On the Generalized Lognormal Distribution

6 downloads 0 Views 4MB Size Report
Apr 11, 2013 - the distribution of a random variable whose logarithm is normally distributed ... lows the -order normal distribution, an exponential power.
Hindawi Publishing Corporation Journal of Probability and Statistics Volume 2013, Article ID 432642, 15 pages http://dx.doi.org/10.1155/2013/432642

Research Article On the Generalized Lognormal Distribution Thomas L. Toulias and Christos P. Kitsos Technological Educational Institute of Athens, Department of Mathematics, Ag. Spyridonos & Palikaridi Street, 12210 Egaleo, Athens, Greece Correspondence should be addressed to Thomas L. Toulias; [email protected] Received 11 April 2013; Revised 4 June 2013; Accepted 5 June 2013 Academic Editor: Mohammad Fraiwan Al-Saleh Copyright Β© 2013 T. L. Toulias and C. P. Kitsos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper introduces, investigates, and discusses the 𝛾-order generalized lognormal distribution (𝛾-GLD). Under certain values of the extra shape parameter 𝛾, the usual lognormal, log-Laplace, and log-uniform distribution, are obtained, as well as the degenerate Dirac distribution. The shape of all the members of the 𝛾-GLD family is extensively discussed. The cumulative distribution function is evaluated through the generalized error function, while series expansion forms are derived. Moreover, the moments for the 𝛾GLD are also studied.

1. Introduction Lognormal distribution has been widely applied in many different aspects of life sciences, including biology, ecology, geology, and meteorology as well as in economics, finance, and risk analysis, see [1]. Also, it plays an important role in Astrophysics and Cosmology; see [2–4] among others, while for Lognormal expansions see [5]. In principle, the lognormal distribution is defined as the distribution of a random variable whose logarithm is normally distributed, and usually it is formulated with two parameters. Furthermore, log-uniform and log-laplace distributions can be similarly defined with applications in finance; see [6, 7]. Specifically, the power-tail phenomenon of the Log-Laplace distributions [8] attracts attention quite often in environmental sciences, physics, economics, and finance as well as in longitudinal studies [9]. Recently, Log-Laplace distributions have been proposed for modeling growth rates as stock prices [10] and currency exchange rates [7]. In this paper a generalized form of Lognormal distribution is introduced, involving a third shape parameter. With this generalization, a family of distributions is emerged, which combines theoretically all the properties of Lognormal, Log-Uniform, and Log-Laplace distributions, depending on the value of this third parameter.

The generalized 𝛾-order Lognormal distribution (𝛾-GLD) is the distribution of a random vector whose logarithm follows the 𝛾-order normal distribution, an exponential power generalization of the usual normal distribution, introduced by [11, 12]. This family of 𝑝-dimensional generalized normal distributions, denoted by N𝑝𝛾 (πœ‡, Ξ£), is equipped with an extra shape parameter 𝛾 and constructed to play the role of normal distribution for the generalized Fisher’s entropy type of information; see also [13, 14]. The density function 𝑓𝑋 of a 𝑝-variate, 𝛾-order, normally distributed random variable π‘Œ ∼ N𝑝𝛾 (πœ‡, Ξ£), with location vector πœ‡ ∈ R𝑝 , positive definite scale matrix Ξ£ ∈ R𝑝×𝑝 , and shape parameter 𝛾 ∈ R \ [0, 1], is given by [11]. π‘“π‘Œ (𝑦) = π‘“π‘Œ (𝑦; πœ‡, Ξ£, 𝛾) = 𝐢𝛾𝑝 |det Ξ£|βˆ’1/2 exp {βˆ’

π›Ύβˆ’1 𝛾/2(π›Ύβˆ’1) }, π‘„πœƒ (𝑦) 𝛾

(1)

𝑦 ∈ R𝑝 , where π‘„πœƒ is the quadratic form π‘„πœƒ (𝑦) = (𝑦 βˆ’ πœ‡)T Ξ£βˆ’1 (𝑦 βˆ’ πœ‡), πœƒ = (πœ‡, Ξ£), while 𝐢𝛾𝑝 being the normalizing factor 𝐢𝛾𝑝 = πœ‹βˆ’π‘/2

Ξ“ (𝑝/2 + 1) 𝛾 βˆ’ 1 𝑝((π›Ύβˆ’1)/𝛾)βˆ’1 . ( ) 𝛾 Ξ“ (𝑝 ((𝛾 βˆ’ 1) /𝛾))

(2)

2

Journal of Probability and Statistics

From (1), notice that the second-ordered normal is the 𝑝 known multivariate normal distribution; that is, N2 (πœ‡, Ξ£) = 𝑝 N (πœ‡, Ξ£); see also [13, 15]. In Section 2, a generalized form of the Lognormal distribution is introduced, which is derived from the univariate family of N𝛾 (πœ‡, 𝜎2 ) = N1𝛾 (πœ‡, 𝜎2 ) distributions, denoted by LN𝛾 (πœ‡, 𝜎), and includes the Log-Laplace distribution as well as the Log-Uniform distribution. The shape of the LN𝛾 (πœ‡, 𝜎) members is extensively discussed while it is connected to the tailing behavior of LN𝛾 through the study of the c.d.f. In Section 3, an investigation of the moments of the generalized Lognormal distribution, as well as the special cases of LogUniform and Log-Laplace distributions, is presented. The generalized error function, that is briefly provided here, plays an important role in the development of LN𝛾 (πœ‡, 𝜎); see Section 2. The generalized error function denoted by Erfπ‘Ž and the generalized complementary error function Erfcπ‘Ž = 1 βˆ’ Erfπ‘Ž , π‘Ž β‰₯ 0 [16], are defined, respectively, as Erfπ‘Ž (π‘₯) :=

Ξ“ (π‘Ž + 1) π‘₯ βˆ’π‘‘π‘Ž ∫ 𝑒 𝑑𝑑, βˆšπœ‹ 0

π‘₯ ∈ R.

(3)

The generalized error function can be expressed (changing to π‘‘π‘Ž variable), through the lower incomplete gamma function 𝛾(π‘Ž, π‘₯) or the upper (complementary) incomplete gamma function Ξ“(π‘Ž, π‘₯) = Ξ“(π‘Ž) βˆ’ 𝛾(π‘Ž, π‘₯), in the form Erfπ‘Ž (π‘₯) =

1 Ξ“ (π‘Ž) Ξ“ (π‘Ž) 1 π‘Ž 1 𝛾( ,π‘₯ ) = [Ξ“ ( ) βˆ’ Ξ“ ( , π‘₯π‘Ž )] , βˆšπœ‹ βˆšπœ‹ π‘Ž π‘Ž π‘Ž π‘₯ ∈ R; (4)

see [16]. Moreover, adopting the series expansion form of the lower incomplete gamma function, π‘₯

∞

(βˆ’1) π‘₯π‘Ž+π‘˜ , π‘˜! + π‘˜) (π‘Ž π‘˜=0

𝛾 (π‘Ž, π‘₯) := ∫ π‘‘π‘Žβˆ’1 π‘’βˆ’π‘‘ 𝑑𝑑 = βˆ‘ 0

π‘˜

π‘₯, π‘Ž ∈ R+ , (5)

a series expansion form of the generalized error function is extracted: Erfπ‘Ž (π‘₯) =

Ξ“ (π‘Ž + 1) ∞ (βˆ’1)π‘˜ π‘₯π‘˜π‘Ž+1 , βˆ‘ βˆšπœ‹ π‘˜=0 π‘˜! (π‘˜π‘Ž + 1)

π‘₯, π‘Ž ∈ R+ . (6)

Notice that, Erf2 is the known error function erf, that is, Erf2 (π‘₯) = erf(π‘₯), while Erf0 is the function of a straight line through the origin with slope (π‘’βˆšπœ‹)βˆ’1 . Applying π‘Ž = 2, the known incomplete gamma function identities such as 𝛾(1/2, π‘₯) = βˆšπœ‹ erf √π‘₯ and Ξ“(1/2, π‘₯) = βˆšπœ‹(1 βˆ’ erf √π‘₯) = βˆšπœ‹ erfc √π‘₯, π‘₯ β‰₯ 0 are obtained. Moreover, Erfπ‘Ž 0 = 0 for all π‘Ž ∈ R+ and lim Erfπ‘Ž π‘₯ = Β±

π‘₯ β†’ ±∞

1 1 Ξ“ (π‘Ž) Ξ“ ( ) , βˆšπœ‹ π‘Ž

as 𝛾(π‘Ž, π‘₯) β†’ Ξ“(π‘Ž) when π‘₯ β†’ +∞.

π‘Ž ∈ R+ ,

(7)

2. The 𝛾-Order Lognormal Distribution The generalized univariate Lognormal distribution is defined, through the univariate generalized 𝛾-order normal distribution, as follows. Definition 1. When the logarithm of a random variable 𝑋 follows the univariate 𝛾-order normal distribution, that is, log 𝑋 ∼ N𝛾 (πœ‡, 𝜎2 ), then 𝑋 is said to follow the generalized Lognormal distribution, denoted by LN𝛾 (πœ‡, 𝜎); that is, 𝑋 ∼ LN𝛾 (πœ‡, 𝜎). The LN𝛾 (πœ‡, 𝜎) is referred to as the (generalized) 𝛾-order Lognormal distribution (𝛾-GLD). Like the usual Lognormal distribution, the parameter πœ‡ ∈ R is considered to be log-scaled, while the non log-scaled πœ‡ (i.e. π‘’πœ‡ when πœ‡ is assumed log-scaled) is referred to as the location parameter of LN𝛾 (πœ‡, 𝜎). Hence, if 𝑋 ∼ LN𝛾 (πœ‡, 𝜎), then log 𝑋 is a 𝛾-order normally distributed variable; that is, log 𝑋 ∼ N𝛾 (πœ‡, 𝜎2 ). Therefore, the location parameter πœ‡ ∈ R of 𝑋 is in fact the mean of 𝑋’s natural logarithm, that is, E[log 𝑋] = πœ‡, while Var [log 𝑋] = (

𝛾 2((π›Ύβˆ’1)/𝛾) Ξ“ (3 ((𝛾 βˆ’ 1) /𝛾)) 2 ) 𝜎, π›Ύβˆ’1 Ξ“ (((𝛾 βˆ’ 1) /𝛾))

Kurt [log 𝑋] =

Ξ“ (𝛾 βˆ’ 1/𝛾) Ξ“ (5 (𝛾 βˆ’ 1/𝛾)) ; Ξ“2 (3 ((𝛾 βˆ’ 1)/𝛾))

(8)

(9)

see [15] for details on N𝛾 . Let π‘Œ := log 𝑋 ∼ N𝛾 (πœ‡, 𝜎2 ) with density function as in (1) and 𝑋 = 𝑔(π‘Œ) = π‘’π‘Œ . Then, the density function 𝑓𝑋 of 𝑋 ∼ LN𝛾 (πœ‡, 𝜎) can be written, through (1), as 󡄨󡄨 𝑑 󡄨󡄨 󡄨 󡄨 𝑓𝑋 (π‘₯) = 𝑓𝑋 (π‘₯; πœ‡, 𝜎, 𝛾) = π‘“π‘Œ (π‘”βˆ’1 (π‘₯)) 󡄨󡄨󡄨 π‘”βˆ’1 (π‘₯)󡄨󡄨󡄨 󡄨󡄨 𝑑π‘₯ 󡄨󡄨 = π‘“π‘Œ (log π‘₯) =

1 π‘₯

(10)

󡄨𝛾/(π›Ύβˆ’1) 󡄨 exp {βˆ’ ((𝛾 βˆ’ 1) /𝛾) 󡄨󡄨󡄨(log π‘₯ βˆ’ πœ‡) /πœŽσ΅„¨σ΅„¨σ΅„¨ } 2𝜎 ((𝛾 βˆ’ 1)/𝛾)

1/𝛾

Ξ“ ((𝛾 βˆ’ 1) /𝛾) π‘₯

.

The probability density function 𝑓𝑋 , as in (10), is defined in Rβˆ—+ = R+ \0; that is, LN𝛾 (πœ‡, 𝜎) has zero threshold. Therefore, the following definition extends Definition 1. Definition 2. When the logarithm of a random variable 𝑋 + πœ— follows the univariate 𝛾-order normal distribution, that is, log(𝑋 + πœ—) ∼ N𝛾 (πœ‡, 𝜎2 ), then 𝑋 is said to follow the generalized Lognormal distribution with threshold πœ— ∈ R; that is, 𝑋 ∼ LN𝛾 (πœ‡, 𝜎; πœ—). It is clear that when 𝑋 ∼ LN𝛾 (πœ‡, 𝜎; πœ—, ), log(𝑋 βˆ’ πœ—) is a 𝛾-order normally distributed variable, that is, log(𝑋 βˆ’ πœ—) ∼ N𝛾 (πœ‡, 𝜎2 ), and thus, πœ‡ is the mean of (𝑋 βˆ’ πœ—)’s natural logarithm while Var[log 𝑋] is the same as in (8). Let π‘Œ = log(𝑋 + πœ—) ∼ N𝛾 (πœ‡, 𝜎2 ). The density function of 𝑋 = π‘’π‘Œ βˆ’ πœ— ∼ LN𝛾 (πœ‡, 𝜎; πœ—) is given by 𝑓𝑋 (π‘₯) = 𝑓𝑋(π‘₯ βˆ’ πœ—), π‘₯ > 0.

Journal of Probability and Statistics

3

Let 𝑧 = (log(π‘₯ βˆ’ πœ—) βˆ’ πœ‡)/𝜎. Then, the limiting threshold density value of 𝑓𝑋 (π‘₯) with π‘₯ β†’ πœ—+ implies that lim 𝑓𝑋 (π‘₯)

π‘₯ β†’ πœ—+

= πœŽβˆ’1 𝐢𝛾1 lim exp {βˆ’π‘§ (𝜎 + 𝑧 β†’ βˆ’βˆž

πœ‡ 𝛾 βˆ’ 1 1/(π›Ύβˆ’1) )} (11) βˆ’ |𝑧| 𝑧 𝛾

= πœŽβˆ’1 𝐢𝛾1 𝑒(sgn 𝛾)(βˆ’βˆž) ,

(ii) The β€œnormal” case 𝛾 = 2: it is clear that LN2 (πœ‡, 𝜎) = LN(πœ‡, 𝜎), as 𝑓𝑋2 coincides with the Lognormal density function, and therefore the second-ordered Lognormal distribution is in fact the usual Lognormal distribution. (iii) The limiting case 𝛾 = ±∞: we have LN±∞ (πœ‡, 𝜎) := lim𝛾 β†’ ±∞ LN𝛾 (πœ‡, 𝜎) with π‘“π‘‹Β±βˆž (π‘₯) := lim 𝑓𝑋𝛾 (π‘₯) = 𝛾 β†’ ±∞

and therefore

󡄨󡄨 log π‘₯ βˆ’ πœ‡ 󡄨󡄨 1 󡄨 󡄨󡄨 exp {βˆ’ 󡄨󡄨󡄨 󡄨󡄨} 󡄨 󡄨󡄨 2𝜎π‘₯ 𝜎 󡄨

βˆ’πœ‡/𝜎

0, 𝛾 ∈ (1, +∞) , lim+ 𝑓𝑋 (π‘₯) = { π‘₯β†’πœ— +∞, 𝛾 ∈ (βˆ’βˆž, 0) ;

𝑒 { (1βˆ’πœŽ)/𝜎 { , π‘₯ ∈ (0, π‘’πœ‡ ] , { { 2𝜎 π‘₯ = { πœ‡/𝜎 { {𝑒 { π‘₯βˆ’(𝜎+1)/𝜎 , π‘₯ > π‘’πœ‡ , { 2𝜎

(12)

(15)

that is, the 𝑓𝑋 ’s defining domain, for the positive-ordered Lognormal random variable 𝑋, can be extended to include threshold point πœ— by letting 𝑓𝑋 (πœ—) = 0. The generalized Lognormal family of distributions LN𝛾 is a wide range family bridging the Log-Uniform LU, Lognormal LN, and Log-Laplace LL distributions, as well as the degenerate Dirac D distributions. We have the following.

which coincides with the density function of the known Log-Laplace distribution (symmetric logexponential distribution) LL(πœ‡σΈ€  , 𝛼, 𝛽) with πœ‡σΈ€  = π‘’πœ‡ and 𝛼 = 𝛽 = 1/𝜎; see [8]. Therefore, the infiniteordered log-normal distribution is in fact the LogLaplace distribution, with threshold density

Theorem 3. The generalized Lognormal distribution LN𝛾 (πœ‡, 𝜎), for order values of 𝛾 = 0, 1, 2, ±∞, is reduced to

(16)

D (π‘’πœ‡ ) , { { πœ‡βˆ’πœŽ πœ‡+𝜎 { { {LU (𝑒 , 𝑒 ) , LN𝛾 (πœ‡, 𝜎) = {LN (πœ‡, 𝜎) , { { { 1 1 { LL (π‘’πœ‡ , , ) , { 𝜎 𝜎

𝛾 = 0, 𝛾 = 1, 𝛾 = 2,

(13)

(i) The limiting case 𝛾 = 1: let π‘₯ ∈ Rβˆ—+ such that | log π‘₯ βˆ’ πœ‡| ≀ 1. Using the gamma function additive identity Ξ“(𝑧 + 1) = 𝑧Γ(𝑧), 𝑧 ∈ R+ , in (10), we have LN1 (πœ‡, 𝜎) = lim𝛾 β†’ 1+ LN𝛾 (πœ‡, 𝜎) with 𝑓𝑋1 (π‘₯) := lim+ 𝑓𝑋𝛾 (π‘₯) 𝛾→1

π‘₯ ∈ [π‘’πœ‡βˆ’πœŽ , π‘’πœ‡+𝜎 ] ,

For the purposes of statistical application, the LogLaplace moments are not the same as the model parameters; that is, although πœ‡π‘‹ = πœ‡, πœŽπ‘‹ = √2𝜎. (iv) The limiting case 𝛾 = 0: we have

𝛾 = ±∞.

Proof. From definition (1) of N𝛾 the order 𝛾 value is a real number outside the closed interval [0, 1]. Let 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎) with density function 𝑓𝑋𝛾 as in (10). We consider the following cases.

{ 1 , = { 2𝜎π‘₯ {0,

0, 𝜎 < 1, { { π‘“π‘‹Β±βˆž (0) = lim+ π‘“π‘‹Β±βˆž (π‘₯) = {1, 𝜎 = 1, { π‘₯β†’0 {+∞, 𝜎 > 1.

(14)

π‘₯ ∈ (βˆ’βˆž, π‘’πœ‡βˆ’πœŽ ) βˆͺ (π‘’πœ‡+𝜎 , +∞) ,

which is the density function of the Log-Uniform distribution LU(π‘Ž, 𝑏), 0 < π‘Ž < 𝑏, with π‘Ž = π‘’πœ‡βˆ’πœŽ and 𝑏 = π‘’πœ‡+𝜎 ; that is, πœ‡ = (1/2) log(π‘Žπ‘) and 𝜎 = (1/2) log(𝑏/π‘Ž). Therefore, first-ordered Lognormal distribution is in fact the Log-Uniform distribution, with vanishing threshold density, 𝑓𝑋1 (0) = limπ‘₯ β†’ 0+ 𝑓𝑋1 (π‘₯) = 0. For the purposes of statistical application the LogUniform moments are not the same as the model parameters; that is, although πœ‡π‘‹ = πœ‡, πœŽπ‘‹ = 𝜎/√3.

lim 𝑓𝑋𝛾 (π‘₯) =

𝛾 β†’ 0βˆ’

lim

𝑓𝑋𝛾 (π‘₯) ,

π‘˜:=[(π›Ύβˆ’1)/𝛾] β†’ ∞

π‘₯ ∈ Rβˆ—+ ,

(17)

where [π‘Ž] is the integer value of π‘Ž ∈ R. For the value π‘₯ = π‘’πœ‡ , the p.d.f. as in (10) implies limβˆ’ 𝑓𝑋𝛾 (π‘’πœ‡ ) =

𝛾→0

π‘˜π‘˜ 1 ( lim ) β‹… 𝑒0 = +∞, 2πœŽπ‘’πœ‡ π‘˜ β†’ ∞ π‘˜!

(18)

through Stirling’s asymptotic formula π‘˜! β‰ˆ √2πœ‹π‘˜(π‘˜/ 𝑒)π‘˜ as π‘˜ β†’ ∞. Assuming now π‘₯ =ΜΈ π‘’πœ‡ , (10), through (18), implies 󡄨 󡄨󡄨 󡄨log π‘₯ βˆ’ πœ‡σ΅„¨σ΅„¨σ΅„¨ 1 β‹… 0 β‹… = 0; 𝑓𝑋0 (π‘₯) := limβˆ’ 𝑓𝑋𝛾 (π‘₯) = 󡄨 2 𝛾→0 𝑒 2√2πœ‹πœŽ π‘₯

(19)

that is, LN0 (πœ‡, 𝜎) := lim𝛾 β†’ 0βˆ’ LN𝛾 (πœ‡, 𝜎) = D(π‘’πœ‡ ) as 𝑓𝑋0 coincides with the Dirac density function, with the (non-log-scaled) location parameter π‘’πœ‡ of LN0 (πœ‡, 𝜎) being the singular (infinity) point. Therefore, the zero-ordered Lognormal distribution LN0 is in fact the degenerate Dirac distribution with pole at the location parameter of LN𝛾 β†’ 0βˆ’ (with vanishing threshold density 𝑓𝑋0 (0) = limπ‘₯ β†’ 0+ 𝑓𝑋0 (π‘₯) = 0). From the above limiting cases (i), (iii), and (iv), the defining domain R \ [0, 1] of the order values 𝛾, used in (1), is safely

4

Journal of Probability and Statistics

extended to include the values 𝛾 = 0, 1, ±∞; that is, 𝛾 can now be defined outside the open interval (0, 1). Eventually, the family of the 𝛾-order normals can include the LogUniform, Lognormal, Log-Laplace, and the degenerate Dirac distributions as (13) holds. From Theorem 3, (12), and (15), the domain of the density functions 𝑓𝑋𝛾 (π‘₯), π‘₯ > 0, can also be extended to include the threshold point π‘₯ = 0 by setting 𝑓𝑋𝛾 (0) := 0 for all nonnegative-ordered Lognormals, that is, for all 𝛾 ∈ 0 βˆͺ [1, +∞), while for the Log-Laplace case of 𝛾 = +∞ with 𝜎 = 1 by setting 𝑓𝑋+∞ (0) := (1/2)π‘’βˆ’πœ‡ . From the fact that N0 (πœ‡, β‹…) = D(πœ‡), see [15], one can say that the degenerate log-Dirac distribution, say LD(πœ‡), equals LN0 (πœ‡, β‹…), and hence, through Theorem 3, we can write LD(πœ‡) = D(π‘’πœ‡ ). Proposition 4. The mode of the positive-ordered Lognormal random variable 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎), 𝑋 < π‘’πœ‡ 𝛾 ∈ (1, +∞), is given by 𝛾

Mode 𝑋𝛾 = π‘’πœ‡βˆ’πœŽ ,

(20)

with corresponding maximum density value, max 𝑓𝑋𝛾 = 𝑓𝑋𝛾 (Mode 𝑋𝛾 ) =

exp {(πœŽπ›Ύ ) /𝛾 βˆ’ πœ‡} 1/𝛾

2𝜎((𝛾 βˆ’ 1)/𝛾)

Ξ“ ((𝛾 βˆ’ 1) /𝛾)

.

(21)

Proof. Recall the density function of 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎) as in (10), and let π‘š = Mode 𝑋𝛾 > 0. Then it holds that (𝑑/𝑑π‘₯) 𝑓𝑋𝛾 (π‘š; πœ‡, 𝜎, 𝛾) = 0; that is, 1/(π›Ύβˆ’1) 𝑑 󡄨󡄨 𝜎 1󡄨 󡄨 󡄨 ( 󡄨󡄨󡄨log π‘š βˆ’ πœ‡σ΅„¨σ΅„¨σ΅„¨) 󡄨󡄨log π‘₯ βˆ’ πœ‡σ΅„¨σ΅„¨σ΅„¨π‘₯=π‘š = βˆ’ . 𝜎 𝑑π‘₯ π‘š From (𝑑/𝑑π‘₯)|π‘₯| = sgn π‘₯, π‘₯ ∈ R, we have 𝛾

π‘š = π‘’πœ‡βˆ’πœŽ ,

(22)

provided that π‘₯ < 𝑒 . Otherwise, (23) holds trivially, as (22) implies 𝜎 = 0; that is, π‘š = π‘’πœ‡ . Moreover, (𝑑/𝑑π‘₯)𝑓𝑋𝛾 (π‘₯) > 0 when 󡄨1/(π›Ύβˆ’1) 󡄨 1 + sgn (log π‘₯ βˆ’ πœ‡) πœŽπ›Ύ/(1βˆ’π›Ύ) 󡄨󡄨󡄨log π‘₯ βˆ’ πœ‡σ΅„¨σ΅„¨σ΅„¨ > 0, π‘₯ > 0, (24) and thus, 𝑓𝑋𝛾 is a strictly ascending density function on 𝛾

(0, π‘’πœ‡βˆ’πœŽ ) when 𝛾 > 1 and also on (π‘’πœ‡βˆ’πœŽ , π‘’πœ‡ ) when 𝛾 < 0. Similarly, with (𝑑/𝑑π‘₯)𝑓𝑋𝛾 (π‘₯) < 0, 𝑓𝑋 is a strictly descending 𝛾

density function on (π‘’πœ‡βˆ’πœŽ , +∞) when 𝛾 > 1 and also on 𝛾 (0, π‘’πœ‡βˆ’πœŽ ) βˆͺ (π‘’πœ‡ , +∞) when 𝛾 < 0. Specifically, for 𝛾 < 0, the πœ‡ point 𝑒 is a nonsmooth point of 𝑓𝑋, as lim

𝑑

π‘₯ β†’ π‘’πœ‡ 𝑑π‘₯

𝑓𝑋𝛾 (π‘₯) = βˆ’

𝐢𝛾1 (πœŽπ‘’πœ‡ )2

Proposition 5. The global mode point of the negative-ordered Lognormal random variable 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎), 𝛾 ∈ (βˆ’βˆž, 0), is (in limit) the threshold 0 which is an infinite (probability) density point. Moreover, the location parameter (i.e., π‘’πœ‡ ) of LN𝛾 (πœ‡, 𝜎) is a nonsmooth (local) mode point for all 𝑋𝛾 1,

with the corresponding maximum density value being infinite; that is, max 𝑓𝑋𝛾 = 𝑓𝑋𝛾 (0) = +∞, provided 𝜎 < 1, and

Journal of Probability and Statistics

eβˆ’2/3

e2/3

1.5 fX𝛾 ∼ 𝒩𝛾 1 is decreasing from π‘’πœ‡βˆ’πœŽ |𝛾 β†’ βˆ’βˆž = π‘’πœ‡

Proposition 6. Consider the positive-ordered Lognormal family of distributions LN𝛾 (πœ‡, 𝜎) with fixed parameters πœ‡, 𝜎 and 𝛾 β‰₯ 1. When 𝛾 rises, that is, when one moves from Log-Uniform to Log-Laplace distribution inside the LN𝛾 family, the mode points of LN𝛾 are

It is easy to see that for the Log-Laplace case LL(πœ‡, 𝜎, 𝜎), 𝛾 the local minimum density point π‘’πœ‡βˆ’πœŽ of 𝑋𝛾 1 coincides (in limit) with the local nonsmooth mode point π‘’πœ‡ of 𝑋𝛾 ; see Figure 1(b3). Also, notice that the local minimum

(i) strictly increasing from π‘’πœ‡βˆ’πœŽ (Log-Uniform case) to π‘’πœ‡ (Log-Laplace case) provided that 𝜎 < 1 (with their corresponding maximum density values moving smoothly from (1/2𝜎)π‘’πœŽβˆ’πœ‡ to +∞), (ii) fixed at π‘’πœ‡βˆ’1 for all LN𝛾β‰₯1 (πœ‡, 𝜎 = 1) (with the corresponding maximum density values moving smoothly from (1/2)𝑒1βˆ’πœ‡ to (1/2)π‘’βˆ’πœ‡ ), (iii) strictly decreasing from π‘’πœ‡βˆ’πœŽ (Log-Uniform case) to threshold 0 (Log-Laplace case) provided that 𝜎 > 1 (with their corresponding maximum density values moving smoothly from (1/2𝜎)π‘’πœŽβˆ’πœ‡ to (1/2𝜎)π‘’βˆ’πœ‡ ). Proof. Let 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎), Mode 𝑋𝛾 is a smooth monotonous function of 𝛾 ∈ (βˆ’βˆž, 0) βˆͺ (1, +∞) for positive-and negative-ordered 𝑋𝛾 , as 𝛾 𝑑 Mode 𝑋𝛾 = βˆ’πœŽπ›Ύ log (𝜎) π‘’πœ‡βˆ’πœŽ . 𝑑𝛾

(29)

For π‘‹Β±βˆž ∼ LN±∞ (πœ‡, 𝜎) we evaluate, through (20) and (21), that Mode 𝑋+∞

π‘’πœ‡ , { { πœ‡βˆ’1 = {𝑒 , { {0,

𝜎 < 1, 𝜎 = 1, 𝜎 > 1,

(30)

with the corresponding maximum density value being infinite; that is, max 𝑓𝑋𝛾 = 𝑓𝑋𝛾 (0) = +∞, provided 𝜎 > 1, and max 𝑓𝑋+∞ = 1/(2πœŽπ‘’πœ‡ ), provided 𝜎 ≀ 1. Assume that 𝛾 β‰₯ 1. Considering (27), (30) with (29) and Proposition 4, the results for the positive-ordered Lognormals hold. Proposition 7. For the negative-ordered Lognormal family of distributions LN𝛾 (πœ‡, 𝜎) with 𝛾 < 0, when 𝛾 rises, that is, when one moves from Log-Laplace to degenerate Dirac distribution inside the LN𝛾 family, the local minimum (probability) density points of LN𝛾 are (i) strictly increasing from threshold 0 (Log-Laplace case) to π‘’πœ‡βˆ’1 (Dirac case) provided that 𝜎 < 1, (ii) fixed at π‘’πœ‡βˆ’1 for all LN𝛾 (πœ‡, 𝜎 = 1), (iii) strictly decreasing from π‘’πœ‡ (Log-Laplace case) to π‘’πœ‡βˆ’1 (Dirac case) provided that 𝜎 > 1.

𝛾

to Mode 𝑋0 = π‘’πœ‡βˆ’1 through (20). When 𝜎 = 1, π‘’πœ‡βˆ’πœŽ = 𝛾 π‘’πœ‡βˆ’1 for all 𝛾 < 0, while for 𝜎 < 1, π‘’πœ‡βˆ’πœŽ increases from 𝛾 π‘’πœ‡βˆ’πœŽ |𝛾 β†’ βˆ’βˆž = 0 to Mode 𝑋0 = π‘’πœ‡βˆ’1 through (20).

𝛾

density point π‘’πœ‡βˆ’πœŽ , 𝛾 < 0, for the Dirac case D(π‘’πœ‡ ), is the limiting point π‘’πœ‡βˆ’1 although the (probability) density in D(π‘’πœ‡ ) case vanishes everywhere except at the infinite pole π‘’πœ‡ . Figure 1 illustrates the probability density functions 𝑓𝑋𝛾 curves for scale parameters 𝜎 = 2/3, 1, 3/2 of the positiveordered lognormally distributed 𝑋𝛾 ∼ LN𝛾β‰₯1 (0, 𝜎) in Figures 1(a1)–1(a3), respectively, while the p.d.f. of negativeordered lognormally distributed 𝑋𝛾 ∼ LN𝛾 βˆ’π‘’πœ‡ , into the other two integrals, we obtain 0

𝐹|π‘Œ| (π‘₯) = 𝐢𝛾1 ∫

βˆ’βˆž

Γ—βˆ«

exp {βˆ’

(1/𝜎) log 2

0

𝛾 βˆ’ 1 𝛾/(π›Ύβˆ’1) } 𝑑𝑀 + 𝐢𝛾1 |𝑀| 𝛾 exp {βˆ’

𝑔(π‘₯)

+ 𝐢𝛾1 ∫

(1/𝜎) log 2

𝑔 (π‘₯) :=

πœ‡

log (π‘₯ + 𝑒 ) βˆ’ πœ‡ , 𝜎

𝛾 βˆ’ 1 𝛾/(π›Ύβˆ’1) } 𝑑𝑧 |𝑧| 𝛾

exp {βˆ’

𝛾 βˆ’ 1 𝛾/(π›Ύβˆ’1) } 𝑑𝑧, |𝑧| 𝛾

π‘₯ ∈ R+ , (56)

(53) and hence

where π‘“π‘Œ is the p.d.f. of π‘Œ. For example, see [17] on the folded normal distribution. However, the density function π‘“π‘Œ is defined in (βˆ’π‘’πœ‡ , +∞) due to threshold βˆ’π‘’πœ‡ , while it vanishes elsewhere; that is, 𝑓 (βˆ’π‘₯) + π‘“π‘Œ (π‘₯) , 0 ≀ π‘₯ ≀ π‘’πœ‡ , 𝑓|π‘Œ| (π‘₯) = { π‘Œ π‘“π‘Œ (π‘₯) , π‘₯ > π‘’πœ‡ .

(54)

𝐹|π‘Œ| (π‘₯) = Φ𝑍 (0) + [Φ𝑍 (

log 2 ) βˆ’ Φ𝑍 (0)] 𝜎

+ [Φ𝑍 (𝑔 (π‘₯)) βˆ’ Φ𝑍 ( = Φ𝑍 (

log 2 )] 𝜎

log (π‘₯ + π‘’πœ‡ ) βˆ’ πœ‡ ), 𝜎

(57)

10

Journal of Probability and Statistics eβˆ’2/3

e2/3

0.9

0.9

0.8

0.8

0.7

0.7

0.6 0.5 0.4 0.3

0.5 0.4 0.3 0.2

0.1

0.1 1

2

x

X1 ∼ ℒ𝒰(eβˆ’2/3 , e2/3 ) X1.1,1.2,...,1.9 X2 βˆΌβ„’π’©(0, 2/3) X3,4,...,10 X+∞ ∼ β„’β„’(1, 3/2, 3/2)

0

3

e1

0.6

0.2 0 0

eβˆ’1

1

FX𝛾 ∼ 𝒩𝛾 (0, 1)

FX𝛾 ∼ 𝒩𝛾 (0, 2/3)

1

1

0

x

X1 ∼ ℒ𝒰(eβˆ’1 , e1 ) X1.1,1.2,...,1.9 X2 βˆΌβ„’π’©(0, 1) X3,4,...,10 X+∞ ∼ β„’β„’(1, 1, 1)

Xβˆ’βˆž ∼ β„’β„’(1, 3/2, 3/2) Xβˆ’10,βˆ’9,...,βˆ’1 Xβˆ’0.9,βˆ’0.8,...,βˆ’0.1

2

3

Xβˆ’βˆž ∼ β„’β„’(1, 1, 1) Xβˆ’10,βˆ’9,...,βˆ’1 Xβˆ’0.9,βˆ’0.8,...,βˆ’0.1

(b)

(a) eβˆ’3/2

1 0.9

FX𝛾 ∼ 𝒩𝛾 (0, 3/2)

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0

1

2

3

x X1 ∼ ℒ𝒰(eβˆ’3/2 , e3/2 ) X1.1,1.2,...,1.9 X2 βˆΌβ„’π’©(0, 3/2) X3,4,...,10 X+∞ ∼ β„’β„’(1, 2/3, 2/3)

Xβˆ’βˆž ∼ β„’β„’(1, 2/3, 2/3) Xβˆ’10,βˆ’9,...,βˆ’1 Xβˆ’0.9,βˆ’0.8,...,βˆ’0.1

(c)

Figure 2: Graphs of the c.d.f. 𝐹𝑋𝛾 , 𝑋𝛾 ∼ LN𝛾 (0, 𝜎), for 𝜎 = 2/3, 1, 3/2, and various 𝛾 values.

with Φ𝑍 being the c.d.f. of the standardized r.v. 𝑍 ∼ N𝛾 (0, 1). From (38) and the fact that Erfπ‘Ž 0 = 0, π‘Ž ∈ Rβˆ—+ , it is clear that βˆ’1 (57) implies MAD𝑋𝛾 = Med|𝑋𝛾 βˆ’ π‘’πœ‡ | = 𝐹|𝑋 πœ‡ (1/2) = 0, for 𝛾 βˆ’π‘’ | every 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎), and the theorem has been proved.

3. Moments of the 𝛾-Order Lognormal Distribution For the evaluation of the moments of the generalized Lognormal distribution, the following holds.

Journal of Probability and Statistics

11

(𝑑) Proposition 16. The 𝑑th raw moment πœ‡Μƒπ‘‹ of a generalized lognormally distributed random variable 𝑋 ∼ LN𝛾 (πœ‡, 𝜎) is given by

Γ— Ξ“ ((2𝑛 + 1)

𝑛

2 2 π‘’π‘‘πœ‡ ∞ (2𝑑 𝜎 ) 1 = Ξ“ (𝑛 + ) , βˆ‘ βˆšπœ‹ 𝑛=0 (2𝑛)! 2

(𝑑) πœ‡Μƒπ‘‹

∞ 𝛾 2𝑛((π›Ύβˆ’1)/𝛾) π‘’π‘‘πœ‡ (π‘‘πœŽ)2𝑛 = ) ( βˆ‘ Ξ“ ((𝛾 βˆ’ 1) /𝛾) 𝑛=0 (2𝑛)! 𝛾 βˆ’ 1

(𝑑) πœ‡Μƒπ‘‹

Example 17. For the second-ordered lognormally distributed 𝑋 ∼ LN2 (πœ‡, 𝜎), (58) implies

(58)

π›Ύβˆ’1 ) 𝛾

and coincides with the moment generating function of the 𝛾(𝑑) order normally distributed log 𝑋; that is, 𝑀log 𝑋 (𝑑) = πœ‡Μƒπ‘‹ .

R+

=

𝛾 βˆ’ 1 󡄨󡄨󡄨󡄨 log π‘₯ βˆ’ πœ‡ 󡄨󡄨󡄨󡄨𝛾/(π›Ύβˆ’1) 1 1 } 𝑑π‘₯, 𝐢𝛾 ∫ π‘₯π‘‘βˆ’1 exp {βˆ’ 󡄨 󡄨󡄨 󡄨󡄨 𝜎 𝛾 󡄨󡄨󡄨 𝜎 R+ (59) (π›Ύβˆ’1)/𝛾

and applying the transformation 𝑧 = ((𝛾 βˆ’ 1)/𝛾) (log π‘₯ βˆ’ πœ‡), π‘₯ > 0, we get (𝑑) πœ‡Μƒπ‘‹

=

𝐢𝛾1 (

(1/𝜎)

𝛾 (π›Ύβˆ’1)/𝛾 𝛾 (π›Ύβˆ’1)/𝛾 πœŽπ‘§} ) ) ∫ exp {π‘‘πœ‡ + 𝑛( π›Ύβˆ’1 π›Ύβˆ’1 R

1 (2𝑛)! Ξ“ (𝑛 + ) = 2𝑛 βˆšπœ‹, 2 2 𝑛!

(60) Through the exponential series expansion exp {𝑑(

𝛾 ) π›Ύβˆ’1

∞

𝑛((π›Ύβˆ’1)/𝛾)

𝑛

𝛾 (π‘‘πœŽ) ( ) 𝑛! 𝛾 βˆ’ 1 𝑛=0

πœŽπ‘§} = βˆ‘

𝑧𝑛 , (61)

we have ∞

∞ 1 1 2 2 𝑛 (π‘‘πœŽ)2𝑛 π‘‘πœ‡ = 𝑒 ( π‘‘πœŽ) βˆ‘ 𝑛 𝑛=0 2 𝑛! 𝑛=0 𝑛! 2

(𝑑) πœ‡Μƒπ‘‹ = π‘’π‘‘πœ‡ βˆ‘

π‘‘πœ‡+(1/2)(π‘‘πœŽ)2

=𝑒

𝑑 ∈ R+ ,

which is the 𝑑th raw moment of the usual lognormally (1) distributed 𝑋 ∼ LN(πœ‡, 𝜎), with mean πœ‡π‘‹ := πœ‡Μƒπ‘‹ = E[𝑋] = (𝑑) 2 exp{πœ‡ + (1/2)𝜎 }. This is true as 𝑀log 𝑋 (𝑑) = πœ‡Μƒπ‘‹ = exp{π‘‘πœ‡ + (1/2)(π‘‘πœŽ)2 } is the known moment-generating function of the normally distributed log 𝑋 ∼ N(πœ‡, 𝜎2 ). (𝑑) Theorem 18. The π‘˜th central moment (about the mean) πœ‡π‘‹ of a generalized lognormally distributed random variable 𝑋 ∼ LN𝛾 (πœ‡, 𝜎) is given by (π‘˜) πœ‡π‘‹ =

π‘˜ πœ‡ 𝑛 π‘’π‘˜πœ‡ π‘˜ ) π‘†π‘˜βˆ’π‘› , βˆ‘ ( ) (βˆ’ 𝑋 π‘’πœ‡ Ξ“ ((𝛾 βˆ’ 1) /𝛾) 𝑛=0 𝑛

π‘˜ ∈ N, (67)

𝛾 2π‘š((π›Ύβˆ’1)/𝛾) π›Ύβˆ’1 (π‘˜πœŽ)2 π‘š ( Ξ“ ((2 π‘š + 1) ) ), π›Ύβˆ’1 𝛾 π‘š=0 (2 π‘š)! ∞

π‘†π‘˜ = βˆ‘

π‘˜ ∈ N. (68) (π‘˜) Proof. From the definition of the π‘˜th central moment πœ‡π‘‹ we have

∞

2𝑛

π‘˜

𝛾 (π‘‘πœŽ) ( ) 𝛾 βˆ’ 1 (2𝑛)! 𝑛=0

π‘’π‘‘πœ‡ βˆ‘

(69)

2𝑛((π›Ύβˆ’1)/𝛾)

while using the binomial identity we get π‘˜

π‘˜ 𝑛 (π‘˜) πœ‡π‘‹ = βˆ‘ ( ) (βˆ’πœ‡π‘‹ ) ∫ π‘₯π‘˜βˆ’π‘› 𝑓𝑋 (π‘₯) 𝑑π‘₯ 𝑛 R+ 𝑛=0

Γ— ∫ 𝑧2𝑛 exp {βˆ’π‘§π›Ύ/(π›Ύβˆ’1) } 𝑑𝑧. R+

(62) Finally, substituting the normalizing factor 𝐢𝛾1 as in (2) into (62) and utilizing the known integral [16],

R+

(66)

R+

𝛾 ) π›Ύβˆ’1

∫ π‘₯π‘š π‘’βˆ’π‘π‘₯ 𝑑π‘₯ =

,

π‘˜

(π›Ύβˆ’1)/𝛾

𝑛

(65)

(π‘˜) := E [(𝑋 βˆ’ πœ‡π‘‹ ) ] = ∫ (π‘₯ βˆ’ πœ‡π‘‹ ) 𝑓𝑋 (π‘₯; πœ‡, 𝜎, 𝛾) 𝑑π‘₯, πœ‡π‘‹

it is obtained that (𝑑) = 2𝐢𝛾1 ( πœ‡Μƒπ‘‹

𝑛 ∈ N,

where

Γ— exp {βˆ’|𝑧|𝛾/(π›Ύβˆ’1) } 𝑑𝑧.

(π›Ύβˆ’1)/𝛾

(64)

and through the gamma function identity

(𝑑) , we Proof. From the definition of the 𝑑th raw moment πœ‡Μƒπ‘‹ have (𝑑) = E [𝑋𝑑 ] = ∫ π‘₯𝑑 𝑓𝑋 (π‘₯) 𝑑π‘₯ πœ‡Μƒπ‘‹

𝑑 ∈ R+ ,

Ξ“ ((π‘š + 1) /𝑛) , 𝑛𝑏(π‘š+1)/𝑛

𝑛, π‘š, 𝑏 ∈ Rβˆ—+ ,

(63)

we obtain (58). Moreover, for π‘Œ := log 𝑋 ∼ N𝛾 (πœ‡, 𝜎2 ) we have π‘€π‘Œ (𝑑) = (𝑑) E[π‘’π‘‘π‘Œ ] = E[𝑋𝑑 ] = πœ‡Μƒπ‘‹ , and the proposition has been proved.

π‘˜

(70)

π‘˜ 𝑛 (π‘˜βˆ’π‘›) . = βˆ‘ ( ) (βˆ’πœ‡π‘‹ ) πœ‡Μƒπ‘‹ 𝑛 𝑛=0 Applying Proposition 16, (70) implies that (π‘˜) πœ‡π‘‹ =

π‘˜ πœ‡ 𝑛 ∞ [(π‘˜ βˆ’ 𝑛) 𝜎]2 π‘š π‘’π‘˜πœ‡ π‘˜ ) βˆ‘ βˆ‘ ( ) (βˆ’ 𝑋 π‘’πœ‡ π‘š=0 (2 π‘š)! Ξ“ ((𝛾 βˆ’ 1) /𝛾) 𝑛=0 𝑛

Γ—(

𝛾 2 π‘š((π›Ύβˆ’1)/𝛾) Ξ“ ((2 π‘š + 1) ((𝛾 βˆ’ 1) /𝛾)) , ) π›Ύβˆ’1 (71)

12

Journal of Probability and Statistics

while taking the summation index 𝑛 until π‘˜ βˆ’ 1, we finally obtain (67), and the theorem has been proved. Example 19. Recall Example 17. Substituting (66) and the 2 mean πœ‡π‘‹ = π‘’πœ‡+(1/2)𝜎 into (70), the second-ordered lognormally distributed 𝑋 ∼ LN2 (πœ‡, 𝜎) provides (π‘˜) πœ‡π‘‹

π‘˜

2 2 π‘˜ = βˆ‘ ( ) (βˆ’1)𝑛 π‘’π‘˜πœ‡+(1/2)[𝑛+(π‘˜βˆ’π‘›) ]𝜎 , 𝑛 𝑛=0

π‘˜ ∈ N,

(72)

2

2

2 (2) := Var [𝑋] = πœ‡π‘‹ = 𝑒2πœ‡+𝜎 (π‘’πœŽ βˆ’ 1) , πœŽπ‘‹

(73)

which are the π‘˜th central moment and the variance, respectively, of the usual lognormally distributed 𝑋 ∼ LN(πœ‡, 𝜎). The same result can be derived directly through (67) for 𝛾 = 2 and the use of the known gamma function identity, as in (65). 2 := Var[𝑋], Theorem 20. The mean πœ‡π‘‹ := E [𝑋], variance πœŽπ‘‹ coefficient of variation 𝐢𝑉𝑋 , skewness πœ† 𝑋 and kurtosis πœ…π‘‹ of the generalized lognormally distributed 𝑋 ∼ LN𝛾 (πœ‡, 𝜎) are, respectively, given by

πœ‡π‘‹ =

π‘’πœ‡ 𝑆, Ξ“ ((𝛾 βˆ’ 1) /𝛾) 1

2 2 πœŽπ‘‹ = βˆ’ πœ‡π‘‹ +

𝐢𝑉𝑋2 = Ξ“ (

4πœ‡

𝛾 βˆ’ 1 βˆ’1 )] 𝛾

3πœ‡

Γ— (𝑒 𝑆4 βˆ’ 4𝑒 πœ‡π‘‹ 𝑆3 +

(81)

2 6𝑒2πœ‡ πœ‡π‘‹ 𝑆2

βˆ’

3 4π‘’πœ‡ πœ‡π‘‹ 𝑆1 ) .

𝑒 𝑆, Ξ“ ((𝛾 βˆ’ 1) /𝛾) 2

(75)

𝛾 βˆ’ 1 𝑆2 ) 2 βˆ’ 1, 𝛾 𝑆1

(76) 𝑒3πœ‡ 𝑆, 3 πœŽπ‘‹ Ξ“ ((𝛾 βˆ’ 1) /𝛾) 3

πœ…π‘‹ = βˆ’ πΆπ‘‰π‘‹βˆ’4 βˆ’ 6πΆπ‘‰π‘‹βˆ’2 βˆ’ 4

(77)

πœ†π‘‹ 𝑒4πœ‡ + 4 𝑆, 𝐢𝑉𝑋 πœŽπ‘‹ Ξ“ ((𝛾 βˆ’ 1) /𝛾) 4 (78)

where the sums 𝑆𝑖 , 𝑖 = 1, . . . , 4, are given by (68). Proof. From Proposition 16 we easily obtain (74), as πœ‡π‘‹ := (1) . From Theorem 18 we have πœ‡Μƒπ‘‹ (2) πœ‡π‘‹

=

2 πœ‡π‘‹

𝛾 βˆ’ 1 βˆ’1 2πœ‡ + [Ξ“ ( )] (𝑒 𝑆2 βˆ’ 2π‘’πœ‡ πœ‡π‘‹ 𝑆1 ) . (79) 𝛾

Hence, substituting 𝑆1 from (74), (75) holds. Moreover, the squared coefficient of variation is readily obtained via (75) and (74). By definition, skewness πœ† 𝑋 is the standardized (3) 3 third (central) moment; that is, πœ† 𝑋 := Skew[𝑋] = πœ‡π‘‹ /πœŽπ‘‹ . Theorem 18 provides that πœ†π‘‹ =

βˆ’πΆπ‘‰π‘‹βˆ’3 3πœ‡

+

Example 21. For the second-ordered lognormally distributed 𝑋 ∼ LN2 (πœ‡, 𝜎), utilizing (65) into (68) we get 𝑆𝑛 = 2 2 βˆšπœ‹π‘’(𝑛 𝜎 )/2 , 𝑛 ∈ Nβˆ— . Applying this to Theorem 20 we derive (after some algebra) 2

πœ‡π‘‹ = π‘’πœ‡+(1/2)𝜎 ,

2

𝛾 3 [πœŽπ‘‹ Ξ“( 2πœ‡

βˆ’ 1 βˆ’1 )] 𝛾 πœ‡

Γ— (𝑒 𝑆3 βˆ’ 3𝑒 πœ‡π‘‹ 𝑆2 + 3𝑒 πœ‡π‘‹ 𝑆1 ) .

2

2 πœŽπ‘‹ = 𝑒2πœ‡+𝜎 (π‘’πœŽ βˆ’ 1) ,

𝐢𝑉𝑋 = βˆšπ‘’πœŽ βˆ’ 1, 2

2

2

πœ† 𝑋 = (π‘’πœŽ + 2) βˆšπ‘’πœŽ βˆ’ 1,

2

which are the mean, variance, coefficient of variation, skewness, and kurtosis, respectively, of usual lognormally distributed 𝑋 ∼ LN(πœ‡, 𝜎). For the usual lognormally distributed random variable 𝑋 ∼ LN, it is known that Mode 𝑋 < Med 𝑋 < πœ‡π‘‹ . The following corollary examines this inequality for the LN𝛾 family of distributions. Corollary 22. For the 𝛾-ordered lognormally distributed 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎), it is true that Mode 𝑋𝛾 ≀ Med 𝑋𝛾 = (πœ‡π‘” )𝑋𝛾 ≀ πœ‡π‘‹π›Ύ . The first equality holds for the Log-Laplace distributed 𝑋+∞ with 𝜎 < 1 as well as for all the negative-ordered 𝑋𝛾 1: from (20) we have 𝛾

Mode 𝑋𝛾 = π‘’πœ‡βˆ’πœŽ < π‘’πœ‡ = Med 𝑋𝛾 . (80)

2

πœ…π‘‹ = 𝑒4𝜎 + 2𝑒3𝜎 + 3𝑒2𝜎 βˆ’ 3, (82)

2

(74)

2πœ‡

πœ† 𝑋 = βˆ’ πΆπ‘‰π‘‹βˆ’3 βˆ’ πΆπ‘‰π‘‹βˆ’1 +

:=

4 Ξ“( πœ…π‘‹ = πΆπ‘‰π‘‹βˆ’4 + [πœŽπ‘‹

Substituting 𝑆𝑖 , 𝑖 = 1, 2, 3, from (74), (75), and (77), we obtain (78).

while

2 πœŽπ‘‹

Substituting 𝑆1 and 𝑆2 from (74) and (75), we obtain (77). Finally, kurtosis πœ…π‘‹ is (by definition) the standardized fourth (4) 4 (central) moment; that is, πœ…π‘‹ := Kurt[𝑋] = πœ‡π‘‹ /πœŽπ‘‹ , which provides, through Theorem 18, that

(84)

For the Log-Laplace case of 𝑋+∞ , it holds Mode 𝑋𝛾 = π‘’πœ‡ = Med 𝑋𝛾 ,

(85)

Journal of Probability and Statistics

13

provided that 𝜎 < 1, while for 𝜎 β‰₯ 1 we have πœ‡

Mode 𝑋𝛾 = 0 < 𝑒 = Med 𝑋𝛾 .

(86)

For 𝜎 = 1, the inequality (84) clearly holds. (ii) The negative-ordered Lognormal case 𝛾 < 0: from Proposition 4 the inequality as in (86) holds. Moreover, if Mode 𝑋𝛾 is considered as the nonsmooth local mode point of the negative-ordered 𝑋𝛾 then the equality as in (85) holds. From the above cases and (83), the corollary holds true. Corollary 23. The raw and central moments of a Log-Uniformly distributed random variable 𝑋 ∼ LU(π‘Ž, 𝑏), 0 < π‘Ž < 𝑏, are given by (𝑑) = πœ‡Μƒπ‘‹

𝑏𝑑 βˆ’ π‘Žπ‘‘ , 𝑑 log (𝑏/π‘Ž)

(π‘˜) πœ‡π‘‹ =

(π‘Ž βˆ’ 𝑏)π‘˜ logπ‘˜ (𝑏/π‘Ž)

𝑑 ∈ R, +

Thus, letting 𝑋 := 𝑋1 ∼ LN1 (πœ‡, 𝜎) = LU(π‘Ž, 𝑏) with πœ‡ = (1/2) log(π‘Žπ‘) and 𝜎 = (1/2) log(𝑏/π‘Ž), it holds (recall the exponential odd series expansion) that (𝑑) (𝑑) = lim+ πœ‡π‘‹ = πœ‡Μƒπ‘‹ 𝛾 𝛾→1

𝑑 ∈ R, (95) (1) and hence (87) holds. Moreover, πœ‡π‘‹ := πœ‡π‘‹ = E[𝑋] = (1/2𝜎) πœ‡+𝜎 πœ‡βˆ’πœŽ (𝑒 βˆ’ 𝑒 ), and therefore (89) holds. Working similarly, (67) implies π‘˜ πœ‡π‘‹ 𝑛 ∞ [(π‘˜ βˆ’ 𝑛) 𝜎]2π‘š π‘˜ (π‘˜) (π‘˜) π‘˜πœ‡ πœ‡π‘‹ , = lim+ πœ‡π‘‹ = 𝑒 ( ) βˆ‘ ) (βˆ’ βˆ‘ 𝛾 𝑛 𝛾→1 π‘’πœ‡ π‘š=0 (2π‘š + 1)! 𝑛=0

π‘˜ ∈ N. (96)

(87)

1 log (𝑏/π‘Ž)

Using the exponential odd series expansion, the above expansion becomes

𝑛 π‘˜βˆ’π‘› π‘˜βˆ’π‘› π‘˜βˆ’1 π‘˜ (π‘Ž βˆ’ 𝑏) (𝑏 βˆ’ π‘Ž ) , Γ—βˆ‘( ) 𝑛 𝑛 (π‘˜ βˆ’ 𝑛) log (𝑏/π‘Ž) 𝑛=0

π‘˜ ∈ N,

(π‘˜) πœ‡π‘‹ =

(88) respectively, while the mean, variance, coefficient of variation, skewness, and kurtosis of 𝑋 are given, respectively, by π‘βˆ’π‘Ž , log (𝑏/π‘Ž)

(89)

(𝑏 βˆ’ π‘Ž)2 (𝑏 βˆ’ π‘Ž) (𝑏 + π‘Ž) , + 2 2 log (𝑏/π‘Ž) log (𝑏/π‘Ž)

(90)

πœ‡π‘‹ = 2 πœŽπ‘‹ =

𝐢𝑉𝑋 = √ 1 + πœ†π‘‹ =

𝑏+π‘Ž 𝑏 log , 2 (𝑏 βˆ’ π‘Ž) π‘Ž

(𝑏 βˆ’ π‘Ž) (𝑏3 βˆ’ π‘Ž3 ) 1 𝑏4 βˆ’ π‘Ž4 [ βˆ’ 4 4 4 log (𝑏/π‘Ž) πœŽπ‘‹ 3 log2 (𝑏/π‘Ž) (𝑏 βˆ’ π‘Ž)3 (𝑏 + π‘Ž) (𝑏 βˆ’ π‘Ž)4 +3 βˆ’ 3 ]. log3 (𝑏/π‘Ž) log4 (𝑏/π‘Ž)

(93)

Corollary 24. The raw and central moments of a Log-Laplace distributed random variable 𝑋 ∼ LL(πœ‡, 𝜎, 𝜎) are given by (𝑑) = πœ‡Μƒπ‘‹

π›Ύβˆ’1 + 1) . 𝛾 (94)

πœ‡π‘‘ 𝜎2 > πœ‡π‘‘ , 𝜎2 βˆ’ 𝑑2

𝜎 > 𝑑, 𝑑 ∈ R,

π‘˜ 𝜎2(𝑛+1) π‘˜ (π‘˜) , = πœ‡π‘˜ βˆ‘ ( ) πœ‡π‘‹ 𝑛 (1 βˆ’ 𝜎2 )𝑛 [𝜎2 βˆ’ (π‘˜ βˆ’ 𝑛)2 ] 𝑛=0

(98)

𝜎 > π‘˜, π‘˜ ∈ N. (99)

The mean, variance, coefficient of variation, skewness, and kurtosis of 𝑋 are given, respectively, by πœ‡π‘‹ = 2 = πœŽπ‘‹

∞ 𝛾 2π‘š((π›Ύβˆ’1)/𝛾) π‘’π‘‘πœ‡ (π‘‘πœŽ)2π‘š+1 ) ( βˆ‘ π‘‘πœŽΞ“ ((𝛾 βˆ’ 1) /𝛾 + 1) π‘š=0 (2π‘š + 1)! 𝛾 βˆ’ 1

Γ— Ξ“ ((2π‘š + 1)

π‘˜ ∈ N,

2 := and, through (89), we obtain (88). Moreover, for π‘˜ = 2, πœŽπ‘‹ (2) 2 Var[𝑋] = πœ‡π‘‹ βˆ’ πœ‡π‘‹ implies (90), and hence (91) also holds. (3) (4) For π‘˜ = 3 and π‘˜ = 4, through πœ‡π‘‹ and πœ‡π‘‹ , we obtain (92) and (93), respectively.

Proof. Recall Proposition 16 with 𝑋𝛾 ∼ LN𝛾 (πœ‡, 𝜎). Through the gamma function additive identity (58) can be written as (𝑑) = πœ‡Μƒπ‘‹ 𝛾

πœ‡ 𝑛 𝑒(π‘˜βˆ’π‘›)𝜎 βˆ’ π‘’βˆ’(π‘˜βˆ’π‘›)𝜎 π‘’π‘˜πœ‡ π‘˜ π‘˜ , ) βˆ‘ ( ) (βˆ’ 𝑋 2𝜎 𝑛=0 𝑛 π‘’πœ‡ (π‘˜ βˆ’ 𝑛)

(97)

(91)

𝑏3 βˆ’ π‘Ž3 1 (𝑏 βˆ’ π‘Ž)2 (𝑏 + π‘Ž) (𝑏 βˆ’ π‘Ž)3 [ ], βˆ’3 +2 3 3 2 πœŽπ‘‹ 3 log (𝑏/π‘Ž) 2 log (𝑏/π‘Ž) log (𝑏/π‘Ž) (92)

πœ…π‘‹ =

π‘’π‘‘πœ‡ ∞ (π‘‘πœŽ)2π‘š+1 𝑒𝑑(πœ‡+𝜎) βˆ’ 𝑒𝑑(πœ‡βˆ’πœŽ) , = βˆ‘ π‘‘πœŽ π‘š=0 (2π‘š + 1)! 2π‘‘πœŽ

πœ‡2 𝜎2 (2𝜎2 + 1) (𝜎2 βˆ’ 4) (𝜎2 βˆ’ 1)

𝐢𝑉𝑋 = πœ†π‘‹ =

πœ‡πœŽ2 > πœ‡, 𝜎2 βˆ’ 1

1 √ 2𝜎2 + 1 , 𝜎 𝜎2 βˆ’ 4

2 (15𝜎4 + 7𝜎2 + 2) 𝜎 (𝜎2 βˆ’ 9)

√

2

𝜎 > 1,

(100)

,

(101)

𝜎 > 2,

(102)

𝜎 > 2,

𝜎2 βˆ’ 4 3

(2𝜎2 + 1)

,

𝜎 > 3,

(103)

14

Journal of Probability and Statistics

πœ…π‘‹ =

3 (8𝜎8 + 212𝜎6 + 95𝜎4 + 33𝜎2 + 12) (𝜎2 βˆ’ 4) (𝜎2

βˆ’

16) (𝜎2

βˆ’

9) (2𝜎2

2

+ 1)

,

(104)

𝜎 > 4. Proof. Let 𝑋𝛾 ∼ LL𝛾 (πœ‡, 𝜎, 𝜎) = LN𝛾 (log πœ‡, 1/𝜎, 1/𝜎). For 𝛾 = ±∞, that is, 𝛾/(𝛾 βˆ’ 1) = 1, the raw moments as in (58) provide ∞ 𝑑 2π‘˜ (𝑑) (𝑑) 𝑑 = πœ‡Μƒπ‘‹ = πœ‡ ( ) , πœ‡Μƒπ‘‹ βˆ‘ ±∞ 𝜎 π‘˜=0

Acknowledgment 𝑑 ∈ R,

(105)

as 𝑋 = π‘‹Β±βˆž , while through the even geometric series expansion, it is 1 𝑑 ∞ 𝑑 π‘˜ ∞ 𝑑 π‘˜ (𝑑) = [ ( + (βˆ’ πœ‡ ) ) ] πœ‡Μƒπ‘‹ βˆ‘ βˆ‘ ±∞ 2 𝜎 𝜎 π‘˜=0 π‘˜=0

(106)

𝜎 1 𝜎 = πœ‡π‘‘ ( + ), 2 πœŽβˆ’π‘‘ 𝜎+𝑑 provided that 𝜎 > 𝑑, and hence (98) holds. Moreover, πœ‡π‘‹ := (1) = E[𝑋], and hence (100) holds. πœ‡Μƒπ‘‹ Working similarly, (67) implies 𝑛

π‘˜ (βˆ’πœ‡π‘‹ /πœ‡) π‘˜ (π‘˜) = πœ‡π‘˜ 𝜎2 βˆ‘ ( ) , πœ‡π‘‹ 2 𝑛 𝜎 βˆ’ (π‘˜ βˆ’ 𝑛)2 𝑛=0

out, in which nonclosed forms as well as approximations were obtained and investigated in various examples. This generalized family of distributions derived through the family of the 𝛾-order normal distribution is based on a strong theoretical background as the logarithmic Sobolev inequalities provide. Further examinations and calculations can be produced while an application to real data is upcoming.

π‘˜ ∈ N,

(107)

provided 𝜎 > π‘˜, and hence, through (100), the central moments (99) are obtained. (2) 2 2 := Var[𝑋] = πœ‡Μƒπ‘‹ βˆ’ πœ‡π‘‹ , Moreover, for π‘˜ = 2 and due to πœŽπ‘‹ (101) holds true, while for π‘˜ = 3 and π‘˜ = 4 we derive, through (3) (4) and πœ‡π‘‹ , (103) and (104), respectively. πœ‡π‘‹ Example 25. For a uniformly distributed r.v. π‘ˆ ∼ U(π‘Ž, 𝑏) = N1 (πœ‡, 𝜎) with π‘Ž = πœ‡ βˆ’ 𝜎 and 𝑏 = πœ‡ + 𝜎, it holds that LU := π‘’π‘ˆ ∼ LU(π‘’πœ‡βˆ’πœŽ , π‘’πœ‡+𝜎 ) due to Theorem 3, and therefore LU is a Log-Uniform distributed r.v. as LU ∼ LU(π‘’π‘Ž , 𝑒𝑏 ). Applying (87), the known moment-generating function of the uniformly distributed π‘ˆ ∼ U(π‘Ž, 𝑏) is derived; that is, (𝑑) = (𝑒𝑑𝑏 βˆ’ π‘’π‘‘π‘Ž )(1/𝑑(𝑏 βˆ’ π‘Ž)). π‘€π‘ˆ(𝑑) := E[π‘’π‘‘π‘ˆ] = πœ‡ΜƒLU Similarly, for a Laplace distributed r.v. 𝐿 ∼ L(πœ‡, 𝜎) = N±∞ (πœ‡, 𝜎), it holds that LL := 𝑒𝐿 ∼ LL(π‘’πœ‡ , 1/𝜎, 1/𝜎) due to Theorem 3, and therefore LL is a Log-Laplace distributed random variable. Applying (98), we derive the known momentgenerating function of the Laplace distributed 𝐿 ∼ L(πœ‡, 𝜎); (𝑑) = π‘’π‘‘πœŽ (1 βˆ’ 𝑑2 𝜎2 )βˆ’1 . that is, 𝑀𝐿 (𝑑) := E[𝑒𝑑𝐿 ] = πœ‡ΜƒLL

4. Conclusion The family of the 𝛾-order Lognormal distributions was introduced, which under certain values of 𝛾 includes the Log-Uniform, Lognormal, and Log-Laplace distributions as well as the degenerate Dirac distribution. The shape of these distributions for positive and negative shape parameters 𝛾 as well as the cumulative distribution functions, was extensively discussed and evaluated through corresponding tables and figures. Moreover, a thorough study of moments was carried

The authors would like to thank the referee for his valuable comments that helped improve the quality of this paper.

References [1] E. L. Crow and K. Shimizu, Lognormal Distributions, Marcel Dekker, New York, NY, USA, 1988. [2] A. Parravano, N. Sanchez, and E. J. Alfaro, β€œThe Dependence of prestellar core mass distributions on the structure of the parental cloud,” The Astrophysical Journal, vol. 754, no. 2, article 150, 2012. [3] F. Bernardeau and L. Kofman, β€œProperties of the cosmological density distribution function,” Monthly Notices of the Royal Astronomical Society, vol. 443, pp. 479–498, 1995. [4] P. Blasi, S. Burles, and A. V. Olinto, β€œCosmological magnetic field limits in an inhomogeneous Universe,” The Astrophysical Journal Letters, vol. 514, no. 2, pp. L79–L82, 1999. [5] F. S. Kitaura, β€œNon-Gaussian gravitational clustering field statistics,” Monthly Notices of the Royal Astronomical Society, vol. 420, no. 4, pp. 2737–2755, 2012. [6] G. Yan and F. B. Hanson, β€œOption pricing for a stochasticvolatility jump-diffusion model with log-uniform jumpamplitudes,” in Proceedings of the American Control Conference, 2006. [7] T. J. Kozubowski and K. PodgΒ΄orski, β€œAsymmetric Laplace distributions,” The Mathematical Scientist, vol. 25, no. 1, pp. 37– 46, 2000. [8] T. J. Kozubowski and K. PodgΒ΄orski, β€œAsymmetric Laplace laws and modeling financial data,” Mathematical and Computer Modelling, vol. 34, no. 9–11, pp. 1003–1021, 2001. [9] M. Geraci and M. Bottai, β€œQuantile regression for longitudinal data using the asymmetric Laplace distribution,” Biostatistics, vol. 8, no. 1, pp. 140–154, 2007. [10] D. B. Madan, β€œThe variance gamma process and option pricing,” The European Financial Review, vol. 2, pp. 79–105, 1998. [11] C. P. Kitsos and N. K. Tavoularis, β€œLogarithmic Sobolev inequalities for information measures,” IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2554–2561, 2009. [12] C. P. Kitsos and N. K. Tavoularis, β€œNew entropy type information measures,” in Proceedings of the Information Technology Interfaces (ITI ’09), Cavtat, Croatia, June 2009. [13] C. P. Kitsos and T. L. Toulias, β€œNew information measures for the generalized normal distribution,” Information, vol. 1, no. 1, pp. 13–27, 2010. [14] C. P. Kitsos and T. L. Toulias, β€œEvaluating information measures for the -order Multivariate Gaussian,” in Proceedings by IEEE of the 14th Panhellenic Conference on Informatics (PCI ’10), pp. 153– 157, Tripoli, Greece, September 2010. [15] C. P. Kitsos, T. L. Toulias, and P. C. Trandafir, β€œOn the multivariate 𝛾-ordered normal distribution,” Far East Journal of Theoretical Statistics, vol. 38, no. 1, pp. 49–73, 2012.

Journal of Probability and Statistics [16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier, 2007. [17] F. C. Leone, L. S. Nelson, and R. B. Nottingham, β€œThe folded normal distribution,” Technometrics, vol. 3, pp. 543–550, 1961.

15

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014