organic compounds

0 downloads 0 Views 479KB Size Report
Nov 10, 2012 - In the title compound, C40H34N2O2, the central piperidine ring adopts a half-chair conformation and the fused pyrrolidine rings adopt twisted ...
organic compounds ˚ b = 7.7245 (1) A ˚ c = 26.9686 (3) A  = 92.596 (1) ˚3 V = 2927.60 (7) A Z=4

Acta Crystallographica Section E

Structure Reports Online ISSN 1600-5368

Mo K radiation  = 0.08 mm1 T = 293 K 0.21  0.15  0.13 mm

Data collection

2-Hydroxy-5-[(E)-2-methylbenzylidene]8-(2-methylphenyl)-9-phenyl-3,10-diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(20),12,14,16,18-pentaen-6one Abdulrahman I. Almansour,a Raju Suresh Kumar,a Natarajan Arumugam,a Hasnah Osmanb and J. Sureshc*

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.973, Tmax = 0.978

33520 measured reflections 8777 independent reflections 6575 reflections with I > 2(I) Rint = 0.047

Refinement R[F 2 > 2(F 2)] = 0.054 wR(F 2) = 0.137 S = 1.02 8777 reflections 404 parameters

H atoms treated by a mixture of independent and constrained refinement ˚ 3 max = 0.48 e A ˚ 3 min = 0.27 e A

a

Department of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Physics, The Madura College, Madurai 625 011, India Correspondence e-mail: [email protected]

Table 1 ˚ ,  ). Hydrogen-bond geometry (A D—H  A i

Received 24 October 2012; accepted 10 November 2012 ˚; Key indicators: single-crystal X-ray study; T = 293 K; mean (C–C) = 0.002 A R factor = 0.054; wR factor = 0.137; data-to-parameter ratio = 21.7.

O2—H2  O1 C1—H1A  O2ii C57—H57B  O1 N2—H2A  O2

D—H

H  A

D  A

0.82 0.97 0.96 0.92 (2)

2.02 2.46 2.59 2.27 (2)

2.7828 3.3040 3.3859 2.8016

D—H  A (15) (16) (18) (18)

155 145 141 117 (2)

Symmetry codes: (i) x; y  1; z; (ii) x; y þ 12; z þ 12.

In the title compound, C40H34N2O2, the central piperidine ring adopts a half-chair conformation and the fused pyrrolidine rings adopt twisted envelope (with the C atom bearing the methylphenyl ring as the flap atom) and envelope (with the C atom bound to the N atom, common to the pyridinone and pyrrolidine rings being the flap atom) conformations. The molecular structure features weak intramolecular N—H  O and C—H  O interactions. In the crystal, O—H  O hydrogen bonds generate a C(7) chain along the b-axis direction. C—H  O interactions also occur.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This project was supported by the Research Center, College of Science, King Saud University. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2453).

Related literature For hydrogen-bond motifs, see: Bernstein et al. (1995). For similar structures, see: Kumar et al. (2010, 2011, 2012). For the importance of pyrrolidine, see: Asano et al. (2000); Shorvon (2001); Watson et al. (2001); Winchester & Fleet (1992). For puckering parameters, see: Cremer & Pople (1975).

Experimental Crystal data C40H34N2O2 Mr = 574.69

Acta Cryst. (2012). E68, o3375

Monoclinic, P21 =c ˚ a = 14.0679 (2) A

References Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o3045. Kumar, R. S., Osman, H., Rahim, A. S. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o2881–o2882. Kumar, R. S., Osman, H., Almansour, A. I., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2094–o2095. Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Shorvon, S. (2001). Lancet, 358, 1885–92. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210.

doi:10.1107/S160053681204648X

Almansour et al.

o3375

supplementary materials

supplementary materials Acta Cryst. (2012). E68, o3375

[doi:10.1107/S160053681204648X]

2-Hydroxy-5-[(E)-2-methylbenzylidene]-8-(2-methylphenyl)-9-phenyl-3,10-diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(20),12,14,16,18-pentaen-6one Abdulrahman I. Almansour, Raju Suresh Kumar, Natarajan Arumugam, Hasnah Osman and J. Suresh Comment The pyrrolidine ring system has been the subject of research for more than three decades. Many natural and synthetic compounds with pyrrolidine moieties have received much attention because of their remarkable biological properties (Shorvon, 2001; Watson et al., 2001; Asano et al., 2000; Winchester et al., 1992). Recognizing the importance of such compounds in drug discovery and as a part of our ongoing research in the construction of novel heterocycles, has prompted us to investigate the 1,3-dipolar cycloaddition of bisarylmethylidene pyridinones with azomethine ylide generated in situ from acenaphthenequinone and proline, we and report the crystal structure of the resulting pyrrolidine cyclo-adduct in this paper. In the title compound,C40H34N2 O2, the piperidine ring (N1/C1—C4/C9) adopts a half-chair conformation [Q = 0.6188 (2) Å, θ = 142.52 (2)°, φ = 123.6 (2)°; Cremer & Pople, 1975] which is in close agreement with those of the other related structures (Kumar et al. 2010; Kumar et al.2011; Kumar et al. 2012). The two fused pyrrolidine rings with atom sequences (N1/C4/C7—C9) and (N2/C4—C7), adopt a twisted envelope conformation (C9 atom as the flap) and an envelope conformation (C5 atom as the flap) respectively. The puckering parameters are Q = 0.4648 (15) Å, φ =325.20 (19)° for the N1/C4/C7—C9) pyrrolidine ring and Q = 0.3918 (16) Å, φ = 77.9 (2)° for the (N2/C4—C7) pyrrolidine ring. In the structure, the aryl ring C22—C27 is not coplanar with the mean plane of the piperidone ring [torsion angle C1—C2 —C21—C22 is 5.77 (3)] °, which is due to non-bonded interactions between one of the ortho H atoms in the aryl ring and the equatorial H atom at the 2-position of the piperidone ring (H12A/H1A or H1B). The molecular structure features weak intra-molecular N—H···O and C—H···O interactions. Intermolecular O2— H2···O1 bonds form an infinite one-dimensional chain parallel to the b axis, in a C11(7) motif (Bernstein et al., 1995). Experimental A mixture of 3,5-bis[(E)-(2-methylphenyl)methylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and phenylglycine (1 mmol) were dissolved in methanol (5 ml) and refluxed in a water bath for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallization from ethyl acetate. Yield 89%, melting point 212–213°C

Acta Cryst. (2012). E68, o3375

sup-1

supplementary materials Refinement H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å and O— H = 0.82 Å. Uiso = 1.2Ueq(C) for CH CH2 groups and Uiso = 1.5Ueq(C) for OH and CH3 groups. Computing details Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1 The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Acta Cryst. (2012). E68, o3375

sup-2

supplementary materials

Figure 2 A packing diagram viewed roughly down the a-axis, showing the H-bond motif C11(7). 2-Hydroxy-5-[(E)-2-methylbenzylidene]-8-(2-methylphenyl)-9-phenyl- 3,10diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa- 1(20),12,14,16,18-pentaen-6-one Crystal data C40H34N2O2 Mr = 574.69 Monoclinic, P21/c Hall symbol: -P 2ybc a = 14.0679 (2) Å b = 7.7245 (1) Å c = 26.9686 (3) Å β = 92.596 (1)° V = 2927.60 (7) Å3 Z=4

F(000) = 1216 Dx = 1.304 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 2000 reflections θ = 2–31° µ = 0.08 mm−1 T = 293 K Block, colourless 0.21 × 0.15 × 0.13 mm

Data collection Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.2 pixels mm-1 ω and φ scans

Acta Cryst. (2012). E68, o3375

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.973, Tmax = 0.978 33520 measured reflections 8777 independent reflections 6575 reflections with I > 2σ(I)

sup-3

supplementary materials k = −10→10 l = −38→38

Rint = 0.047 θmax = 30.4°, θmin = 1.5° h = −20→19 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.054 wR(F2) = 0.137 S = 1.02 8777 reflections 404 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0605P)2 + 1.2845P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.48 e Å−3 Δρmin = −0.27 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

H2A C1 H1A H1B C2 C3 C4 C5 H5 C6 H6 C7 C8 C9 H9A H9B C10 C11 C12 C13 H13 C14

x

y

z

Uiso*/Ueq

0.1618 (13) −0.08779 (9) −0.0948 −0.1485 −0.06395 (9) 0.03856 (9) 0.10336 (9) 0.20821 (9) 0.2092 0.24693 (9) 0.2609 0.07621 (9) −0.00249 (9) 0.07764 (9) 0.1241 0.0740 −0.08848 (9) −0.06725 (9) 0.02524 (9) 0.05395 (10) 0.1141 −0.01019 (11)

−0.048 (3) 0.3112 (2) 0.3696 0.2587 0.4456 (2) 0.4691 (2) 0.31845 (19) 0.34675 (19) 0.3925 0.1597 (2) 0.1174 0.15392 (19) 0.06007 (19) 0.2551 (2) 0.1725 0.3515 0.0412 (2) 0.1136 (2) 0.18289 (19) 0.2586 (2) 0.3078 0.2604 (2)

0.1407 (7) 0.19923 (5) 0.2307 0.1897 0.16030 (5) 0.14943 (4) 0.16240 (5) 0.15125 (5) 0.1174 0.14945 (5) 0.1833 0.13098 (5) 0.16306 (5) 0.21505 (5) 0.2282 0.2379 0.12769 (5) 0.08159 (5) 0.08079 (5) 0.03803 (5) 0.0367 −0.00437 (5)

0.021 (5)* 0.0140 (3) 0.017* 0.017* 0.0138 (3) 0.0130 (3) 0.0120 (3) 0.0123 (3) 0.015* 0.0136 (3) 0.016* 0.0116 (3) 0.0124 (3) 0.0139 (3) 0.017* 0.017* 0.0135 (3) 0.0133 (3) 0.0127 (3) 0.0167 (3) 0.020* 0.0202 (3)

Acta Cryst. (2012). E68, o3375

sup-4

supplementary materials H14 C15 H15 C16 C17 H17 C18 H18 C19 H19 C21 H21 C22 C23 H23 C24 H24 C25 H25 C26 H26 C27 C28 H28A H28B H28C C51 C52 H52 C53 H53 C54 H54 C55 H55 C56 C57 H57A H57B H57C C61 C62 H62 C63 H63 C64 H64 C65 H65

0.0096 −0.10010 (10) −0.1397 −0.13281 (10) −0.22466 (10) −0.2712 −0.24517 (10) −0.3058 −0.17692 (10) −0.1917 −0.12729 (9) −0.1016 −0.23170 (9) −0.27629 (10) −0.2399 −0.37414 (10) −0.4026 −0.42886 (10) −0.4944 −0.38589 (10) −0.4235 −0.28759 (10) −0.24307 (11) −0.2917 −0.1979 −0.2112 0.26791 (9) 0.28521 (10) 0.2572 0.34327 (11) 0.3548 0.38370 (11) 0.4216 0.36716 (10) 0.3942 0.31087 (9) 0.30179 (10) 0.3332 0.2357 0.3307 0.33606 (9) 0.42569 (10) 0.4307 0.50781 (10) 0.5672 0.50103 (10) 0.5558 0.41180 (10) 0.4069

Acta Cryst. (2012). E68, o3375

0.3098 0.1918 (2) 0.1938 0.1180 (2) 0.0493 (2) 0.0515 −0.0208 (2) −0.0645 −0.0282 (2) −0.0790 0.5353 (2) 0.6046 0.5386 (2) 0.5428 (2) 0.5296 0.5663 (2) 0.5730 0.5797 (2) 0.5943 0.5714 (2) 0.5781 0.5533 (2) 0.5548 (3) 0.5402 0.4620 0.6633 0.4681 (2) 0.4299 (2) 0.3323 0.5341 (3) 0.5050 0.6815 (2) 0.7533 0.7212 (2) 0.8206 0.6156 (2) 0.6591 (2) 0.7671 0.6686 0.5692 0.1507 (2) 0.1631 (2) 0.1691 0.1664 (2) 0.1750 0.1570 (2) 0.1591 0.1444 (2) 0.1382

−0.0336 −0.00362 (5) −0.0322 0.04057 (5) 0.04838 (5) 0.0228 0.09376 (6) 0.0981 0.13393 (5) 0.1639 0.13163 (5) 0.1074 0.13336 (5) 0.17870 (5) 0.2081 0.18048 (6) 0.2109 0.13671 (6) 0.1376 0.09141 (6) 0.0622 0.08876 (5) 0.03907 (5) 0.0133 0.0376 0.0346 0.18393 (5) 0.23427 (5) 0.2476 0.26488 (6) 0.2981 0.24562 (6) 0.2659 0.19578 (6) 0.1830 0.16419 (5) 0.10950 (5) 0.1037 0.0993 0.0908 0.11991 (5) 0.14398 (5) 0.1784 0.11694 (6) 0.1334 0.06563 (6) 0.0475 0.04118 (5) 0.0067

0.024* 0.0196 (3) 0.024* 0.0163 (3) 0.0201 (3) 0.024* 0.0206 (3) 0.025* 0.0170 (3) 0.020* 0.0152 (3) 0.018* 0.0159 (3) 0.0184 (3) 0.022* 0.0233 (3) 0.028* 0.0257 (4) 0.031* 0.0235 (3) 0.028* 0.0181 (3) 0.0240 (3) 0.036* 0.036* 0.036* 0.0144 (3) 0.0195 (3) 0.023* 0.0245 (4) 0.029* 0.0242 (3) 0.029* 0.0215 (3) 0.026* 0.0162 (3) 0.0214 (3) 0.032* 0.032* 0.032* 0.0140 (3) 0.0176 (3) 0.021* 0.0216 (3) 0.026* 0.0222 (3) 0.027* 0.0211 (3) 0.025*

sup-5

supplementary materials C66 H66 N1 N2 O1 O2 H2

0.33007 (10) 0.2708 −0.01604 (8) 0.16681 (8) 0.06835 (7) 0.03037 (7) 0.0298

0.1409 (2) 0.1319 0.17311 (17) 0.06105 (18) 0.60208 (15) −0.09871 (14) −0.1727

0.06832 (5) 0.0518 0.20624 (4) 0.12630 (4) 0.13039 (4) 0.18344 (3) 0.1616

0.0176 (3) 0.021* 0.0136 (2) 0.0148 (2) 0.0166 (2) 0.0162 (2) 0.024*

Atomic displacement parameters (Å2)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C21 C22 C23 C24 C25 C26 C27 C28 C51 C52 C53 C54 C55 C56 C57 C61 C62 C63 C64 C65

U11

U22

U33

U12

U13

U23

0.0134 (5) 0.0136 (5) 0.0138 (5) 0.0118 (5) 0.0117 (5) 0.0121 (5) 0.0116 (5) 0.0134 (5) 0.0143 (5) 0.0137 (5) 0.0148 (5) 0.0146 (5) 0.0171 (6) 0.0259 (7) 0.0239 (7) 0.0173 (6) 0.0159 (6) 0.0147 (6) 0.0169 (6) 0.0137 (6) 0.0138 (6) 0.0178 (6) 0.0186 (6) 0.0138 (6) 0.0167 (6) 0.0163 (6) 0.0237 (7) 0.0117 (5) 0.0183 (6) 0.0227 (7) 0.0197 (6) 0.0174 (6) 0.0127 (5) 0.0201 (6) 0.0123 (5) 0.0157 (6) 0.0126 (6) 0.0159 (6) 0.0205 (6)

0.0153 (7) 0.0135 (7) 0.0159 (7) 0.0132 (7) 0.0135 (7) 0.0158 (7) 0.0122 (7) 0.0130 (7) 0.0166 (7) 0.0126 (7) 0.0131 (7) 0.0121 (7) 0.0188 (8) 0.0240 (9) 0.0224 (8) 0.0162 (7) 0.0220 (9) 0.0216 (8) 0.0167 (7) 0.0158 (7) 0.0144 (7) 0.0180 (8) 0.0236 (9) 0.0261 (9) 0.0239 (9) 0.0163 (8) 0.0296 (10) 0.0157 (7) 0.0236 (8) 0.0336 (10) 0.0270 (9) 0.0176 (8) 0.0156 (7) 0.0212 (8) 0.0129 (7) 0.0200 (8) 0.0255 (9) 0.0252 (9) 0.0260 (9)

0.0134 (6) 0.0143 (6) 0.0092 (5) 0.0108 (5) 0.0119 (5) 0.0127 (5) 0.0109 (5) 0.0109 (5) 0.0109 (5) 0.0142 (6) 0.0121 (5) 0.0115 (5) 0.0143 (6) 0.0109 (6) 0.0122 (6) 0.0151 (6) 0.0218 (7) 0.0255 (7) 0.0175 (6) 0.0163 (6) 0.0197 (6) 0.0198 (6) 0.0282 (7) 0.0373 (9) 0.0293 (8) 0.0215 (7) 0.0187 (7) 0.0158 (6) 0.0165 (6) 0.0170 (6) 0.0256 (7) 0.0296 (8) 0.0203 (6) 0.0227 (7) 0.0167 (6) 0.0169 (6) 0.0265 (7) 0.0260 (7) 0.0172 (6)

0.0008 (5) −0.0004 (5) −0.0001 (5) 0.0000 (5) 0.0002 (5) 0.0008 (5) 0.0004 (5) −0.0002 (5) −0.0003 (5) 0.0008 (5) 0.0010 (5) 0.0012 (5) −0.0002 (6) 0.0033 (7) 0.0059 (6) 0.0025 (6) 0.0012 (6) −0.0025 (6) −0.0023 (6) 0.0006 (6) 0.0007 (6) 0.0013 (6) 0.0004 (6) 0.0003 (6) −0.0004 (6) 0.0008 (6) 0.0060 (7) −0.0001 (5) −0.0053 (6) −0.0058 (7) −0.0039 (7) −0.0025 (6) 0.0012 (6) −0.0030 (6) 0.0017 (5) 0.0008 (6) 0.0003 (6) 0.0004 (6) 0.0006 (7)

0.0025 (4) 0.0016 (4) 0.0002 (4) 0.0002 (4) 0.0002 (4) −0.0003 (4) 0.0007 (4) 0.0014 (4) 0.0005 (4) 0.0003 (4) 0.0004 (4) 0.0006 (4) 0.0027 (5) 0.0018 (5) −0.0034 (5) −0.0021 (5) −0.0048 (5) 0.0006 (5) 0.0038 (5) 0.0020 (4) 0.0016 (5) 0.0033 (5) 0.0080 (5) 0.0031 (6) −0.0043 (5) −0.0004 (5) 0.0003 (5) 0.0009 (4) 0.0004 (5) −0.0006 (5) −0.0016 (5) 0.0007 (5) 0.0015 (5) −0.0003 (5) 0.0001 (4) −0.0013 (5) −0.0011 (5) 0.0064 (5) 0.0038 (5)

−0.0012 (5) −0.0029 (5) −0.0025 (5) −0.0006 (5) −0.0007 (5) 0.0000 (5) −0.0009 (5) 0.0005 (5) −0.0016 (5) −0.0016 (5) −0.0024 (5) −0.0021 (5) −0.0002 (6) 0.0017 (6) −0.0011 (6) −0.0039 (6) −0.0062 (6) −0.0049 (6) −0.0022 (6) −0.0006 (6) −0.0003 (6) 0.0000 (6) −0.0007 (7) 0.0000 (7) 0.0018 (7) 0.0009 (6) 0.0008 (7) −0.0035 (5) −0.0009 (6) −0.0054 (7) −0.0110 (7) −0.0030 (7) −0.0012 (6) 0.0056 (6) 0.0000 (5) 0.0001 (6) −0.0006 (7) −0.0039 (7) −0.0035 (6)

Acta Cryst. (2012). E68, o3375

sup-6

supplementary materials C66 N1 N2 O1 O2

0.0148 (6) 0.0140 (5) 0.0119 (5) 0.0160 (4) 0.0228 (5)

0.0221 (8) 0.0158 (6) 0.0143 (6) 0.0152 (5) 0.0121 (5)

0.0158 (6) 0.0109 (5) 0.0183 (5) 0.0188 (5) 0.0137 (4)

0.0006 (6) −0.0001 (5) 0.0006 (5) 0.0001 (4) 0.0018 (4)

−0.0002 (5) 0.0009 (4) 0.0005 (4) 0.0024 (3) 0.0008 (4)

−0.0023 (6) −0.0016 (5) −0.0024 (5) 0.0014 (4) 0.0007 (4)

Geometric parameters (Å, º) C1—N1 C1—C2 C1—H1A C1—H1B C2—C21 C2—C3 C3—O1 C3—C4 C4—C5 C4—C9 C4—C7 C5—C51 C5—C6 C5—H5 C6—N2 C6—C61 C6—H6 C7—N2 C7—C12 C7—C8 C8—O2 C8—N1 C8—C10 C9—N1 C9—H9A C9—H9B C10—C19 C10—C11 C11—C12 C11—C16 C12—C13 C13—C14 C13—H13 C14—C15 C14—H14 C15—C16 C15—H15 C16—C17 C17—C18 C17—H17 C18—C19 C18—H18 Acta Cryst. (2012). E68, o3375

1.4750 (18) 1.524 (2) 0.9700 0.9700 1.3451 (19) 1.4956 (17) 1.2303 (18) 1.510 (2) 1.5343 (17) 1.5598 (18) 1.565 (2) 1.5146 (19) 1.546 (2) 0.9800 1.4757 (18) 1.5173 (18) 0.9800 1.4730 (17) 1.5192 (18) 1.6082 (18) 1.4131 (17) 1.4747 (17) 1.5133 (18) 1.4718 (17) 0.9700 0.9700 1.3721 (18) 1.4073 (18) 1.4082 (18) 1.4083 (18) 1.3703 (18) 1.4241 (19) 0.9300 1.372 (2) 0.9300 1.417 (2) 0.9300 1.421 (2) 1.380 (2) 0.9300 1.416 (2) 0.9300

C21—C22 C21—H21 C22—C23 C22—C27 C23—C24 C23—H23 C24—C25 C24—H24 C25—C26 C25—H25 C26—C27 C26—H26 C27—C28 C28—H28A C28—H28B C28—H28C C51—C52 C51—C56 C52—C53 C52—H52 C53—C54 C53—H53 C54—C55 C54—H54 C55—C56 C55—H55 C56—C57 C57—H57A C57—H57B C57—H57C C61—C66 C61—C62 C62—C63 C62—H62 C63—C64 C63—H63 C64—C65 C64—H64 C65—C66 C65—H65 C66—H66 N2—H2A

1.4720 (18) 0.9300 1.3997 (19) 1.4113 (19) 1.3916 (19) 0.9300 1.384 (2) 0.9300 1.389 (2) 0.9300 1.3950 (19) 0.9300 1.505 (2) 0.9600 0.9600 0.9600 1.3997 (19) 1.405 (2) 1.391 (2) 0.9300 1.384 (3) 0.9300 1.388 (2) 0.9300 1.399 (2) 0.9300 1.512 (2) 0.9600 0.9600 0.9600 1.3921 (18) 1.3951 (18) 1.3940 (19) 0.9300 1.385 (2) 0.9300 1.395 (2) 0.9300 1.3910 (19) 0.9300 0.9300 0.93 (2)

sup-7

supplementary materials C19—H19

0.9300

O2—H2

0.8200

N1—C1—C2 N1—C1—H1A C2—C1—H1A N1—C1—H1B C2—C1—H1B H1A—C1—H1B C21—C2—C3 C21—C2—C1 C3—C2—C1 O1—C3—C2 O1—C3—C4 C2—C3—C4 C3—C4—C5 C3—C4—C9 C5—C4—C9 C3—C4—C7 C5—C4—C7 C9—C4—C7 C51—C5—C4 C51—C5—C6 C4—C5—C6 C51—C5—H5 C4—C5—H5 C6—C5—H5 N2—C6—C61 N2—C6—C5 C61—C6—C5 N2—C6—H6 C61—C6—H6 C5—C6—H6 N2—C7—C12 N2—C7—C4 C12—C7—C4 N2—C7—C8 C12—C7—C8 C4—C7—C8 O2—C8—N1 O2—C8—C10 N1—C8—C10 O2—C8—C7 N1—C8—C7 C10—C8—C7 N1—C9—C4 N1—C9—H9A C4—C9—H9A N1—C9—H9B C4—C9—H9B

114.20 (10) 108.7 108.7 108.7 108.7 107.6 116.37 (12) 125.87 (12) 117.52 (12) 122.21 (13) 121.78 (12) 116.00 (12) 114.87 (12) 106.86 (10) 119.19 (10) 111.75 (10) 102.88 (10) 100.20 (11) 119.13 (11) 114.20 (11) 102.49 (11) 106.7 106.7 106.7 112.81 (11) 103.45 (10) 111.10 (12) 109.8 109.8 109.8 111.75 (10) 104.53 (10) 117.16 (12) 116.49 (12) 103.71 (10) 103.41 (10) 104.98 (10) 113.56 (12) 115.24 (11) 112.30 (10) 105.94 (11) 104.74 (10) 103.36 (10) 111.1 111.1 111.1 111.1

C18—C19—H19 C2—C21—C22 C2—C21—H21 C22—C21—H21 C23—C22—C27 C23—C22—C21 C27—C22—C21 C24—C23—C22 C24—C23—H23 C22—C23—H23 C25—C24—C23 C25—C24—H24 C23—C24—H24 C24—C25—C26 C24—C25—H25 C26—C25—H25 C25—C26—C27 C25—C26—H26 C27—C26—H26 C26—C27—C22 C26—C27—C28 C22—C27—C28 C27—C28—H28A C27—C28—H28B H28A—C28—H28B C27—C28—H28C H28A—C28—H28C H28B—C28—H28C C52—C51—C56 C52—C51—C5 C56—C51—C5 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53 C53—C54—C55 C53—C54—H54 C55—C54—H54 C54—C55—C56 C54—C55—H55 C56—C55—H55 C55—C56—C51 C55—C56—C57 C51—C56—C57 C56—C57—H57A

120.7 128.81 (13) 115.6 115.6 119.23 (13) 121.02 (13) 119.51 (12) 121.09 (14) 119.5 119.5 119.56 (14) 120.2 120.2 119.97 (14) 120.0 120.0 121.44 (14) 119.3 119.3 118.67 (13) 119.89 (13) 121.42 (12) 109.5 109.5 109.5 109.5 109.5 109.5 118.67 (13) 120.07 (13) 121.18 (12) 121.65 (15) 119.2 119.2 119.58 (15) 120.2 120.2 119.42 (15) 120.3 120.3 121.76 (16) 119.1 119.1 118.88 (13) 118.99 (14) 122.07 (13) 109.5

Acta Cryst. (2012). E68, o3375

sup-8

supplementary materials H9A—C9—H9B C19—C10—C11 C19—C10—C8 C11—C10—C8 C10—C11—C12 C10—C11—C16 C12—C11—C16 C13—C12—C11 C13—C12—C7 C11—C12—C7 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C16 C14—C15—H15 C16—C15—H15 C11—C16—C15 C11—C16—C17 C15—C16—C17 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19 C17—C18—H18 C19—C18—H18 C10—C19—C18 C10—C19—H19

109.1 119.56 (12) 131.59 (12) 108.84 (11) 113.44 (12) 123.08 (12) 123.47 (13) 118.88 (12) 131.88 (12) 109.24 (11) 118.67 (13) 120.7 120.7 122.37 (13) 118.8 118.8 120.16 (13) 119.9 119.9 116.39 (13) 116.23 (13) 127.38 (13) 120.37 (13) 119.8 119.8 122.17 (13) 118.9 118.9 118.53 (13) 120.7

C56—C57—H57B H57A—C57—H57B C56—C57—H57C H57A—C57—H57C H57B—C57—H57C C66—C61—C62 C66—C61—C6 C62—C61—C6 C63—C62—C61 C63—C62—H62 C61—C62—H62 C64—C63—C62 C64—C63—H63 C62—C63—H63 C63—C64—C65 C63—C64—H64 C65—C64—H64 C66—C65—C64 C66—C65—H65 C64—C65—H65 C65—C66—C61 C65—C66—H66 C61—C66—H66 C9—N1—C8 C9—N1—C1 C8—N1—C1 C7—N2—C6 C7—N2—H2A C6—N2—H2A C8—O2—H2

109.5 109.5 109.5 109.5 109.5 118.77 (12) 120.88 (12) 120.24 (12) 120.72 (13) 119.6 119.6 120.04 (13) 120.0 120.0 119.74 (13) 120.1 120.1 120.01 (13) 120.0 120.0 120.73 (13) 119.6 119.6 103.62 (10) 108.17 (12) 116.07 (10) 111.07 (11) 108.8 (11) 111.1 (11) 109.5

N1—C1—C2—C21 N1—C1—C2—C3 C21—C2—C3—O1 C1—C2—C3—O1 C21—C2—C3—C4 C1—C2—C3—C4 O1—C3—C4—C5 C2—C3—C4—C5 O1—C3—C4—C9 C2—C3—C4—C9 O1—C3—C4—C7 C2—C3—C4—C7 C3—C4—C5—C51 C9—C4—C5—C51 C7—C4—C5—C51 C3—C4—C5—C6 C9—C4—C5—C6 C7—C4—C5—C6

149.63 (14) −24.42 (17) 26.7 (2) −158.71 (13) −152.30 (13) 22.32 (17) 1.50 (18) −179.52 (11) 136.12 (13) −44.91 (15) −115.20 (14) 63.77 (14) 72.82 (15) −55.89 (19) −165.51 (12) −160.01 (11) 71.28 (15) −38.34 (12)

C12—C11—C16—C15 C10—C11—C16—C17 C12—C11—C16—C17 C14—C15—C16—C11 C14—C15—C16—C17 C11—C16—C17—C18 C15—C16—C17—C18 C16—C17—C18—C19 C11—C10—C19—C18 C8—C10—C19—C18 C17—C18—C19—C10 C3—C2—C21—C22 C1—C2—C21—C22 C2—C21—C22—C23 C2—C21—C22—C27 C27—C22—C23—C24 C21—C22—C23—C24 C22—C23—C24—C25

2.2 (2) 1.9 (2) −177.20 (14) −2.5 (2) 176.78 (16) −1.6 (2) 179.11 (16) −0.3 (3) −1.5 (2) 177.39 (15) 1.9 (2) 179.94 (14) 5.8 (3) 41.3 (2) −144.41 (17) −1.9 (2) 172.40 (15) 2.3 (3)

Acta Cryst. (2012). E68, o3375

sup-9

supplementary materials C51—C5—C6—N2 C4—C5—C6—N2 C51—C5—C6—C61 C4—C5—C6—C61 C3—C4—C7—N2 C5—C4—C7—N2 C9—C4—C7—N2 C3—C4—C7—C12 C5—C4—C7—C12 C9—C4—C7—C12 C3—C4—C7—C8 C5—C4—C7—C8 C9—C4—C7—C8 N2—C7—C8—O2 C12—C7—C8—O2 C4—C7—C8—O2 N2—C7—C8—N1 C12—C7—C8—N1 C4—C7—C8—N1 N2—C7—C8—C10 C12—C7—C8—C10 C4—C7—C8—C10 C3—C4—C9—N1 C5—C4—C9—N1 C7—C4—C9—N1 O2—C8—C10—C19 N1—C8—C10—C19 C7—C8—C10—C19 O2—C8—C10—C11 N1—C8—C10—C11 C7—C8—C10—C11 C19—C10—C11—C12 C8—C10—C11—C12 C19—C10—C11—C16 C8—C10—C11—C16 C10—C11—C12—C13 C16—C11—C12—C13 C10—C11—C12—C7 C16—C11—C12—C7 N2—C7—C12—C13 C4—C7—C12—C13 C8—C7—C12—C13 N2—C7—C12—C11 C4—C7—C12—C11 C8—C7—C12—C11 C11—C12—C13—C14 C7—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16

Acta Cryst. (2012). E68, o3375

166.72 (10) 36.46 (12) −71.98 (14) 157.77 (10) 149.97 (11) 26.21 (13) −97.13 (11) 25.69 (15) −98.08 (12) 138.59 (11) −87.65 (12) 148.58 (10) 25.25 (12) 1.91 (16) 125.13 (11) −112.11 (12) 115.97 (12) −120.81 (11) 1.96 (13) −121.77 (12) 1.45 (14) 124.21 (11) 71.24 (13) −156.48 (12) −45.38 (13) 57.4 (2) −63.8 (2) −179.77 (16) −123.63 (13) 115.22 (13) −0.75 (15) 178.83 (14) −0.32 (17) −0.4 (2) −179.54 (13) −179.37 (14) −0.2 (2) 1.34 (17) −179.45 (13) −54.6 (2) 66.0 (2) 179.16 (16) 124.59 (13) −114.86 (13) −1.68 (15) −1.5 (2) 177.57 (15) 1.2 (2) 1.0 (3)

C23—C24—C25—C26 C24—C25—C26—C27 C25—C26—C27—C22 C25—C26—C27—C28 C23—C22—C27—C26 C21—C22—C27—C26 C23—C22—C27—C28 C21—C22—C27—C28 C4—C5—C51—C52 C6—C5—C51—C52 C4—C5—C51—C56 C6—C5—C51—C56 C56—C51—C52—C53 C5—C51—C52—C53 C51—C52—C53—C54 C52—C53—C54—C55 C53—C54—C55—C56 C54—C55—C56—C51 C54—C55—C56—C57 C52—C51—C56—C55 C5—C51—C56—C55 C52—C51—C56—C57 C5—C51—C56—C57 N2—C6—C61—C66 C5—C6—C61—C66 N2—C6—C61—C62 C5—C6—C61—C62 C66—C61—C62—C63 C6—C61—C62—C63 C61—C62—C63—C64 C62—C63—C64—C65 C63—C64—C65—C66 C64—C65—C66—C61 C62—C61—C66—C65 C6—C61—C66—C65 C4—C9—N1—C8 C4—C9—N1—C1 O2—C8—N1—C9 C10—C8—N1—C9 C7—C8—N1—C9 O2—C8—N1—C1 C10—C8—N1—C1 C7—C8—N1—C1 C2—C1—N1—C9 C2—C1—N1—C8 C12—C7—N2—C6 C4—C7—N2—C6 C8—C7—N2—C6 C61—C6—N2—C7

−0.7 (3) −1.4 (3) 1.7 (3) −176.57 (17) −0.1 (2) −174.49 (15) 178.19 (16) 3.8 (2) 63.48 (18) −57.98 (16) −119.80 (14) 118.73 (14) 0.2 (2) 177.00 (14) 1.3 (2) −1.2 (2) −0.3 (2) 1.8 (2) −175.45 (14) −1.7 (2) −178.49 (13) 175.45 (13) −1.3 (2) 33.4 (2) −82.26 (17) −150.62 (14) 93.74 (16) 0.3 (2) −175.75 (15) −0.2 (3) 0.1 (3) −0.1 (3) 0.3 (3) −0.4 (2) 175.66 (15) 48.13 (13) −75.60 (12) 88.49 (12) −145.81 (12) −30.52 (13) −153.10 (11) −27.41 (16) 87.88 (13) 52.05 (14) −63.82 (15) 124.29 (12) −3.38 (14) −116.76 (13) −140.82 (12)

sup-10

supplementary materials C10—C11—C16—C15

−178.67 (14)

C5—C6—N2—C7

−20.68 (14)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

O2—H2···O1i C1—H1A···O2ii C57—H57B···O1 N2—H2A···O2

0.82 0.97 0.96 0.92 (2)

2.02 2.46 2.59 2.27 (2)

2.7828 (15) 3.3040 (16) 3.3859 (18) 2.8016 (18)

155 145 141 117 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1/2.

Acta Cryst. (2012). E68, o3375

sup-11