On Some New Fractional Integral Inequalities - EMIS

5 downloads 0 Views 279KB Size Report
May 23, 2009 - Charkov, 2 (1882),. 93–98. [2] R. GORENFLO AND F. MAINARDI, Fractional Calculus: Integral and Differ- ential Equations of Fractional Order, ...
ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES SOUMIA BELARBI AND ZOUBIR DAHMANI

vol. 10, iss. 3, art. 86, 2009

Department of Mathematics University of Mostaganem Algeria EMail: [email protected]

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani

[email protected]

Title Page Contents

Received:

23 May, 2009

JJ

II

Accepted:

24 June, 2009

J

I

Communicated by:

G. Anastassiou

Page 1 of 12

2000 AMS Sub. Class.:

26D10, 26A33.

Key words:

Fractional integral inequalities, Riemann-Liouville fractional integral.

Abstract:

In this paper, using the Riemann-Liouville fractional integral, we establish some new integral inequalities for the Chebyshev functional in the case of two synchronous functions.

Go Back

Acknowledgements:

The authors would like to thank professor A. El Farissi for his helpful.

Full Screen Close

Contents 1

Introduction

3

2

Description of Fractional Calculus

4

3

Main Results

5 Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ

II

J

I

Page 2 of 12 Go Back Full Screen Close

1.

Introduction

Let us consider the functional [1]: 1 (1.1) T (f, g) := b−a

Z

b

f (x) g (x) dx a

1 − b−a

Z

b

 f (x) dx

a

1 b−a

Z

b

 g (x) dx ,

a

 where f and g are two integrable functions which are synchronous on [a, b] i.e.  (f (x) − f (y))(g(x) − g(y)) ≥ 0, for any x, y ∈ [a, b] . Many researchers have given considerable attention to (1.1) and a number of inequalities have appeared in the literature, see [3, 4, 5]. The main purpose of this paper is to establish some inequalities for the functional (1.1) using fractional integrals.

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ

II

J

I

Page 3 of 12 Go Back Full Screen Close

2.

Description of Fractional Calculus

We will give the necessary notation and basic definitions below. For more details, one can consult [2, 6]. Definition 2.1. A real valued function f (t), t ≥ 0 is said to be in the space Cµ , µ ∈ R if there exists a real number p > µ such that f (t) = tp f1 (t), where f1 (t) ∈ C([0, ∞[). Definition 2.2. A function f (t), t ≥ 0 is said to be in the space f (n) ∈ Cµ .

Cµn , n

∈ R, if

Definition 2.3. The Riemann-Liouville fractional integral operator of order α ≥ 0, for a function f ∈ Cµ , (µ ≥ −1) is defined as Z t 1 α (2.1) J f (t) = (t − τ )α−1 f (τ )dτ ; α > 0, t > 0, Γ(α) 0 J 0 f (t) = f (t), R∞ where Γ(α) := 0 e−u uα−1 du. For the convenience of establishing the results, we give the semigroup property: (2.2)

J α J β f (t) = J α+β f (t),

α ≥ 0, β ≥ 0,

J α J β f (t) = J β J α f (t).

From (2.1), when f (t) = tµ we get another expression that will be used later: (2.4)

J α tµ =

Γ(µ + 1) α+µ t , Γ(α + µ + 1)

vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ

II

J

I

Page 4 of 12 Go Back Full Screen

which implies the commutative property: (2.3)

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani

α > 0; µ > −1, t > 0.

Close

3.

Main Results

Theorem 3.1. Let f and g be two synchronous functions on [0, ∞[. Then for all t > 0, α > 0, we have: Γ(α + 1) α J f (t)J α g(t). tα Proof. Since the functions f and g are synchronous on [0, ∞[, then for all τ ≥ 0, ρ ≥ 0, we have    (3.2) f (τ ) − f (ρ) g(τ ) − g(ρ) ≥ 0. (3.1)

J α (f g)(t) ≥

Therefore (3.3)

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page

f (τ )g(τ ) + f (ρ)g(ρ) ≥ f (τ )g(ρ) + f (ρ)g(τ ).

Now, multiplying both sides of (3.3) by

(t−τ )α−1 , Γ(α)

τ ∈ (0, t), we get

(t − τ )α−1 (t − τ )α−1 (3.4) f (τ )g(τ ) + f (ρ)g(ρ) Γ(α) Γ(α) (t − τ )α−1 (t − τ )α−1 ≥ f (τ )g(ρ) + f (ρ)g(τ ). Γ(α) Γ(α) Then integrating (3.4) over (0, t), we obtain: Z t Z t 1 1 α−1 (3.5) (t − τ ) f (τ )g(τ )dτ + (t − τ )α−1 f (ρ)g(ρ)dτ Γ(α) 0 Γ(α) 0 Z t Z t 1 1 α−1 (t − τ ) f (τ )g(ρ)dτ + (t − τ )α−1 f (ρ)g(τ )dτ. ≥ Γ(α) 0 Γ(α) 0

Contents

JJ

II

J

I

Page 5 of 12 Go Back Full Screen Close

Consequently, Z t 1 (3.6) J (f g)(t) + f (ρ) g (ρ) (t − τ )α−1 dτ Γ (α) 0 Z t Z g (ρ) f (ρ) t α−1 ≥ (t − τ ) f (τ ) dτ + (t − τ )α−1 g (τ ) dτ. Γ (α) 0 Γ (α) 0 α

So we have (3.7)

J α (f g)(t) + f (ρ) g (ρ) J α (1) ≥ g (ρ) J α (f )(t) + f (ρ) J α (g)(t).

Multiplying both sides of (3.7) by

(t−ρ)α−1 , Γ(α)

Now integrating (3.8) over (0, t), we get: Z Z t (t − ρ)α−1 J α (1) t α (3.9) J (f g)(t) dρ + f (ρ)g(ρ)(t − ρ)α−1 dρ Γ(α) Γ(α) 0 0 Z Z J α f (t) t J α g(t) t α−1 ≥ (t − ρ) g(ρ)dρ + (t − ρ)α−1 f (ρ)dρ. Γ(α) 0 Γ(α) 0 Hence

and this ends the proof.

J α (f g)(t) ≥

1 J α (1)

vol. 10, iss. 3, art. 86, 2009

ρ ∈ (0, t), we obtain:

(t − ρ)α−1 (t − ρ)α−1 α (3.8) J (f g)(t) + f (ρ) g (ρ) J α (1) Γ (α) Γ (α) (t − ρ)α−1 (t − ρ)α−1 α ≥ g (ρ) J f (t) + f (ρ) J α g(t). Γ (α) Γ (α)

(3.10)

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani

J α f (t)J α g(t),

Title Page Contents

JJ

II

J

I

Page 6 of 12 Go Back Full Screen Close

The second result is: Theorem 3.2. Let f and g be two synchronous functions on [0, ∞[. Then for all t > 0, α > 0, β > 0, we have: (3.11)

tβ tα J β (f g)(t) + J α (f g)(t) Γ (α + 1) Γ (β + 1) ≥ J α f (t)J β g(t) + J β f (t)J α g(t).

Proof. Using similar arguments as in the proof of Theorem 3.1, we can write (t − ρ)β−1 (t − ρ)β−1 α α (3.12) J (f g) (t) + J (1) f (ρ) g (ρ) Γ (β) Γ (β) ≥

(t − ρ)β−1 (t − ρ)β−1 g (ρ) J α f (t) + f (ρ) J α g (t) . Γ (β) Γ (β)

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ

II

By integrating (3.12) over (0, t) , we obtain

J

I

Z J α (1) t (t − ρ)β−1 (3.13) J (f g)(t) dρ + f (ρ) g (ρ) (t − ρ)β−1 dρ Γ (β) Γ (β) 0 0 Z Z J α f (t) t J α g (t) t β−1 (t − ρ) g (ρ) dρ + (t − ρ)β−1 f (ρ) dρ, ≥ Γ (β) 0 Γ (β) 0

Page 7 of 12

α

Z

t

and this ends the proof. Remark 1. The inequalities (3.1) and (3.11) are reversed if the functions are asynchronous on [0, ∞[ (i.e. (f (x) − f (y))(g(x) − g(y)) ≤ 0, for any x, y ∈ [0, ∞[). Remark 2. Applying Theorem 3.2 for α = β, we obtain Theorem 3.1.

Go Back Full Screen Close

The third result is: Theorem 3.3. Let (fi )i=1,...,n be n positive increasing functions on [0, ∞[. Then for any t > 0, α > 0, we have ! n n Y Y (3.14) Jα fi (t) ≥ (J α (1))1−n J α fi (t) . i=1

i=1

Proof. We prove this theorem by induction. Clearly, for n = 1, we have J α (f1 ) (t) ≥ J α (f1 ) (t) , for all t > 0, α > 0. For n = 2, applying (3.1), we obtain: J α (f1 f2 ) (t) ≥ (J α (1))−1 J α (f1 ) (t) J α (f2 ) (t) ,

Title Page Contents

t > 0, α > 0.

i=1

Qn−1  Since (fi )i=1,...,n are positive increasing functions, then i=1 fi (t) is an increasQ ing function. Hence we can apply Theorem 3.1 to the functions n−1 i=1 fi = g, fn = f. We obtain: ! ! n n−1 Y Y (3.16) J α fi (t) = J α (f g) (t) ≥ (J α (1))−1 J α fi (t) J α (fn ) (t) . i=1

i=1

Taking into account the hypothesis (3.15), we obtain: ! ! n n−1 Y Y −1 2−n (3.17) J α fi (t) ≥ (J α (1)) ((J α (1)) J α fi (t))J α (fn ) (t) , i=1

and this ends the proof.

vol. 10, iss. 3, art. 86, 2009

for all t > 0, α > 0.

Now, suppose that (induction hypothesis) ! n−1 n−1 Y Y 2−n α α J α fi (t) , (3.15) J fi (t) ≥ (J (1)) i=1

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani

i=1

JJ

II

J

I

Page 8 of 12 Go Back Full Screen Close

We further have: Theorem 3.4. Let f and g be two functions defined on [0, +∞[ , such that f is increasing, g is differentiable and there exists a real number m := inf t≥0 g 0 (t) . Then the inequality (3.18)

J α (f g)(t) ≥ (J α (1))−1 J α f (t)J α g(t) −

mt α J f (t) + mJ α (tf (t)) α+1

is valid for all t > 0, α > 0. Proof. We consider the function h (t) := g (t)−mt. It is clear that h is differentiable and it is increasing on [0, +∞[. Then using Theorem 3.1, we can write:   α (3.19) J (g − mt) f (t)   ≥ (J α (1))−1 J α f (t) J α g(t) − mJ α (t) m (J α (1))−1 tα+1 α J f (t) ≥ (J (1)) J f (t)J g(t) − Γ (α + 2) mΓ (α + 1) t α J f (t) ≥ (J α (1))−1 J α f (t)J α g(t) − Γ (α + 2) mt α ≥ (J α (1))−1 J α f (t)J α g(t) − J f (t). α+1 α

−1

α

α

Hence (3.20) J α (f g)(t) ≥ (J α (1))−1 J α f (t)J α g(t) mt α − J f (t) + mJ α (tf (t)) , α+1 Theorem 3.4 is thus proved.

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ

II

J

I

Page 9 of 12 Go Back Full Screen Close

t > 0, α > 0.

Corollary 3.5. Let f and g be two functions defined on [0, +∞[. (A) Suppose that f is decreasing, g is differentiable and there exists a real number M := supt≥0 g 0 (t). Then for all t > 0, α > 0, we have: (3.21) J α (f g)(t) ≥ (J α (1))−1 J α f (t)J α g(t)−

Mt α J f (t)+M J α (tf (t)) . α+1

(B) Suppose that f and g are differentiable and there exist m1 := inf t≥0 f 0 (x) , m2 := inf t≥0 g 0 (t). Then we have (3.22) J α (f g)(t) − m1 J α tg(t) − m2 J α tf (t) + m1 m2 J α t2  ≥ (J α (1))−1 J α f (t)J α g(t) − m1 J α tJ α g(t)

(C) Suppose that f and g are differentiable and there exist M1 := supt≥0 f 0 (t) , M2 := supt≥0 g 0 (t) . Then the inequality (3.23) J α (f g)(t) − M1 J α tg(t) − M2 J α tf (t) + M1 M2 J α t2  ≥ (J α (1))−1 J α f (t)J α g(t) − M1 J α tJ α g(t)

Contents

JJ

II

J

I

Page 10 of 12 Go Back Full Screen



− M2 J α tJ α f (t) + M1 M2 (J α t)2 .

Proof. (A): Apply Theorem 3.1 to the functions f and G(t) := g(t) − m2 t.

vol. 10, iss. 3, art. 86, 2009

Title Page

 − m2 J α tJ α f (t) + m1 m2 (J α t)2 .

is valid.

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani

Close

(B): Apply Theorem 3.1 to the functions F and G, where: F (t) := f (t)−m1 t, G(t) := g(t) − m2 t. To prove (C), we apply Theorem 3.1 to the functions F (t) := f (t) − M1 t, G(t) := g(t) − M2 t. Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

JJ

II

J

I

Page 11 of 12 Go Back Full Screen Close

References [1] P.L. CHEBYSHEV, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98. [2] R. GORENFLO AND F. MAINARDI, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien (1997), 223–276. [3] S.M. MALAMUD, Some complements to the Jenson and Chebyshev inequalities and a problem of W. Walter, Proc. Amer. Math. Soc., 129(9) (2001), 2671– 2678. [4] S. MARINKOVIC, P. RAJKOVIC AND M. STANKOVIC, The inequalities for some types q-integrals, Comput. Math. Appl., 56 (2008), 2490–2498.

Fractional Integral Inequalities Soumia Belarbi and Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents

[5] B.G. PACHPATTE, A note on Chebyshev-Grüss type inequalities for differential functions, Tamsui Oxford Journal of Mathematical Sciences, 22(1) (2006), 29–36.

JJ

II

J

I

[6] I. PODLUBNI, Fractional Differential Equations, Academic Press, San Diego, 1999.

Page 12 of 12 Go Back Full Screen Close