organic compounds - Semantic Scholar

9 downloads 0 Views 289KB Size Report
c = 11.931 (2) A˚. V = 1477.3 (5) A˚3. Z = 4. Mo K radiation. = 0.40 mmА1. T = 113 K. 0.30 В 0.26 В 0.20 mm. Data collection. Rigaku Saturn diffractometer.
organic compounds ˚3 V = 1477.3 (5) A Z=4 Mo K radiation

Acta Crystallographica Section E

Structure Reports Online

 = 0.40 mm1 T = 113 K 0.30  0.26  0.20 mm

Data collection

ISSN 1600-5368

N-(2-Chlorophenyl)-2-(4,6-dimethylpyrimidin-2-ylsulfanyl)acetamide

Rigaku Saturn diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.890, Tmax = 0.925

8870 measured reflections 2573 independent reflections 2445 reflections with I > 2(I) Rint = 0.031

Refinement

Qiang Li,a Wei Wang,a* Hui Wang,b Yan Gaoa and Hong Qiua a

School of Chemical Engineering, University of Science and Technology, Liaoning Anshan 114051, People’s Republic of China, and bHermann Gmeiner Vocational Technical College, Qiqihar University, Heilongjiang, Qiqihar 161006, People’s Republic of China Correspondence e-mail: [email protected] Received 26 March 2009; accepted 28 March 2009

R[F 2 > 2(F 2)] = 0.024 wR(F 2) = 0.061 S = 1.07 2573 reflections 187 parameters 2 restraints

H atoms treated by a mixture of independent and constrained refinement ˚ 3 max = 0.17 e A ˚ 3 min = 0.20 e A Absolute structure: Flack (1983), 1199 Freidel pairs Flack parameter: 0.00 (5)

Table 1

˚; Key indicators: single-crystal X-ray study; T = 113 K; mean (C–C) = 0.003 A R factor = 0.024; wR factor = 0.061; data-to-parameter ratio = 13.8.

˚ ,  ). Hydrogen-bond geometry (A D—H  A i

In the title compound, C14H14ClN3OS, the 4,6-dimethylpyrimidine ring and the chlorobenzene ring subtend a dihedral angle of 80.0 (2) . The length of the Csp2—S bond is significantly shorter than that of the Csp3—S bond. The crystal structure is stabilized by intermolecular N—H  O, C—H  O and C—H  N hydrogen bonding, and C—H   interactions.

Related literature For bond-length data, see: Gao et al. (2007). For heteroatomrich compounds as effective precursors for active molecules, see: Huynh et al. (2005); Ye et al. (2006).

N1—H1  O1 C2—H2  O1ii C8—H8A  Cg1i C13—H13B  Cg1iii

D—H

H  A

D  A

D—H  A

0.873 (11) 0.93 0.97 0.96

2.054 (12) 2.46 2.92 2.99

2.8414 (18) 3.213 (2) 3.832 (2) 3.592 (2)

149.6 (18) 138 157 122

Symmetry codes: (i) x; y þ 1; z; (ii) x þ 1; y þ 2; z þ 12; (iii) x; y  1; z. Cg1 is the centroid of the N2/N3/C9–C12 ring.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); cell refinement: CrystalClear ; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Foundation of Liaoning Province (20071103) and the Key Laboratory Project (2008S127). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2755).

References

Experimental Crystal data C14H14ClN3OS Mr = 307.79 Orthorhombic, Pca21

Acta Cryst. (2009). E65, o959

˚ a = 26.494 (5) A ˚ b = 4.6736 (9) A ˚ c = 11.931 (2) A

Flack, H. D. (1983). Acta Cryst. A39, 876–881. Gao, Y., Liang, D., Gao, L.-X., Fang, G.-J. & Wang, W. (2007). Acta Cryst. E63, o4854. Huynh, M. H. V., Hiskey, M. A. & Archuleta, J. G. (2005). Angew Chem. Int. Ed. 44, 737–739. Molecular Structure Corporation & Rigaku (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Ye, C. F., Gao, H. X. & Boatz, J. A. (2006). Angew. Chem. Int. Ed. 45, 7262– 7265.

doi:10.1107/S1600536809011520

Li et al.

o959

supplementary materials

supplementary materials Acta Cryst. (2009). E65, o959

[ doi:10.1107/S1600536809011520 ]

N-(2-Chlorophenyl)-2-(4,6-dimethylpyrimidin-2-ylsulfanyl)acetamide Q. Li, W. Wang, H. Wang, Y. Gao and H. Qiu Comment The heteroatom-rich compounds have been intensively studied due to their applications including effective precursors for active molecule (Ye et al., 2006; Huynh et al., 2005). Now, we have synthesized the title compound, (I), from 4,6-dimethylpyrimidin-2-thiol with 2-chlorophenyl carbamic chloride. Here we report the crystal structure determination of the title compound. The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The molecule contains a benzene ring and a pyrimidine ring. The dihedral angle between the benzene ring and benzo[d]thiazole ring is 80.0 (2)°, which indicate the two rings are close to be perpendicular. Cl atom attached to the benzene ring is coplanar to the benzene ring with an r.m.s deviation of 0.0130 (3) Å. The deviations with the pyrimidine ring plane of C13 and C14 atoms are 0.0544 (3) and 0.0005 (3) Å, respectively. The C6—N1—C7—C8 torsion angle of 177.61 (15)° indicates that the acylamide group are nearly coplanar with the benzene ring plane. As a result of π-π conjugation, the Csp2—S bond [S1—C9 = 1.7646 (17) Å] is significantly shorter than the Csp3—S bond [S1—C8 = 1.7947 (17) Å]. These values compare with the values of 1.772 (3) and 1.801 (2) Å reported in the literature (Gao et al., 2007). The crystal structure is stabilized by inter molecular C—H···O and C—H···N hydrogen bonding, and C—H···π interactions (Table 1). Experimental The title compound was synthesized by the reaction of from the 4,6-dimethylpyrimidin-2-thiol with 2-chlorophenyl carbamic chloride in the refluxing ethanol. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform/acetone. Refinement The H atoms attached to N atom was located in a different density map and the atomic coordinates allowed to refine freely. Other H atoms were positioned geometrically and refined as riding (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent) or 1.5Ueq(parent).

Figures Fig. 1. View of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 35% probability level.

sup-1

supplementary materials N-(2-Chlorophenyl)-2-(4,6-dimethylpyrimidin-2-ylsulfanyl)acetamide Crystal data C14H14ClN3OS

F000 = 640

Mr = 307.79

Dx = 1.384 Mg m−3

Orthorhombic, Pca21 Hall symbol: P 2c -2ac a = 26.494 (5) Å b = 4.6736 (9) Å c = 11.931 (2) Å V = 1477.3 (5) Å3 Z=4

Mo Kα radiation λ = 0.71073 Å Cell parameters from 4682 reflections θ = 1.5–27.9º µ = 0.40 mm−1 T = 113 K Prism, colourless 0.30 × 0.26 × 0.20 mm

Data collection Rigaku Saturn diffractometer Radiation source: rotating anode

2573 independent reflections

Monochromator: confocal

2445 reflections with I > 2σ(I) Rint = 0.031

T = 113 K

θmax = 25.0º

ω scans

θmin = 1.5º

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.890, Tmax = 0.925 8870 measured reflections

h = −23→31 k = −5→5 l = −14→14

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.024

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0391P)2]

where P = (Fo2 + 2Fc2)/3

wR(F2) = 0.061

(Δ/σ)max = 0.001

S = 1.07

Δρmax = 0.17 e Å−3

2573 reflections

Δρmin = −0.20 e Å−3

187 parameters Extinction correction: none 2 restraints Absolute structure: Flack (1983), 1199 Freidel pairs Primary atom site location: structure-invariant direct Flack parameter: 0.00 (5) methods Secondary atom site location: difference Fourier map

sup-2

supplementary materials Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) S1 Cl1 O1 N1 N2 N3 C1 C2 H2 C3 H3 C4 H4 C5 H5 C6 C7 C8 H8A H8B C9 C10 C11 H11 C12 C13 H13A H13B H13C C14 H14A H14B H14C

x

y

z

Uiso*/Ueq

0.689926 (15) 0.53054 (2) 0.58637 (4) 0.55577 (5) 0.67886 (5) 0.74415 (5) 0.49282 (7) 0.44695 (7) 0.4361 0.41781 (7) 0.3873 0.43334 (7) 0.4134 0.47894 (6) 0.4891 0.50924 (6) 0.59151 (6) 0.63851 (6) 0.6495 0.6300 0.70557 (6) 0.75680 (6) 0.73123 (6) 0.7400 0.69218 (6) 0.80089 (7) 0.8046 0.7952 0.8311 0.66199 (8) 0.6604 0.6778 0.6285

1.07672 (8) 1.55461 (10) 0.8871 (2) 1.3204 (3) 1.0007 (3) 0.7412 (3) 1.3208 (4) 1.2326 (4) 1.3025 1.0427 (5) 0.9816 0.9406 (4) 0.8106 1.0334 (4) 0.9674 1.2233 (3) 1.1465 (3) 1.3054 (4) 1.4287 1.4267 0.9262 (3) 0.6156 (3) 0.6745 (4) 0.5841 0.8721 (4) 0.4138 (4) 0.3412 0.2576 0.5135 0.9520 (5) 1.1567 0.8745 0.8762

0.28992 (4) 0.63460 (4) 0.35668 (11) 0.40980 (12) 0.51049 (13) 0.41469 (12) 0.55761 (16) 0.60204 (17) 0.6710 0.5439 (2) 0.5740 0.44072 (19) 0.4017 0.39558 (18) 0.3256 0.45406 (14) 0.36648 (14) 0.32946 (15) 0.3901 0.2663 0.42103 (14) 0.51203 (15) 0.61057 (15) 0.6772 0.60723 (16) 0.50769 (18) 0.4329 0.5584 0.5291 0.70853 (18) 0.7146 0.7743 0.7016

0.02168 (11) 0.03848 (14) 0.0216 (3) 0.0193 (3) 0.0216 (3) 0.0198 (3) 0.0250 (4) 0.0353 (5) 0.042* 0.0403 (6) 0.048* 0.0350 (5) 0.042* 0.0254 (4) 0.031* 0.0204 (4) 0.0171 (3) 0.0233 (4) 0.028* 0.028* 0.0179 (3) 0.0201 (4) 0.0238 (4) 0.029* 0.0231 (4) 0.0280 (4) 0.042* 0.042* 0.042* 0.0363 (5) 0.054* 0.054* 0.054*

sup-3

supplementary materials H1

0.5635 (7)

1.500 (2)

0.4204 (17)

0.027 (5)*

Atomic displacement parameters (Å2) S1 Cl1 O1 N1 N2 N3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

U11 0.02112 (19) 0.0551 (3) 0.0241 (6) 0.0224 (7) 0.0201 (7) 0.0188 (7) 0.0303 (9) 0.0357 (11) 0.0226 (9) 0.0235 (10) 0.0239 (9) 0.0206 (9) 0.0207 (8) 0.0232 (8) 0.0179 (8) 0.0203 (9) 0.0256 (9) 0.0219 (9) 0.0269 (9) 0.0322 (11)

U22 0.0217 (2) 0.0323 (3) 0.0138 (6) 0.0105 (7) 0.0226 (7) 0.0180 (7) 0.0197 (9) 0.0317 (10) 0.0422 (13) 0.0342 (11) 0.0234 (9) 0.0163 (9) 0.0157 (8) 0.0168 (8) 0.0157 (8) 0.0171 (8) 0.0255 (9) 0.0282 (9) 0.0276 (10) 0.0547 (13)

U33 0.0222 (2) 0.0280 (3) 0.0270 (7) 0.0249 (8) 0.0221 (8) 0.0224 (8) 0.0251 (9) 0.0386 (12) 0.0560 (15) 0.0474 (14) 0.0290 (10) 0.0243 (9) 0.0150 (8) 0.0299 (10) 0.0203 (9) 0.0230 (10) 0.0203 (10) 0.0192 (10) 0.0294 (11) 0.0220 (11)

U12 0.00522 (16) 0.0023 (2) 0.0011 (5) −0.0024 (5) −0.0003 (6) −0.0013 (5) 0.0060 (7) 0.0123 (8) 0.0027 (9) −0.0054 (8) 0.0000 (7) 0.0042 (6) 0.0016 (6) 0.0042 (7) −0.0031 (6) −0.0046 (6) −0.0056 (7) −0.0072 (7) 0.0031 (7) 0.0013 (9)

U13 0.00482 (17) 0.0035 (2) 0.0005 (5) 0.0059 (6) 0.0016 (6) 0.0005 (6) 0.0049 (7) 0.0153 (9) 0.0127 (9) −0.0060 (9) −0.0017 (8) 0.0028 (7) −0.0026 (6) 0.0048 (7) 0.0001 (7) −0.0050 (7) −0.0047 (7) 0.0004 (6) −0.0037 (8) 0.0024 (8)

U23 0.0057 (2) −0.0090 (2) −0.0002 (5) −0.0004 (6) −0.0034 (7) 0.0008 (6) 0.0054 (8) 0.0113 (9) 0.0221 (11) 0.0125 (10) 0.0070 (8) 0.0052 (7) 0.0016 (7) 0.0043 (7) −0.0007 (7) 0.0011 (7) 0.0038 (8) −0.0042 (8) 0.0038 (8) −0.0055 (9)

Geometric parameters (Å, °) S1—C9 S1—C8 Cl1—C1 O1—C7 N1—C7 N1—C6 N1—H1 N2—C9 N2—C12 N3—C9 N3—C10 C1—C6 C1—C2 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5

1.7646 (17) 1.7947 (17) 1.742 (2) 1.2252 (19) 1.351 (2) 1.416 (2) 0.874 (9) 1.327 (2) 1.348 (2) 1.341 (2) 1.344 (2) 1.387 (2) 1.388 (3) 1.365 (3) 0.9300 1.383 (3) 0.9300 1.392 (3)

C4—H4 C5—C6 C5—H5 C7—C8 C8—H8A C8—H8B C10—C11 C10—C13 C11—C12 C11—H11 C12—C14 C13—H13A C13—H13B C13—H13C C14—H14A C14—H14B C14—H14C

0.9300 1.385 (3) 0.9300 1.516 (2) 0.9700 0.9700 1.385 (3) 1.502 (3) 1.387 (2) 0.9300 1.497 (3) 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600

C9—S1—C8 C7—N1—C6

100.53 (8) 124.06 (14)

S1—C8—H8A C7—C8—H8B

108.7 108.7

sup-4

supplementary materials C7—N1—H1 C6—N1—H1 C9—N2—C12 C9—N3—C10 C6—C1—C2 C6—C1—Cl1 C2—C1—Cl1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3 C3—C4—C5 C3—C4—H4 C5—C4—H4 C6—C5—C4 C6—C5—H5 C4—C5—H5 C5—C6—C1 C5—C6—N1 C1—C6—N1 O1—C7—N1 O1—C7—C8 N1—C7—C8 C7—C8—S1 C7—C8—H8A

117.9 (13) 117.4 (13) 115.58 (14) 115.01 (14) 121.14 (18) 119.72 (14) 119.13 (16) 119.6 (2) 120.2 120.2 120.55 (19) 119.7 119.7 119.7 (2) 120.2 120.2 120.50 (19) 119.8 119.8 118.53 (16) 121.47 (16) 120.00 (16) 123.63 (14) 123.26 (14) 113.10 (14) 114.09 (12) 108.7

S1—C8—H8B H8A—C8—H8B N2—C9—N3 N2—C9—S1 N3—C9—S1 N3—C10—C11 N3—C10—C13 C11—C10—C13 C10—C11—C12 C10—C11—H11 C12—C11—H11 N2—C12—C11 N2—C12—C14 C11—C12—C14 C10—C13—H13A C10—C13—H13B H13A—C13—H13B C10—C13—H13C H13A—C13—H13C H13B—C13—H13C C12—C14—H14A C12—C14—H14B H14A—C14—H14B C12—C14—H14C H14A—C14—H14C H14B—C14—H14C

108.7 107.6 128.40 (15) 118.89 (12) 112.71 (12) 121.67 (15) 116.00 (15) 122.32 (16) 118.23 (16) 120.9 120.9 121.10 (16) 116.10 (16) 122.79 (17) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

C6—C1—C2—C3 Cl1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C4—C5—C6—C1 C4—C5—C6—N1 C2—C1—C6—C5 Cl1—C1—C6—C5 C2—C1—C6—N1 Cl1—C1—C6—N1 C7—N1—C6—C5 C7—N1—C6—C1 C6—N1—C7—O1 C6—N1—C7—C8 O1—C7—C8—S1

1.2 (3) −178.03 (15) −0.8 (3) −0.3 (3) 1.1 (3) −0.7 (3) 179.97 (16) −0.4 (3) 178.80 (13) 178.91 (16) −1.9 (2) −48.9 (2) 131.82 (18) 3.2 (3) −177.61 (15) −9.1 (2)

N1—C7—C8—S1 C9—S1—C8—C7 C12—N2—C9—N3 C12—N2—C9—S1 C10—N3—C9—N2 C10—N3—C9—S1 C8—S1—C9—N2 C8—S1—C9—N3 C9—N3—C10—C11 C9—N3—C10—C13 N3—C10—C11—C12 C13—C10—C11—C12 C9—N2—C12—C11 C9—N2—C12—C14 C10—C11—C12—N2 C10—C11—C12—C14

171.73 (12) −68.05 (14) −0.4 (3) 178.49 (12) 0.4 (2) −178.57 (11) 0.91 (15) 179.98 (11) 0.4 (2) −178.32 (14) −1.0 (2) 177.59 (16) −0.3 (2) −179.39 (16) 1.0 (2) 179.99 (17)

Hydrogen-bond geometry (Å, °) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1···O1i

0.873 (11)

2.054 (12)

2.8414 (18)

149.6 (18)

sup-5

supplementary materials C2—H2···O1ii i

C8—H8A···Cg1

iii

0.93

2.46

3.213 (2)

138

0.97

2.92

3.832 (2)

157

2.99

3.592 (2)

122

0.96 C13—H13B···Cg1 Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, z+1/2; (iii) x, y−1, z.

sup-6

supplementary materials Fig. 1

sup-7