u d i n g n i c o t inamide. I n s i t u s p e c t r o f 1u o r i m e t r y a f t e r TLC-separation was adopted by F r e i e t a 1 ( 1 6 9 ) f o r q u a n t i f i c a t i o n o f t r a c e s o f n i c o t i n i c a c i d and i t s amide. S p e c t r o f l u o r i m e t r i c q u a n t i f i c a t i o n o f n i c o t i n a m i d e and I t s methyl d e r i v a t i v e i n b i o l o g i c a l f l u i d s was r e c o m m e n d e d b y W i l l i a m s ( 1 7 0 ) . S p e c t r o f l u o r i m e t r i c measurement, EX: 436 nm, o f t h e S c h i f f ’ s base formed by r e a c t i n g n i c o t i n i c a c i d o r i t s amide w i t h cyanogen b r o m i d e , a c e t o n e and 4-aminobenzoic a c i d has been i n v e s t i g a t e d by u s i n g 3,5-diacetyl-1,4-dihydrolutidine as comparing standard f o r q u a n t i f i c a t i o n o f each d r u g substance ( 1 7 1 ) . 7.24

Chromatography 7.241 Paper Chromatography (pc)

PC-technique u s i n g d i f f e r e n t paper t y p e s i n v a r i o u s s o l v e n t systems has been i n v e s t i g a t e d f o r r e s o l u t i o n , i d e n t i f i c a t i o n o r d e t e r m i n a t i o n o f n i c o t i n i c a c i d and i t s amide. The s e p a r a t i o n o f t h e a n t i p e l l a g r a drugs can be achieved i n one d i r e c t i o n , two-dimensions, o r circular diffusion utilizing different visualizing Table 5 summarizes c o l l e c t i v e l y regents (172-193). t h e d i f f e r e n t P C - p o s s i b i l i t i e s f o r i d e n t i f i c a t i o n and q u a n t i f i c a t i o n o f n i c o t i n i c a c i d and/or n i c o t i n a m i d e . 7.242 T h i n Laver ChromatograDhy (TLC)

D i f f e r e n t adsorbents and developing s o l v e n t s have been described f o r f r a c t i o n a t i o n o f n i c o t i n i c a c i d and/or n i c o t i n a m i d e f r o m a d m i x t u r e s and i n m u l t i v i t a m i n preparations. Color development o r U V - v i s u a l i z a t i o n are among t h e v a r i o u s methods recommended f o r l o c a t i o n (194-213). The f o l l o w i n g t a b l e 6 c o l l e c t s t h e v a r i o u s

VI-m 0

-

0

N ‘ q O

518

L P)

-.

0) c

.-

-

I -

519

-. c ~

0

I

N

,

.-

.-.

=.-.

r

I -

.. . -.. -

CT

e

I . 0 cc "-orc

u .. , ,.,.eIal *

0 - o u

r

d

n

=IL - - . a m

Y)

521

Tinle f Continueo

... then u i t h 3% YaOH i n lleoH and HHsvapors.

C i c o t i n i c acid Wicot irlamide

Uv25t

sheets

PrOH-ail. NHj 11$:11 o r i 7 H t i I CH3 JCO 1 3 . 2 )

- CHtlj

2% 4-aminobenzoic acid i n 0.15 M HCIEtOH (3:1), then vapors o f CNBrll hr.

lyellou-orange)

201

Quantification by measuring Azrl ns

--

202

s i l i c a gel G

EtOH 1982, 15:121

Nlcot1oat:de i i n mu 1t iv it a n 1n Dreuarat i c n s i

s i l i c a gei I f i i o r e s cent. 254 nnl

Hz D

Clz-atRosuhere I20 #in. I . then spraying u i t h o - t o l i a i n e (0.03% i n aq. IcOii)

--

203

Nicotinamlde acid. nicotinanide [dosage forms

s11ufol & silufol 3;r 154

a i f f e r e n t soivent systets

Uv-iight an0 c o l o r i # e t r i c a i i y

--

204

Y 1cot 1na@ide

cellulose HM300 HR

BuOH-AcOH-Hz0 i8:l:lll

iodoplatinic acid

--

205

Nicot,inic acid. Nicotinaride

s i l i c a gel

66H1-He0H-lCHo JzCO-ACOH

d i f f e r e n t spraying reagents

_-

206

N i c o t i n i c acid, Nicot inaniee

s i l u i o i UYN c e l lu iose

UV-light 1254 nnl; q u a n t i f i c a t i o n a t 261 nn uas possible.

--

201

Nicotinanide in;ect!ons)

w N

urecoateo

:r,

l14:4: 1 : l l

or

0.1 U H C l

-----------------Continued /....

,--

= c l

a a *I c u 0

*-.=I

P

aJ

w

-

c

.cz

524

c -. &i

N

Ill

6 L

c .c_

-

c

-4 6

.c.

E

.-IL

525

526

EZZAT M. ABDEL MOETY ET AL.

TLC-methods f o r f r a c t i o n a t i o n , i d e n t i f i c a t i o n and/or q u a n t i f i c a t i o n o f n i c o t i n i c a c i d and n i c o t i n a m i d e . 7.243 gas-Liouid Chromatography (GLC)

Some G L C - p r o c e d u r e s ( 2 1 4 - 2 1 6 ) h a v e o f t e n been recommended, b u t do n o t t a k e i n t o a c c o u n t t h e 1 i k e l i h o o d o f e n c o u n t e r i n g n i c o t i n i c a c i d and i t s r e l a t i v e s i n a samples ( 2 1 7 ) . The methods a r e ranging from t h e isothermal t o t h e programming technique a t d i f f e r e n t temperature ranges. Different polarities have been s p e c i f i e d f o r i d e n t i f i c a t i o n o f n i c o t i n i c a c i d and i t s amide i n raw m a t e r i a l s , b i o l o g i c a l f l u i d s and pharmaceutical f o r m a t i o n s (218-2251. The f o l l o w i n g t a b l e 7 compares t h e v a r i o u s GLC-procedures. 7.244

Hish

Performance (Pressure) L i a u i d

Chromatosraphy (HPLC)

The d e t e r m i n a t i o n o f n i c o t i n i c a c i d a n d / o r n i c o t i n a m i d e has been performed u s i n g HPLC on v a r i o u s normal and reversed-phase columns. The HPLC technique has advantage over t h e GLC one i n r e q u i r i n g almost no d e r i v a t i z a t i o n , such as s i l y l a t i o n o r conversion t o the corresponding a l k y l esters, prior to The f o l l o w i n g t a b l e 8 q u a n t i f i c a t i o n (226-241). summarizes t h e d i f f e r e n t HPLC-methods recommended f o r t h e q u a l i t a t i v e and q u a n t i t a t i v e analyses o f n i c o t i n i c a c i d and i t s amide. Guilleman e t a7 ( 2 4 2 ) d e s c r i b e a h i g h performance, a t moderate pressure (10-30 b a r ) , l i q u i d chromatographic procedure f o r s e p a r a t i o n o f n i c o t i n a m i d e and some o t h e r o r g a n i c compounds on columns packed w i t h h i g h s p e c i f i c a r e a and consequently s h o r t columns. Two grades o f S p h e r o s i l , v i r , XOA 600 and XOA 800 ( w i t h s p e c i f i c areas 600 ti 800 m2.g-1, r e s p e c t i v e l y ) w i t h mean p a r t i c l e diameters E f f i c i e n c i e s up t o 800 t h e o r e t i c a l p l a t e s o f 5-7 pm. c o u l d be cm-1 w i t h a n a l y s i s t i m e s o f 5-15 min. obtained. I o n - p a i r , reverse-phase HPLC f o r s e p a r a t i o n o f n i c o t i n a m i d e i n admixtures w i t h o t h e r water s o l u b l e v i t a m i n s has been i n v e s t i g a t e d by Coleman ( 2 4 3 ) . The e f f e c t s o f pentane, hexane and heptane s u l f o n a t e s , as ion-pai r reagents a t v a r i o u s water-methanol r a t i o s on t h e r e t e n t i o n times on a RP-column were i n v e s t i g a t e d .

Table E: HPLC-Determination of nicotinic acid and nicotinaaide Substance isuecimen)

Column/tertp. ( 'GI

Developing solvent loobile pnaseliflou rate-int. Std.

Retention Detection ti#e I ;, nn

Sensitivitv

Reference

Imin.)

Nicotinic acid

6 icot inaaide

1% SCI lsulfonated fluorocarbon! Zipar. glass bead/

(27)

N icot inaa ide Inultivitaain preparations 1

ilS Pellicriex SCX

Nicotinic acid ruith otner J 1tam1 ns 1 Hi cot inam 1de

Aoinex A-5 resin

Nicotinic acid, nicot inamide (dosage formulations) Nicotinic acid. nicotinaaide ifooo)

0.1

n naNO1-0.1 MbPWl.:

ml.min-:-piccl!naride.

i

0.01%

150 ng-5 u g i

226

2?i

0.03 H KCiin 0.1 !I POI-ouffer IDH 8) linear gradient of oH and ionic strmgtn at acid pH-value isocraticalij rk 2.5.

!00-251 ng

228

p-Bondapak Cl8

0.52 H Ha CiOCtyi suiphasuccinate pH 2.5 - CHiOH ! l : l ) i 2.5 a 1 . m - I - acetophenone

25 ug.ml i.5 ug.al-'

?29.!SIl

p-8ondapak C18

Detto

Aminex 1-11 resin

)

0.1 U9.9.'

231

Phospnare buffer pH 5 Nicotinarioe 1 o lasnal

H2 d l o c t y lsui fosucci ph ? . $ . nemi 1 1 . 4 : ml.min-'-isonicotina-

0.3 1% nzte!

1 li2

Ride. 'il

crit inai7lae

;re;Eratianr!

Nicotinic acid

cotinamioe

H 1 c o t : n ' c acid nicotinaaice I piasma

N i c o t i n i c acid

inawide ilirinei

235

CsHiiSOiH as ion-pair reagent

VI W N

Hicot

232

Me3h-H20 i D to BOX iinear yaaient ~2 M i .min-1-0.025 H

1 muit i\. itanin

nl

251

O.U W Ph-buffer. guinaidic acia

Ultrasphere ODS/24.5:C iph 5.301

pH 2.6-

iMeCN-0.OI

1 CjHltS03t!. k

:5HiiSO~H

B kHzPOi) 1 0 to

~Etl3NHClI-lO.01 II

UV 12541

1-10 ng

234

UV 12601

0.1-2 ug mi-' 1-10 vg 11-i

235

236

6% linear gradientl.

------------------Continued :....

Table 8 lontinued

... neOH

-

buffer

NHIPOI

Hicotinaaioe I u i t h oiner vitahias:

C18-bonaeu phase

Wicotinanide i u i t h Other i i t a u i n s i n dosage forms)

FAST-LC-8 I5 urn)

Tetranydrofuran-tla C7 H13S03-~ H z P O I - ~ I I P O -I ( Et Ian IpH 2 . 5 I / 2 or 4 n1.m-'.

Nlcotinamide i u i t n

S i l i c a gel sitanired with

other vitatiins)

MezCtH17 siiane.

0.3: 1Bu:cNOH i n 0.015 4I PO& buffer. pH 3 - neOH

--

--

--

231

Igraa:ent, 0 t o 70%) --

uv (2721

--

238

__

UP 12301

--

239

-_

UY 1280)

-_

210

--

uv

Ill : 8 , / l hl.Blfi-'-C6H~00H

Nicotinanide i v i t h VI N \o

CB-HPLC

WeOH-0.04 II HaE7HtrSOs- i n

2% lAcOH (1:9).

other vitamins, dosage forms J Hicotinamiae inultivitaninninersl preparations)

colilnn/ i 2 5 ' C I

AP-C18

neOH I Hz0 13:17J-0.005 H h H 1 5 S ~ l H6

0.5% IEthN, pH

3 . 6 1 2 ml.min-l

(280)

--

241

530

EZZAT M. ABDEL MOETY ET AL

7.245

Ton

Exchange

7.2451

Electrophoresis

Ion-Exchange ChromatograDhv

K l o t z and Poethke have separated the v i t a m i n B complex components and d e t e r m i n e d t h e n i a c i n a m i d e w i t h ion-exchange r e s i n i n a column o f W o f a t i t CP300 (H+) and W o f a t i t L150 (OH-) (244). These authors (245) used A m b e r l i t e IR-120, IRA-401, IRC-50 and XE-100 and W o f a t i t CP300 and L 1 5 0 f o r t h e i s o l a t i o n o f nicotinamide. Nicotinamide was r e t a i n e d on t h e weakly a c i d l c c a t i o n exchangers a t pH < 4, but can be e l u t e d w i t h N-HC1 o r w i t h NaOH s o l u t i o n . Sweeney and H a l l (246) used the ion-exchange r e s i n f o r the q u a n t i t a t i v e d i f f e r e n t i a t i o n b e t w e e n n i c o t i n i c a c i d and nicotinamide. The sample s o l u t i o n a t pH 5 i s passed o v e r t h e a n i o n -e x c h a n g e r e s i n IRA-400. The nicotinamide i s e l u t e d w i t h water and the n i c o t i n i c a c i d w i t h h o t 1N HC1. Both substances a r e t h e n determined by means o f Konig’s r e a c t i o n w i t h CNBr and s u l p h a n i l i c acid. Table 9 summarizes t h e ion-exchange chromatography reported i n the 1it e r a t u r e (244-252).

7.2452

Electrophoresis

N i c o t i n a m i d e , i n pharmaceutical p r e p a r a t i o n s , have been separated by gel f i l t r a t i o n on Sephadex G-50 and e l u t e d from the column by H z 0 and saturated butanol. The e l u a t e a f t e r concentration were subjected t o paper e l e c t r o p h o r e s i s ( 1 10 V; 8-10 mA) w i t h p y r i d i n e - f o r m i c acid-water (1:1:98) b u f f e r s o l u t i o n (pH 3.35). Zones were l o c a t e d under U.V. l i g h t ( 2 5 3 ) . I n an e a r l i e r method (254) nicotinamide i n a m i x t u r e o f vitamins was separated by paper e l e c t r o p h o r e s i s i n acetate b u f f e r (pH 5 . 1 ) w i t h a c u r r e n t o f 3.5 mA. Spots are developed w i t h d i a z o t i z e d paminoacetophenone. Electrophoresis 1 f i l t e r paper t o separate on Whatmann No. n i c o t i n a m i d e f r o m a number o f d e r i v a t i v e a t a p o t e n t i a l d i f f e r e n c e o f 280 V i n 0.03 M-borate b u f f e r has been reported by Sundaram e t a1 ( 2 5 5 ) . Fukuda and Mimura (256) have i n v e s t i g a t e d a paper e l e c t r o p h o r e s i s method t o separate and i d e n t i f y n i c o t i n a m i d e i n a mixture o f vitamins by using 0.5% sodium acetate, 1 % s o d i u m b o r a t e a n d 0 . 1 % ammonium c h l o r i d e a s e l e c t r o l y t e . Paper e l e c t r o p h o r e s i s technique has a l s o been employed f o r the separation and determination o f nicotinamide i n pharmaceutical preparations o f

Table %

I o n exchange chromatography

of

n i c o t i n a m i d e and/or n i c o t i n i c

Mobile phase

acid Rf

Column

Reference

2 44

A c i d i f i e d water (pH 4)

W o f a t i t CP300 (H+) W o f a t i t L150 ( H - )

1N-HC1 o r NaOH solution

A m b e r l i t e IR-120, IRA-401, W o f a t i t CP300 and L150

Water

IRA-400

AcO form C1 form ( b u f f e r e d a t pH 1 . 6 ) .

Amberlite Amberlite Amberlite Amber1 it e

Acetate b u f f e r solut i o n pH 4.62.

A m b e r l i t e WA-2 and c a r b o x y l i c a c i d r e s i n

0.1 K-NaNO3-0.1 N-H3 PO4

1% o f SCX ( a 1% sulphonated f l u o r o c a r b o n

249

Water

Strong basic anion exchangers (OH-)

2 50

A m b e r l i t e I R C , XE-50, IR-120 and LRA-401 and W o f a t i t CP-300 and KPS-200 r e s i n s

251

Acid-precipitated a l g i n i c acid

252

0.005 N HC1

IRC-50,

XE-100,

245 246

SB-2 (AcO form) SB-2 ( C 1 form) WA-2 ( b u f f e r e d a t pH 1.6) WB-2

0.5 0.52 0.18 0.02

247

0.18

248

EZZAT M. ABDEL MOETY ETAL.

532

t i i t a m i n s ( 2 5 7 1 . T a b l e 10 c o l l e c t s t h e d i f f e r e n t e l e c t r o p h o r e t i c separations o f t h e drug substances

(258-2761.

7.25

Gravimetry

Nicotinamide can be p r e c i p i t a t e d from i t s s o l u t i o n s i n amyl a c e t a t e o r e t h e r (10-100 mg) by adding excess o f 0.025 M c h l o r a n i l i c a c i d s o l u t i o n i n t h e same s o l v e n t . A f t e r s t a n d i n g f o r 30 min. (amyl a c e t a t e ) or 5 min. ( e t h e r ) f i l t r a t i o n t h r a u g h a preweighed Gooch c r u c i b l e i s advised. Weighing o f t h e p r e c i p i t a t e can be done a f t e r i t s washing and d r y i n g t i l l c o n s t a n t w e i g h t (277). Coloriniet r i c quant 1f i c a t i o n o f n i c o t inamide can be c a r r i e d o u t by d i s s o l v i n g an a l i q u o t o f t h e c v l o r e d p r - e c i p i t a t e i n water. The c r y s t a l l i z e d qicotinamide-chloranilic a c i d s a l t s sublime a t 180 C Rtid decompose a t 240-245.C, i t s aqueous s o l u t i o n has ;jH-value = 3, a t 2 3 C w i t h c o n d u c t i v i t y o f 6 X mhc.cm-1. N i c o t i n a m i d e c a n a l s o be d e t e r m i n e d g r a v i m e t r i c d l l y by p r e c i p i t a t i o n v i a h e a t i n g w i t h m e t h y l i o d i d e ( 4 0 min, 5 5 - 6 W C ) o r e t h y l i o d i d e 1 2 3rs, 8 0 - S Y C ) t o g i v e t h e c o r r e s p o n d i n g q u a t e r n a r y salts (278). The n i c o t i n a m i d e - E t I , yellow-green c r y s t a l s , m e l t a t 146-148'C, while the MeI-salt, yellow c r y s t a l s , m e l t s a t 201-206'C. 7.26

Automated A n a l y s i s

Continuous, non-segmented, f l o w i n j e c t i o n system w i t h has been ' s o l o r i m e t r i c d e t e c t i o n a t 4 2 0 nm, investigated f o r q u a n t i f i c a t i o n o f nicotinamide admixed w i t h some o t h e r water-soluble v i t a m i n s . The yellow c o l o r f o r m a t i o n c o u l d be o b t a i n e d by r e a c t i n g n i c o t i n a m i d e w i t h polymethine dye mixed w i t h NaOH and ammonia b u f f e r c o n t a i n i n g CNBr ( 2 7 9 ) . N i c o t i n i c acid s n d n i c o t i n a m i d e i n one-component and m u l t i v i t a m i n t a b l e t s and c a p s u l e s can be q u a n t i f i e d by a d o p t i n g d u t o a n a l y s i s w i t h c o l o r i m e t r y by u s i n g C N B r - s u l f a n i l i c a c i d f o r n i c o t i n i c a c i d and CNBr-barbituric a c i d f o r nicotinamide (280). A n o t h e r automated method f o r d e t e r m i n a t i o n o f n i c o t i n i c a c i d and n i c o t i n a m i d e i n (cereal products has been c o l l a b o r a t i v e l y s t u d i e d by Gross ( 2 8 1 1. The AOAC m i c r o b i o l o g i c a l method 43.121 were compared i n such study. Coverly ( 2 8 2 ) d e s c r i b e d t h e p o s s i b i l i t y o f automating an HPLC-procedure f o r q u a n t i f i c a t i o n o f n i c o t i n a m i d e i n admixtures w i t h some

Table 10: Electrophoretic separation

of

nicotinamide and/or nicotinic acid ~

Mobile phase

Column

Detector

Reference

UV 280 nm

258

Silica gel treated with dimethyl(octy1)silane.

UV 280 nm

259

Methanol-4 mM sodium heptanesulfonate in aqueous 2% acetic acid (1:9).

Silica gel CIS

UV 280 nm

? 60

Tetrahydrofuran sodium heptanesulf onate- KHn P04-H3 PO4 - t r iethy 1 ami ne (pH 2.5).

FAST-LC-8

UV 272 nm

261

[Acetonitrile with 10 mM pentane sulfonic acid - 10 mM triethylammonium chloride ( 9 : 1 ) ] in 10 mM pentae sulphonic acid - 10 mM triethylamnonium chloride and KH2PO4 in water.

Ultrasphere ODS

UV 254 nm

262

Methanol-water (3:17), 0.005M heptane sulfonic acid, and containing 0.5% triethylamine at pH 3.6.

C16

0.3% Tetrabutyl ammonium hydroxide solution in 0.015M phosphate buffer (pH 3) - methanol (17:8)

(reversed phase)

-0

-j (D

cu

E

c

cu

W

W

In (D

E

cu

.5 u)

0 0

cu

d

OD

cu

w cu

m

a

m

Y

0

c

m

> = J

Q

a r

C

x

7

> 3

>

3

X

0 03

C 0

-0

1

m

X Kl

a

K

0

.

r-

I

0

3

0

C

E cu

?

> 3

u)

h

-7

u)

c,

n a

'c 'c 2

a

L

v

a

I

-+

a

c m X

I

a

C N

'7

o m

m

-7

U

.r

N

-r

L

a

re rc 7

n a 0

L

- a

4 - I

c,

m

r

3

L

3 I

m

a

c,

InN

m

ZEE E

n.

a x z

C I

+-'N

m a

m

3-

C

a

gG

a

OD

0-

?%

I . cu cu

I -

L

0

v)

K

c,

r

.7

0

0

a,

2 7

m

n

!-

534

I 1

.

.

.

I I I

I W I C

I 0 10

I I I l

I

;

Table 10 Continued

...

2 mM-Na (dioctyl sulfosuccinatemethanol ( 1 : l ) adjusted to pH 25 with 10% form acid.

u

0.03 M-KC1 in 0.1 M K-phosphate buffer (pH 8).

Aminex A-5 resin

0.025 M Nitric acid

HS Pellionex SCX

-VI

E

Bondapak C l a

UV 254

27 1

272 UV 254 o r

280 nm

-

Spherosi 1

0.1 N Sodium nitrate-0.1 N H3P04

1% CSX Zipax glass bead

uv

0.3% Tetrabutyl ammonium hydroxide

Silica gel treated with dimethyl (octyl) silane

UV 280

solution in 0.015 M - phosphate buffer (pH 3) - methanol (17:8).

nm

273 274 275

nm

276

EZZAT M.ABDEL MOETY ET AL.

536

o t h e r water-soluble v i t a m i n s i n t a b l e t s by continuousf l o w sample p r e p a r a t i o n with UV-detection a t 272 nm. ACKNOWLEDGEMENTS

The authors would l i k e t o thank M r . Syed R a f a t u l l a h , A s s i s t a n t Researcher, Col lege o f Pharmacy, King Saud U n i v e r s i t y f o r h i s t e c h n i c a l assistance and M r . Tanvir A. B u t t , f o r t y p i n g the manuscript.

537

NICOTINAMIDE

References 1.

W.C. Bowman a n d M . J . Rand, " T e x t Book o f Pharmacology", 2nd Ed. Blackwell S c i e n t i f i c Publications, Oxford, (1980) p. 43.

2.

Goodman and Gilman's, The Pharmacological B a s i s o f Therapeutics, 6th Ed., MacMillan P u b l i s h i n g Co. Inc., New York, (1985) p. 1557.

3.

F.A. Robinson, "The Vitamin B Complex", Sonc I n c . , New York, (1951) p. 216.

4.

The P h a r m a c e u t i c a l C o d e x, 1 1 t h edn., Pharmaceutical Press, London, (1979) p. 592.

5.

K.A. Connors, G.L. Amidan, and L. Kennon (Eds.), Chemical S t a b i l i t y o f Pharmaceuticals, A Handbook f o r Pharmacist, J. Wiley & Sons, New York (1979) p. 77.

6.

The Merck Index, 1 0 t h edn., Merck and Co. Rahway-NJ, (1983) No. 6366-pp. 930 & 935.

7.

E.C.G. Clarke, " I s o l a t i o n and I d e n t i f i c a t i o n o f Drugs" edn. The Pharmaceutical Press, London, A.C. M o f f a t (Ed.) (1986) p. 807 8, 808.

8.

Smith, E.G. and Baker, P.A. (Eds.), The Wiswesser Line-Formula Chemical N o t a t i o n (WLN), 3rd edn., Chem. I n f . Mang. I n c . (CIMI), Cherry H i l l , New Jersey (1975) p. 60-62.

9.

European Pharmacopoeia, Vol. France, (1971) p. 314-315.

John Wiley & The

Inc.,

11, Maisonneuve, S.A.

10.

U n i t e d S t a t e s Pharmacopoeia X X I , Pharmacopoeia1 Convention, Inc., Rockville-Md., (1985) pp. 731 & 732.

11.

Martindale, The Extra Pharmacopoeia, 29th edn., Pharmaceutical Press, London, (1989) p. 1268.

12.

"The B r i t i s h Pharmacopeia 1980", Vol. I, Her Majesty's Stationary O f f i c e , London, (1980) p. 303.

13.

"The U n i t e d S t a t e s D i s p e n s a t o r y " , 2 7 t h edn., J.B. L i p p i n c o t t (Ed.), Philadelphia, (1973) p. 782-783.

The

EZZAT M.ABDEL MOETY ETAL.

538

14.

R.R. Abou-Shabaan; unpublished data (1989).

15.

P.W.

Garbo,

16.

P.W.

Garbo; U.S.

Patent, 2,419,831; A p r i l 29 (1947).

17.

P.W.

Garbo, U.S.

Patent 2,460,002, Jan. 25 (1949).

18.

M.E.

H a l t q u i s t ; B r i t . Patent 561.019, May 2 (1944).

19.

P.W. Garbo, U.S. Patent 2,453,106, Nov. 16 (1948).

20.

L.J.

Wissow, U.S.

H.B.

Thomasen; Dan. Patent 87,228, J u l y 27 (1959); c f .

21. 22.

-C.A.:_

U.S.

Patent. 2.427.400; c f . Ref. 3.

Patent 2,617,805, Nov. 11 (1952).

54, 7742F (1960).

A r i e s Associates,

I n c . ; B r i t . Patent 822,519, October

28 (1959). 23. 24.

E.F.

Pike and R.S.

Shane; U.S.

17 (1946). H.F.

Seibert,

_ U.S._ _ Patent __

L.J.

Patent 2,412, December

Szabo, Wyeno and E.R. 14, 1941; c f .

2,280,040, Apr. 51876 (1942).

Eckhardt, C.A.:

36,

B r i t . Patent, 561,019; May 2 (1944).

25.

Ciba Ltd.,

26.

Ciba Ltd., B r i t . Patent, 558.774; c f . Ref. 3.

149, 301, (1943)

M.R.

Bovarnick; J- B i o l . Chem.:

28.

H.R.

Roseriberg, U.S.

29.

R.G. Benner and Aug. 3 (1954).

30.

B.F. Deusel and H.L. May 31 (1949).

31.

P y r i d i u m Corp.; B r i t . P a t e n t 563,184, Aug 2, 1944, c . f . C.A.: 40, 24734 (1946).

32.

J.F. Couch and C.F. Nov. 9 (1948).

27.

153, 1 (1944).

Patent 2,446,957, Aug.

I. Hochhauser;

&

10 (1948).

U.S.

Patent 2,685.586,

Friedman; U.S.

Patent 2,471.518,

Krewson;

U.S.

Patent 2,453,496,

NICOTINAMDE

33.

R.

539

J u j o ; J- Pharm. SOC. Japan:

C.A.:45, 620’

(1951).

34.

E.C.,Jr. Taylor and A.J. 1633 (1954).

35.

P.A. George and (1943).

36.

D. Gold and S.S.V. 2, (1953).

37.

J. Van de Kamp and M. T i s h l e r ; U.S. Feb. 10 (1948).

38.

Z.J. 47,

Ors. Chem.: l9,

P. Bachmann; Helv. Chim. Acta: 2 6 , 358 Roessler; Ger. Patent 828,247,

Vejdelek, Chem. L i s t y : 46,

C.F. Krewson and J.F. 2256 (1943).

770 (1952);

40.

J.F.

Couch; J-

Am.

cf.

Chem. SOC.:

Couch and C.F. Krewson, U.Sz Pat. 432, O f f i c i a l Gazette 644, 307 (1951).

J. Schmidt-Thome

288, 237 (1951).

July

Patent 2.435,@0>,

11191 (1953).

39.

41.

Crovett ; J-

LAL: 65,

(Applied) 63,

and H. Goebel; 2, P h y s i o l . Chem.:

42.

Heyl; J. Am. Chem. SOC.: 7 0 , 3434 (1948).

43.

Jones; J. Am. Chem. SOC.:

44.

A.H.

45.

I . A . Balaban and F. Manchester; B r i t . Patent 575, Feb. 7 (1946).

119,

46.

Wm. White and R.A. 22 (1946).

Oct.

47.

E.F. Kozlova, M . I . Kustanovich, M.M. Yanina and 1.6. Chekmareva; Khim. Farm. z h 2,~ 28 (1968).

48.

V . I . Trubnikov, V.V. Petrov, E.S. Zhdanovich and N.A. Preobrazhenskii; Khim-Farm. Zh,: 3, 49-52 (1969).

Berrie,

G.T.

%:2042 (1952).

74,

1489 (1952).

Newbold and F.S.

Spring;

J- Chem.

Glen; U-%& Patent, 2,409,806,

EZZAT M. ABDEL MOETY ET AL

540

49.

D. Stefanescu, D. Moraree, I. Predescu, P. Barza, T . S t a n c i u , F 1 . Coman.; Farmacia ( B u c h a r e s t ) : -ll(2): 115-20 (1969).

50.

B.V. Suvorov, S.R.Rafikov, B . A . Zhubanov, and M . I . Khmura; U.S.S.R. Patent 119878, May 21, (1959).

51.

S.M. McElvain and M . A . Apr. 15 (1947).

52.

V . Mikkelsen; Arch.

53.

Merck 8, Co. ( 1951) .

54.

J.R. Berg; U.S.

55.

M. Weiner and J. Van Eys (Eds.); i n : N i c o t i n i c Acid, Vol. 1, Marcel Oekker, I n c . , Nutrient-Cofactor-Drug, New York & Base1 (19831, p. 232.

56.

J.L.S. Hollman, C.G. Davis and Leeper; J- _Am. G e r i a t r . _S _O-C . : l0, 903 (1962).

57.

A . M . Diab; & g e i m i t t e l - F o r s c h . [ O r u g 2314 (1977).

58.

Goese;

U.S.

P-harm. Chem.:

Inc.;

Brit.

Patent 2,418.911,

46, 479-497 (1939).

P a t e n t 687,312,

Patent 2,496,114,

Feb.

11

Jan 31 (1950).

Research:

C . J . Walters, R.R. Brown, M. Kaihara and J.M. J. B i o l . Chem.: 217, 489 (1955).

27,

Price;

. _ _ _ _ _ _ _ _ _

59.

K . K . Reddi and E. (1953).

Kodicek;

Bigchemistry:

53, 286

60.

M. Weiner; J. C l i n . Pharmacol.:

lfj,

61.

B. Petrack, P. Greengaard and Chem.: 241, 2367 (1966).

H. Kalinsky; J- B i o l .

62.

P. Greengaard, B. Petrack and __ 242, 152 (1967). Chem.:

H.

63.

B.B. Brodie, M. Weiner, J.J. Burns, G. Simson, and E. Yale; J,. Pharmacol. Exp. Ther.: 106, 543 (1952).

64.

R . S . Satoskar and S.D. Bhandarkar, "Pharmacology and Popular Pharmacotherapeutics", R e v i s e d 9th edn., Parkasham, Bombay, (1983) p. 851.

550 (1976).

Kalinsky;

J.

Biol.

54 1

NICOTINAMIDE

65. 66. 67.

S.

Chaykin, M.

Dagani, L. Johnson and M.

___ B i o l . Chem.: -_ 240, 932 (1965).

__ 62,

F.G.

Brazda, R.A. 19 (1946).

P.

Ellinger,

-Biochem. __ :JI

Samli; , J

Coulson, Proc. SOC. EXD. B i o l . Med. : and M.M.

G.

41,

Fraenkel 559 (1947).

Abdel-Kader;

68.

K. Unna; J. Pharmacol.:

69.

N.W. Shock and W.H. (1946).

70.

F. Bergman and L. W i s l i c k i ; B r i t . J. Pharmacol: 8 , 49 (1953).

71.

J.A.

72.

G. Sandri; Mikrochim. Acta: Abstr:: 5 , 3587 (1958).

73.

64, 95-103

S e b r e l l ; Am.

2,

253 (1958);

F. Ludy-Tenger; Pharm. Acta Helv.: 7376 f (1953).

C.A.: 47,

Sandri; A t t i Accad. Sci. c f . C.A.: 55, 13777b (1961).

J. Physiol.:

43,

26, 89 ( 1 9 4 4 ) ;

G a u t i e r ; Ann. Chim. Anal.: 40, 15496 (1946).

C.A.:

(1939).

cf.

c f . Anal.

28, 22 (1953);

Ferrara:

52

cf.

35, (1957-58);

74.

G.

75.

W. Cuisa and G. B a r b i r o l i ; Ann. Chim. (Rome): 53, 1248 (1963); c f . Anal. Abstr.: 12, 1447 (March 1965).

76.

u: 37,

77.

S.A. I s m a i e l , W.G. Haney, Pharmazie: 40, 804 (1985).

78.

D. Ropte and K. Z i e l o f f ; Pharmazie: 40,

79.

Y.M. Dessouky, F.T. Hussein, Pharm. Beln.: 9, 43 (1974).

80.

A.

45,

Wenusch; O s t e r r . Chem.-Ztg.: 44156 (1943).

M.M.L.

I n a c i o , M.A. Andrade, 14, 17 (1964); cf.

Port. __ Farm.:

(1965).

and

87 ( 1 9 4 3 ) ;

E.M.

and S.A.

cf.

Abdel-Moety; 793 (1985).

I s m a i e l ; J-

and A.M. L e i t e ; Rev. Anal. Abstr.: l2, 4172

EZZAT M. ABDEL MOETY ET AL.

542

81.

D. Zivanov, Z. B l a g o j e v i c , and M. Mladenovic; Arhiv, Farm.: l4, 273 (1964); c f . C_&: 62, 2671h (1965).

82.

T.P.A. van d e r Wegen; Pharm. Weekbl.: (1959); c f . Anal. Abstr.: 1 , 3951 (1960).

83.

A. Dobry; T.lla_v, Membres SOC. Chirn. B i o l . : (1971); c f . C.A.: 39, 1431 (?940/41).

84.

--

85.

The B r i t i s h- Pharmacopoeia 1988, H.M.S. (1988) pp. 388, 973 8, 974. C.F.

-__ C.A.:

Krewson; Am. J- Pharm.: 3 7 , 45307 (1943).

94,

23,

717-733 1438-44

O f f i c e , London,

115, 122

(1943);

Naidu; I n d i a n J- Chem.:

cf.

20, 1046

86.

S.V. Sreeram and P.R. ( 198 t )

87.

A. B i a n c h i ; Farmaco, Ed. Prat.: Anal. Abstr.: 9, 2065 (May 1962).

88.

M. Rink, R. Lux, and E. Franken; Dtsch. ADoth Ztg: 98, 660 (1958); c f . Anal. Abstr.: 6 , 1885 (May 1959).

89.

G. H e l m s t a e d t e r ; Arch. (1959); c f . Anal. Abstr.:

90.

H.H. Kavarana; I n d i a n J. Pharm.: 20, Anal. Abstr.: 6, 3738 (Sept. 1959).

360 (1958);

cf.

91.

Z.

Chem. Acta:

30,

92.

.

Devyatnin and M.

(1961);

Pharrn. ( B e r l i n ) : 292, 7, 1549 ( A p r i l 1960).

K l e l l i n and K. Sumanovie; 181 (1958); c f . Anal. Abstr.:

V.A.

Is, 476

Creat.

S , 1512 ( A p r i l 1959).

Ya Moizhes;

17, (1963); c f . Anal. Abstr.:

12,

cf.

91

Med. Prom. (SSSR): 1362 (March 1965).

93.

A.A. Abou-Ouf, M . I . Walash, M. R i z k , and F. B e l a l ; JDrug Res.: ll, 81(1981); Anal. Abstr.: 41, 5E8 (1981).

94.

V.J. Vajgand and T.J. P a s t o r ; Glas. Hem. Drus (Beowad): 3 l , 9 (1966); c f . 67, 39955y (1967).

95.

Velinov, D. Ivanov, and 0. Budevski; JE l e c t r o a n a l y t . Chem.: 57, 97 (1974); c f . Anal. Abstr.: 28, 6E11 (1975).

a:

G.

NICOTINAMIDE

543

96.

M. Grzvbowska; Cnemia hnd]-t..: l 9 , 8 0 1 ( 1 ' 3 7 4 ) ; c f . Anal. A b s t r . : 2 8 , 3C39 ( 1 9 7 5 ) .

97.

J. Subert, M.

98.

T . J . P a s t o r and V.J. Vajgand; MiKrochim. Acta: (1976); c f . Anal. A b s t r . : 32, 1 J 1 0 4 ( 1 9 7 7 ) .

99.

T.J. P a s t o r , V . J . Vajgand, and Z . S i m o n o v i c ; A n a l . C.hl_m, k t - a : 98, 233 (1978); c f . Anal. A b s t r . : 32, 5E26 (197'8).

100.

101.

Bachrata. L. Knazko, and A. Stemberova; Cs_lka Farm.: 3 , 68 ( 1 9 7 5 ) ; c f . Anal. A b s t r . : 3 0 , I t 1 ( 1976 1.

G.

2 , dS

Petho and k. Burger; A c t a Chim, Acad. Scl, Hungg,: (1981); c f . Anal. Abstr-.: 42, 6A14 (1982).

108, 161

M. S h i k a t a and I. Tachi; Mem. C o l l . A= U J . :

Kyoto Imp.

4, 35 (1927).

B l o l . Chem.: -3,

P.C. Tompkins and C . L . A . 643 (1942).

103.

K.

104.

P.C. Tompkins and C.L.A. Physiol,, 8 , 247 (1943).

105.

K. Knobloch, C o l l . (1947); c f . Ref. 40.

106.

G.W.C. M i l n e r , 'The P r i n c i p l e s and A p p l i c a t i o n s o f Polarography and Other E l e c t r o a n a l y t i c a l Processes", Longmans 4 t h edn. p a r t 3, 1966, p. 598.

107.

Schmidt;

A.

102.

Wenig and M. Kopecky, (1943); c f . r e f . 40.

R.

Cernatescu,

~ C e r c_ e t a r_ r i __S_ tiint:

(1956).

M.

4,

Cas.

Cesk.

Schmidt;

Czech.

Chem.

Lek.:

Univ.

5 6 , 49

Calif.

Commun.,

2

Pub. 407

P o n i , a n d R. R a l e a ; S_tgd11 117 ( 1 9 5 3 ) ; c f . C.A.: !X, 13663e

108.

J. Volke and V . Volkova; Chem. L a s t y : 48, 1031 ( 1 9 5 4 ) ; c f . Anal, A b s t r . : 2., 2477 (1955).

109.

J. L i n d q u i s t and S. 3 7 7 (1975).

Farroha;

A n a l y s t ILondon.):

1-03,

EZZAT M. ABDEL MOETY ETAL

544

110.

P.C. Tompkins and C.L.A. Schmidt; U n i v . C a l i f o r n i a Pub. P h y s i o l . : 8 , 221 (1943); c f . C .: 38, 36796 (1944).

111.

W. Kemula and Y. Chodowski; Roczn. Chem.: (1955); c f . Anal. Abstr.: 3, 1791 (1956).

112.

V.A. Serazeolinova, A.D. K a g a r l i t s k i f , D.Kh. Sembaev, K.U. Umarova, F.A. Ivanovskaya and B.V. Suvorov; Vest. _Akad. Nauk. kazakh. ISSR): 2, 68 (1968); c f . Anal. __Abstr.: l7, 931 (Aug. 1969).

113.

S.M. Farroha and J. L i n d q u i s t ; B u l l . C o l l . Sci.-Univ. Baghdad ( I r a & : l6, 287 (1975); c f . Anal. Abstr.: 3 3 , 4E23 (Oct. 1977).

114.

J . M . Moore; J. Pharm. Sci.: 5 5 , 1117 (1969); c f . Anal. Abstr.: 19, 3354 (Oct. 1970).

115.

M.E. S c h e r t e l and A.J. Sheppared; J. Pharm. S c i . : 1070 (1971); c f . Anal. Abstr.: ‘22, 3488 (1972).

116.

E. Jacobsen and K.B.

29, 839

a,

Thorgersen; A n a l y t i c a Chim. Acta: 28, 2E21 (1975).

1_1, 175 11974); c f . Anal. Abstr.:

T a i r a ; J. Ass. Off,. Anal. Chem.: c f . Anal. Chem: 28, 3E29 (1975).

117.

A.Y.

118.

M. Jozan, _Hun%: 50, (1981).

G. Szasz and K. 153 ( 1 9 8 0 ) ; c f .

57, 910 (1974);

Szemeredy; A c t a Pharm. A n a l . A b s t r . : 40, 3E36

119.

E. Jacobsen and T.M. Tommelstd; Anal. Chim. Acta: l f f , 379 (1984); c f . Anal. Abstr,: 47, 6E44 (1985).

120.

V.A. Deyatnin and L.A. 18, 58 (1964); c f . LA.:

121.

J . Abdoh and K. T a u f e l ; &. Untersuch.-Lebensm.: 355 (1942); c f . C.A,: 37, 6594 (1943).

122.

m: 33,

123.

J. Deltombe; J. Pharm. Belg.: 1, 1054 (1954). Abstr,:

K.

Kuznetsova; Med. Prom. 6 l , 2908f (1964).

R i t s e r t ; Klinl Wochschr.: 85594 (1939).

18,

(SSSR):

934 ( 1 9 3 9 ) ;

84,

cf.

8 , 59 (1953); cf. Anal.

545

NICOTINAMJDE

124.

P. Douzou and A.M. Le C l e r c ; Anal. Chim. Acta: l2, 239 2, 2134 (1955). (1955); c f . Anal. Abstr.:

125.

B.P.Llsboa; Naturwissenschaften: 5 , 3172 (1958). Anal. Abstr.:

126.

a,617

(1957);

cf.

P. Mesnard; Arch. Pharm. (Athens): 22, 105 (1966); c f .

C.A.: 66, 1188779 (1967).

127.

T. Wronska-Nafer and J. Sokal; Acta Pol. Pharm.: 89 (1967); c f . Anal. Abstr.: l5, 2186 (1968).

128.

B.E. A l b r i g h t , E.F. Degner; Automat. Anal. Chem. Technicon Symp., 1967, 3rd, 1, 461 (publ. 1968); c f . C.A.: 7l, 33460U (1969).

129.

M.J. J e f f u s and C.T. Kenner; J. Pharm. S c i . : 58, 749 (1969); c f . Anal. Abstr.: l9, 1685 (Aug. 1970).

130.

0. P e l l e t i e r and J.A. Campbell; J- Pharm. Sci.: 926 (1961); c f . Anal. Abstr.: 9, 2498 (June 1962).

131.

L. F u l l e r and L.S. D i e t r i c h ; Analvt. Biochem.: 9, 538 (1971); c f . Anal. Abstr.: 22, 350 (1972); C.A.: 74, 839112 (1971).

132.

Y.M. Dessouky, F . T . H u s s e i n and S.A. I s m a i e l ; JI Pharm. Bels.: 2!3, 43 ( 1 9 7 4 ) ; c f . Anal. A b s t r . : 28, 2E20 (1975).

133.

J. Ramirez-Munoz; Analvt. Chim. Acta: c f . Anal. Abstr.: 28, 4E28 (1975).

71, 321 (1974);

134.

A.F. Gross; J. Ass. O f f . Anal. Chem.: 3 0 , 2F 49 (1976). c f . Anal. Abstr.:

58, 799 (1975);

135.

H. Farsam and M . Mahmoudian; J. Pharm. Bels.: (1977); c f . Anal. Abstr.: 36, 3E22 (1979).

136.

H. K r i n g s t a d and T. Naess; Nature wissenschaften: 26, 709 (1938); c f . C.A.: 33, 20712 (1939).

137.

F . I . Khattab; Anal. L e t t . : Is (614), 1121 (1983); c f . Anal. Abstr.: 46, 5E6 (1984).

138.

K. Pauer;. Chemia A n a l i t : l8, 1069 (1973); Abstr.: ?_s_, 2856 (May 1974).

24,

50,

32, 587

cf.

Anal.

EZZAT M. ABDEL MOETY ET AL

546

139.

W.-K.

Lee;

C.A.:73,

Yakhak Hoe.ii (Korea): 69915b (1970).

l3, 2 2 (1969);

21, 463

140.

P.

141.

N.S. Nudelman and 0. Nudelman; J. Pharm. Sci.: (1976) c f . Anal. Abstr.: 31, 2E33 (1976).

142. 143. 144.

K a r r e r and H. K e l l e r ; Helv. Chim. Acta: (1938); c f . C.A.:33, 5727 (1938).

W.I.H.

Holman; Biochem. J-: (1954).

___ Abstr.: 1, ‘1024

A. Walksmundzki and cf.

11, 243 (1954);

A.W.M.

56,

513 (1954);

cf.

&, 65

c f . Anal.

H. Rmanowski; Acta Polon. Pharm.:

C.A.:49,

Indemans and H.E.J.

8565 (1955).

Rademakers; Pharm. Weekbl.: t3, 1246 (March,

95, 413 (1960); c f . Anal. A b s t r . : 1961).

5 0 , 1246 (March 1961);

145.

A. Domnas; J- Biochem. (Tokyo): 56, 76349 (1962). c f . &:

146.

J. Bosly; J- Pharm. B e l a . : 19, 513 (1964); c f . C.A.: 62, 15993b (19065); c f . Anal. Abstr.: 13, 1480 (March

1966).

147.

148.

J.P.S. S a r i n , R.B. Chakravarty and G.K. Ray; I n d i a n J. Pharm.: 26, 165 (1964); c f . Anal. A b s t r . : 12, 5408 (Oct. 1965). Namigohar, A. Chanbarpour and D. B e l t r a n ; Ann. 3 9 , 445 (1981); c f . Anal. Abstr.: 42, 5E40 (1982).

F.

_ Pharm. ____ Fr.:

149.

T.J. Marshal and C.T. ii969).

150.

K. Capele and R. Holch; Pharm. A c t a Helv.:

151.

Kenner; J. Pharm. Sci.:

(1958).

Bardhain, R.N. Bhattacharya and S.K. 23,85 (1958); c f . Anal. Abstr.: 1960).

D.K.

& Cult.:

58, 479

33,

Dutta;

163

a

1, 759 (Feb.

NICOTINAMIDE

547

1152. G. S c a p i n i , P. C o n d o r e l f i and F. I n n o c e n t i ; B o l l . ~ Sedute_Accad. _ Gioenia _ Sci. Nature. Catanica: 8 , 626 (1966); c f . :LA. 70, 14451e (1969). 153.

154.

155.

D.K.

Bardhain, R.N. Bhattacharya and S.K. Dutta,; JChem. _ _I n d i_ a : 32, 86 (1960); c f . Anal. Abstr.: 8, 817 (Feb. 1961). ~ I n s t n-.

Pharm: 30, 25 (1962);

G. Machek and F. Lorentz; Sci. cf. 2: 57, 4761d (1962).

Idem; Sci. Pharm.:

13, 357 (Jan. 1966).

3 2 , 185 (1964);

cf.

Anal.

Abstr.:

156.

Idem, ibid: 3 4 , 213 (1966);

157.

H.M. Frodyma and V.T. (1967).

158.

G. Lehmann, H. Hahn and M. S c h i r r a ; Chem,: 554 (1968).

159.

J. Kracmar, J. Kracmarova and J. Zyka; m a r m a z i e : 23, 567 (1968).

160.

G. Cosi; Farmaco,

161.

K. Paczek and H. Wardynska; Acta Pol. Pharm.: 28, 71 (1971); c f . Anal. Abstr.: 2 2,4407 (June 1972).

162.

A. Jan, H. A l i and M. Ashraf; J- Pharm. (Lahore): 12 (1979); c f . Anal. Abstr.: 40, 2E33, (1981).

163.

J.V.

164.

B.R. C l a r k , R.M. H a l p e r n , and R.A. S m i t h ; Analyt, Biochem: 68, 54 ( 1 9 5 7 ) ; c f . Anal. A b s t r . : 30, 4070 ( 1976).

165.

R. M e s t r e s ; Trav. got, Pharm. M o n t p e l l i e r : (1962); c f . C.A;: 58. 144319 (1963).

166.

A. Sebesta and L. Dalma; S c i . Aliment.: 14, 7 7 (1964); c f . Anal. Abstr.: 1 2 , 6128 (Nov. 1965).

cf.

LA.:

22258e

66,

( 1967).

Lieu;

w,

Ed.

Scudi; Science:

cf.

Anal.

Chem.:

39,

Fresenius’Z.

814

Anal.

p r a t . : 23, 331 (1968).

103, 567

1,

(1946).

22, 46

EZZAT M. ABDEL MOETY ET AL

548

7th; 5 ,

167.

Y.Z. Mohran; Proc. I n t . Congr. N u t r . . lO_,35551 (1969). (1967); c f . CA.:

168.

K. N i k o l i c , D. Malesev, and K. Velasevic; Acta Pharm. Juaosl.: jt3, 209 (1 9 6 8 ); c f . Anal. Abstr.: 1-9, 4330 (Nov. 1970).

169.

R.W. F r e i , A. Kunz, Zuercher; Anal. Chim..

170.

A.T.R. Williams; c f . Anal. Abstr.:

171.

J. Bartos; Annls Pharm, EL: 29, 7 1 (1971); cf. Abstr.: 21, 3502 (Nov. 1971).

A!aL

G. Schoen; Acts V'aminol.:

C.A..:

172. 173. 174.

48,

G.

Pataki,

A-aa:49,

T . Prims, 527 (1970).

LabL Eauip. D i g . : 2 , 4D113 (1977).

13851h (19541.

1,

14,

67-77

151 (1953);

C. Bergamini; Sperimentale, ch.jml (1953); c f . t;..A_L: 4_8, 13851h (1954).

and H. (1 9 7 6 );

cf.

biol.:

573

4,

38

B a r r e t o , H.S.R. B a r r e t o , and I . P . P i n t o ; JChromatogr-,: 6 , 416 ( 1 9 6 1 ) ; c f . C.A.: 56, 12295e R.C.R.

- .-

(1962).

A l l o u f and R. Munier; Bull.. SOC. Chim. 196 (1952 ); c f . LA,: 4 7 , 447e (1953).

175.

R.

176.

M. Kato; Kaga.ku (Science): 43, 16321 (1954).

177.

A.

178. 179. 180. 181.

cf.

Heyndrickx;

C.A.: 48,

8,

478 (1953);

J- A& Pharm. Assoc.: 1632'1 (1954).

Biol.: c.f.

34,

C.A.:

42, 680 (1953);

S.N. Tewari; Naturwissenschaften: 41, 217 (1 9 5 4 ); c f .

__ c.A.:

119,

43329 (1955).

F. Leuschner; Naturwissenschaften: @, 554 (1954); (1954).

C.A.: 48, 8098b A.

Jones, M.P.

461 (1954); c f .

cf.

Taylor, and D.N. Gore; Chem. & Ind.: C.A.:49, 14080h (1955).

L.D. Rodrigues and J.A. deSilva; Rev. Port. Farm.: 75 (1955); c f . C.A.: 5 0 , 1264d (1956).

5,

NICOTINAMIDE

182.

183.

549

D.A. Buyske, J.M. Flowers, jun., P. Wilder, Jun., and M.E. Hobbs; Science, 124, 1080 ( 1 9 5 6 ) ; c f . Anal. Abstr.: 4, 1958 (1957). L . Maiwald and H. Maske; H o m e S e v l . Z.: 306, 143 (1956); c f . Anal. Abstr.: 4 , 2811 (1957).

184.

K.M. Jones; Biochem. J . : 73, 719 ( 1 9 5 9 ) ; Abstr.: 1, 3896 (Sep. 1960).

185.

D.

Blitek,

Algm.:

1960).

c f . Anal.

K. Strzyga and H. Wardynska; Acta Polon.

Mi, 389 (1959); c f . Anal. Abstr.:

1, 3605

4,

186.

P.S.M. Simatoepang; Suara Pharm. (1959); c f . C,AL: 5 8 , 13724g (1963).

187.

M. D a n i l o v i c , B. Lavica, and Z. Savic; Ach. Farm.: 16,

188.

C. O v e n l o r s ; S c i . T o o l s : 1, 1 (1966); Abstr.: - 8, 2586 (June 1961).

189.

I. Gutorska; Chem. Anal. (Warsaw): 9 , 597 (1964); c f . Anal. Abstr.: 12, 4634 (Sep. 1965).

190.

R. Wahl; Z. A n a l . Chem.: 204, 25 (1964); Abstr.: l2, 4501 (Oct. 1965).

191. 192.

13 (1966); c f .

B,

C.A.:

Madjalah:

(July 67

68982q (1967).

cf.

cf.

Anal.

Anal.

V. Colombatti; Farmaco. Ed. Drat.: 20, 593 (1965); c f . l4, 2800 (May 1967).

_ Anal. _Abstr.:

V.

Pallini,

C.

Vasconetto, and C. R i c c i ; B o l l . S O ~ . 4l, 673 (1965); c f . C.A.: 64, 3401e

-I t a l . B i o l . Sper.: (1966).

193.

C. Hoehne and R. Patsch; Pharmazie: 26, c f . Anal. Abstr.: 22, 3506 (May 1972).

194.

H. Ganshi r t and

195.

S. Ishikawa and G.

196.

K.C. Guven and 0. P e k i n ; E c z a c i h a B u l t e n i : 4, (1966); c f . Anal. Abstr.: l4, 5689 (Sept. 1967).

440 (1971);

A. M a l z a c h e r i Naturwissenschaften: 47, 279 (1960); c f . Anal. Abstr.: 8 , 332 (Jan. 1961).

(1964); c f .

K a t s u i ; B i t a m i n (Kyoto): ,3!2 15932b (1964).

C.A.:6 l ,

203

119

EZZAT M. ABDEL MOETY E T A L

550

Frar.

V. Massa; (1969); c f .

198.

H.-C. Chiang, Y. 161 (1969).

199.

R.W. F r e i , A. Kunz, G. P a r a k i , T . Prims and H. Zuercher; A n a l y t i c a Chim. Acta: 49, 527 (1970).

200.

J. Washuettl; Mikrochi. Acta: 3, 621 (1970); c f . Anal. Abstr.: 2 l , 468 ( J u l y 1971).

201.

H . Thielemann and M. Paepke; 5c-lL Pharm.: 40, (1972); cf. Anal. Abstr.: 24, 2433 ( A p r i l (1973).

202.

S.A. Ismaiel and D.A. ( 1973).

203.

H. Thielemann; Sci. Pharm.: Abstr.: 28, 5E18 (1975).

204.

M. Blesova and M. Zahradnicek; Cslka Farm.: (1974); c f . Anal. Abstr.: 28, 6E44 (1975).

23,

205.

S. Baczyk and L. Szczesniak; Acta Pol. Pharm.: (1975); c f . Anal. Abstr.: 30, 2E22 (1976).

3 2 , 347

206.

H. Thielemann; Pharmazie: 32, 51 (1977); Abstr.: 33, 2E29 (1977).

207.

M. Blesova, M. Zahradnicek, J. Vanerkova, and M. Hlavacova; Cesk. Farm.: 2 7 , 204 (1978); c f . Anal. Abstr.: 36, 4E24 (1979).

208.

G. Lehmann, I . Haug and R. S c h l o s s e r ; L, Lebensm. Untersu.-Forsch. : 172, 87 (1981 1; c f . Anal. Abstr. : 41, 3F37 (1981).

209.

J. Zhang and X. Du; Yaowu Fenxi Zazhi: c f . Anal. Abstr.: 45, 1E72 (1983).

210.

I . Sunshine; Am. J. Clin. Pathol.:

211.

S.A. I s m a i e l , W.G. Haney and E.M. Abdel-Moety; _ _ Sci. _ ( A~ s s u i t Univ.1: 8, 1 (1985). Pharm.

212.

D. Ropte and K. Z i e l o f f ; Pharmazie: 40, 793 (1985).

SOC.

Pharm. M O n t R e l l i e I : (1969).

29, 3 5

197.

u: u., 105248f L i n and Y.-C.

45,

Wu; J- Chromatosr.:

210

Yassa; Analyst (London): 98, 816

42,

145 (1974);

c f . Anal.

cf.

303

Anal.

2, 85 (1982);

40, 576 (1963).

Bull.

55 I

NICOTINAMIDE

213.

A. Nancovska; B i J L S O J U Z O ~ Z r u z e n i i a t a Farm. Farm. Teh. SR M&ke.d: 29, 3 ( 1 9 8 2 1 ; c f . C.A,: W2, 124575 11985).

214.

A.R. P r o s s e r and A . J . 1004 ( 1 9 6 8 ) .

215.

J.D. 525

J. Fharm.

Deavin; J- Pharm.

Ashby and J.C. 1969).

Vessman and S. (1975).

Sheppard;

J2. Pharm.

Sci.:

57,

Phacmacol.:

n,

64,

311

216.

J.

217.

D.P. W i t t m e r - a n d W . G . Haney; " W a t e r - s o l u b l e v i t a m i n s " i n G L C & HPLC d e t e r m i n a t i o n o f T h e r a p e u t i c A g e n t s , Part, 3 , K . T s u j i (Ed. 1 , C h r o m a t o g r a p h i c S c i e n c e S e r i e s , Voi. 9, Marcel Dekker, I n c . , New k o r k , (1979) P. 1243.

218.

h . Janecke and H. Voege; N a t u r w i s s e n s c h a f t e n : 55. 447 ( 1 9 6 8 ) ; c f . knal, AbsLr.: 18, 2731 ( A p r i l 1970).

219.

V.1.

Trubnikov,

Tromberg;

L.M.

Sci,:

Malakhova and E.S. Zhdanovich; c f . C.A.: 7 0 , 438895

-_Zh. An_al. Khm,: 2 3 , 1546 ( 1 9 6 8 ) ( 1969 J

.

Argoude i s ; A n a l .

220.

L.T. S e n n e l l o and C.J. 171 ( 1 9 6 9 ) .

221.

P. T a r l i , S. Benocci and P. N e r i ; B o l l . Ch3-m. Farm.: __ 108, 554 ( 1 9 6 9 ) ; c f . _C A :, 7 3 , 7303s ( 1 9 7 0 ) .

222.

A.M. Poromarev, O . A . Uselyubavskaya, and M . T s . Y a n o t o v s k i i ; Zh. a n a l 7 t . Khim.: 28, 2456 ( 1 9 7 3 ) ; c f . Anal. A _ _b-s t r . : 29, 1E28 ( 1 9 7 5 ) .

223.

J. Vessman and S . Stromberg; ( 1975).

224.

E.M.

Abdel-Moety,

__ A c t a ___. Pharm.

M.G.

J- Pharm.

El-Bardicy

Jugosl..: 35, 255 (1985).

225.

H.

226.

C.P. T a l l e y ; An-& gh.e&: 75, 147598h ( 1 9 7 1 ) .

L i l i e d a h l ; A c t a Chem.

Chem.:

Sci.:

and S.A.

41,

6.4, 311 Ismaiel;

Scand,: 2 0 , 95 ( 1 9 6 6 ) . 43, 1512 ( 1 9 7 1 ) ; c f . LA-:

EZZAT M. ABDEL MOETY ET AL.

552

227. 228.

Callmer and L.

K.

1, 644

Chromatoqraohia:

A.

F l o r i d i , C. F i n i , C.A.

Palmerini and A. Rossi;

Riv.

-Sci. Tecnol. Alimenti Nutr. Urn.: 5 , 197 (1976); c f . _ Anal. _ Abstr.: ~-

229.

Davis;

(1974).

33, 6D132 (1977).

D.P. Wittmer and W.G. HaneyL Water s o l u b l e vitamins, i n "GLC & HPLC determination o f t h e r a p e u t i c agents", K. T s u j i ( E d . ) , Chromatographic Science Series, Vol. 9 - Chapter 36, Marcel Dekkern Inc., New York, 1979, p.

1245.

230.

S.P. Sood, D.P. W i t t m e r , S.A. Ismaiel and W.G. J. Pharm. Sci.: 66, 40 (1977).

231.

N.

232.

233. 234. 235. 236.

Hayashi;

3.

W. G u e n t h e r t and R. Ding; (Biomed. A p ~ 1 . 1 10: 161 (1980).

J.

Nashimoto, Y. Mitani Chromatogr.: 176,448 (1979). J.X.

DeVries,

-Chromatosr.: 221 R.P.

Kwok, W.P.

and

J.T. Heard and G.J.

K. Takikawa,

S.

Rose, R . Tabor and T . S .

____ Pharm. S c i . : 70, 1014 (1981). (1981).

Haney;

P a t t i s o n ; J-

T r i t z ; J. Liq. Chromatow.:

4, 325

K. Miyazaki and T. A r i t a ; J- Chromatosr.:

233 (Biomed. ADD^.) 22, 343 (1982).

R.W. McKee, Y . A . Kang-Lee, M. Panaqua and M . E . Swendseid; J- Chromatogr.: 230 (Biomed. ADD^.) 19, 309

(1982).

237.

R.M.

Kothari and M.W.

247, 187

Taylor; J- Chromatoar.:

( 1982).

238.

S.C. Coverly; 1J Autom. mm:. Abstr.: 4 5 , 4E29 (1983).

239.

T.

240.

G.D.

5 , 89 (1983);

c f . Anal.

Cannella and G. B i c h i ; B o l l . C h i m . Farm.: (1983); c f . Anal. Abstr.: 46, 9E30 (1984). Wachob;

LC.

Lia. Chromatogr.

(1983); c f . Anal. Abstr.:

HPLC Mag.:

46, 9E31 (1984).

122, 205 1, 110

553

NICOTINAMIDE

241.

Lam, I . J .

F.-L.

F u s a r i ; J. Assoc.

Guilleman, J.P. Thomas, S. T h i a u l t and J.P. Bounine; J- Chromatow.: 142, 321 ( 1 9 7 7 ) .

242,

C.L.

243.

G.L.

244.

L. K l a t z and W. ( I 964).

245.

L. K l o t z and W. ( 1964).

246.

Holcomb and S.A.

Off. Anal. Chem: 67, 1007 (1984).

Coleman; & A f r . Pharm. J.:

J.P.

46,

621 (1979).

Poethke;

Pharm. Z e n t r a l h a l l e :

Sweeney and L. H a l l ; J. Ass. O f f .

Aaric.

3 6 , 1018 (1953).

247.

L. K o l t z and R.

248.

R. Huetlen-rauch and L.

249.

C.P.

250.

Utsumi, (Kyoto):

(1963).

Huetten-rauch;

(1963).

M.

Arch.

19, 95

Kurita;, J

Vitaminol.

L. K o l t z and W. (1964).

252.

J.S. Foster and J.W. M u r f i n ; J. Pharm. Pharmacol.: (Suppl.), 126T (1961).

253.

M. Chakraborty and S.K. I n d i a : 37, 114 ( 1 9 6 5 ) .

254.

N.

256.

Pharm. Zentralh.:

103,

251.

255.

Poethke;

Chem.:

43, 1512 ( 1 9 7 1 ) .

Samejima and H. (1961).

103, 1

Pharm.: 296, 721

Klotz; Experientia:

Talley; Analyt. Chem.:

1, 209

103,255

Poethke; Pharm. Z e n t r a l h a l l e :

Dutta; J. Proc.

S i l i p r a n d i , D. S i l i p r a n d i and H. l4, 212 ( 1 9 5 4 ) . Biophvs. T.K.

a:

Sundaram,

Chromatow,: T.

K.V.

l3,

I n s t u . Chem.

Lis; Biochim.

Rajagopalan and P.S.

2, 531 ( 1 9 5 9 ) .

169

Sarma; J-

Fukuda and K. Mimura; Bitamin: 4l, 260 (1970).

EZZAT M. ABDEL MOETY ETAL

554

257.

O.R.P. da Cunha and A.P. da Cunha; Bol. Escola Farm., Univ. Coimhra, Ed. Cient, 25, 54 ( 1 9 6 5 ) .

258.

F.L. Lam, I . J . Holcomb; and S.A. O f f . Anal. Chem., 67, 1007 ( 1 9 8 4 ) .

259.

T. Cannella, and G. B i c h i ; B o l l . Chim. Farm.: (1983).

260.

G.D. Wachob; (1983).

261.

S.C.

262.

Ralph W . McKee, Y . Kang Lee, M. Panaqua and M.E. Swendseid; J. Chromatosr.: 230 (Biomed. Appl.) l9, 309 ( 1 9 8 2 ) .

263.

R.M. Kothari, 187 ( 1 9 8 2 ) .

264. 265.

LC,

F u s a r i ; J- Assoc.

_L.a Chromatogr.

Coverly; J. Autom. Chem.:

and M.W.

5,

Taylor;

HPLC Mag.:

122, 205 1,

110

89 (1983).

J- Chromatonr.:

247,

K. Takikawa, K. Kiyazaki and T. A r i t a ; J- Chromatonr.:

233 (8iomed. Appl.) 22, 343 (1982). R.P.

Kwok, W.P. Rose, R. Tabor and T.S. 7 0 , 1014 ( 1 9 8 1 ) .

_ Pharm. _ _ -Sci.:

and G.J.

Tritz;

Pattison; &

J- Liq. Chromatosr.:

4,

266.

J.T. Heard, 325 ( 1 9 8 1 ) .

261.

J.X. de V r i e s , W. Guenthert, and R. Ding; Chromatogr.: 221 (Biomed. Appl.) l o ,161 (1980).

268.

G.L.

269.

N.

270.

C.L. Guileemin, J.P. Thomas, S. T h i a u l t and J.P. Bounine; J- Chromatonr.; 142, 321 ( 1 9 7 7 ) .

271.

S.A. I s m a i l e ; Ph.D. Thesis [Pharm. S c i . (Anal. Chem.)], Faculty o f Pharmacy, C a i r o U n i v e r s i t y (19823.

272.

A. F l o r i d i , C. F i n i , C.A. Palmerini and A. Rossi; Sci. Tecnol. Alimenti Nutr. Um.: 6 , 197 ( 1 9 7 6 ) .

Coleman; S. A f r .

Pharm. J.:

Nishimoto, Y. Mitani Chromatoar.: 176, 448 ( 1 9 7 9 ) .

- .4

46, 621 & 648 (1979).

and

S.

Hayashi;

.4

Riv.

NICOTMAMIDE

1,

273.

K. C a l l m e r and L. (1974).

274.

M. Caude and L.X.

275.

C.P.

276.

T . C a n n e l l a , G. B i c h i , B o l l . Chim. Farm.: (1983).

277.

A. B a r r e t o , F.A. Gai and H.S.R. Baneto; Rev. Quim. Ind., Rio de Janeiro: 24, 12 (1955); c f . Anal. Abstr.: 3, 566 (1956).

278.

D.

Zivanov,

Z.

-Farm. (Belgrade): (1965 j

Chromatographia:

Phan; Chromatographia:

T a l l e y ; Anal. Chem.:

.

279.

Davies;

555

9, 20

644

(1976).

43, 1512 (1971).

122, 2 0 5

B l a g o j e v i c and M. Mladenovic; A_rc_h_i.y 1_4, 2 7 3 (1964); c f . LA..:65, 2671h

B.E. A l b r i g h t and E.T. Degner; Automat. Anal. Chem.; Technicon Symp., 3 r d (1967);. l., 461 ( p u b l . 1968); c f . 7l, 3 3 4 6 0 ~(1969).

w:

280.

J. Ramirez-Munoz; (1974).

281.

A.F. Gross; (1975).

282.

S.C. Coverly; J1 Autom. ChKm.: 45, 4E29 (1983). Abstr.:

J2

Analytical

Assoc..

&fX,

Chjm. Anal.

A&a: Chem.:

71,

321

58, 799

5, 89 (1983); c f . Anal,