Photoactive Semiconducting Oxides for Energy and ...

6 downloads 3600 Views 162KB Size Report
Apr 8, 2016 - excess electron states and implications for charge transport in the ... file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid.
Photoactive Semiconducting Oxides for Energy and Environment: Expe...

1 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

Living Reference Work Entry Handbook of Computational Chemistry pp 1-48 Date: 08 April 2016 Latest Version

Photoactive Semiconducting Oxides for Energy and Environment: Experimental and Theoretical Insights Malgorzata Makowska-Janusik , Abdel-Hadi Kassiba

Abstract This chapter reports experimental investigations and theoretical approaches devoted to analyze the electronic, optical, and vibrational properties occurring in semiconducting photoactive materials in their bulk form or as nanosized objects. An original cluster approach was developed to describe the physical features of nanoparticles and the impact of their surface on photoinduced charge transfer phenomena. Photovoltaic and photocatalysis are two major applications for both clean environment and sustainable sources of energy as well. In this context, semiconducting nanocrystals from defined oxide families have attracted increasing interest during the last decade for their promising potential in renewable energy applications because of their versatile and coupled optical and electronic properties. More specifically, the semiconductor oxides as titanium oxide and bismuth vanadate-based materials can be tailored in nanosized and mesoporous structures. The electronic and optical features may be modulated in large extents when dye molecules are used as sensitizing vectors enhancing the efficiency of solar cells, energy storage, and photocatalyst. These applications depend on the reactive surface area, morphology and nanostructuration, doping and sensitizing agents, as well as controlled vacancy rates acting on the charge transferpeculiarities. In parallel to experimental investigations dedicated to selected forms of photoactive semiconducting oxides, original theoretical approaches were developed to analyze the key features of the considered functional systems. Using an integrated approach associating theoretical models and numerical simulations, the influence of the size and morphology of nanoparticles on their electronic and optical properties was pointed out.

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

2 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

The cluster approach methodology was developed to simulate the electronic properties of semiconducting nanocrystalline materials as isolated objects or functionalized by organic dye molecules. The construction of the system proceeds by the crystal structure frozen in the cluster core while the surface is modified according to the environmental interactions. Theoretically, it was proved that nanostructures exhibit patchwork properties coming from the bulk material including core crystal structure and from surface effects caused by environment. On the other hand, the role of doping of the considered structures by metallic elements was investigated on the photoactivity mechanism involved in nanoparticles. The nature of vacancies located close to the dopants plays a crucial role on the electronic and optical features in the photoactive materials. Thus, the theoretical approaches and the carried out numerical simulations contribute to draw quantitative insights of the physical properties of functional semiconducting oxides in agreement with relevant experimental analyses.

Bibliography Albaret, T., Finocchi, F., & Noguera, C. (2000). Density functional study of stoichiometric and O-rich titanium oxygen clusters. Journal Chemical Physics, 113, 2238–2249. CrossRef (http://dx.doi.org/10.1063/1.482038) Albuquerque, A. R., Garzim, M. L., dos Santos, I. M. G., Longo, V., Longo, E., & Sambrano, J. R. (2012). DFT study with inclusion of the Grimme potential on anatase TiO2: Structure, electronic, and vibrational analyses. Journal of Physical Chemistry A, 116, 11731–11735. CrossRef (http://dx.doi.org/10.1021/jp308318j) Almbladh, C. O., & Pedroza, A. C. (1984). Density-functional exchange-correlation potentials and orbital eigenvalues for light atoms. Physical Review A, 29, 2322. CrossRef (http://dx.doi.org/10.1103/PhysRevA.29.2322) Amtout, A., & Leonelli, R. (1995). Optical properties of Rutile near its fundamental band gap. Physical Review B, 51, 6842–6851. CrossRef (http://dx.doi.org/10.1103/PhysRevB.51.6842) Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 44, 943–954. CrossRef (http://dx.doi.org/10.1103/PhysRevB.44.943) Appel, F., Gross, E. K. U., & Burke, K. (2003). Excitations in time-dependent density-functional theory. Physical Review Letters, 90, 043005. CrossRef (http://dx.doi.org/10.1103/PhysRevLett.90.043005) Bajaj, R., Sharma, M., & Bahadur, D. (2013). Visible light-driven novel nanocomposite (BiVO4 /CuCr2O4 ) for efficient degradation of organic dye. Dalton Transactions, 42, 6736–6744. CrossRef (http://dx.doi.org/10.1039/c2dt32753h) Baraton, M. I., Busca, G., Prieto, M. C., Ricchiardi, G., & Sanchez Escribano, V. (1994). On the vibrational spectra and structure of FeCrO3 and of the Ilmenite-Type compounds CoTiO3 and NiTiO3. Journal of Solid State Chemistry, 112, 9–14. CrossRef (http://dx.doi.org/10.1006/jssc.1994.1256) Barnard, A. S., & Zapol, P. (2004a). A model for the phase stability of arbitrary nanoparticles as a function of size and shape. Journal of Chemical Physics, 121, 4276–4283. CrossRef (http://dx.doi.org/10.1063/1.1775770) Barnard, A. S., & Zapol, P. (2004b). Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. Physical Review B, 70, 235403–13. CrossRef (http://dx.doi.org/10.1103/PhysRevB.70.235403) Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100. CrossRef (http://dx.doi.org/10.1103/PhysRevA.38.3098)

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

3 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

Becke, A. D. (1993). Density-functional thermochemistry. iii. the role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. CrossRef (http://dx.doi.org/10.1063/1.464913) Bergner, A., Dolg, M., Kuechle, W., Stoll, H., & Preuss, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80, 1431–1441. CrossRef (http://dx.doi.org/10.1080/00268979300103121) Bermudez, V. M. (2010). Ab initio study of the interaction of Dimethyl Methylphosphonate with Rutile (110) and Anatase (101) TiO2 surfaces. Journal Physical Chemistry C, 114, 3063–3074. CrossRef (http://dx.doi.org/10.1021/jp9098304) Biswas, S., Hossain, M. F., & Takahashi, T. (2008). Fabrication of Grätzel solar cell with TiO 2/CdS bilayered photoelectrode. Thin Solid Films, 517, 1284–1288. CrossRef (http://dx.doi.org/10.1016/j.tsf.2008.06.010) Blagojevic, V., Chen, Y. R., Steigerwald, M., Brus, L., & Friesner, R. (2009). A. Quantum chemical investigation of cluster models for TiO2 nanoparticles with water-derived ligand passivation: Studies of excess electron states and implications for charge transport in the Gratzel cell. Journal of Physical Chemistry C, 113, 19806–19811. CrossRef (http://dx.doi.org/10.1021/jp905332z) Burdett, J. K., Hughbanks, T., Miller, G. J., Richardson, J. W., & Smith, J. V. (1987). Structuralelectronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society, 109, 3639–3646. CrossRef (http://dx.doi.org/10.1021/ja00246a021) Burke, K. (2012). Perspective on density functional theory. Journal of Chemical Physics, 136, 150901. CrossRef (http://dx.doi.org/10.1063/1.4704546) Ceperley, D. M., & Alder, B. J. (1980). Ground state of the electron gas by a stochastic method. Physical Review Letters, 45, 566–569. CrossRef (http://dx.doi.org/10.1103/PhysRevLett.45.566) Chandiran, A. K., Abdi-Jalebi, M., Nazeeruddin, M. K., & Grätzel, M. (2014). Analysis of electron transfer properties of ZnO and TiO2 photoanodes for Dye-Sensitized solar cells. ACS Nano, 8, 2261–2268. CrossRef (http://dx.doi.org/10.1021/nn405535j) Chretien, S., & Metiu, H. (2011). Electronic structure of partially reduced Rutile TiO 2(110) surface: Where are the unpaired electrons located? Journal Physical Chemictry C, 115, 4696–4705. CrossRef (http://dx.doi.org/10.1021/jp111209a) Cooper, J. K., Gul, S., Toma, F. M., Chen, L., Glans, P.-A., Guo, J., Ager, J. W., Yano, J., & Sharp, I. D. (2014). Electronic structure of monoclinic BiVO4 . Chemistry of Materials, 26, 5365–5373. CrossRef (http://dx.doi.org/10.1021/cm5025074) Cundari, T. R., & Stevens, W. J. (1993). Effective core potential methods for the lanthanides. Journal of Chemical Physics, 98, 5555–5565. CrossRef (http://dx.doi.org/10.1063/1.464902) Delley, B. (1990). An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 92, 508–517. CrossRef (http://dx.doi.org/10.1063/1.458452) Delley, B. (2000). From molecules to solids with the DMol 3 approach. Journal of Chemical Physics, 113, 7756–7764. CrossRef (http://dx.doi.org/10.1063/1.1316015) Dolg, M., Wedig, U., Stoll, H., & Preuss, H. (1987). Energy-adjusted ab initio pseudopotentials for the first row transition elements. Journal of Chemical Physics, 86, 866–872. CrossRef (http://dx.doi.org/10.1063/1.452288) Dreuw, A., Weisman, J. L., & Head-Gordon, M. (2003). Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. Journal of Chemical Physics, 119, 2943. CrossRef (http://dx.doi.org/10.1063/1.1590951)

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

4 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

Ferrari, M., & Lutterotti, L. (1994). Method for the simultaneous determination of anisotropic residual stresses and texture by X-ray diffraction. Journal of Applied Physics, 76, 7246–7255. CrossRef (http://dx.doi.org/10.1063/1.358006) Gałyńska, M., & Persson, P. (2013). Emerging polymorphism in nanostructured TiO2: Quantum chemical comparison of anatase, rutile, and brookite clusters. International Journal of Quantum Chemistry, 113, 2611–2620. CrossRef (http://dx.doi.org/10.1002/qua.24522) Gawande, S. B., & Thakare, S. R. (2012). Graphene wrapped BiVO 4 photocatalyst and its enhanced performance under visible light irradiation. International Nano Letters, 2, 1–7. CrossRef (http://dx.doi.org/10.1186/2228-5326-2-11) Gerber, I. C., & Ángyán, J. G. (2005). Hybrid functional with separated range. Chemical Physics Letters, 415, 100–105. CrossRef (http://dx.doi.org/10.1016/j.cplett.2005.08.060) Grüning, M., Marini, A., & Rubio, A. (2006). Density functionals from many-body perturbation theory: The band gap for semiconductors and insulators. Journal Chemical Physics, 124, 154108. CrossRef (http://dx.doi.org/10.1063/1.2189226) Hamad, S., Catlow, C. R. A., Woodley, S. M., Lago, S., & Mejias, J. A. (2005). Structure and stability of small TiO2 nanoparticles. Journal of Physical Chemistry B, 109, 15741–15748. CrossRef (http://dx.doi.org/10.1021/jp0521914) Hedin, L., & Lundqvist, B. I. (1971). Explicit local exchange correlation potentials. Journal of Physics C, 4, 2064–2083. CrossRef (http://dx.doi.org/10.1088/0022-3719/4/14/022) Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 118, 8207–8215. CrossRef (http://dx.doi.org/10.1063/1.1564060) Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864–871. CrossRef (http://dx.doi.org/10.1103/PhysRev.136.B864) Huang, J. R., & Cheng, C. (2013). Cation and magnetic orders in MnFe2O4 from density functional calculations. Journal of Applied Physics, 113, 033912. CrossRef (http://dx.doi.org/10.1063/1.4776771) Huang, Z. F., Pan, L., Zou, J. J., Zhang, X., & Wang, L. (2014). Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale, 6, 14044–14063. CrossRef (http://dx.doi.org/10.1039/C4NR05245E) Hwang, Y. J., Boukai, A., & Yang, P. (2009). High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Letters, 9, 410–415. CrossRef (http://dx.doi.org/10.1021/nl8032763) Hybertsen, M. S., & Louie, S. G. (1989). Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B, 34, 5390–5413. CrossRef (http://dx.doi.org/10.1103/PhysRevB.34.5390) Iikura, H., Tsuneda, T., Yanai, T., & Hirao, K. (2001). A long-range correction scheme for generalizedgradient-approximation exchange functionals. Journal of Chemical Physics, 115, 3540–3544. CrossRef (http://dx.doi.org/10.1063/1.1383587) Ishigaki, T., Li, Y.–. L., & Kataoka, E. (2003). Phase formation and microstructure of titanium oxides and composites produced by thermal plasma oxidation of titanium carbide. Journal of the American Ceramic Society, 86, 1456–1463. CrossRef (http://dx.doi.org/10.1111/j.1151-2916.2003.tb03496.x) Jain, A., Hautier, G., Ong, S. P., Moore, C. J., Fischer, C. C., Persson, K. A., & Ceder, G. (2011). Formation enthalpies by mixing GGA and GGA+U calculations. Physical Review B, 84, 045115. CrossRef (http://dx.doi.org/10.1103/PhysRevB.84.045115) Jo, W. J., Jang, J. W., Kong, K. J., Kang, H. J., Kim, J. Y., Jun, H., Parmar, K. P. S., & Lee, J. S. (2012). Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angewandte Chemie International Edition, 51, 3147–3151.

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

5 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

CrossRef (http://dx.doi.org/10.1002/anie.201108276) Kassiba, A., Makowska-Janusik, M., Boucle, J., Bardeau, J. F., Bulou, A., & Herlin-Boime, N. (2002). Photoluminescence features on the Raman Spectra of quasistoichiometric SiC nanoparticles: experimental and numerical simulations. Physical Review B, 66, 155317. CrossRef (http://dx.doi.org/10.1103/PhysRevB.66.155317) Kassiba, A., Pattier, B., Henderson, M., Makowska-Janusik, M., Mei, P., & Gibaud, A. (2012). Titanium oxide based mesoporous powders and gels: Doping effects and photogenerated charge transfer. Materials Science and Engineering B, 177, 1446–1451. CrossRef (http://dx.doi.org/10.1016/j.mseb.2012.02.018) Kim, T. W., & Choi, K. S. (2014). Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 343, 990–994. CrossRef (http://dx.doi.org/10.1126/science.1246913) Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review A, 140, 1133–1138. CrossRef (http://dx.doi.org/10.1103/PhysRev.140.A1133) Krukau, A. V., Vydrov, O. A., Izmaylov, A. F., & Scuseria, G. E. (2006). Influence of the exchange screening parameter on the performance of screened hybrid functionals. Journal of Chemical Physics, 125, 224106. CrossRef (http://dx.doi.org/10.1063/1.2404663) Kshirsagar, A., & Kumbhojkar, N. (2008). Empirical pseudo-potential studies on electronic structure of semiconducting quantum dots. Bulletin of Materials Science, 31, 297–308. CrossRef (http://dx.doi.org/10.1007/s12034-008-0048-7) Kudo, A., Omori, K., & Kato, H. (1999). A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. Journal of the American Chemical Society, 121, 11459–11467. CrossRef (http://dx.doi.org/10.1021/ja992541y) Labat, F., Baranek, P., Domain, C., Minot, C., & Adamo, C. (2007). Density functional theory analysis of the structural and electronic properties of TiO2 Rutile and anatase polytypes: Performances of different exchange-correlation functionals. Journal of Chemical Physics, 126, 154703. CrossRef (http://dx.doi.org/10.1063/1.2717168) Langreth, D. C., & Perdew, J. P. (1980). Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Physical Review B, 21, 5469–5493. CrossRef (http://dx.doi.org/10.1103/PhysRevB.21.5469) Laskowski, R., Christensen, N. E., Blaha, P., & Palanivel, B. (2009). Strong excitonic effects in CuAlO2 delafossite transparent conductive oxides. Physical Review B, 79, 165209. CrossRef (http://dx.doi.org/10.1103/PhysRevB.79.165209) Le, J. Y., Park, J., & Cho, J. H. (2005). Electronic properties of N- and C-doped TiO2. Applied Physics Letters, 87, 011904. CrossRef (http://dx.doi.org/10.1063/1.1991982) Levy, M. (1979). Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proceedings of the National Academy of Sciences of the USA, 76, 6062–6065. Levy, M., Perdew, J. P., & Sahni, V. (1984). Exact differential equation for the density and ionization energy of a many-particle system. Physical Review A, 30, 2745. CrossRef (http://dx.doi.org/10.1103/PhysRevA.30.2745) Lin, Y. Y., Chu, T. H., Li, S. S., Chuang, C. H., Chang, C. H., Su, W. F., Chang, C. P., Chu, M. W., & Chen, C. W. (2009). Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells. Journal of the American Chemical Society, 131, 3644–3649. CrossRef (http://dx.doi.org/10.1021/ja8079143) Liu, Q. J., & Liu, Z. T. (2011). First-principles generalized gradient approximation + U study of cubic CuAl2O4 . Applied Physics Letters, 99, 091902. CrossRef (http://dx.doi.org/10.1063/1.3630131)

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

6 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

Lopes, K. P., Cavalcante, L. S., Simoes, A. Z., Varela, J. A., Longo, E., & Leite, E. R. (2009). NiTiO 3 powders obtained by polymeric precursor method: Synthesis and characterization. Journal of Alloys and Compounds, 468, 327. CrossRef (http://dx.doi.org/10.1016/j.jallcom.2007.12.085) Ma, J., & Wang, L.-W. (2014). The role of the isolated 6s states in BiVO 4 on the electronic and atomic structures. Applied Physics Letters, 105, 172102. CrossRef (http://dx.doi.org/10.1063/1.4900549) Madhusudan, P., Ran, J., Zhang, J., Yu, J., & Liu, G. (2011). Novel urea assisted hydrothermal synthesis of hierarchical BiVO4 /Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 110, 286–295. CrossRef (http://dx.doi.org/10.1016/j.apcatb.2011.09.014) Makowska-Janusik, M., & Kassiba, A. (2012). Functional nanostructures and nanocomposites – Numerical modeling approach and experiment. In J. Leszczynski (Ed.), Handbook of computational chemistry. New York: Springer. ISBN 978-94-007-0711-5. Makowska-Janusik, M., Gladii, O., Kassiba, A., Herlin-Boime, N., & Bouclé, J. (2014). Cluster approach to model titanium dioxide as isolated or organic dye sensitized nanoobjects. Journal of Physical Chemistry C, 118, 6009–6018. CrossRef (http://dx.doi.org/10.1021/jp4104855) Martsinovich, N., Jones, D. R., & Troisi, A. (2010). Electronic structure of TiO2 surfaces and effect of molecular adsorbates using different DFT implementations. Journal Physical Chemistry C, 114, 22659–22670. CrossRef (http://dx.doi.org/10.1021/jp109756g) Mei, P., Henderson, M., Kassiba, A., & Gibaud, A. (2010). EPR study of nitrogen-doped mesoporous TiO2 powders. Original. Journal of Physics and Chemistry of Solids, 71, 1–6. CrossRef (http://dx.doi.org/10.1016/j.jpcs.2009.08.002) Melhem, H., Simon, P., Wang, J., Di Bin, C., Ratier, B., Leconte, Y., Herlin-Boime, N., MakowskaJanusik, M., Kassiba, A., & Bouclé, J. (2013). Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications. Solar Energy Materials and Solar Cells, 177, 624–631. CrossRef (http://dx.doi.org/10.1016/j.solmat.2012.08.017) Merupo, V. I., Velumani, S., Oza, G., Makowska-Janusik, M., & Kassiba, A. (2015a). Structural, electronic and optical features of molybdenum-doped bismuth vanadium oxide. Materials Science in Semiconductor Processing, 31, 618–623. CrossRef (http://dx.doi.org/10.1016/j.mssp.2014.12.057) Merupo, V. I., Velumani, S., Ordon, K., Errien, N., Szade, J., & Kassiba, A. (2015b). Structural and optical characterizations of ball milled copper doped bismuth vanadium oxide (BiVO4 ). CrystEngComm, 2015,17, 3366–3375. doi:10.1039/C5CE00173K. Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188–5192. CrossRef (http://dx.doi.org/10.1103/PhysRevB.13.5188) Monkhorst, H. J., & Pack, J. D. (1977). Special points for Brillouin-zone integrations – a reply. Physical Review B, 16, 1748–1749. CrossRef (http://dx.doi.org/10.1103/PhysRevB.16.1748) Nam, H.–. J., Amemiya, T., Murabayashi, M., & Itoh, K. (2004). Photocatalytic activity of Sol–gel TiO2 thin films on various kinds of glass substrates: The effects of Na + and primary particle size. Journal of Physical Chemistry B, 108, 8254–8259. CrossRef (http://dx.doi.org/10.1021/jp037170t) Na-Phattalung, S., Smith, M. F., Kim, K., Du, M.-H., Wei, S.-H., Zhang, S. B., & Limpijumnong, S. (2006). First-principles study of native defects in anatase TiO2. Physical Review B, 73, 125205. CrossRef (http://dx.doi.org/10.1103/PhysRevB.73.125205) Ng, Y. H., Iwase, A., Kudo, A., & Amal, R. (2010). Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. Journal of Physical Chemistry Letters, 1, 2607–2612.

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

7 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

CrossRef (http://dx.doi.org/10.1021/jz100978u) Pattier, B. (2010). Ph.D. dissertation. University of Maine, Le Mans France. cyberdoc.univ-lemans.fr/ theses/2010/2010LEMA1019.pdf (http://cyberdoc.univ-lemans.fr/theses/2010/2010LEMA1019.pdf) Pattier, B., Henderson, M., Pöppl, A., Kassiba, A., & Gibaud, A. (2010). Multi-approach electron paramagnetic resonance investigations of UV-photoinduced Ti(3+) in titanium oxide-based gels. Journal of Physical Chemistry B, 114, 4424–4431. CrossRef (http://dx.doi.org/10.1021/jp911357v) Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., & Joannopoulos, J. D. (1992). Iterative minimization techniques for Ab Initio total energy calculations: Molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64, 1045–1097. CrossRef (http://dx.doi.org/10.1103/RevModPhys.64.1045) Payne, D. J., Robinson, M. D. M., Egdell, R. G., Walsh, A., McNulty, J., Smith, K. E., & Piper, L. F. J. (2011). The nature of electron lone pairs in BiVO4 . Applied Physics Letters, 98, 212110. CrossRef (http://dx.doi.org/10.1063/1.3593012) Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23, 5048–5079. CrossRef (http://dx.doi.org/10.1103/PhysRevB.23.5048) Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 45, 13244–13249. CrossRef (http://dx.doi.org/10.1103/PhysRevB.45.13244) Perdew, J. P., Burke, K., & Ernzerhof, M. (1996a). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868. CrossRef (http://dx.doi.org/10.1103/PhysRevLett.77.3865) Perdew, J. P., Ernzerhof, M., & Burke, K. (1996b). Rationale for mixing exact exchange with density functional approximations. Journal of Chemical Physics, 105, 9982–9985. CrossRef (http://dx.doi.org/10.1063/1.472933) Persson, P., Gebhardt, J. C. M., & Luneel, S. (2003). The smallest possible nanocrystals of semiionic oxides. Journal Physical Chemistry, B107, 3336–3339. CrossRef (http://dx.doi.org/10.1021/jp022036e) Pfrommer, B. G., Cate, M., Louie, A. G., & Cohen, M. L. (1997). Relaxation of crystals with the QuasiNewton method. Journal of Computational Physics, 131, 233–240. CrossRef (http://dx.doi.org/10.1006/jcph.1996.5612) Qu, Z. W., & Kroes, G. J. (2006). Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO 2)n with n = 1–9. Journal of Physical. Chemistry B, 110, 8998–9007. CrossRef (http://dx.doi.org/10.1021/jp056607p) Qu, Z. W., & Kroes, G. J. (2007). Theoretical study of stable, defect-free (TiO 2)n nanoparticles with n =  10–16. Journal of Physical Chemistry C, 111, 16808–16817. CrossRef (http://dx.doi.org/10.1021/jp073988t) Rajalingam, V., Velumani, S., & Kassiba, A. (2012). Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Materials Chemistry and Physics, 135, 842–848. CrossRef (http://dx.doi.org/10.1016/j.matchemphys.2012.05.068) Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M. E., Cab, C., Coss, R., & Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19, 145605–145615. CrossRef (http://dx.doi.org/10.1088/0957-4484/19/14/145605) Ruiz Preciado, M. A., Kassiba, A., Morales-Acevedo, A., & Makowska-Janusik, M. (2015). Vibrational and electronic peculiarities of NiTiO3 nanostructures inferred from first principle calculations. RSC Advances, 5, 17396–17404. CrossRef (http://dx.doi.org/10.1039/C4RA16400H) Sahoo, S. K., Pal, S., Sarkar, P., & Majumder, C. (2011). Size-dependent electronic structure of Rutile TiO2 quantum dots. Chemical Physics Letters, 516, 68–71. CrossRef (http://dx.doi.org/10.1016/j.cplett.2011.09.047)

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

8 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

Salvador, P., Gutierrez, C., & Goodenough, J. B. (1982). Photoresponse of n-type semiconductor NiTiO3. Applied Physics Letters, 40, 188–190. CrossRef (http://dx.doi.org/10.1063/1.93003) Sayede, A., Khenata, R., Chahed, A., & Benhelal, O. (2013). Electronic and optical properties of layered RE2Ti2O7 (RE=Ce and Pr) from first principles. Journal of Applied Physics, 113, 173501. CrossRef (http://dx.doi.org/10.1063/1.4803124) Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., & Montgomery, J. A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363. CrossRef (http://dx.doi.org/10.1002/jcc.540141112) Seidl, A., Görling, A., Vogl, P., Majewski, J. A., & Levy, M. (1996). Generalized Kohn-Sham schemes and the band-gap problem. Physical Review B, 53, 3764–3774. CrossRef (http://dx.doi.org/10.1103/PhysRevB.53.3764) Singh, R. K., & Tsuneda, T. (2013). Reaction energetics on long-range corrected density functional theory: Diels–Alder reactions. Journal of Computational Chemistry, 34, 379–386. CrossRef (http://dx.doi.org/10.1002/jcc.23145) Singh, R. S., Ansari, T. H., Singh, R. A., & Wanklyn, B. M. (1995). Electrical conduction in NiTiO3 single crystals. Materials Chemistry and Physics, 40, 173–177. CrossRef (http://dx.doi.org/10.1016/0254-0584%2895%2901478-0) Slater, J. C. (1951). A simplification of the Hartree-Fock method. Physical Review, 81, 385–390. CrossRef (http://dx.doi.org/10.1103/PhysRev.81.385) Sleight, A. W., Chen, H. Y., Ferretti, A., & Cox, D. E. (1979). Crystal growth and structure of BiVO4 . Materials Research Bulletin, 14, 1571–1581. CrossRef (http://dx.doi.org/10.1016/0025-5408%2872%2990227-9) Srivastava, G. P., & Weaire, D. (1987). The theory of the cohesive energies of solids. Advances in Physics, 26, 463–517. CrossRef (http://dx.doi.org/10.1080/00018738700101042) Stausholm-Møller, J., Kristoffersen, H. H., Hinnemann, B., Madsen, G. K. H., & Hammer, B. (2010). DFT+U study of defects in bulk rutile TiO2. Journal of Chemical Physics, 133, 144708–144715. CrossRef (http://dx.doi.org/10.1063/1.3492449) Stephenset, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry, 98, 11623–11627. CrossRef (http://dx.doi.org/10.1021/j100096a001) Stevens, W. J., Basch, H., & Krauss, M. (1984). Compact effective potentials and efficient sharedexponent basis sets for the first- and second-row atoms. Journal of Chemical Physics, 81, 6026–6033. CrossRef (http://dx.doi.org/10.1063/1.447604) Stewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13, 1173–1213. CrossRef (http://dx.doi.org/10.1007/s00894-007-0233-4) Stewart, J. J. P. (2012). MOPAC2012 Stewart computational chemistry, Colorado Springs. HTTP:// OpenMOPAC.net (http://openmopac.net/) Su, Y., & Balmer, M. L. (2000). Raman spectroscopic studies of silicotitanates. Journal of Physical Chemistry B, 104, 8160. CrossRef (http://dx.doi.org/10.1021/jp0018807) Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, Y., & Hirao, K. (2004). A long-range-corrected time-dependent density functional theory. Journal of Chemical Physics, 120, 8425–8433. CrossRef (http://dx.doi.org/10.1063/1.1688752) Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Reviev B, 41, 7892–7895. CrossRef (http://dx.doi.org/10.1103/PhysRevB.41.7892) Venkatesan, R. (2014). Ph.D. Thesis dissertation, University of Maine Le Mans www.theses.fr/

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

9 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

2014LEMA3004.pdf (http://www.theses.fr/2014LEMA3004.pdf) Venkatesan, R., Velumani, S., & Kassiba, A. (2012). Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Materials Chemistry and Physics, 135, 842–848. CrossRef (http://dx.doi.org/10.1016/j.matchemphys.2012.05.068) Venkatesan, R., Velumani, S., Tabellout, M., Errien, N., & Kassiba, A. (2013). Dielectric behavior, conduction and EPR active centres in BiVO4 nanoparticles. Journal of Physics and Chemistry of Solids, 74, 1695–1702. CrossRef (http://dx.doi.org/10.1016/j.jpcs.2013.06.011) Vijayalakshmi, R., & Rajendran, V. (2012). Effect of reaction temperature on size and optical properties of NiTiO3 nanoparticles. E-Journal of Chemistry, 9, 282–288. CrossRef (http://dx.doi.org/10.1155/2012/607289) Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200–1211. CrossRef (http://dx.doi.org/10.1139/p80-159) Walsh, M. B., King, R. A., & Schaefer, H. F. (1999). The structures, electron affinities, and energetic stabilities of TiOn and (n=1–3). Journal Chemical Physics, 110, 5224–5230. CrossRef (http://dx.doi.org/10.1063/1.478418) Walsh, A., Yan, Y., Huda, M. N., Al-Jassim, M. M., & Wei, S. H. (2009). Band edge electronic structure of BiVO4 : Elucidating the role of the Bi s and V d orbitals. Chemistry of Materials, 21, 547–551. CrossRef (http://dx.doi.org/10.1021/cm802894z) Wang, X., Li, G., Ding, J., Peng, H., & Chen, K. (2012). Facile synthesis and photocatalytic activity of monoclinic BiVO4 micro/nanostructures with controllable morphologies. Materials Research Bulletin, 47, 3814–3118. CrossRef (http://dx.doi.org/10.1016/j.materresbull.2012.04.082) Wang, J. L., Li, Y. Q., Byon, Y. I., Mei, S. G., & Zhang, G. L. (2013). Synthesis and characterization of NiTiO3 yellow nano pigment with high solar radiation reflection efficiency. Powder Technology, 235, 303–306. CrossRef (http://dx.doi.org/10.1016/j.powtec.2012.10.044) Wang, J. T. W., Ball, J. M., Barea, E. M., Abate, A., Alexander-Webber, J. A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H. J., & Nicholas, R. J. (2014). Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film Perovskite solar cells. Nano Letters, 14, 724–730. CrossRef (http://dx.doi.org/10.1021/nl403997a) Wilcoxon, J. P., Samara, G. A., & Provencio, P. N. (1999). Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Physical Review B, 60, 2704–2714. CrossRef (http://dx.doi.org/10.1103/PhysRevB.60.2704) Llabrés i Xamena, F. X., Damin, A., Bordiga, S., & Zecchina, A. (2003). Healing of defects in ETS-10 by selective UV irradiation: A Raman study. Chemical Communications 1514–1515. Xie, M., Feng, Y., Fu, X., Luan, P., & Jing, L. (2015). Phosphate-bridged TiO2–BiVO 4 nanocomposites with exceptional visible activities for photocatalytic water splitting. Journal of Alloys and Compounds, 631, 120–124. CrossRef (http://dx.doi.org/10.1016/j.jallcom.2015.01.091) Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-Attenuating method (CAM-B3LYP). Chemical Physics Letters, 393, 51–57. CrossRef (http://dx.doi.org/10.1016/j.cplett.2004.06.011) Yin, W. J., Wei, S. H., Al-Jassim, M. M., Turner, J., & Yan, Y. (2011). Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory. Physical Review B, 83, 155102. CrossRef (http://dx.doi.org/10.1103/PhysRevB.83.155102) Yu, J., & Kudo, A. (2006). Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4 . Advanced Functional Materials, 16, 2163–2169. CrossRef (http://dx.doi.org/10.1002/adfm.200500799) Zhang, Y.-F., Lin, W., Li, Y., Ding, K.-N., & Li, J.-Q. (2005). A theoretical study on the electronic

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

10 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

structures of TiO2: Effect of Hartree-Fock exchange. Journal of Physical Chemistry B, 109, 19270–19277. CrossRef (http://dx.doi.org/10.1021/jp0523625) Zhang, X., Ai, Z., Jia, F., Zhang, L., Fan, X., & Zou, Z. (2007). Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Materials Chemistry and Physics, 103, 162–167. CrossRef (http://dx.doi.org/10.1016/j.matchemphys.2007.02.008) Zhao, Z., Li, Z., & Zou, Z. (2011). Electronic structure and optical properties of monoclinic clinobisvanite BiVO4 . Physical Chemistry Chemical Physics, 13, 4746–4753. CrossRef (http://dx.doi.org/10.1039/c0cp01871f)

About this Reference Work Entry Title Photoactive Semiconducting Oxides for Energy and Environment: Experimental and Theoretical Insights Reference Work Title Handbook of Computational Chemistry Pages pp 1-48 Copyright 2016 DOI 10.1007/978-94-007-6169-8_18-2 Online ISBN 978-94-007-6169-8 Publisher Springer Netherlands Copyright Holder Springer Science+Business Media Dordrecht Topics Theoretical and Computational Chemistry Nanotechnology Computer Appl. in Life Sciences Theoretical, Mathematical and Computational Physics Industry Sectors Engineering Oil, Gas & Geosciences Consumer Packaged Goods Editors Jerzy Leszczynski (1) Editor Affiliations 1. Jackson State University Authors Malgorzata Makowska-Janusik (2) Abdel-Hadi Kassiba (3) Author Affiliations

08/08/2016 22:03

Photoactive Semiconducting Oxides for Energy and Environment: Expe...

11 sur 11

file:///C:/Users/Adi Kassiba/Desktop/Photoactive Semiconducting Oxid...

2. Institute of Physics, Faculty of Mathematics and Natural Science, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42201, Czestochowa, Poland 3. Institute of Molecules and Materials of Le Mans – UMR-CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans, France

08/08/2016 22:03