N:N: ',EQ - NTRS - NASA

0 downloads 0 Views 624KB Size Report
perpendicular to the earth's magnetic field vector B. (The diffuse resonance. 5 ... The first case (Figures l(a)-l(c)) corresponds to the ad- dition of energetic ...

~-~ ~_~' ~.~ ~ - -. :.-:~.:-> '-.:_~( ~~

';'"

--

-"N/

g~~~~,,~.

. ,'> ,i-. '>

~

-~.:~

;/---'¢

~

~~ ~: ;j,: Z-~.'tF' '~ ~ "~-'> i:~':'-,, ...:--~ ?:.~:

.~,-, "-,, ! :' ''._' ' 7--...:' ,--. - ' , ,

>*~j~

. -

-L "

~, ~~~t

-

Z' . ... ,. -' %

-

~.x.

'

-

*. : ~ ~''

-,

, +... -

-

"

.

",.·.

..

-

..

~;z'

UN73as4 ·53803

.6: -:

.~':

....9-;

'~::-77-7: ..

' :'....T1 = 3,000°K in the top row, and T versus Tl with T, < T2 = 3,000 °K in the bottom row. The left column corresponds to the condition when 10% of the electrons deviate from the model temperature of 3,000°K, the center column corresponds to a 20% perturbation, and the right column to a 30% perturbation. Note the abscissa scale change between the top and bottom rows. In each column, the bottom figure represents an enlarged extension of the top figureto the temperature range below 3,000°K.

The Tp values correspond to the 0.3 to 1.3v

interval of the probe current-voltage curve; the TfoD

values cor-

respond to the plasma conditions given in the caption of Figure Al. Figure Al. Dispersion curves based on the two-temperature dispersion equation (A3) for plasma models with T 2 >T 1 = 3,000 0 K (a), (b), and (c); and for models with T1 < T2 = 3, 000°K (d), (e), and (f). The parameter p represents the fraction of electrons at T 2 .

The solid curves

(p=0 and 1) correspond to the single temperature dispersion curve. The plasma conditions used in these models correspond to a typical observation from the Ottawa data sample of Oya and Benson (1972) (fN=caN/2r=3.475 MHz and fH=l. 178 MHz so that fN/fH=2. 95; the corresponding value for kR when the temperature is taken as 3, 000°K is 0.97).

- 10 -

0) CD C0 CV)

0 0

I I I I

C\j

0 itD

0t

0 0

I I I I I I I I I I I I I I I

0

0 0

C) -4

0I

c'J

0

00

I'D ~~~~~~~~~~~~~~~~~~~~~~~I ':2 ~~~~~~~~~~~~~~~~~~~I, ~~~~~~I

I,

I

C

i

00

CD

I I I I

i

o) oo

0

0 00 m

._-

0 ( m

0 O LO CD

_

-

0 COJ s 0-0 m

~

0

o o

00D

CD C)

m

C

0

0 00

0 to

N

0

0 "

Cs

2'

ol

-

11

_

-N 0 0 C\J

a)

U L-

o. 0

11o II

O0

I

0

u'C

Co O 00 0

z

~c5 11

o

o 11

C\J0

6 R goI:a

0 ''°lo 0", lll, ro

Ic

0 =

'V.

11

11

m-" I

/,II

II

©-4 CN4

a)

-

C

Co

cc

n I,

o.

. m

II

I1

IiiJ fi

X

°I.,oO ,~~I

C"J

Ci

,X '~~~~~~~~C (.. , II I o.

N~i

00

_-1

tD

_s4

,¢ -



I

I

I

[

,

IcC

lI

_4

0 1o CD

o

0

CNi

-

0X -4

/:a -

-

C 4

*-4

O-4

0o