Novel reagents of iodine(+iii) and sulfur - iupac

1 downloads 0 Views 418KB Size Report
focus .of synthetic application and design of novel reagents and ... without incorporation of external nucleophiles (reaction can be performed in CH3COOH.
Pure & Appl. Chem., Vol. 68, No. 4, pp. 881-890, 1996. Printed in Great Britain. Q 1996 IUPAC

Novel reagents of iodine(+iii) and sulfur Nikolai S . Zefirov Department of Chemkw, Moscow State UmVersit~Moscow 119899, RUSSU E-mail : [email protected]

Abstract

This autoreview covers our results on systematic studies of the phenomenon of competitive covalent binding of nucleofugic anions with the focus .of synthetic application and design of novel reagents and reactions.

Introduction

I.

Many electrophilic organic processes were formulated as included some ionic intermediates. The classical example is the concept of cyclic “onium ion” intermediate in AdE addition to C=C bond [e.g. “bromonium ion” of Roberts and Kimball (l)]. However, in many cases the intermediacy of pure ions is not acceptable, and real mechanism has to include sort of ion-pair intermediates [see (2-9) and refs therein]. One important question may be posed : is this subtle mechanistic difference important for synthetic purposes? In other words, is it possible to use this mechanistic difference for design of new processes? Our answers was definitely positive and we created the “doping-addition” methodology to regulate chemoselectivity of AdE-reactions (2-4). The electrophilic addition of RSCl to alkenes was selected as reliable model reaction.

It is two-step Ad~2-reactionregarded as involving the initial formation of episulfonium ion, 1. In a view of this concept it was surprising that this reaction usually proceeds (a) without incorporation of external nucleophiles (reaction can be performed in CH3COOH and CH3CN), (b) without skeletal rearrangements (4). One may imagine that other type of intermediates, 2-4, can be involved (Chart 1). *

Principle of “Doping Addition” :

Chart 1.

6+ 6-

X-Y -k

c==c 4

3

2

1

+

ion pair intermediate

1

normal trans-addition

*

more polar ionhair)

+ intermediate I

salt (electrolyte) nucleofwc anion

4 rearranged product/s

Is it possible to change effective electrophilicity of RSCl by an appropriate change of the reaction conditions? The ion 1 represents the limiting case of the most electrophilic of all other species. Hence, the change of the effective electrophilicity of RSCl with a change in the polarity of media is a test for the involvement of some less polar intermediates of type 24. Thus, we have suggested the idea of “doping effect” : substantially increasing of the effective electrophilicity of RSCl when the reaction is camed out in the presence of strong electrolyte, usually LiC104 (2,4,7). 881

882

N. S.ZEFIROV

It became possible to obtain products of incorporation of the external nucleophiles

Rs

RS CH,COOH

\ C T

C=C+ RSCl

CH,COOH

CI

OAc

of skeletal rearrangements (Chart 3), of hydride shifis etc (2,6,8).

I 2 J

In 1978 we serendipitously found (in the course of our study of “doping addition”) an astonishing phenomenon : the addition of (24trophenyl)sulfenyl chloride to the diester (Chart 4) in acetic acid in the presence LiC104 gave the perchlorates together with other products (9). This fact is amazing : C104- plays the role of a nucleophile which can successfully compete with the chloride ion and even with the solvent.

Rsb ‘kE

Chart 4

R’

-

R‘

Ac

COOMe

+

+

40%

Rs

+

perchlorates : 16% yields; rnp. 124’

03a0

R‘

Extention of this work has shown that competitive covalent binding of nucleofirgal anions (CF3S03-, C104-, FSO3-) is the general phenomenon in the processes indudkg carbocationic-fike intennediates/transition state. This phenomenon has extensive theoretical and synthetic applications and ramifications (6,9-29). 0 1996 IUPAC, Pure and Applied Chemistry68,881-890

Reagents of iodine(+iir)and sulfur

883

11.

Phenomenon of Competitive Nucleophilic Properties of Nucleofugic Anions : Synthetic Application. This chapter contains selected examples of the novel reactions which were found on the basis of the above phenomenon.

-

(a) Electrophilic addition to olefins (10,13). CHz=CHz + Halz + LiC104

CHZ-CH,

+ NOzBF4

HalCHz-CHzHal

1

-t

(b) Deamination of amines (1 1,14). n- GH1SNH2+ NaN02

+Hx;S n- C+H150H+ n-C+HI50C1O3+ C5H11CH-CH3 +Lic1O4)

&!103

HX = HCl, HOAc, HClO,

S = HzO,AcOH, EtzO

( c ) Chlorinolysis of arylsultides (15).

(d) Oxidative deiodination of iodides (1 1,12,16).

x CH30SOZCF3

CH31 + Clz + CF3S03-Bu4N+

CHzIz + NOZBF4 + LiC104

-

+ oxidant + LiC104

-

+ CH3C1

0c103 CHd 0~10~

03C10

oxidant = Cl,, N02BF4, PhI(OAc),

(e) Deoxygenation of alkohols (17).

RC1

c-ROH +

0 1996 IUPAC, Pure and Applied Chemistry68,881-890

Clz + S

LiC104

ROC103

884

N. S. ZEFIROV

( f ) Acid-catalysed epoxide ring opening (14’18).

R = H, CH3

0 + CF3COOH + LiC104

+ LiClO4 + A c 2 0

AcO

H+

R

R

0 + N02BF4 +LiC104

AcOEt 250

OClO3

*

(g) Reactions of iodine(II1) reagents with olefins. (I.) (19’20).

+ PhI(0H)OTs + LiCIO4

-

(2.) (20). + PhIO + BF3

+ LiC104

(3.) Application of Zefirov’s reagent (20-24).:

-

ph-IRoY-ph

O,CI~

(4.) (20,25,29).

PhIO + 2 (CH3)3SiOZ

-

+ PhI(0Z)Z

&IO,

PhI(0Z)Z

-

OClO~

0c103 Ph-I-O-I-Ph

TfA

ATf

z = T f , TS

0 1996 IUPAC, Pure and Applied Chernistry68,881-890

Reagents of iodine(+iii)and sulfur

-

(5.) Iodozyl reagents O=IOS02F and O=IOSO2CF3

HI03 + 2RS020H

PhIO

Cl~C-CCl~

(26-28).

O=IOSOzR

7

CH3CNy

cc1~-Cc1~-1 &OzF

885

CH3CN

-a

0 ~ 1 0 ~

LiC104

O=I--OSOzF

0c103

- -

+ 2 (CH3)3SiNCO -+

RCH=CHz

RcH-cH2Nco I

NCO

PIiI(NCO)2

PhI(NC0)2

(7.) (29,30).

PhIO

+ 2 (CH3)3SiN3 +

PhI(N3)2

+

111.

OSi(i - Pr)3

OSi(i-Pr),

pH(N3)2

- d,

SOs-Mediated Electrophilic Addition As one of the ramification of the phenomenon discussed above, we elaborated novel

approach to the increasing of electrophilicity of electrophilic reagents. The general idea is the following : SO3 is capable to insertion reactions into X6+-p- bonds, which leads to new reagents (Chart 5 ) Chart 5

s+ s-

(a)

X-Y

+ so3

- - "1 X+ -O&Y

II

Taking into account clearly pronounced nucleofugic properties of YS020- anions (super nucleofugic for FSO3-) one may expect increased polarization sufficient to design series of novel electropllilic additions (31-40). Tllis statement will be illustrated in this section by selected representative examples.

1. S-S bond (36):

PhS-SPh

+ SO3

& [PhS-OSO@'h

1 o4 CHsCN

C6HliM-z 0 1996 IUPAC, Pure and Applied Chemistry 68.881490

r

""HCOCH3

cSHll~H-cH2SPh NHCOCH3

886

N. S.ZEFIROV

2. N-C1 bond (32,36) :

3. N-Se bond (35) : +

PhSeN(C2H& + SO3

-

(meso and DL)

4.2. N-S bond - Aminosulfenylation (36) :

0 1996 IUPAC, Pure and Applied Chemistry68.881-890

Reagents of iodine(+///)and sulfur

887

5. Cl-CI bolld (33) : Clz +

so3

-

c:

NQR spectra : 36,17 MHz ; S-CI 54.0 M H Z ; 0-a

Cl-~-O-cl

8

6

CH3 C1so2OCH+!!-COOCH3

b

6. 0-C1 bond (34) : C2HsO-Cl + SO3

7. Xe-F bond (37) : FXeOSOzF

pocl ""0s02c1

-

-

0

CHZ-CHZ

-

XeFz + S O 3

C1CH2CH20S020CzH5

Xe(OS0zF)2

8.1. N - 0 bond : 0-NO2 (38) :

C2HSONOz+ so3

-

0

w,Noz

GH50S020-NOz+

8.2. N - 0 bond : 0-NO (39) :

9. C-F bond (40) :

0 1996 IUPAC, Pure and Applied Chemistry68,881-890

'

*

CHz-CHzONOz &zOc&

888

N. S.ZEFIROV

These examples demonstrate large synthetic potential of the suggested approach. Moreover, S03-activation/modcation of X=Y bonds is also possible, giving extremely interesting new reagents and reactions (20, 31); which consideration however is out of a limit of the present paper.

IV.

Reactions of Hypervalent Iodine (+III) Reagents

There has been considerable interest in I(+III) containing compounds as reagent in organic synthesis (24).Our interest in these compounds stemmed from our discovery of the phenomenon of competitive binding of nucleofqp anions and we discussed above some of the I(+III) reagents (e.g. for cisl,2-ditosylation of olefins). Here we present additional selected examples of the novel I(+III) reagents and their reactions (19,20,25,41-47). Our main focus was the synthesis of hypervalent elements containing good nucleofugc ligands (41) :

as well as synthesis and application of unusual types of I(+III) compounds. For example, we obtained unusual cyan0 derivatives (42) : CN

CN

Me3SiOTf

*Me3SiCN

PhI(

PhI=O + Me3SiCN

CN

and suggested KICl;! as versatile iodochlorinating agent (43) :

-

1) Synthesis of diary1 iodonium salts (44,45) : (a)

2)

O=I-OTf

+ 2 AIS(CH~)~

-t

@I

-0Tf

Synthesis of vinyl iodonium salts :

2

[

&-I\

F

CHzC'z.

+R-H

- 75OC

R, TfO-\H

+

,I-h

Tfo-

TfO

H

Tf0-

0 1996 IUPAC, Pure andApplied Chernistry68,881-890

Reagents of iodineliai) and sulfur

889

3) General approach to C-C bond formation (41,46,47) : I

(a)

Synthesis of 1,4-diketones :

(b) Alkynyliodonium salts : +

R-H

+

+

PhI’O‘IPh BF4- BF4R-C-C-iPh

+

V.

+

R-CIC-Ph BF4-

Conclusion

In this paper we have attempted shortly to describe some novel reaction and reagents created on the basis of the phenomenon of competitive covalent binding of super-weak nucleophiles in carbocationic processes. We has to emphasize, that the reaction discovered are also of great theoretical sigmfkance giving a new look at the hdamental problem of nucleophilicity.

References 1. 2. 3. 4. 5. 6. 7.

8.

I. Roberts, G. E. &ball. J. Ant. Chem. Soc.59,947(1937). N. S.Zefirov, N. K.Sadovaja, L. A. Novgorodtseva and I. V. Bodrikov. Tetrahehon. 34,1373 (1978). N. S.Zefirov, I. V. Bodrikov. Zhur. Org. Khim. 19,2225 (1983). W.Smit, N. S.Zefirov, I. V. Bodrikov, M. Z.Krimer. Acc. Chem. Res. 12,282(1979). W.Smit, N. S. Zefirov, I. V. Bodrikov. “IUPAC Organic Suljiu Chenristry”, ed. by R Freidlina, p. 159,Pergamon Press, (1981). N.S. Zefirov, AS.Kozmin, V.N. Kirin, V.V. adankin, R Caple. J. Org. Chem. 46,5264(1981). N.S.Zefirov, A. S. Kozmia “SaltE f s h in AdrReactions as a Novel Synthetic Principle” in “SoviefScientificReviews; B. chem.”,p. 297, ed. by M. Volpin, Harwood Acad. Publ.,GmbH and OPA, Amsterdam, (1987). N. S. Zefirov, N. K.Sadovaja, A. M. Maggerramov, I. V. Bodrikov. Zhur. Org. Khim. 12,903 (1976);13,245(1977).

0 1996 IUPAC, Pure and Applied Chernistry68,881-890

890

N. S.ZEFIROV

9.

N.S.Zefirov, A S. Kozmin, V. N. Kiriu, V. V. Zhd-

I. V. Bodrikov. Zhur. Org. Khim. 14,

2615 (1978).

15.

N. S.Zefirov et al. J. 0rg.Chem. 47,3679 (1982). N. S.Zefirov, A. S.Kozmin, V. V. Zhdankin, V. N.Kirin, N. M. Yur’eva, V. D. Sorokin. Cheni. Scripta. 22, 195 (1983). N.S.Zefirov, A. S. Kozmin. Acc. Chem. Rar. 18, 154 (1983). N. S. Zefirov et al. Zhur. Org. Khim. 18,1768 (1982); 20,233,444 (1984). N.S.Zefirov, A. S. K o d , V. N.Kirin, N.M.Yur’eva, V. V. Zhdankh. Izv. Akad. NaukSSSR, ser. h i m . 2634 (1982). N.S. Zefirov, V. V. Zhdankiu ,V. D. Sorokin, A. S.Kozmin.Izv. Akad. Nauk SSSR,ser. khim.

16.

N.S. Zefirov et al. Zhur. Org. Khim. 18,2617

10. 11. 12. 13. 14.

1692 (1985). (1982); Im. A M Nauk SSSR, ser. khim. 1676

(1981); 1682 (1983). 17. 18

N.S.Zefirov, V. V. Zhdankin, V. D. Sorokin, A. S . Kozmin,. TetrahedronLett. 26,6243 (1985). N. S. Zefirov, A. S. Kozmin, N.M. Yur’eva, V. V. Zhdankin, V. N.Kirin.Zhur. 0rg.Khim. 18,

19. 20.

N. S. Zefirov et al. Zhur. Org. Khini. 20, 233,444 (1984). N. S. Zefirov, V. V. Zhdankin, Yu. V. Dan’kov, V. D. Sorokin, V. N. Semerikov, A. S.Kozmin, R Caple, B. A. Berglund. TetrahedronLeft.27,3971 (1986) and refs therein.. T. Kitamura, R Fumki, K. Nagata, L. Zheng, H. Taniguchi.Synlett. 193 (1993). D. Gately, T. A. Luther, J. R Norton, M.M. Miller, 0. P. Andersen. J. Org. Chem. 57, 6496

2211 (1982);

21. 22.

(1992). 23. 24. 25. 26.

T. Kitamura, R Furuki, H. Taniguchi. Tetrahedron. 35,7 149 (1992). P. Staug. Angew. ChemJnt. Ed Engl. 31,274 (1992). V. V. Zhdankin, C. M. Crittell, P. Staug, N. S. Zefirov. TetrahedronLett. 34,4821 (1990). N.S.Zefirov, T. M.Kasumov, A. S. Koaniu, V. D. Sorokin, B. R Polyshchuk.Zhur. Org. Khim. 30,321 (1989).

21.

N.S.Zefirov, T. M.Kasumov, A. S. Kozmin, V. D. Sorokin, P.Stag, V. V.Zhdankin. Synthesis.

28.

N.S. Zefirov, T. M. Kasumov, A. S. Kozmh, V. D. Sorokin, K. A. Potekhin, V. AYashkin, Yu.

1209 (1993).

29. 30. 3 1. 32. 33. 34 35.

T. Struchkov. Sufjiur Lett. 18,71 (1995). N.S. Zefirov, S.O.Safionov, A.A. Kamacheev, V.V. Zhdaukin. Zhur. Org. Khim. 25, 1807 (1989). P. Maguus et. al. Janrsen Chintica Acta. 11, 3 (1993). N.S . Zefirov. iu “OrganicSynthesis: Modern Trendr”,p. 129, ed. by 0. Chizl~ov,Blackwell Sci. Publ. (1987). N.S.Zefirov, N.V. Zyk, S.I. Kolbasenko, A. G. Kutate1adze.J. Org. Chem. 50,4539 (1985). N.S. Zefirov, A. S.Kozmin, V. D. Sor0kin.J. Org. Chem. 49,4086 (1984). N.S.Zefirov, A. S. Kozmin, V. D. Sorokin, V. V. Zlidankin. Suljiur Lett. 4,45 (1986). N. V. Zyk, I. V. Alabugin, A. G. Kutateladze, G. L. Kice, N. S . Ze6rov.Dok.l. A M Nauk SSSR 337,208 (1994).

36. 37. 38. 39. 40. 41.

42. 43. 44. 45. 46. 47.

A. G. Kutateladze, N.S.Zefirov, N.V. Zyk. SuQiur Reports, 11,233 (1992) and refs therein. V.K. Brel, A. S. Koz’min, V. I. Ivauov, N.S. Zefirov,, V. V. Zhdankin, P. Staug.Tetrahedron Lett. 31, 5225 (1990). N. V. Zyk, Y. A. Lapiu, A. G. Kutateladze, N. S. Zefirov. Zhur. Org. Khim. 25,889 (1988). N. S.Zefirov et al. Zhur. Org. Khim. 29, 1489 (1993); J. Org. Cheni. Accepted for publ. N.S.Zefirov et al. Zhur. Org. Khim. 22, 1156 (1986). V. K. Brel, A. A. Gakh, V. V. Zhdaukiu, N. S. Zefhov, A. S. Koz’min, A. A. Korkin,A. G. Kutateladze, R Caple, S.A. Lermontov, I. G. PloWch, S. 0. S&onov, P. Stag, N.G. Chovnikova. Dokl. Akad. Nauk SSSR 313, 113 1 (1990). P. Stang, V. V. Zhdankin, R Tykwinski, N.S. Zelirov. Tetrahedron Lett. 33, 1419 (1992). N.S. Zefirov et al. Synth Lett. accepted for publ. V. V. Zhdankiu ,C. J. Kuehl, J. T. Bolq N. S. Zefirov.Mendeleev Comm. 165 (1994). P.Staug, V. V. Zhdaukin, R Tykwiuski, N.S. Zefirov. Tetrahedron Lett. 32,7497 (1991). V. V. adaukin, R Tykwiuski, B. Berglund, M. Mullikin, R Caple, N. S. Zefirov, A. S. Koz’mh. J. Org. Chem. 54,2605,2609 (1989). V. V. Zhdankin, R Tykwinski, R Caple, B. Bergluud, A. S.Koz’min, N. S . Zefirov. Tetrahedron Lett. 30,3707 (1988).

0 1996 IUPAC, Pure and Applied Chemistry68.881-890