Ostrowski type fractional integral operators for ...

5 downloads 0 Views 571KB Size Report
inequality; Riemann-Liouville fractional integral; fractional integral operator; ... by introducing a number of integral inequalities involving various fractionalย ...
Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466

Applications and Applied Mathematics: An International Journal (AAM)

Vol. 12, Issue 2 (December 2017), pp. 1017 - 1035

Ostrowski type fractional integral operators for generalized (๐’“; ๐’”, ๐’Ž, ๐‹) โˆ’preinvex functions ๐Ÿ

๐€. ๐Š๐š๐ฌ๐ก๐ฎ๐ซ๐ข and ๐Ÿ๐‘. ๐‹๐ข๐ค๐จ

Faculty of Technical Science Ismail Qemali University Albania 1 [email protected]; [email protected] Received: August 4, 2017; Accepted: October 12, 2017

Abstract In the present paper, the notion of generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function is applied to establish some new generalizations of Ostrowski type inequalities via fractional integral operators. These results not only extend the results appeared in the literature but also provide new estimates on these type.

Keywords: Ostrowski type inequality; Hรถlder's inequality; Minkowski's inequality; power mean inequality; Riemann-Liouville fractional integral; fractional integral operator; s โˆ’convex function in the second sense; m โˆ’invex

MSC 2010 No.: 26A33, 26A51, 26D07, 26D10, 26D15

1. Introduction The following notations are used throughout this paper. We use ๐ผ to denote an interval on the real line โ„ = (โˆ’โˆž, +โˆž) and ๐ผ โˆ˜ to denote the interior of ๐ผ. For any subset ๐พ โŠ† โ„๐‘› , ๐พ โˆ˜ is used to denote the interior of ๐พ. โ„๐‘› is used to denote a ๐‘› โˆ’dimensional vector space. The set of integrable functions on the interval [๐‘Ž, ๐‘] is denoted by ๐ฟ1 [๐‘Ž, ๐‘]. The following result is known in the literature as the Ostrowski inequality (Liu et al., 2015), which ๐‘ 1 gives an upper bound for the approximation of the integral average ๐‘โˆ’๐‘Ž โˆซ๐‘Ž ๐‘“(๐‘ก)๐‘‘๐‘ก by the value ๐‘“(๐‘ฅ) at point ๐‘ฅ โˆˆ [๐‘Ž, ๐‘].

1017

1018

A. Kashuri and R. Liko

Theorem 1. Let ๐‘“: ๐ผ โŸถ โ„ be a mapping differentiable on ๐ผ โˆ˜ and let ๐‘Ž, ๐‘ โˆˆ ๐ผ โˆ˜ with ๐‘Ž < ๐‘. If |๐‘“ โ€ฒ (๐‘ฅ)| โ‰ค ๐‘€ for all ๐‘ฅ โˆˆ [๐‘Ž, ๐‘], then ๐‘Ž+๐‘ 2 1 1 (๐‘ฅ โˆ’ 2 ) |๐‘“(๐‘ฅ) โˆ’ โˆซ ๐‘“(๐‘ก)๐‘‘๐‘ก| โ‰ค ๐‘€(๐‘ โˆ’ ๐‘Ž) [ + ] , โˆ€ ๐‘ฅ โˆˆ [๐‘Ž, ๐‘]. (๐‘ โˆ’ ๐‘Ž)2 ๐‘โˆ’๐‘Ž 4 ๐‘

(1)

๐‘Ž

For other recent results concerning Ostrowski type inequalities, see ((Agarval et al., 2016)-(Alomari et al., 2010); (Dragomir et al., 1997)-(Dragomir, 2001); Kashuri et al., 2016; Kashuri et al., 2017; Liu, 2007; Liu, 2009; (ร–zdemir et al., 2010)-(Pachpatte, 2001); Rafiq et al., 2007; Sarikaya, 2010; Tunรง, 2014; Ujeviฤ‡, 2004; Yildiz et al., 2016; Zhongxue, 2008). Ostrowski inequality is playing a very important role in all the fields of mathematics, especially in the theory of approximations. Thus such inequalities were studied extensively by many researches and numerous generalizations, extensions and variants of them for various kind of functions like bounded variation, synchronous, Lipschitzian, monotonic, absolutely, continuous and ๐‘› โˆ’times differentiable mappings etc. appeared in a number of papers. In recent years, one more dimension has been added to this studies, by introducing a number of integral inequalities involving various fractional operators like Riemann-Liouville, Erdelyi-Kober, Katugampola, conformable fractional integral operators etc. by many authors see (Abdeljawad, 2015; Katugampola, 2014; Khalil et al., 2014; Purohit et al., 2014; Set et al., 2017). Riemann-Liouville fractional integral operators are the most central between these fractional operators. Fractional calculus see ((Chu et al., 2017)-(Dahmani et al., 2010); Kashuri et al., 2017; Raina, 2005), was introduced at the end of the nineteenth century by Liouville and Riemann, the subject of which has become a rapidly growing area and has found applications in diverse fields ranging from physical sciences and engineering to biological sciences and economics. Definition 1. ๐›ผ ๐›ผ Let ๐‘“ โˆˆ ๐ฟ1 [๐‘Ž, ๐‘]. The Riemann-Liouville integrals ๐ฝ๐‘Ž+ ๐‘“ and ๐ฝ๐‘โˆ’ ๐‘“ of order ๐›ผ > 0 with ๐‘Ž โ‰ฅ 0 are defined by ๐‘ฅ

1 ๐›ผ ๐ฝ๐‘Ž+ ๐‘“(๐‘ฅ) = โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐›ผโˆ’1 ๐‘“(๐‘ก)๐‘‘๐‘ก, ๐‘ฅ > ๐‘Ž ๐›ค(๐›ผ) ๐‘Ž

and ๐‘

๐›ผ ๐ฝ๐‘โˆ’ ๐‘“(๐‘ฅ)

1 = โˆซ(๐‘ก โˆ’ ๐‘ฅ)๐›ผโˆ’1 ๐‘“(๐‘ก)๐‘‘๐‘ก, ๐‘ > ๐‘ฅ, ๐›ค(๐›ผ) ๐‘ฅ

+โˆž

0 0 where ๐›ค(๐›ผ) = โˆซ0 ๐‘’ โˆ’๐‘ข ๐‘ข๐›ผโˆ’1 ๐‘‘๐‘ข. Here ๐ฝ๐‘Ž+ ๐‘“(๐‘ฅ) = ๐ฝ๐‘โˆ’ ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅ). In the case of ๐›ผ = 1, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to study fractional Ostrowski type inequalities for functions of different classes see (Liu et al., 2016). In see (Raina, 2005), Raina introduced a class of functions defined formally by

1019

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

+โˆž ๐œŽ (๐‘ฅ) = โ„ฑ๐œŒ,๐œ†

๐œŽ(0),๐œŽ(1),โ€ฆ (๐‘ฅ) โ„ฑ๐œŒ,๐œ†

=โˆ‘ ๐‘˜=0

๐œŽ(๐‘˜) ๐‘ฅ๐‘˜ ๐›ค(๐œŒ๐‘˜ + ๐œ†)

(๐œŒ, ๐œ† > 0; |๐‘ฅ| < โ„),

(2)

where the coefficients (๐œŽ(๐‘˜), ๐‘˜ โˆˆ โ„• โˆช {0}) is a bounded sequence of positive real numbers. With the help of (2), Raina see (Raina, 2005) and see (Agarwal et al., 2016) defined the following leftsided and right-sided fractional integral operators respectively, as follows: ๐‘ฅ ๐œŽ (๐’ฅ๐œŒ,๐œ†,๐‘Ž+;๐œ” ๐œ‘)(๐‘ฅ)

๐œŽ [๐œ”(๐‘ฅ โˆ’ ๐‘ก)๐œŒ ]๐œ‘(๐‘ก)๐‘‘๐‘ก, (๐‘ฅ > ๐‘Ž > 0), = โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐œ†โˆ’1 โ„ฑ๐œŒ,๐œ†

(3)

๐‘Ž ๐‘ ๐œŽ (๐’ฅ๐œŒ,๐œ†,๐‘โˆ’;๐œ” ๐œ‘)(๐‘ฅ)

๐œŽ [๐œ”(๐‘ก โˆ’ ๐‘ฅ)๐œŒ ]๐œ‘(๐‘ก)๐‘‘๐‘ก, (0 < ๐‘ฅ < ๐‘), = โˆซ(๐‘ก โˆ’ ๐‘ฅ)๐œ†โˆ’1 โ„ฑ๐œŒ,๐œ†

(4)

๐‘ฅ

where ๐œ†, ๐œŒ > 0, ๐œ” โˆˆ โ„ and ๐œ‘(๐‘ก) is such that the integral on the right side exits. It is easy to verify ๐œŽ ๐œŽ that (๐’ฅ๐œŒ,๐œ†,๐‘Ž+;๐œ” ๐œ‘)(๐‘ฅ) and (๐’ฅ๐œŒ,๐œ†,๐‘โˆ’;๐œ” ๐œ‘)(๐‘ฅ) are bounded integral operators on ๐ฟ1 [๐‘Ž, ๐‘], if ๐œŽ [๐œ”(๐‘ โˆ’ ๐‘Ž)๐œŒ ] < +โˆž. โ„œ โ‰” โ„ฑ๐œŒ,๐œ†+1

In fact, for ๐œ‘ โˆˆ ๐ฟ1 (๐‘Ž, ๐‘), we have ๐œŽ โ€–๐’ฅ๐œŒ,๐œ†,๐‘Ž+;๐œ” ๐œ‘(๐‘ฅ)โ€– โ‰ค โ„œ(๐‘ โˆ’ ๐‘Ž)๐œ† โ€–๐œ‘โ€–1 1

and ๐œŽ โ€–๐’ฅ๐œŒ,๐œ†,๐‘โˆ’;๐œ” ๐œ‘(๐‘ฅ)โ€– โ‰ค โ„œ(๐‘ โˆ’ ๐‘Ž)๐œ† โ€–๐œ‘โ€–1 , 1

where ๐‘

1 ๐‘

โ€–๐œ‘โ€–๐‘ โ‰” (โˆซ|๐œ‘(๐‘ก)|๐‘ ๐‘‘๐‘ก) . ๐‘Ž

The importance of these operators stems indeed from their generality. Many useful fractional integral operators can be obtained by specializing the coefficient ๐œŽ(๐‘˜). For instance the classical ๐›ผ ๐›ผ Riemann-Liouville fractional integrals ๐ฝ๐‘Ž+ and ๐ฝ๐‘โˆ’ of order ฮฑ follow easily by setting ๐œ† = ๐›ผ, ๐œŽ(0) = 1 and ๐œ” = 0 in (3) and (4). Now, let us evoke some definitions. Definition 2. (Hudzik et al., 1994) A function ๐‘“: [0, +โˆž[ โŸถ โ„ is said to be ๐‘  โˆ’convex in the second sense, if ๐‘“(๐œ†๐‘ฅ + (1 โˆ’ ๐œ†)๐‘ฆ) โ‰ค ๐œ†๐‘  ๐‘“(๐‘ฅ) + (1 โˆ’ ๐œ†)๐‘  ๐‘“(๐‘ฆ),

(5)

1020

A. Kashuri and R. Liko

for all ๐‘ฅ, ๐‘ฆ โ‰ฅ 0, ๐œ† โˆˆ [0,1] and ๐‘  โˆˆ ]0,1]. It is clear that a 1โˆ’convex function must be convex on [0, +โˆž[ as usual. The ๐‘  โˆ’convex functions in the second sense have been investigated in see (Hudzik et al., 1994). Definition 3. (Antczak, 2005) A set ๐พ โŠ† โ„๐‘› is said to be invex with respect to the mapping ๐œ‚: ๐พ ร— ๐พ โŸถ โ„๐‘› , if ๐‘ฅ + ๐‘ก๐œ‚(๐‘ฆ, ๐‘ฅ) โˆˆ ๐พ for every ๐‘ฅ, ๐‘ฆ โˆˆ ๐พ and ๐‘ก โˆˆ [0,1]. Notice that every convex set is invex with respect to the mapping ๐œ‚(๐‘ฆ, ๐‘ฅ) = ๐‘ฆ โˆ’ ๐‘ฅ, but the converse is not necessarily true see (Antczak, 2005; Yang et al., 2003). Definition 4. (Pini, 1991) A function ๐‘“ defined on the invex set ๐พ โŠ† โ„๐‘› is said to be preinvex with respect ๐œ‚, if for every ๐‘ฅ, ๐‘ฆ โˆˆ ๐พ and ๐‘ก โˆˆ [0,1], we have that ๐‘“(๐‘ฅ + ๐‘ก๐œ‚(๐‘ฆ, ๐‘ฅ)) โ‰ค (1 โˆ’ ๐‘ก)๐‘“(๐‘ฅ) + ๐‘ก๐‘“(๐‘ฆ). The concept of preinvexity is more general than convexity since every convex function is preinvex with respect to the mapping ๐œ‚(๐‘ฆ, ๐‘ฅ) = ๐‘ฆ โˆ’ ๐‘ฅ, but the converse is not true. The aim of this paper is to establish some generalizations of Ostrowski type inequalities using new identity given in Section 2 for generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex functions via generalized fractional integral operators. In Section 3, some conclusions and future research are given. These results not only extend the results appeared in the literature see (Yildiz et al., 2016) but also provide new estimates on these type.

2. Main Results Definition 5. (Du et al., 2016) A set ๐พ โŠ† โ„๐‘› is said to be ๐‘š โˆ’invex with respect to the mapping ๐œ‚: ๐พ ร— ๐พ ร— ]0,1] โŸถ โ„๐‘› , for some fixed ๐‘š โˆˆ ]0,1], if ๐‘š๐‘ฅ + ๐‘ก๐œ‚(๐‘ฆ, ๐‘š๐‘ฅ) โˆˆ ๐พ holds for each ๐‘ฅ, ๐‘ฆ โˆˆ ๐พ and any t โˆˆ [0,1]. Remark 1. In Definition 5, under certain conditions, the mapping ๐œ‚(๐‘ฆ, ๐‘š๐‘ฅ) could reduce to ๐œ‚(๐‘ฆ, ๐‘ฅ). For example when ๐‘š = 1, then the ๐‘š โˆ’invex set degenerates an invex set on ๐พ. We next recall the definition of generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function. Definition 6. (Kashuri et al., 2017) Let ๐พ โŠ† โ„ be an open ๐‘š โˆ’invex set with respect to the mapping ๐œ‚: ๐พ ร— ๐พ ร— ]0,1] โŸถ โ„ and ๐œ‘: ๐ผ โŸถ ๐พ is a continuous function. The function ๐‘“: ๐พ โŸถ (0, +โˆž) is said to be generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex with respect to ๐œ‚, if

1021

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

(6)

๐‘“(๐‘š๐œ‘(๐‘ฅ) + ๐‘ก๐œ‚(๐œ‘(๐‘ฆ), ๐œ‘(๐‘ฅ), ๐‘š)) โ‰ค ๐‘€๐‘Ÿ (๐‘“(๐œ‘(๐‘ฅ)), ๐‘“(๐œ‘(๐‘ฆ)), ๐‘š, ๐‘ ; ๐‘ก) holds for some fixed ๐‘ , ๐‘š โˆˆ ]0,1] and for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐ผ, ๐‘ก โˆˆ [0,1], where ๐‘  ๐‘Ÿ

๐‘  ๐‘Ÿ

1 (๐œ‘(๐‘ฆ))]๐‘Ÿ ,

[๐‘š(1 โˆ’ ๐‘ก) ๐‘“ (๐œ‘(๐‘ฅ)) + ๐‘ก ๐‘“ ๐‘€๐‘Ÿ (๐‘“(๐œ‘(๐‘ฅ)), ๐‘“(๐œ‘(๐‘ฆ)), ๐‘š, ๐‘ ; ๐‘ก) = { ๐‘š(1โˆ’๐‘ก)๐‘  ๐‘ก๐‘  [๐‘“ (๐œ‘(๐‘ฅ))] [๐‘“ (๐œ‘(๐‘ฆ))] ,

๐‘Ÿ โ‰  0; ๐‘Ÿ = 0,

is the weighted power mean of order ๐‘Ÿ for positive numbers ๐‘“ (๐œ‘(๐‘ฅ)) and ๐‘“ (๐œ‘(๐‘ฆ)). Remark 2. In Definition 6, it is worthwhile to note that the class of generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function is a generalization of the class of ๐‘  โˆ’convex in the second sense function given in Definition 2. For ๐‘Ÿ = 1, we get the notion of generalized (๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function see (Kashuri et al., 2016). Also, for ๐‘Ÿ = 1 and ๐œ‘(๐‘ฅ) = ๐‘ฅ, โˆ€๐‘ฅ โˆˆ ๐ผ, we get the notion of generalized (๐‘ , ๐‘š) โˆ’preinvex function see (Du et al., 2016). Throughout this paper we denote ๐œ†

๐œŒ

๐œŽ (๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž)) โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž)) ]

๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘) = [

+[

๐œ‚ ๐œ†+1 (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

] ๐‘“(๐‘ฅ)

๐œŽ (๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œŒ ]

๐œ‚ ๐œ†+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

โˆ’

] ๐‘“(๐‘ฅ)

๐œ† ๐œ‚ ๐œ†+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐œŽ ๐œŽ ร— [(๐’ฅ๐œŒ,๐œ†,๐‘ฅโˆ’;๐œ” ๐‘“)(๐‘š๐œ‘(๐‘Ž)) + (๐’ฅ๐œŒ,๐œ†,๐‘ฅ+;๐œ” ๐‘“)(๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))].

In this section, in order to prove our main results regarding some generalizations of Ostrowski type inequalities for generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex functions via generalized fractional integral operators, we need the following new interesting lemma: Lemma 1. Let ๐œ‘: ๐ผ โŸถ ๐พ be a continuous function. Suppose ๐พ โŠ† โ„ be an open ๐‘š โˆ’invex subset with respect to the mapping ๐œ‚: ๐พ ร— ๐พ ร— ]0,1] โŸถ โ„ for some fixed ๐‘š โˆˆ ]0,1] and ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) > 0. Assume that ๐‘“: ๐พ โŸถ โ„ is a differentiable function on ๐พ โˆ˜ . If ๐‘“ โ€ฒ โˆˆ ๐ฟ1 [๐‘š๐œ‘(๐‘Ž), ๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)], then we have the following identity involving generalized fractional integral operators: 1

๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘) = โˆซ ๐œƒ(๐‘ก) ๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))๐‘‘๐‘ก, 0

(7)

1022

A. Kashuri and R. Liko

for each ๐‘ก โˆˆ [0,1], where ๐œ†, ๐œŒ > 0, ๐œ” โˆˆ โ„ and ๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) [; ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐œƒ(๐‘ก) = ๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) ๐œŽ (1 โˆ’ ๐‘ก)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ], ๐‘ก โˆˆ [ , 1] . ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) { ๐œŽ [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ], ๐‘ก ๐œ† โ„ฑ๐œŒ,๐œ†+1

๐‘ก โˆˆ [0,

Proof: Integrating by parts, we get 1

โˆซ ๐œƒ(๐‘ก) ๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))๐‘‘๐‘ก 0 ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

=

๐œŽ [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] ๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))๐‘‘๐‘ก ๐‘ก ๐œ† โ„ฑ๐œŒ,๐œ†+1

โˆซ 0 1

+

๐œŽ (1 โˆ’ ๐‘ก)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ] ๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))๐‘‘๐‘ก

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž)

๐‘“ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐œŽ [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] = ๐‘ก ๐œ† โ„ฑ๐œŒ,๐œ†+1 | ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) 0 ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

โˆ’๐œ†

๐œŽ [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] ๐‘ก ๐œ†โˆ’1 โ„ฑ๐œŒ,๐œ†

โˆซ 0

๐‘“ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)) ๐‘‘๐‘ก ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

1

+(1 โˆ’ ๐‘ก)

๐œ†

๐œŽ [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โ„ฑ๐œŒ,๐œ†+1

โˆ’ ๐‘ก)

๐œŒ]

๐‘“ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)) | ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

1

โˆ’๐œ†

(1

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

๐œŽ [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ] โˆ’ ๐‘ก)๐œ†โˆ’1 โ„ฑ๐œŒ,๐œ† ๐œ†

๐‘“ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)) ๐‘‘๐‘ก ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐œŒ

๐œŽ (๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž)) โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž)) ] =[ ] ๐‘“(๐‘ฅ) ๐œ‚ ๐œ†+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

1023

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

+[

๐œŽ (๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œŒ ]

] ๐‘“(๐‘ฅ)

๐œ‚ ๐œ†+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’

๐œ† ๐œ‚ ๐œ†+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐œŽ ๐œŽ ร— [(๐’ฅ๐œŒ,๐œ†,๐‘ฅโˆ’;๐œ” ๐‘“)(๐‘š๐œ‘(๐‘Ž)) + (๐’ฅ๐œŒ,๐œ†,๐‘ฅ+;๐œ” ๐‘“)(๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))].

By using Lemma 1, one can extend to the following results. Theorem 2. Let ๐œ‘: ๐ผ โŸถ ๐ด be a continuous function. Suppose ๐ด โŠ† โ„ be an open ๐‘š โˆ’invex subset with respect to the mapping ๐œ‚: ๐ด ร— ๐ด ร— ]0,1] โŸถ โ„ for some fixed ๐‘ , ๐‘š โˆˆ ]0,1] and ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) > 0. Assume that ๐‘“: ๐ด โŸถ (0, +โˆž) is a differentiable function on ๐ดโˆ˜ . If 0 < ๐‘Ÿ โ‰ค 1 and ๐‘“ โ€ฒ is generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function on [๐‘š๐œ‘(๐‘Ž), ๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)], then the following inequality for generalized fractional integral operators holds: |๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘)| ๐‘Ÿ

๐œŽ1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)]) ๐‘š๐‘“ (๐œ‘(๐‘Ž)) (โ„ฑ๐œŒ,๐œ†+1 { ๐‘Ÿ ๐œŒ ๐‘Ÿ ๐œŽ2 +๐‘“ โ€ฒ (๐œ‘(๐‘)) (โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|(๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž)) ]) โ€ฒ

โ‰ค

+{

๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

๐‘Ÿ

๐œŽ3 [|๐œ”|(๐‘š๐œ‘(๐‘Ž) (โ„ฑ๐œŒ,๐œ†+1 ๐‘Ÿ

1 ๐‘Ÿ ๐‘Ÿ

} 1 ๐‘Ÿ ๐‘Ÿ

+ ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œŒ ])

๐œŽ

4 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)]) +๐‘“ โ€ฒ (๐œ‘(๐‘)) (โ„ฑ๐œŒ,๐œ†+1

๐‘Ÿ

where ๐œ†, ๐œŒ > 0, ๐œ” โˆˆ โ„, ๐‘˜ = 0,1,2, โ€ฆ , ๐›ฝ(๐‘ฅ; ๐‘Ž, ๐‘) is incompleted beta function and ๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) ๐‘  ๐œŽ1 (๐‘˜) = ๐œŽ (๐‘˜)๐›ฝ ( ; ๐œ† + ๐œŒ๐‘˜ + 1, + 1) ; ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐‘Ÿ ๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) ๐œŽ2 (๐‘˜) = ๐œŽ (๐‘˜) ( ) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐‘  ๐œ†+ +1 ๐‘Ÿ

1

; ๐‘  ๐œ† + ๐œŒ๐‘˜ + ๐‘Ÿ + 1

๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ ๐œŽ3 (๐‘˜) = ๐œŽ (๐‘˜) ( ) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐‘  ๐œ†+ +1 ๐‘Ÿ

1

; ๐‘  ๐œ† + ๐œŒ๐‘˜ + ๐‘Ÿ + 1

๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ ๐‘  ๐œŽ4 (๐‘˜) = ๐œŽ (๐‘˜)๐›ฝ ( ; ๐œ† + ๐œŒ๐‘˜ + 1, + 1). ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐‘Ÿ

} ,

(8)

1024

A. Kashuri and R. Liko

Proof: Let 0 < ๐‘Ÿ โ‰ค 1. From Lemma 1, generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvexity of ๐‘“ โ€ฒ , Minkowski inequality and properties of the modulus, we have

|๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘)| ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

โ‰ค

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] |๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))|๐‘‘๐‘ก ๐‘ก ๐œ† โ„ฑ๐œŒ,๐œ†+1

โˆซ 0

1

+

๐œŽ |1 โˆ’ ๐‘ก|๐œ† โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ] |๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž)

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

+ ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))|๐‘‘๐‘ก ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

โ‰ค

โˆซ

๐‘Ÿ

๐‘Ÿ

0 1

+

๐œŽ (1 โˆ’ ๐‘ก)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ]

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

๐‘Ÿ

๐‘  โ€ฒ

๐‘  โ€ฒ

1 ๐‘Ÿ ๐‘Ÿ

ร— [๐‘š(1 โˆ’ ๐‘ก) ๐‘“ (๐œ‘(๐‘Ž)) + ๐‘ก ๐‘“ (๐œ‘(๐‘)) ] ๐‘‘๐‘ก

๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

๐‘Ÿ

1 ๐‘Ÿ

๐‘Ÿ

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐‘ 

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ]๐‘‘๐‘ก ๐‘ก ๐œ† (1 โˆ’ ๐‘ก)๐‘Ÿ โ„ฑ๐œŒ,๐œ†+1

โˆซ 0

(

โ‰ค

๐‘Ÿ

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

+๐‘“ โ€ฒ (๐œ‘(๐‘)) {

1

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] [๐‘š(1 โˆ’ ๐‘ก) ๐‘  ๐‘“ โ€ฒ (๐œ‘(๐‘Ž)) + ๐‘ก ๐‘  ๐‘“ โ€ฒ (๐œ‘(๐‘)) ]๐‘Ÿ ๐‘‘๐‘ก ๐‘ก ๐œ† โ„ฑ๐œŒ,๐œ†+1

๐‘Ÿ

โˆซ

๐‘ 

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ]๐‘‘๐‘ก ๐‘ก ๐œ†+๐‘Ÿ โ„ฑ๐œŒ,๐œ†+1

0

(

)

)

}

1025

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

๐‘Ÿ 1

๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

๐‘Ÿ

๐‘ 

๐œŽ (1 โˆ’ ๐‘ก)๐œ†+๐‘Ÿ โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ]๐‘‘๐‘ก

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐œ‚ (

+

1

+๐‘“ โ€ฒ (๐œ‘(๐‘))

๐‘Ÿ

) ๐‘ 

+{

) }

1 ๐‘Ÿ ๐‘Ÿ ๐œŽ1 ๐œŒ ๐‘š๐‘“ (๐œ‘(๐‘Ž)) (โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)]) { } ๐‘Ÿ ๐œŒ ๐‘Ÿ ๐œŽ2 +๐‘“ โ€ฒ (๐œ‘(๐‘)) (โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|(๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž)) ]) ๐‘Ÿ

โ€ฒ

=

๐‘Ÿ

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ]๐‘‘๐‘ก ๐‘ก ๐‘Ÿ (1 โˆ’ ๐‘ก)๐œ† โ„ฑ๐œŒ,๐œ†+1

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐œ‚ (

{

1 ๐‘Ÿ

๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

๐‘Ÿ

๐œŽ3 [|๐œ”|(๐‘š๐œ‘(๐‘Ž) (โ„ฑ๐œŒ,๐œ†+1 ๐‘Ÿ

+ ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œŒ ]) ๐‘Ÿ

๐œŽ

4 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)]) +๐‘“ โ€ฒ (๐œ‘(๐‘)) (โ„ฑ๐œŒ,๐œ†+1

1 ๐‘Ÿ ๐‘Ÿ

} .

โˆŽ

This completes the proof of the theorem. Corollary 1.

Under the same conditions as in Theorem 2, if we choose ๐‘š = ๐‘  = 1, ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) = ๐œ‘(๐‘) โˆ’ ๐‘š๐œ‘(๐‘Ž) and ๐œ‘(๐‘ฅ) = ๐‘ฅ, we get

| |

[

๐œŽ ๐œŽ (๐‘ฅ โˆ’ ๐‘Ž)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ฅ โˆ’ ๐‘Ž)๐œŒ ] + (๐‘ โˆ’ ๐‘ฅ)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ โˆ’ ๐‘ฅ)๐œŒ ]

(๐‘ โˆ’ ๐‘Ž)๐œ†+1 โˆ’

โ‰ค

๐œ† ๐œŽ ๐œŽ [(๐’ฅ๐œŒ,๐œ†,๐‘ฅโˆ’;๐œ” ๐‘“)(๐‘Ž) + (๐’ฅ๐œŒ,๐œ†,๐‘ฅ+;๐œ” ๐‘“)(๐‘)] (๐‘ โˆ’ ๐‘Ž)๐œ†+1

๐œŽ1โˆ— โ€ฒ (๐‘Ž)๐‘Ÿ [|๐œ”|(๐‘ ๐‘“ (โ„ฑ { ๐œŒ,๐œ†+1

+ {๐‘“

โ€ฒ (๐‘Ž)๐‘Ÿ

๐œŽ3โˆ— [|๐œ”|(๐‘ (โ„ฑ๐œŒ,๐œ†+1

๐‘Ÿ

1 ๐‘Ÿ ๐‘Ÿ

๐œŽ2โˆ—

โˆ’ ๐‘Ž)๐œŒ ]) + ๐‘“ โ€ฒ (๐‘)๐‘Ÿ (โ„ฑ [|๐œ”|(๐‘ฅ โˆ’ ๐‘Ž)๐œŒ ]) } ๐œŒ,๐œ†+1

โˆ’ ๐‘ฅ)

๐‘Ÿ

๐œŒ ])

+๐‘“

โ€ฒ (๐‘)๐‘Ÿ

๐œŽ4โˆ— [|๐œ”|(๐‘ (โ„ฑ๐œŒ,๐œ†+1

โˆ’ ๐‘Ž)

where ๐œŽ1โˆ— (๐‘˜) = ๐œŽ (๐‘˜)๐›ฝ (

๐‘ฅโˆ’๐‘Ž 1 ; ๐œ† + ๐œŒ๐‘˜ + 1, + 1) ; ๐‘โˆ’๐‘Ž ๐‘Ÿ 1

๐œŽ2โˆ— (๐‘˜)

] ๐‘“(๐‘ฅ) | |

๐‘ฅ โˆ’ ๐‘Ž ๐œ†+๐‘Ÿ +1 1 = ๐œŽ (๐‘˜) ( ) ; 1 ๐‘โˆ’๐‘Ž ๐œ† + ๐œŒ๐‘˜ + ๐‘Ÿ + 1

1 ๐‘Ÿ ๐‘Ÿ

๐œŒ ])

} ,

(9)

1026

A. Kashuri and R. Liko 1

๐‘ โˆ’ ๐‘ฅ ๐œ†+๐‘Ÿ +1 1 โˆ— (๐‘˜) ๐œŽ3 = ๐œŽ (๐‘˜) ( ) ; 1 ๐‘โˆ’๐‘Ž ๐œ† + ๐œŒ๐‘˜ + ๐‘Ÿ + 1 ๐‘โˆ’๐‘ฅ 1 ๐œŽ4โˆ— (๐‘˜) = ๐œŽ (๐‘˜)๐›ฝ ( ; ๐œ† + ๐œŒ๐‘˜ + 1, + 1). ๐‘โˆ’๐‘Ž ๐‘Ÿ Corollary 2. If we choose ๐‘Ÿ = ๐œŽ (0) = 1, ๐œ” = 0 in Corollary 1, the inequality (9) reduces to inequality (2.1) of see (Yildiz et al., 2016; Theorem 2.1). Theorem 3. Let ๐œ‘: ๐ผ โŸถ ๐ด be a continuous function. Suppose ๐ด โŠ† โ„ be an open ๐‘š โˆ’invex subset with respect to the mapping ๐œ‚: ๐ด ร— ๐ด ร— ]0,1] โŸถ โ„ for some fixed ๐‘ , ๐‘š โˆˆ ]0,1] and ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) > 0. Assume that ๐‘“: ๐ด โŸถ (0, +โˆž) is a differentiable function on ๐ดโˆ˜ . If 0 < ๐‘Ÿ โ‰ค 1 and ๐‘“ โ€ฒ๐‘ž is generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function on [๐‘š๐œ‘(๐‘Ž), ๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)], ๐‘ž > 1, ๐‘โˆ’1 + ๐‘ž โˆ’1 = 1, then the following inequality for generalized fractional integral operators holds: 1

๐‘Ÿ ๐‘ž |๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘)| โ‰ค ( ) ๐‘ +๐‘Ÿ

[

๐‘  ๐‘š [๐œ‚๐‘Ÿ+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

โˆ’ (๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ +(๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž))

ร— (๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž))

ร—

1 ๐‘ +1 1 ๐œ†+ + ๐œ‚ ๐‘Ÿ๐‘ž ๐‘ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐œ†+

๐‘ +1 โ€ฒ

๐‘“ (๐œ‘(๐‘))

1 โˆ— ๐‘โ„ฑ ๐œŽ ๐œŒ,๐œ†+1 [|๐œ”|(๐‘ฅ

๐‘ 

+ [๐œ‚ ๐‘Ÿ+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ (๐‘ฅ โˆ’

{ร— (๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)

๐œ†+

โ€ฒ

๐‘“ (๐œ‘(๐‘Ž))

๐‘Ÿ๐‘ž

1 ๐‘Ÿ๐‘ž ๐‘Ÿ๐‘ž

]

๐œŒ

โˆ’ ๐‘š๐œ‘(๐‘Ž)) ]

๐‘š(๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ) +[

๐‘Ÿ ๐‘  +1 ๐‘Ÿ ๐‘ฅ) ]

๐‘ +1 โ€ฒ

๐‘“ (๐œ‘(๐‘Ž))

๐‘Ÿ ๐‘  +1 ๐‘Ÿ ๐‘š๐œ‘(๐‘Ž)) ]

1 โˆ— ๐‘โ„ฑ ๐œŽ ๐œŒ,๐œ†+1 [|๐œ”|(๐‘š๐œ‘(๐‘Ž)

1 ๐‘Ÿ๐‘ž

๐‘Ÿ๐‘ž

๐‘“ โ€ฒ (๐œ‘(๐‘))

, (10)

๐‘Ÿ๐‘ž ]

+ ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œŒ ]}

where ๐œ†, ๐œŒ > 0, ๐œ” โˆˆ โ„, ๐‘˜ = 0,1,2, โ€ฆ, and 1

๐œŽ

โˆ— (๐‘˜)

๐‘ 1 = ๐œŽ (๐‘˜) ( ) . ๐‘(๐œ† + ๐œŒ๐‘˜) + 1

Proof: Suppose that ๐‘ž > 1 and 0 < ๐‘Ÿ โ‰ค 1. From Lemma 1, generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvexity of ๐‘“ โ€ฒ๐‘ž , Hรถlder inequality, Minkowski inequality and properties of the modulus, we have |๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘)|

1027

AAM: Intern. J., Vol 12, Issue 2 (December 2017) ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

โ‰ค

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] |๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))|๐‘‘๐‘ก ๐‘ก ๐œ† โ„ฑ๐œŒ,๐œ†+1

โˆซ 0 1

+

โˆซ

๐œŽ |1 โˆ’ ๐‘ก| ๐œ† โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ] |๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))|

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) +โˆž

โ‰คโˆ‘ ๐‘˜=0

๐œŽ (๐‘˜)|๐œ”|๐‘˜ ๐œ‚๐œŒ๐‘˜ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐›ค(๐œ† + ๐œŒ๐‘˜ + 1)

1 ๐‘

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

๐‘ก ๐‘(๐œ†+๐œŒ๐‘˜) ๐‘‘๐‘ก

โˆซ

0

) (

)

1 ๐‘

1

+

โˆซ

๐‘ž

(๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))) ๐‘‘๐‘ก

โˆซ

0

(

ร—

1 ๐‘ž

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

1

(1 โˆ’ ๐‘ก)

๐‘(๐œ†+๐œŒ๐‘˜)

๐‘‘๐‘ก

๐‘ž

(๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))) ๐‘‘๐‘ก

โˆซ

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž)

1 ๐‘ž

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž)

{ (๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

) (๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

) }

+โˆž

๐œŽ (๐‘˜)|๐œ”|๐‘˜ ๐œ‚๐œŒ๐‘˜ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โ‰คโˆ‘ ๐›ค(๐œ† + ๐œŒ๐‘˜ + 1) ๐‘˜=0 1 ๐‘

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

โˆซ

๐‘ก

๐‘(๐œ†+๐œŒ๐‘˜)

๐‘‘๐‘ก

{

โˆซ

[๐‘š(1 โˆ’ ๐‘ก) ๐‘“ (๐œ‘(๐‘Ž))

๐‘Ÿ๐‘ž

1 ๐‘Ÿ๐‘ž ๐‘Ÿ

๐‘  โ€ฒ

+ ๐‘ก ๐‘“ (๐œ‘(๐‘)) ] ๐‘‘๐‘ก

0

) ( 1

+

๐‘  โ€ฒ

โˆซ

0

(

ร—

1 ๐‘ž

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

)

1 ๐‘ 1

(1 โˆ’ ๐‘ก)

๐‘(๐œ†+๐œŒ๐‘˜)

๐‘‘๐‘ก

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐œ‚ (

โˆซ )

+โˆž

โ‰คโˆ‘ ๐‘˜=0

๐‘  โ€ฒ

[๐‘š(1 โˆ’ ๐‘ก) ๐‘“ (๐œ‘(๐‘Ž))

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐œ‚ (

๐œŽ (๐‘˜)|๐œ”|๐‘˜ ๐œ‚๐œŒ๐‘˜ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐›ค(๐œ† + ๐œŒ๐‘˜ + 1)

๐‘Ÿ๐‘ž

๐‘  โ€ฒ

1 ๐‘ž

1 ๐‘Ÿ๐‘ž ๐‘Ÿ

+ ๐‘ก ๐‘“ (๐œ‘(๐‘)) ] ๐‘‘๐‘ก ) }

1028

A. Kashuri and R. Liko 1 ๐‘

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

๐‘ก ๐‘(๐œ†+๐œŒ๐‘˜) ๐‘‘๐‘ก

โˆซ 0

(

) ๐‘Ÿ

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

ร— ๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

๐‘Ÿ๐‘ž

๐‘ 

+ ๐‘“ โ€ฒ (๐œ‘(๐‘))

(1 โˆ’ ๐‘ก)๐‘Ÿ ๐‘‘๐‘ก

โˆซ

๐‘Ÿ๐‘ž

ร—

๐‘ 

โˆซ

0

[

1 ๐‘Ÿ ๐‘Ÿ๐‘ž

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

๐‘ก ๐‘Ÿ ๐‘‘๐‘ก

0

(

)

) ]

(

1 ๐‘

1

+

(1 โˆ’ ๐‘ก)๐‘(๐œ†+๐œŒ๐‘˜) ๐‘‘๐‘ก

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž)

(๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

)

1 ๐‘Ÿ ๐‘Ÿ๐‘ž

๐‘Ÿ 1

ร— ๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

๐‘Ÿ๐‘ž

(1 โˆ’

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐œ‚ (

{ [

1

๐‘  ๐‘ก)๐‘Ÿ ๐‘‘๐‘ก

+ ๐‘“ โ€ฒ (๐œ‘(๐‘))

1

+(๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž)) ร—

๐‘ +1 โ€ฒ

๐‘“ (๐œ‘(๐‘))

1 ๐œ†+ ๐œŽโˆ— ๐‘š๐œ‘(๐‘Ž)) ๐‘ โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|(๐‘ฅ

๐‘  + [๐œ‚๐‘Ÿ+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

{ร— (๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ) This completes the proof of the theorem.

๐œ†+

โˆ’ (๐‘ฅ โˆ’

๐‘Ÿ ๐‘  ๐‘ฅ)๐‘Ÿ+1 ]

๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

๐‘Ÿ๐‘ž

1 ๐‘Ÿ๐‘ž ๐‘Ÿ๐‘ž

]

๐œŒ

โˆ’ ๐‘š๐œ‘(๐‘Ž)) ]

๐‘š(๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ) +[

) ] }

๐‘ +1 1 ๐œ†+ + ๐œ‚ ๐‘Ÿ๐‘ž ๐‘ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

โˆ’ (๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’

ร— (๐‘ฅ โˆ’

๐‘ก ๐‘Ÿ ๐‘‘๐‘ก

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐œ‚ (

1

[

๐‘ 

โˆซ

)

๐‘Ÿ ๐‘ž =( ) ๐‘ +๐‘Ÿ ๐‘  ๐‘š [๐œ‚๐‘Ÿ+1 (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐‘Ÿ๐‘ž

๐‘ +1 โ€ฒ

๐‘“ (๐œ‘(๐‘Ž))

๐‘Ÿ ๐‘  +1 ๐‘Ÿ ๐‘š๐œ‘(๐‘Ž)) ]

1 โˆ— ๐‘โ„ฑ ๐œŽ ๐œŒ,๐œ†+1 [|๐œ”|(๐‘š๐œ‘(๐‘Ž)

1 ๐‘Ÿ๐‘ž

๐‘Ÿ๐‘ž

๐‘“ โ€ฒ (๐œ‘(๐‘))

.

๐‘Ÿ๐‘ž ]

+ ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œŒ ]} โˆŽ

Corollary 3. Under the same conditions as in Theorem 3, if we choose ๐‘š = ๐‘  = 1, ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) = ๐œ‘(๐‘) โˆ’ ๐‘š๐œ‘(๐‘Ž) and ๐œ‘(๐‘ฅ) = ๐‘ฅ, we get

1029

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

| |

[

๐œŽ ๐œŽ (๐‘ฅ โˆ’ ๐‘Ž)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ฅ โˆ’ ๐‘Ž)๐œŒ ] + (๐‘ โˆ’ ๐‘ฅ)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ โˆ’ ๐‘ฅ)๐œŒ ]

(๐‘ โˆ’ ๐‘Ž)๐œ†+1 โˆ’

๐œ† ๐œŽ ๐œŽ [(๐’ฅ๐œŒ,๐œ†,๐‘ฅโˆ’;๐œ” ๐‘“)(๐‘Ž) + (๐’ฅ๐œŒ,๐œ†,๐‘ฅ+;๐œ” ๐‘“)(๐‘)] (๐‘ โˆ’ ๐‘Ž)๐œ†+1 1

๐‘Ÿ ๐‘ž โ‰ค( ) ๐‘Ÿ+1

[[(๐‘ โˆ’

1 ๐‘Ž)๐‘Ÿ +1

โˆ’ (๐‘ โˆ’

1 (๐‘ โˆ’ ๐‘Ž)

๐‘Ÿ 1 +1 ๐‘Ÿ ๐‘ฅ) ]

ร— (๐‘ฅ โˆ’ ๐‘Ž)

ร—

๐œ†+

ร— (๐‘ โˆ’ ๐‘ฅ)

๐œ†+

๐œ†+

2 1 + ๐‘Ÿ๐‘ž ๐‘

๐‘“ โ€ฒ (๐‘Ž)๐‘Ÿ๐‘ž + +(๐‘ฅ โˆ’ ๐‘Ž)2 ๐‘“ โ€ฒ (๐‘)๐‘Ÿ๐‘ž ]

1 โˆ— ๐‘โ„ฑ๐œŽ ๐œŒ,๐œ†+1 [|๐œ”|(๐‘ฅ

2 โ€ฒ ๐‘Ÿ๐‘ž + [(๐‘ โˆ’ ๐‘ฅ) ๐‘“ (๐‘Ž) + [(๐‘ โˆ’

{

] ๐‘“(๐‘ฅ) | |

1 ๐‘Ž)๐‘Ÿ +1

โˆ’ ๐‘Ž)๐œŒ ]

โˆ’ (๐‘ฅ โˆ’

1 โˆ— ๐‘โ„ฑ๐œŽ ๐œŒ,๐œ†+1 [|๐œ”|(๐‘

1 ๐‘Ÿ๐‘ž

๐‘Ÿ 1 ๐‘Ž)๐‘Ÿ +1 ]

.

1 ๐‘Ÿ๐‘ž

(11)

๐‘“ โ€ฒ (๐‘)๐‘Ÿ๐‘ž ]

โˆ’ ๐‘ฅ)๐œŒ ]

}

Theorem 4. Let ๐œ‘: ๐ผ โŸถ ๐ด be a continuous function. Suppose ๐ด โŠ† โ„ be an open ๐‘š โˆ’invex subset with respect to the mapping ๐œ‚: ๐ด ร— ๐ด ร— ]0,1] โŸถ โ„ for some fixed ๐‘ , ๐‘š โˆˆ ]0,1] and ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) > 0. Assume that ๐‘“: ๐ด โŸถ (0, +โˆž) is a differentiable function on ๐ดโˆ˜ . If 0 < ๐‘Ÿ โ‰ค 1 and ๐‘“ โ€ฒ๐‘ž is generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function on [๐‘š๐œ‘(๐‘Ž), ๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)], ๐‘ž โ‰ฅ 1, then the following inequality for generalized fractional integral operators holds: |๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘)| โ‰ค

๐œŽ1 (โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|(๐‘ฅ

๐œŒ

1โˆ’

โˆ’ ๐‘š๐œ‘(๐‘Ž)) ])

1 ๐‘ž 1 ๐‘ž

๐œŽ

โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)]

ร—

1 ๐‘Ÿ

๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) ๐‘  ๐‘Ÿ๐‘ž ๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž)) ๐›ฝ๐‘Ÿ ( ; ๐œ†๐‘ž + ๐œŒ๐‘˜ + 1, + 1) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐‘Ÿ +๐‘“ โ€ฒ (๐œ‘(๐‘)) [{

๐‘Ÿ๐‘ž

๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) [( ) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐œŽ2 [|๐œ”|(๐‘š๐œ‘(๐‘Ž) + (โ„ฑ๐œŒ,๐œ†+1

๐‘Ÿ

๐‘  ๐œ†๐‘ž+๐œŒ๐‘˜+ +1 ๐‘Ÿ

1

] ๐‘  ๐œ†๐‘ž + ๐œŒ๐‘˜ + ๐‘Ÿ + 1 } ]

+ ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)

1 1โˆ’ ๐œŒ ]) ๐‘ž

1030

A. Kashuri and R. Liko 1 ๐‘ž

๐œŽ

โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)] ๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

ร—

[{

๐‘Ÿ๐‘ž

[(

๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ ) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐‘Ÿ

๐‘  ๐œ†๐‘ž+๐œŒ๐‘˜+ +1 ๐‘Ÿ

1

1 ๐‘Ÿ

] ๐‘  ๐œ†๐‘ž + ๐œŒ๐‘˜ + ๐‘Ÿ + 1

๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ ๐‘  ๐‘Ÿ๐‘ž +๐‘“ โ€ฒ (๐œ‘(๐‘)) ๐›ฝ ๐‘Ÿ ( ; ๐œ†๐‘ž + ๐œŒ๐‘˜ + 1, + 1) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐‘Ÿ

, (12)

} ]

where ๐œ†, ๐œŒ > 0, ๐œ” โˆˆ โ„, ๐‘˜ = 0,1,2, โ€ฆ, and ๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) 1 ๐œŽ1 (๐‘˜) = ๐œŽ (๐‘˜) ( ) ; ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐œŒ๐‘˜ + 1 ๐œŽ2 (๐‘˜) = ๐œŽ (๐‘˜) (

๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ 1 ) . ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐œŒ๐‘˜ + 1

Proof: Suppose that ๐‘ž โ‰ฅ 1 and 0 < ๐‘Ÿ โ‰ค 1. From Lemma 1, generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvexity of ๐‘“ โ€ฒ๐‘ž , the well-known power mean inequality, Minkowski inequality and properties of the modulus, we have |๐ผ๐‘“,๐œ‚,๐œ‘ (๐‘ฅ; ๐œ†, ๐œŒ, ๐œ”, ๐‘š, ๐‘Ž, ๐‘)| ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

โ‰ค

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] |๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))|๐‘‘๐‘ก ๐‘ก ๐œ† โ„ฑ๐œŒ,๐œ†+1

โˆซ 0 1

+

โˆซ

๐œŽ |1 โˆ’ ๐‘ก| ๐œ† โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ] |๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))|

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) 1โˆ’

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

โ‰ค

โˆซ

1 ๐‘ž

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] ๐‘‘๐‘ก โ„ฑ๐œŒ,๐œ†+1

0

(

) 1 ๐‘ž

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

ร—

โˆซ

๐‘ž

๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)๐‘ก๐œŒ ] (๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))) ๐‘‘๐‘ก ๐‘ก ๐œ†๐‘ž โ„ฑ๐œŒ,๐œ†+1

0

(

)

1031

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

1โˆ’

1 ๐‘ž

1 ๐œŽ [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ] ๐‘‘๐‘ก โ„ฑ๐œŒ,๐œ†+1

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž)

(๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

) 1 ๐‘ž

1 ๐œŽ (1 โˆ’ ๐‘ก) ๐œ†๐‘ž โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)(1 โˆ’ ๐‘ก)๐œŒ ]

โˆซ ร—

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š) ๐‘ž

ร— (๐‘“ โ€ฒ (๐‘š๐œ‘(๐‘Ž) + ๐‘ก๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š))) ๐‘‘๐‘ก

(

+โˆž

๐œŽ (๐‘˜)|๐œ”|๐‘˜ ๐œ‚๐œŒ๐‘˜ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ‘ ๐›ค(๐œ† + ๐œŒ๐‘˜ + 1)

โ‰ค

1โˆ’

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

0

(

) +โˆž

โˆ‘

๐œŽ

1 ๐‘ž

(๐‘˜)|๐œ”|๐‘˜ ๐œŒ๐‘˜ (๐œ‘(๐‘),

๐œ‚ ๐œ‘(๐‘Ž), ๐‘š) ๐›ค(๐œ† + ๐œŒ๐‘˜ + 1)

๐‘˜=0 ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

ร—

1 ๐‘ž

๐‘ก๐œŒ๐‘˜ ๐‘‘๐‘ก

โˆซ

๐‘˜=0

)

ร—

โˆซ

[

๐‘ก

๐œ†๐‘ž+๐œŒ๐‘˜

๐‘  โ€ฒ

[๐‘š(1 โˆ’ ๐‘ก) ๐‘“ (๐œ‘(๐‘Ž))

๐‘Ÿ๐‘ž

๐‘  โ€ฒ

1 ๐‘Ÿ๐‘ž ๐‘Ÿ

+ ๐‘ก ๐‘“ (๐œ‘(๐‘)) ] ๐‘‘๐‘ก ]

0 1โˆ’ 1

+โˆž

๐œŽ (๐‘˜)|๐œ”|๐‘˜ ๐œ‚๐œŒ๐‘˜ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) + โˆ‘ ๐›ค(๐œ† + ๐œŒ๐‘˜ + 1) ๐‘˜=0

( +โˆž

โˆ‘

๐œŽ

(1 โˆ’ ๐‘ก)๐œŒ๐‘˜ ๐‘‘๐‘ก

โˆซ ๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

) 1 ๐‘ž

(๐‘˜)|๐œ”|๐‘˜ ๐œŒ๐‘˜ (๐œ‘(๐‘),

๐‘˜=0

๐œ‚ ๐œ‘(๐‘Ž), ๐‘š) ๐›ค(๐œ† + ๐œŒ๐‘˜ + 1)

1

ร— ร— [

โˆซ

(1 โˆ’ ๐‘ก)

1 ๐‘ž

๐œ†๐‘ž+๐œŒ๐‘˜

๐‘  โ€ฒ

[๐‘š(1 โˆ’ ๐‘ก) ๐‘“ (๐œ‘(๐‘Ž))

๐‘Ÿ๐‘ž

๐‘  โ€ฒ

1 ๐‘Ÿ๐‘ž ๐‘Ÿ

+ ๐‘ก ๐‘“ (๐œ‘(๐‘)) ] ๐‘‘๐‘ก

๐‘ฅโˆ’๐‘š๐œ‘(๐‘Ž) ๐œ‚ (๐œ‘(๐‘),๐œ‘(๐‘Ž),๐‘š)

] โ‰ค

๐œŽ1 (โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|(๐‘ฅ

๐œŒ

1โˆ’

โˆ’ ๐‘š๐œ‘(๐‘Ž)) ])

1 ๐‘ž

1032

A. Kashuri and R. Liko 1 ๐‘ž

๐œŽ

โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)] 1 ๐‘Ÿ

๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) ๐‘  ๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž)) ๐›ฝ ( ; ๐œ†๐‘ž + ๐œŒ๐‘˜ + 1, + 1) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐‘Ÿ ๐‘Ÿ๐‘ž ๐‘Ÿ

ร—

๐‘ฅ โˆ’ ๐‘š๐œ‘(๐‘Ž) ๐‘Ÿ๐‘ž +๐‘“ โ€ฒ (๐œ‘(๐‘)) [( ) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) [{ ๐œŽ2 [|๐œ”|(๐‘š๐œ‘(๐‘Ž) + (โ„ฑ๐œŒ,๐œ†+1

๐‘Ÿ

๐‘  ๐œ†๐‘ž+๐œŒ๐‘˜+ +1 ๐‘Ÿ

1

] ๐‘  ๐œ†๐‘ž + ๐œŒ๐‘˜ + ๐‘Ÿ + 1 } ] 1โˆ’

+ ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ)๐œŒ ])

1 ๐‘ž 1 ๐‘ž

๐œŽ โ„ฑ๐œŒ,๐œ†+1 [|๐œ”|๐œ‚๐œŒ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)]

๐‘š๐‘“ โ€ฒ (๐œ‘(๐‘Ž))

ร—

[{

๐‘Ÿ๐‘ž

[(

๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ ) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š)

๐‘Ÿ

๐‘  ๐œ†๐‘ž+๐œŒ๐‘˜+ +1 ๐‘Ÿ

1

1 ๐‘Ÿ

] ๐‘  ๐œ†๐‘ž + ๐œŒ๐‘˜ + ๐‘Ÿ + 1

๐‘š๐œ‘(๐‘Ž) + ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) โˆ’ ๐‘ฅ ๐‘  ๐‘Ÿ๐‘ž +๐‘“ โ€ฒ (๐œ‘(๐‘)) ๐›ฝ ๐‘Ÿ ( ; ๐œ†๐‘ž + ๐œŒ๐‘˜ + 1, + 1) ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) ๐‘Ÿ

.

} ] โˆŽ

This completes the proof of the theorem. Corollary 4.

Under the same conditions as in Theorem 4, if we choose ๐‘Ÿ = ๐‘š = ๐‘  = 1, ๐œ‚ (๐œ‘(๐‘), ๐œ‘(๐‘Ž), ๐‘š) = ๐œ‘(๐‘) โˆ’ ๐‘š๐œ‘(๐‘Ž) and ๐œ‘(๐‘ฅ) = ๐‘ฅ, we get

| |

[

๐œŽ ๐œŽ (๐‘ฅ โˆ’ ๐‘Ž)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ฅ โˆ’ ๐‘Ž)๐œŒ ] + (๐‘ โˆ’ ๐‘ฅ)๐œ† โ„ฑ๐œŒ,๐œ†+1 [๐œ”(๐‘ โˆ’ ๐‘ฅ)๐œŒ ]

(๐‘ โˆ’ ๐‘Ž)๐œ†+1 โˆ’

๐œ† ๐œŽ ๐œŽ [(๐’ฅ๐œŒ,๐œ†,๐‘ฅโˆ’;๐œ” ๐‘“)(๐‘Ž) + (๐’ฅ๐œŒ,๐œ†,๐‘ฅ+;๐œ” ๐‘“)(๐‘)] (๐‘ โˆ’ ๐‘Ž)๐œ†+1 โ‰ค

ร—

๐œŽ1โˆ— [|๐œ”|(๐‘ฅ (โ„ฑ๐œŒ,๐œ†+1

๐œŽ2โˆ— [|๐œ”|(๐‘ [๐‘“ โ€ฒ (๐‘Ž)๐‘ž โ„ฑ๐œŒ,๐œ†+1

โˆ’ ๐‘Ž)๐œŒ ] +

๐œŽ4โˆ— [|๐œ”|(๐‘ + (โ„ฑ๐œŒ,๐œ†+1

โˆ’ ๐‘Ž)

1 1โˆ’ ๐œŒ ]) ๐‘ž

๐œŽ3โˆ— [|๐œ”|(๐‘ฅ ๐‘“ โ€ฒ (๐‘)๐‘ž โ„ฑ๐œŒ,๐œ†+1

โˆ’ ๐‘ฅ)

] ๐‘“(๐‘ฅ) | |

โˆ’ ๐‘Ž)๐œŒ ]]

1 ๐‘ž

1 1โˆ’ ๐œŒ ]) ๐‘ž 1

ร— [๐‘“

where

โ€ฒ (๐‘Ž)๐‘ž

๐œŽ5โˆ— [|๐œ”|(๐‘ โ„ฑ๐œŒ,๐œ†+1

โˆ’ ๐‘ฅ)

๐œŒ]

+๐‘“

โ€ฒ (๐‘)๐‘ž

๐œŽ6โˆ— [|๐œ”|(๐‘ โ„ฑ๐œŒ,๐œ†+1

โˆ’ ๐‘Ž)

๐œŒ ]]๐‘ž

,

(13)

1033

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

๐œŽ1โˆ— (๐‘˜) = ๐œŽ (๐‘˜) ( ๐œŽ2โˆ— (๐‘˜) = ๐œŽ (๐‘˜)๐›ฝ (

๐‘ฅโˆ’๐‘Ž 1 ) ; ๐‘ โˆ’ ๐‘Ž ๐œŒ๐‘˜ + 1

๐‘ฅโˆ’๐‘Ž ; ๐œ†๐‘ž + ๐œŒ๐‘˜ + 1, 2) ; ๐‘โˆ’๐‘Ž

๐‘ฅ โˆ’ ๐‘Ž ๐œ†๐‘ž+2 1 ) ; ๐‘โˆ’๐‘Ž ๐œ†๐‘ž + ๐œŒ๐‘˜ + 2

๐œŽ3โˆ— (๐‘˜) = ๐œŽ (๐‘˜) (

๐‘โˆ’๐‘ฅ 1 ๐œŽ4โˆ— (๐‘˜) = ๐œŽ (๐‘˜) ( ) ; ๐‘ โˆ’ ๐‘Ž ๐œŒ๐‘˜ + 1 ๐‘ โˆ’ ๐‘ฅ ๐œ†๐‘ž+2 1 ๐œŽ5โˆ— (๐‘˜) = ๐œŽ (๐‘˜) ( ) ; ๐‘โˆ’๐‘Ž ๐œ†๐‘ž + ๐œŒ๐‘˜ + 2 ๐œŽ6โˆ— (๐‘˜) = ๐œŽ (๐‘˜)๐›ฝ (

๐‘โˆ’๐‘ฅ ; ๐œ†๐‘ž + ๐œŒ๐‘˜ + 1, 2). ๐‘โˆ’๐‘Ž

Corollary 5. If we choose ๐œŽ (0) = 1, ๐œ” = 0 in Corollary 4, the inequality (13) reduces to inequality (2.4) of see (Yildiz et al., 2016; Theorem 2.3).

3. Conclusion In the present paper, the notion of generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex function was applied to establish some new generalizations of Ostrowski type inequalities via fractional integral operators. These results not only extended the results appeared in the literature but also provided new estimates on these type. Motivated by this new interesting class of generalized (๐‘Ÿ; ๐‘ , ๐‘š, ๐œ‘) โˆ’preinvex functions we can indeed see to be vital for fellow researchers and scientists working in the same domain. We conclude that our methods considered here may be a stimulant for further investigations concerning Ostrowski, Hermiteโˆ’Hadamard and Simpson type integral inequalities for various kinds of preinvex functions involving classical integrals, Riemann-Liouville fractional integrals, ๐‘˜ โˆ’fractional integrals, local fractional integrals, fractional integral operators, ๐‘ž โˆ’calculus, (๐‘, ๐‘ž) โˆ’calculus, time scale calculus and conformable fractional integrals.

Acknowledgments The authors would like to thank the reviewers for their valuable suggestions and comments to improve the presentation of this paper.

REFERENCES Abdeljawad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, Vol. 279, pp. 57-66. Agarwal, R.-P., Luo, M.-J. and Raina, R.-K. (2016). On Ostrowski type inequalities. Fasciculi Mathematici, Vol. 204, pp. 5-27.

1034

A. Kashuri and R. Liko

Ahmadmir, M. and Ullah, R. (2011). Some inequalities of Ostrowski and Grรผss type for triple integrals on time scales. Tamkang Journal of Mathematics, Vol. 42, No. 4, pp. 415-426. Alomari, M., Darus, M., Dragomir, S.-S. and Cerone, P. (2010). Ostrowski type inequalities for functions whose derivatives are s โˆ’convex in the second sense. Applied Mathematics Letters An International Journal of Rapid Publication, Vol. 23, pp. 1071-1076. Antczak, T. (2005). Mean value in invexity analysis. Nonlinear Analysis, Vol. 60, pp. 1473-1484. Chu, Y.-M., Khan, M.-A., Ali, T. and Dragomir, S.-S. (2017). Inequalities for ฮฑ โˆ’fractional differentiable functions. Journal of Inequalities and Applications, Vol. 2017, No. 93, pp. 12. Dahmani, Z. (2010). On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Annals of Functional Analysis (AFA) An International Electronic Journal, Vol. 1, No. 1, pp. 51-58. Dahmani, Z. (2010). New inequalities in fractional integrals. International Journal of Nonlinear Science, Vol. 9, No. 4, pp. 493-497. Dahmani, Z., Tabharit, L. and Taf, S. (2010). Some fractional integral inequalities. Nonlinear. Sci. Lett. A, Vol. 1, No. 2, pp. 155-160. Dahmani, Z., Tabharit, L. and Taf, S. (2010). New generalizations of Grรผss inequality using Riemann-Liouville fractional integrals. Bulletin of Mathematical Analysis and Applications, Vol. 2, No. 3, pp. 93-99. Dragomir, S.-S. and Wang, S. (1997). An inequality of Ostrowski-Grรผss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules. Computers & Mathematics with Applications, Vol. 13, No. 11, pp. 15-20. Dragomir, S.-S. and Wang, S. (1997). A new inequality of Ostrowski's type in L1 โˆ’norm and applications to some special means and to some numerical quadrature rules. Tamkang Journal of Mathematics, Vol. 28, pp. 239-244. Dragomir, S.-S. (1999). The Ostrowski integral inequality for Lipschitzian mappings and applications. Computers & Mathematics with Applications, Vol. 38, pp. 33-37. Dragomir, S.-S. (2001). On the Ostrowski's integral inequality for mappings with bounded variation and applications. Mathematical Inequalities & Applications, Vol. 4, No. 1, pp. 59-66. Du, T.-S., Liao, J.-G. and Li, Y.-J. (2016). Properties and integral inequalities of HadamardSimpson type for the generalized (s, m) โˆ’preinvex functions. Journal of Nonlinear Science and Applications, Vol. 9, pp. 3112-3126. Hudzik, H. and Maligranda, L. (1994). Some remarks on s โˆ’convex functions. Aequationes Mathematicae, Vol. 48, pp. 100-111. Kashuri, A. and Liko, R. (2016). Ostrowski type fractional integral inequalities for generalized (s, m, ฯ†) โˆ’preinvex functions. The Australian Journal of Mathematical Analysis and Applications, Vol. 13, No. 1, Article 16, pp. 1-11. Kashuri, A. and Liko, R. (2017). Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MTm โˆ’preinvex functions, Proyecciones Journal of Mathematics. Vol. 36, No. 1, pp. 45-80. Kashuri, A. and Liko, R. (2017). Hermite-Hadamard type fractional integral inequalities for generalized (r; s, m, ฯ†) โˆ’preinvex functions. European Journal of Pure and Applied Mathematics, Vol. 10, No. 3, pp. 495-505. Katugampola, U.-N. (2014). A new approach to generalized fractional derivatives. Bulletin of Mathematical Analysis and Applications, Vol. 6, No. 4, pp. 1-15. Khalil, R., Horani, M.-A., Yousef, A. and Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, Vol. 264, pp. 65-70. Liu, Z. (2007). Some Ostrowski-Grรผss type inequalities and applications. Computers & Mathematics with Applications, Vol. 53, pp. 73-79. Liu, Z. (2009). Some companions of an Ostrowski type inequality and applications. JIPAM. Journal of Inequalities in Pure & Applied Mathematics, Vol. 10, No. 2, Art. 52, pp. 12.

AAM: Intern. J., Vol 12, Issue 2 (December 2017)

1035

Liu, W., Wen, W. and Park, J. (2015). Ostrowski type fractional integral inequalities for MT โˆ’convex functions. Miskolc Math. Notes, Vol. 16, No. 1, pp. 249-256. Liu, W., Wen, W. and Park, J. (2016). Hermite-Hadamard type inequalities for MT โˆ’convex functions via classical integrals and fractional integrals. Journal of Nonlinear Science and Applications, Vol. 9, pp. 766-777. ร–zdemir, M.-E. Kavurmacฤฑ, H. and Set, E. (2010). Ostrowski's type inequalities for (ฮฑ, m) โˆ’convex functions. Kyungpook Mathematical Journal, Vol. 50, pp. 371-378. Pachpatte, B.-G. (2000). On an inequality of Ostrowski type in three independent variables. Journal of Mathematical Analysis and Applications, Vol. 249, pp. 583-591. Pachpatte, B.-G. (2001). On a new Ostrowski type inequality in two independent variables. Tamkang Journal of Mathematics, Vol. 32, No. 1, pp. 45-49. Pini, R. (1991). Invexity and generalized convexity. Optimization, Vol. 22, pp. 513-525. Purohit, S.-D. and Kalla, S.-L. (2014). Certain inequalities related to the Chebyshev's functional involving Erdelyi-Kober operators. Scientia. Series A: Mathematical Sciences. New Series Official Journal of the Universidad Tรฉcnica Federico Santa Marรญa, Vol. 25, pp. 53-63. Rafiq, A., Mir, N.-A. and Ahmad, F. (2007). Weighted ฤŒebyลกev-Ostrowski type inequalities. Applied Mathematics and Mechanics. (English Edition), Vol. 28, No. 7, pp. 901-906. Raina, R.-K. (2005). On generalized Wright's hypergeometric functions and fractional calculus operators. East Asian Mathematical Journal, Vol. 21, No. 2, pp. 191-203. Sarikaya, M.-Z. (2010). On the Ostrowski type integral inequality. Acta Mathematica Universitatis Comenianae, Vol. 79, No. 1, pp. 129-134. Set, E., Gรถzpฤฑnar, A. and Choi, J. (2017). Hermite-Hadamard type inequalities for twice differentiable m โˆ’convex functions via conformable fractional integrals. Far East Journal of Mathematical Sciences, Vol. 101, No. 4, pp. 873-891. Tunรง, M. (2014). Ostrowski type inequalities for functions whose derivatives are MT โˆ’convex. Journal of Computational Analysis and Applications, Vol. 17, No. 4, pp. 691-696. Ujeviฤ‡, N. (2004). Sharp inequalities of Simpson type and Ostrowski type. Computers & Mathematics with Applications, Vol. 48, pp. 145-151. Yang, X.-M., Yang, X.-Q. and Teo, K.-L. (2003). Generalized invexity and generalized invariant monotonicity. Journal of Optimization Theory and Applications, Vol. 117, pp. 607-625. Yildiz, ร‡., ร–zdemir, M.-E. and Sarikaya, M.-Z. (2016). New generalizations of Ostrowski-like type inequalities for fractional integrals. Kyungpook Mathematical Journal, Vol. 56, pp. 161-172. Zhongxue, L. (2008). On sharp inequalities of Simpson type and Ostrowski type in two independent variables. Computers & Mathematics with Applications, Vol. 56, pp. 2043-2047.

Biographical Note of Authors: The authors are Assistant Professors of Department of Mathematics, Faculty of Technical Science, University โ€œIsmail Qemaliโ€, Vlora, Albania. Their research interests include Mathematical Inequalities, Fractional Calculus, Approximation Theory and Applied Mathematics. They have published more than 15 research articles in reputed international journals.