Photochemistry and Photophysics of Coordination Compounds - Core

39 downloads 0 Views 27MB Size Report
Apr 2, 1987 - i n the e l p a s o l i t e l a t t i c e s C s ^ a l n C l ^ , ..... important class of ligands because they offer new possibilities in the field of ...... 772. 89. Ru[(dpp)Ru(phen) 2 ] 3 8 +. 760. 87. Ru[(dpp)Ru(tpy)Cl] 3 5 +. 758 ...... ^=fs. A~]. For the same donor (D = W (C 0) ^ ) the p o s i t i o n of e q u i l i b r i u m depends on.
Photochemistry and Photophysics of Coordination Compounds Edited by

H. Yersin and A.Vogler

W i t h 145 F i g u r e s a n d 3 8 T a b l e s

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Proceedings of the Seventh International Symposium on the Photochemistry and Photophysics of Coordination Compounds E l m a u / F R G , March 29-April 2,1987

Priv.-Doz. Dr. Hartmut Yersin Institut fur Physikalische und Theoretische Chemie Universitat Regensburg Universitatsstr. 31, 8400 Regensburg, F R G Prof. Dr. A r n d Vogler Institut fur Anorganische Chemie, Universitat Regensburg 8400 Regensburg, F R G

Unhr.-Bibliofhek Regensburg

ISBN 3-540-17808-2 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-17808-2 Springer-Verlag New York Berlin Heidelberg This work is subject to copyright. A l l rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse o f illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9,1965, in its version o f June 24,1985, and a copyright fee must always be paid. Violations fall under the prosecution act o f the G e r m a n Copyright Law. © Springer-Verlag Berlin Heidelberg 1987 Printed in Germany T h e use o f registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printing and Binding: Druckhaus Beltz, Hemsbach/Bergstr. 2152/3140-543210

PREFACE

The

" S e v e n t h I n t e r n a t i o n a l Symposium on t h e P h o t o c h e m i s t r y

physics of Coordination Elmau

lying

Compounds"

i n a hidden

Partenkirchen,

valley

Federal Republic

was

and P h o t o -

h e l d i n t h e charming

of the Bavarian

Alps

o f Germany, from

above

Schloft

Garmisch-

March 29 t o

A p r i l 2,

1987. About thirty

ninety

p a r t i c i p a n t s from s e v e n t e e n c o u n t r i e s i n c l u d i n g

non-European s c i e n t i s t s

together

f o r this

symposium.

Forty-five

c o n t r i b u t i o n s were p r e s e n t e d . f o r many f o r m a l fic

oral

and t w e n t y - f i v e

These p r e s e n t a t i o n s

and t h e

came poster

opportunity

and i n f o r m a l d i s c u s s i o n s s t i m u l a t e d an i n t e n s e

scienti-

i n t e r a c t i o n between t h e p a r t i c i p a n t s .

This

meeting

(Koerner

followed

von G u s t o r f ) ,

(Wasgestian), 1984

Montreal

(Harriman).

[Ru(bpy)^]

s u c h as s o l a r

special

t h

Symposium

were

and p r o p e r t i e s o f complexes s u c h as

Cr(III)-complexes

of p o t e n t i a l (e.g.

were

applications

water s p l i t t i n g ) and

s u b j e c t s of t h i s meeting.

expanding f i e l d

of

Thus,

excited-state

chemistry. of

this

symposium was made

possible

the g e n e r o s i t y of Deutsche Forschungsgemeinschaft,

Chemischen CYANAMID

and s t o r a g e

were i m p o r t a n t

1974

K o l n 1978

and p h y s i c s o f c o o r d i n a t i o n compounds has become an i m p o r t a n t

organization

through

a series

that the r a p i d l y

7

photochemistry,

compounds as w e l l as Moreover,

i n Muhlheim

Scandola),

by t h i s

Furthermore,

energy c o n v e r s i o n technology

of inorganic

The

held

P a r i s 1982 ( G i a n o t t i ) and London

covered

organometallic

excited states.

was shown a g a i n

chemistry part

main f i e l d s

extensively.

photoresist

symposia

1980 ( S e r p o n e ) ,

and r e l a t e d

discussed

previous

F e r r a r a 1976 ( C a r a s s i t i ,

The

photo-redox processes, metal centered 2+

it

about

as f a r away as Japan and A u s t r a l i a

Industrie, GMBH ,

BASF

Degussa

AG,

AG ,

Bayer AG,

HOECHST

BMW

AG ,

AG,

financially Fonds

der

CIBA-GEIGY

AG,

DR. SEITNER-Me(Jtechnik,

Siemens AG, and Wacker-Chemie GmbH. Regensburg, J u l y 1987

Arnd V o g l e r

and Hartmut

Yersin

TABLE OF

Topic

CONTENTS

1: M e t a l - C e n t e r e d

Excited

States

P o l a r i z e d L u m i n e s c e n c e o f £pt(CN)2bipy] Single Crystals F i e l d and T e m p e r a t u r e E f f e c t s ( J . B i e d e r m a n n , M. W a l l f a h r e r , G. G l i e m a n n ) Light-Induced Excited Spin State Trapping i n Iron(II) ( S . D e c u r t i n s , P. G t i t l i c h , A. H a u s e r , H. S p i e r i n g ) I n f r a r e d Luminescence Spectroscopy ( C . R e b e r , H.U. G i i d e l )

of V

3 +

-

Magnetic 3

Complexes. 9

Doped C s N a Y X g

(X=Cl,Br)

2

17

Recent Progress i n Uranyl Photo-Physics (R. R e i s f e l d , C.K. J ^ r g e n s e n )

21

E f f e c t s of M a c r o c y c l i c and Cryptand Ligands Ions (N. S a b b a t i n i , S. P e r a t h o n e r , L . De C o l a ) Topic

2: P h o t o p h y s i c s

and P h o t o c h e m i s t r y

on P h o t o p h y s i c s

of Cr(III)

Complexes, Chromium(III) 31

Q u e n c h i n g o f T h r e e P h o t o a q u a t i o n Modes o f a C h r o m i u m ( I I I ) (A. D a m i a n i , P. R i c c i e r i , E . Z i n a t o ) S t e r e o c h e m i c a l C o n s t r a i n t s on t h e E x c i t e d S t a t e B e h a v i o r mium ( I I I ) ( J . F . E n d i c o t t , C.K. R y u , R.B. L e s s a r d , P . E , H o g g a r d ) E x c i t e d S t a t e Behavior as a Probe of Ground-State t i o n s i n C h r o m i u m ( I I I ) - P o l y p y r i d y l Complexes (M.Z. H o f f m a n , N. S e r p o n e )

Spectrum-Structure Complexes (T. S c h o n h e r r )

Splittings

Correlations

Multiphoton-Induced Picosecond p y r i d y l Complexes (N. S e r p o n e , M.Z. H o f f m a n )

+

25

Ligand F i e l d A n a l y s i s of the Doublet Excited States i n T r i s c h e l a t e d Complexes (A. C e u l e m a n s , N. B o n g a e r t s , L . G . V a n q u i c k e n b o r n e )

C o u n t e r i o n E f f e c t s on D o u b l e t ( P . E . H o g g a r d , K.-W. L e e )

of E u ^

Acidoammine^ 35 of

Ion-Pair

Chro39 Interac43

of Chromium(III)

Complexes 49

i n Hexacoordinated

Transition

Metal 55

Photophysics

of

Chromium(III)-Poly61

1

T o p i c 3: E x c i t e d S t a t e P r o p e r t i e s o f T r i s - 2 , 2 - B i p y r i d i n e and R e l a t e d C o m p l e x e s

Ruthenium(II)

On t h e O r b i t a l N a t u r e o f t h e L u m i n e s c e n t ated T r a n s i t i o n M e t a l Complexes

Orthometal-

Excited

State of

(V. B a l z a n i , M. M a e s t r i , A. M e i a n d r i , C. C o r n i o l e y - D e u s c h e l , P. J o l l i e t , U.

D. S a n d r i n i , L. Chassot, M a e d e r , A. v o n Z e l e w s k y )

71

C o r r e l a t i o n s B e t w e e n O p t i c a l and E l e c t r o c h e m i c a l P r o p e r t i e s o f R u ( I I ) P o l y p y r i d i n e Complexes: I n f l u e n c e of the Ligand S t r u c t u r e ( F . B a r i g e l l e t t i , A. J u r i s , V. B a l z a n i , P. B e l s e r , A. v o n Z e l e w s k y ) 79 Towards a Dynamic Model f o r t h e (M.A. C o l l i n s , E. K r a u s z )

Ru(bpy)3

2+

System 85

B r o a d - B a n d E m i s s i o n and Z e r o - P h o n o n L i n e s [ R u ( b p y ) 3 " ] (PFg) 2 A Comparison ( E . G a l l h u b e r , G. H e n s l e r , H. Y e r s i n )

of S i n g l e - C r y s t a l

_

Magnetic-Field [Ru ( b p y ) 3] 2 + H. Y e r s i n , E. (H. Highly Resolved pRu(bpy) ] X (G. H e n s l e r , E. 3

E f f e c t s and Gallhuber,

Highly G.

Resolved

93 Vibronic Structure

of

Hensler)

O p t i c a l Spectra

of

101

[0s(bpy) ] 3

2 +

Doped

into

2

Gallhuber,

H.

Yersin)

107

E x c i t e d S t a t e B e h a v i o r s o f R u t h e n i u m ( I I ) C o m p l e x e s as S t u d i e d by R e s o l v e d and T e m p e r a t u r e and S o l v e n t D e p e n d e n t E m i s s i o n Spectra ( S . T a z u k e , H.-B. K i m , N. K i t a m u r a )

Time 113

1

2 +

The L o w e s t E x c i t e d S t a t e s o f [ R u ( 2 , 2 ' - B i p y r a z i n e ) ( 2 , 2 - B i p y r i d i n e ) ] (H. K o b a y a s h i , Y. K a i z u , K. S h i n o z a k i , H. M a t s u z a w a ) 119 2

Quenching of E x c i t e d Ru(bpy)3 tures ( C z . S t r a d o w s k i , M. W o l s z c z a k )

with Methylviologen

a t Low

Tempera125

K i n e t i c s o f t h e C h e m i l u m i n e s c e n t O x i d a t i o n o f A q u e o u s B r " by Ru(bipyr) ( L . E l - S a y e d , D. S a l k i n S w a i m , W.K. W i l m a r t h , A.W. Adamson) 3 +

3

129

S y n t h e s i s and P h o t o p h y s i c a l S t u d i e s o f O r t h o - M e t a l a t e d p l e x e s I n c l u d i n g Two N o v e l P d ( I I ) / R h ( I I I ) D i m e r s (C.A. C r a i g , F . 0 . G a r c e s , R . J . W a t t s )

Pd(II)

Photoproperties of Ortho-Metalated I r ( I I I ) and (K.A. K i n g , F. G a r c e s , S. S p r o u s e , R . J . W a t t s )

Complexes

G r o u n d and E x c i t e d S t a t e (J.D. P e t e r s e n )

Rh(III)

Interactions i n Multimetal

Com135

141 Systems 147

P h o t o p h y s i c a l and P h o t o c h e m i c a l P r o p e r t i e s of Ruthenium(II) MixedL i g a n d C o m p l e x e s : P r e c u r s o r s t o H o m o n u c l e a r and H e t e r o n u c l e a r Multimetal Complexes C o n t a i n i n g Ruthenium(II), P l a t i n u m ( I I ) , Rhenium(I) and R h o d i u m ( I I I ) (D.P. R i l l e m a , H.B. Ross) 151 G r o u n d - and E x c i t e d - S t a t e A c i d - B a s e E q u i l i b r i a o f ( 2 , 2 ' - B i p y r i d i n e ) Tetracyanoruthenate(II) (M.T. I n d e l l i , C.A. B i g n o z z i , A. M a r c o n i , F. S c a n d o l a ) 159 Topic

4:

Photoredox

Processes

K i n e t i c s a n d M e c h a n i s m o f P h o t o c h e m i c a l F o r m a t i o n o f a. P y r a z i n e B r i d g e d F e ( I I ) P r o t o p o r p h y r i n IX P o l y m e r i c Compound ( C . B a r t o c c i , A. M a l d c t t i , R. A m a d e l l i , V. C a r a s s i t i )

167

C h a r g e - T r a n s f e r S t a t e s and Two-Photon P h o t o c h e m i s t r y Systems (R.M. B e r g e r , A.K. I c h i n a g a , D.R. McMillin)

of

Cu(NN)

+ 2

171

P h o t o i n d u c e d M u l t i e l e c t r o n R e d o x R e a c t i o n s i n t h e [PtC-dg] ^ " / A l c o h o l System: V i s i b l e L i g h t R e d u c t i o n of P l a t i n u m C e n t e r s ( A . B . B o c a r s l y , R.E. C a m e r o n , M. Z h o u ) Dynamic and S t a t i c O u t e r - S p h e r e ( L . C h e c c h i , C. C h i o r b o l i , M.A. Photochemistry (H. H e n n i g , D.

and I n n e r - S p h e r e Q u e n c h i n g P r o c e s s e s R a m p i S c a n d o l a , F. S c a n d o l a ) 181

and S p e c t r o s c o p y o f I o n P a i r R e h o r e k , R. B i l l i n g )

Backward E l e c t r o n T r a n s f e r w i t h i n E l e c t r o n T r a n s f e r Quenching ( T . O h n o , A. Y o s h i m u r a ) Photochemistry (J. Sykora)

C h a r g e T r a n s f e r Compounds 185

Geminate R a d i c a l P a i r

Formed

in

the 189

o f C o p p e r C o m p l e x e s and

i t s Catalytic

Aspects 193

I n t r a m o l e c u l a r E x c i t e d S t a t e E l e c t r o n T r a n s f e r from Cobalt(III)* (A.H. O s m a n , A. V o g l e r )

Naphthalene

to 197

P h o t o c h e m i s t r y o f C o o r d i n a t i o n Compounds o f M a i n G r o u p M e t a l s . R e d u c t i v e E l i m i n a t i o n of T h a l l i u m (III) Complexes (A. P a u k n e r , H. K u n k e l y , A. V o g l e r ) Topic

5:

177

Organometallic

205

Photochemistry

P h o t o p h y s i c s and P h o t o c h e m i s t r y o f T u n g s t e n C a r b y n e Complexes ( A . B . B o c a r s l y , R.E. C a m e r o n , A. M a y r , G.A. M c D e r m o t t ) The P h o t o i s o m e r i z a t i o n and P h o t o s u b s t i t u t i o n R e a c t i o n s of n i u m C l u s t e r H R u (CO) * ( / * - C 0 C H ) ( A . E . F r i e d m a n , P.C. F o r d ) 3

o

Ruthe-

3

M u l t i p l e E m i s s i o n f r o m (r\ " C H r ) Re (CO) L Complexes i n Room-Temperature S o l u t i o n (M.M. G l e z e n , A.J. Lees) 5

5

P h o t o c h e m i c a l l y Induced of T r a n s i t i o n Metals (C.G. K r e i t e r , K. L e h r )

the

213

2

217

(L = a S u b s t i t u t e d P y r i d i n e )

C-C-Bond F o r m a t i o n

221 i n the C o o r d i n a t i o n Sphere 225

T r i p l e t Q u e n c h i n g by M e t a l C a r b o n y l s (M. K u c h a r s k a - Z o n , A . J . P o e )

231

P h o t o e x c i t a t i o n o f W(C0)6 S o l u t i o n s C o n t a i n i n g cX-Diimine L i g a n d s . K i n e t i c s and M e c h a n i s m o f C h e l a t i o n f o r a S e r i e s o f Photoproduced W(CO)5(tf-Diimine) Intermediates ( A . J . L e e s , M.J. S c h a d t , L. Chan)

235

K i n e t i c s a n d M e c h a n i s m o f C-H A c t i v a t i o n F o l l o w i n g P h o t o e x c i t a t i o n o f (*r] -C H5) I r (CO) i n Hydrocarbon S o l u t i o n s * (D.E. M a r x , A . J . L e e s )

239

I d e n t i f i c a t i o n o f H -, D -, N2~Bonded I n t e r m e d i a t e s i n t h e Photocatalyzed Hydrogenation Reactions (A. O s k a m , R.R. A n d r e a , D . J . S t u f k e n s , M.A. Vuurman)

243

5

5

2

2

2

Cr(C0)

6

S p e c t r o s c o p y a n d P h o t o c h e m i s t r y o f N i (CO) 2 ( o t - D i i m i n e ) C o m p l e x e s ( P . C . S e r v a a s , D . J . S t u f k e n s , A. Oskam)

247

F e ( C O ) 3 ( R - D A B ) , a C o m p l e x w i t h Two C l o s e - L y i n g R e a c t i v e E x c i t e d States ( D . J . S t u f k e n s , H.K. v a n D i j k , A. Oskam)

253

The P h o t o c a t a l y t i c M e t a t h e s i s R e a c t i o n (T. S z y m a n s k a - B u z a r , J . J . Z i o ^ k o w s k i )

259

of

Olefins

Photochemical G e n e r a t i o n of N i n e t e e n - E l e c t r o n O r g a n o m e t a l l i c and T h e i r Use as R e d u c i n g A g e n t s i n M i c e l l a r S y s t e m s (D.R. T y l e r , V. M a c K e n z i e , A . S . G o l d m a n ) Probing Organometallic Photochemical P h o t o l y s i s of Mn (CO)« (A. V l t f e k , J r . ) I"

Mechanisms w i t h

Complexes 263

Quinones:

2

267

L a s e r F l a s h P h o t o l y s i s of P h o s p h i n e - S u b s t i t u t e d Dimanganese Compounds (K. Y a s u f u k u , N. H i r a g a , K. I c h i m u r a , T. K o b a y a s h i ) Topic

6:

Methods, A p p l i c a t i o n s ,

and

Other

Chelate

Photochemical Acid Glasses (R. R e i s f e l d ,

Behaviour M.

Eyal,

to

ns 277

Sulfide

in Liquid Solution 291 Metal

Complex 295

Semiconductors 301

f o r P h o t o l i t h o g r a p h i cA p p l i c a t i o n s 307

o f L u m i n e s c e n t Dyes i n S o l - G e l and R.

10

285

P r e s s u r e E f f e c t s on N o n r a d i a t i v e D e a c t i v a t i o n f r o m Excited States i n Solution (P.C. F o r d , J . D i B e n e d e t t o )

Inorganic Photoinitiators ( C . K u t a l , C.G. Willson)

ps

Polymers:

Temperature Dependent E m i s s i o n of Copper P o r p h y r i n s (M. A s a n o , 0. O h n o , Y. K a i z u , H. K o b a y a s h i )

H e t e r o g e n e o u s P h o t o c a t a l y s i s by M e t a l (H. K i s c h , W. H e t t e r i c h , G. T w a r d z i k )

271

Aspects

E l e c t r o n T r a p p i n g i n C o l l o i d a l T i 0 2 P h o t o c a t a l y s t s : 20 Kinetics ( C . A r b o u r , D.K. S h a r m a , C.H. L a n g f o r d ) The R a d i a t i o n S e n s i t i v i t y o f S e l e c t M e t a l M e c h a n i s t i c Changes a t H i g h e r E n e r g i e s (R.D. A r c h e r , C . J . H a r d i m a n , A.Y. L e e )

Carbonyl

Gvishi,

C.K.

Boric

J0rgensen)

I n d u s t r i a l A p p l i c a t i o n s of Organometallic (A. R o l o f f , K. M e i e r , M. R i e d i k e r )

313

Photochemistry

S y n t h e s i s and C h a r a c t e r i z a t i o n o f a / ^ - o x o - d i r u t h e n i u m C o m p l e x a s P r e c u r s o r t o an E f f i c i e n t W a t e r O x i d a t i o n C a t a l y s t ( F . P . R o t z i n g e r , S. M u n a v a l l i , P. C o m t e , J . K . H u r s t , M. G r a t z e l )

317 a ..

323

The A p p l i c a t i o n of D i f f u s e R e f l e c t a n c e L a s e r F l a s h P h o t o l y s i s t o M e t a l P h t h a l o c y a n i n e s i n an Opaque E n v i r o n m e n t (F. W i l k i n s o n , C.J. W i l l s h e r )

327

Quenching of (T. V i d o c z y ,

331

S i n g l e t Oxygen by S. N e m e t h )

Cobalt

Complexes

R e c e n t A d v a n c e s i n I n o r g a n i c and (R.E. W r i g h t )

Author

Organometallic

Photolithography*

Index

C o n t r i b u t i o n s m a r k e d w i t h a n a s t e r i x (#) a r e d e d i c a t e d t o P r o f . A.W. Adamson by h i s f o r m e r g r a d u a t e s t u d e n t s and p o s t d o c t o r a l associates.

335

339

TOPIC 1 Metal-Centered

Excited

States

POLARIZED LUMINESCENCE OF ( P t ( C N ) 2 b i p y ) TEMPERATURE EFFECTS

SINGLE CRYSTALS-MAGNETIC FIELD AND

J.Biedermann, M . W a l l f a h r e r , and G.Gliemann I n s t i t u t f U r P h y s i k a l i s c h e und T h e o r e t i s c h e Chemie, U n i v e r s i t a t Regensburg, 8400 Regensburg, FRG

ABSTRACT

The

polarized

ted.

On r a i s i n g

magnetic

luminescence

field

from

electric

field

vector,

.

temperature

crease

A

t o6 T reduces

crystal

[Pt(CN ^ b i p y ]

i s repor-

1.9 K t o 7 K o r i n c r e a s i n g t h e

from

0 t o 1 T the Ela-polarized

-175

cm

ofsingle

t h etemperature

a: crystallographic

emission

band ( E :

a a x i s ) i s blue

s h i f t e d by

i n c r e a s e t o 295 K o r a m a g n e t i c

field i n -

t h eemission

lifetime

of -10^

by a f a c t o r

and

2 -10

, respectively.

EXPERIMENTAL The

anhydrous

[ P t ( C N >2^ipy3 procedure

N N

:

z, b

Fig.

1.

Part o ft h e proposed

structure

of

the red modification of

[Pt(CN ) bipy] , 2

columnar

schematic.[1,2]

synthesized

described

[Pt(CN ) bipy] p

red modification was

belongs

by

of

by a

B i e l l i [31-

t o t h e group

of

planar

sional Fig.

d -transition

columns

1.

The

ments and

i n the

solid

apparatus

f o r the

metal

and

complexes which

state with

short

methods f o r the

magnetic

field

form quasi-one Pt-Pt

polarized

s t u d i e s are

dimen-

distances, emission

described

see

measure[4].

i n Ref.

RESULTS

Temperature Behavior 2

Figure

presents

[ P t (CN ) b i p y ] 2

Fig.

2.

E|[a

emission

the

and

Ela

e x

K.

Emission

emission

The

energies

s p e c t r a of of

the

dence

of crystal

V||

at

of

maxima

vs.

temperature

are

e m i s s i o n maximum d o e s n o t shifted

monotonically

temperature.

Within

the

and

plotted

depend the

on

in Fig.

temperature

I„

range

of a

=

^

e

x

z

K the

E||a

K i t is

blue

with

^ T ^ 295

36 f nm ) .

increasing K,

the

T it i s s h o r t e r t h a n 3 n s . B e t w e e n 1.9 K and 7 K t h e E l a II _1 maximum i s b l u e s h i f t e d by -175 cm and t h e c o r r e s p o n d i n g time 1^

i n c r e a s e s by

emission with It up

a factor

of - 2 0 .

i n c r e a s i n g temperature. becomes s h o r t e r by

t o 295

Above T > 7

increases monotonically

K.

The

a factor

and

the

lifetime of

•10^

K the

intensity at

when t h e

T =

energy 1^ 1.9

numbers emission

[ P t (CN ^ b i p y ]

A b o v e 20

K

depen-

wave

B e l o w 20

decreases

1.9

emission

the

crystal

$.

temperature.

intensity

E||a

the

of

single

crystal

Temperature

and

maxima

nm).

single

E l a and

3.

Fig.

polarized

single

(* =364

K

Polarized

polarized

1.9

at T =

spectra

[Pt(CN^bipy] T=1.9

of the

intensity of the

becomes K is

temperature

life-

emission

Ela

weaker 2 ms ,

increases

Polarized

The

Emission

15100

of Magnetic

Fields

e n e r g y a n d t h e i n t e n s i t y o f t h e E l a e m i s s i o n maximum a t 1 . 9 K

functions Fig.

i n the Presence

4

of

the strength 5,

and

of a magnetic

respectively.

field 0

Between

Hla

i s

and 1 T a

presented

blue

of

4. M a g n e t i c

(bipy)]

maximum

^ IT] 5

Fig.

of the E l a

emission

of a

[PtCCN)^

single

c r y s t a l a t T=1 . 9 K

single

cm

T=1.9

i s observed.

emission The

remains

Above

constant,

of

indicating a saturation

o f -28 r e a c h i n g

a constant of strength 2

influenced

by magnetic

6 Z +

strength n

position

magnetic

of -10

by a f a c t o r

dependence of

field

K (* =3

increases

value

.

H l a

at

-

of the E l a

effect

between

(Fig.

4).

0 and 4 T by a

at 4 T ( F i g . 5).

H = 6 T yields

6

[ P t ( C N ) ^ ( b i p y )]

crystal i n

H = 1 T the spectral

of

lifetime

a

H

of the E l a

™ )•

factor

field

of

I

e x

r e l a t i v e i n t e n s i t y I (H)/I^(H=0)

a

Intensity

magnetic

=364 nm ) . H l a . ex ^

-175

5.

dependence

field

w a v e n u m b e r v^

the

emission

U

in

shift

-

L [T] 5 H 6

Fig.

as

Application

a reduction

of

the

i,

The E||a e m i s s i o n

i s found

t o be n o t

fields.

DISCUSSION

The

observed

properties

complexes

o f C^

described

by

interchain

lowest

the

excited

c a n be d e s c r i b e d

symmetry.

a valence

coupling

respectively.[5] account,

v

Taking

by a system

electron ground

states

coupling state

c a n be c l a s s i f i e d

of

interacting

of the e l e c t r o n i c

band and a c o n d u c t i o n

of the molecular

resulting states

The e n e r g i e s

states are

band

generated

Pt5d

and

and s p i n - o r b i t

has symmetry according

to

by

an

P t 6 p ^ / C N tc* , coupling

A ( A

)

.A^ ,B^(

and 5

into the ) and

The

E l a emission

parentage, band.

which

These

Fig.

6.

Fig

6.

2 v

),

1.9

At

is

(self-trapped ) states A^.A^B^

shown a t t h e

emission

belongs

to

spin-orbit

components

of

IV: m a g n e t i c

a l l o w e d . At

A^

and

the

side

(I

transition

A^

H||y

temperatures

>

become t h e r m a l l y

^B^

II)

-> A'^

of

which

radiative (symmetry

) , I I I : magnetic

(symmetry

field

of

conduction

and

coupling neglected

coupling included ),

edge o f t h e

hand

[ P t ( C N ) ^ ( b i p y ) ] and

spin-orbit

(schematic).

lower

left

e n e r g y - l e v e l diagram

only v i b r o n i c a l l y

orbit

are

(symmetry C

H||z

from

p o s i t i o n e d below the

K the

Proposed

II:

field

are

states

transitons C

originates

(symmetry C 1.9

K

the

).

higher

repopulated

spin-

and

emit

directly

(non-vibronically i n t o the ground s t a t e , r e s u l t i n g i n a blue -1 shift o f -175 cm , an i n c r e a s e o f t h e e m i s s i o n i n t e n s i t y and a r e d u c t i o n of the l i f e t i m e . The b l u e s h i f t i s on t h e o r d e r o f one v i b r a tional

quantum.

transition

The

right

hand

[ P t (CN ^ b i p y ] magnetic

(case

C

is

a magnetic

Ajj/B^-ES] new

emission

corresponds

lifetime

T .,

side

lowers

of

Fig. 6

the

As

field

into

induced

a result

presents

the

opened.

This

lifetime

decrease

of the

the

field

v

from

E l a emission

field at

of the

1.9

levels

H||z

and

ground

induced K.

lowering and

states,

excited

state blue

the III)

s t a t e s A^

of these

lowest

of

H||y

(case

symmetry

excited

mixing the

non-excited

energy

s u b g r o u p C^

of the

corresponding

magnetic

singlet-singlet

Hla. For

A consequence

channel

vibrationally

explains

the

to the

interaction

of the

radiative

to the

< 3 ns ) .

s y m m e t r y C^

IV), respectively.

additional

A/A"(A^)

E||a

(short

i n a homogeneous m a g n e t i c

field

and

g

The

B'

A/A'(Ajj)

shift

and

a

state is the

ACKNOWLEDGEMENT

We

would

Deutsche

like

t o thank

t h e Fonds

Forschungsgemeinschaft

d e r Chemischen I n d u s t r i e

f o r support

and t h e

o f o u r work.

References: [1]

T e x t o r , M., O s w a l d , Untersuchungen

[2]

H. R., R o n t g e n o g r a p h i s c h e

an z w e i M o d i f i k a t i o n e n

Chem. 4 0 7 , 2 4 4 ( 1 9 7 4 ) .

platin(II).

Z. a n o r g .

Biedermann,

J . , Wallfahrer,

temperature

effects

allg.

[3]

M. , G l i e m a n n , G., M a g n e t i c - f i e l d a n d

on t h e o p t i c a l

bipyridyl-platinum(II ) single in

und s p e k t r o s k o p i s c h e

von D i c h l o r o - 2 , 2 ' - d i p y r i d y l -

properties

crystals.

of

dicyano-2,2'-

J . of Luminescence

(1987)

press.

Bielli, copic

E.,

Gidney,

studies

platinum(II)

P.M., G i l l a r d , R.D., H e a t o n ,

on some c o m p o u n d s with

2,2'-bipyridyl

(including and i t s

B.T., S p e c t r o s -

dimorphic s o l i d s ) of

analogeous.

J.

C.

S.

D a l t o n 4, 2 1 3 3 ( 1 9 7 ^ ) • [4]

Hidvegi, the

I . , Ammon, W. v . , G l i e m a n n ,

luminescence

yH 0. 2

J.

Chem. P h y s .

Gliemann,

G.,

2

4

5

2

field

e f f e c t s on

M [Pt(CN) ]•

7 6 , 4 3 6 1 ( 1 9 8 2 ) ; Ammon, W. v . , H i d v e g i , I . ,

Magnetic

Ln LPt(CN) 3 -yH 0

G., M a g n e t i c

of quasi-one-dimensional c r y s t a l s

field

single

effects

crystals.

J.

on t h e Chem.

luminescence Phys.

80,

of 2837

(1984) . [5]

Gliemann,

G.,

Yersin,

H

., S p e c t r o s c o p i c p r o p e r t i e s

o n e - d i m e n s i o n a l t e t r a c y a n o p l a t i n a t e ( I I ) compounds. Bonding [6]

and

6 2 , 87 (1985 ) .

Gliemann, sition

of the quasi

Structure

G., M a g n e t i c

metal

complexes.

field

effects

on t h e l u m i n e s c e n c e

of tran-

Comments I n o r g . Chem. 5., 2 6 3 ( 1 9 8 6 ) .

LIGHT-INDUCED EXCITED SPIN STATE TRAPPING IN I RON(II) COMPLEXES

S . D e c u r t i n s , P . G u t l i c h , A.Hauser, and H . S p i e r i n g I n s t i t u t f u r Anorganische Chemie und A n a l y t i s c h e Chemie, Johannes G u t e n b e r g - U n i v e r s i t a t , 6500 M a i n z , FRG

In the course of our s t u d i e s on the t h e r m a l l y induced high s p i n (HS) t r a n s i t i o n i n i r o n ( I I ) complexes / l / , metry, we have observed low temperature, i n t o the

^ l g

i n

t

^

G a

PP

r o x

i

m a t

-i

0 1 1

low s p i n (LS) °f ^

i n 1984 a new p h o t o p h y s i c a l e f f e c t /2/: I f , a t s u f f i c i e n t l y

t h e s o l i d s p i n c r o s s o v e r complex i s i r r a d i a t e d with green

+ ^

sym-

l i g a n d f i e l d a b s o r p t i o n band, the thermodynamica.ily

light

s t a b l e LS

s t a t e can be converted t o the metastable HS s t a t e and trapped w i t h p r a c t i c a l l y i n f i n i t e l i f e t i m e . We have c a l l e d t h i s unusual phenomenon "Light-Induced E x c i t e d Spin S t a t e Trapping (LIESST)". The f i r s t example, where we have seen the LIESST e f f e c t , i s [ F e ( p t z ) ^ ] ( B F ^ ^ ( p t z = 1 - p r o p y l t e t r a z o l e ) /2/. T h i s c o o r d i n a t i o n compound i s known t o e x h i b i t t h e r m a l l y - i n d u c e d s p i n t r a n s i t i o n w i t h h y s t e r e s i s of ca. 7 K width around 130 K /3,4/. The t r a n s i t i o n from the HSC^T^) s t a t e t o t h e LS(^A.) s t a t e i s accompanied by a d r a matic c o l o r change from white t o p u r p l e . A c c o r d i n g l y , the s i n g l e - c r y s t a l a b s o r p t i o n s p e c t r a of t h i s complex are q u i t e d i f f e r e n t i n the two s p i n s t a t e s as can be seen from F i g . 1 /5/. At 273 K, there i s only one a b s o r p t i o n band around 12250 cm ^ a r i s i n g from t h e q u i n t e t - q u i n t e t t r a n s i t i o n

~* E i n the HS molecules. At 8 K

t h i s a b s o r p t i o n band has completely disappeared

i n favour of two s i n g l e t - s i n g l e t

t r a n s i t i o n s , centered a t 18400 and 26650 cm \ corresponding t o ^A, + *T. and 1 1 i i T^ i n t h e LS molecules. A f t e r b l e a c h i n g the c r y s t a l with white l i g h t f o r c a . 2 min one sees a g a i n the t y p i c a l HS a b s o r p t i o n spectrum. Around 10 K, the trapped

2 7 3 K b. b. 8 K b. b.

8 K o.b.

F i g . 1: S i n g l e - c r y s t a l absorpt i o n s p e c t r a ( u n p o l a r i z e d ) of [ F e ( p t z ) ] ( B F ) before b l e a c h i n g (b.b.) a t 273 K and 8 K,and a f t e r b l e a c h i n g (a.b.) f o r 2min w i t h white l i g h t (tungsten lamp) a t 8 K (from / 5 / ) . 6

10

15

20

25

3

1

30 x 10 cm"

4

2

metastable HS s t a t e does not decay to any n o t i c e a b l e e x t e n t w i t h i n s e v e r a l days, e x c l u d i n g any t u n n e l l i n g p r o c e s s e s . Back r e l a x a t i o n to the thermodynamically s t a b l e LS(^A-^) s t a t e occurs only i f the temperature i s r a i s e d to 50-55 K.

I f the sample i s

heated f u r t h e r , one f i n a l l y observes the w e l l e s t a b l i s h e d t h e r m a l l y - i n d u c e d t r a n s i t i o n around 130 K.

LS

HS

We have f o l l o w e d the LIESST e f f e c t i n [ F e ( p t z ) ^ ] ( B F ^ ) a l s o by magnetic s u s c e p t i b i l i t y measurements /5/ and ~^Fe Mossbauer s p e c t r o s c o p y /2/. F i g u r e 2 shows a sequence of Mossbauer s p e c t r a of [ F e ( p t z ) ^ ] ( B F ^ ) f o r the l i g h t - i n d u c e d LS HS c o n v e r s i o n 2

2

at 15 K (a •> b ) , the t h e r m a l l y induced back r e l a x a t i o n HS -> LS around 50-55 K ( c , d ) , and the t h e r m a l l y induced LS •> HS c o n v e r s i o n around 130 K (e f ) . The HS s t a t e p r o duced by LIESST has the same Mossbauer parameters as the thermodynamically s t a b l e HS s t a t e above 130 K (compare s p e c t r a b and f i n F i g . 2 ) . 100

100

90

1'

80 100

T1

f

95 90 85 0> OS

F i g . 2: Mossbauer s p e c t r a of [ F e ( p t z ) ] ( B F ) . (a) Before

90

6

80

100

80

90 85 -2

0

a f t e r second h e a t i n g to 50-55 K and c o o l i n g to = 15 K; (e)

100

I(J

2

( c ) a f t e r b l e a c h i n g to 50-55 K and c o o l i n g t o = 15 K; (d)

100 95

A

b l e a c h i n g (measuring temperature 15 K ) ; (b) a f t e r b l e a c h i n g M f o r 1 h at 15 K (T = 15 K ) ;

a f t e r subsequent h e a t i n g to 97 K ( T = 97 K ) ; ( f ) a f t ee rr M

2

4

v/mms

0

2

The mechanism of LIESST can be e x p l a i n e d

t o 148 K

(from

111).

(T^

148

K)

4

v/mms"

- 1

heating 1

on the b a s i s of F i g . 3: I r r a d i a t i n g the c o l d

and \ - \ ( s . F i g . 1). sample induces s p i n - a l l o w e d t r a n s i t i o n s " A, - \ lg ^8 ^ ^-5 i The e x c i t e d s p i n - s i n g l e t s t a t e s are s h o r t - l i v e d and can decay back to the ground s t a t e w i t h i n nanoseconds. There i s , however, an a l t e r n a t i v e decay path, favoured by 3 s p i n - o r b i t c o u p l i n g , which l e a d s to a p o p u l a t i o n of the s p i n t r i p l e t s t a t e s T.. 3 and T ( i n t e r s y s t e m c r o s s i n g ) . These a g a i n decay v i a i n t e r s y s t e m c r o s s i n g , e i t h e r 1 5 to the A t ground s t a t e or to the m e t a s t a b l e T s t a t e . There i s no r a d i a t i v e de5 1 5 cay path from the T to the A. s t a t e , and the T (HS) s t a t e remains trapped lg lg 2g X

g

s

?

0 2 g

l g

n

0

w i t h p r a c t i c a l l y i n f i n i t e l i f e t i m e as long as the temperature i s s u f f i c i e n t l y so t h a t the energy b a r r i e r between the ^T^g

a n d

t h e

A

i

g

low

p o t e n t i a l s u r f a c e s , which

are w e l l separated by the l a r g e d i f f e r e n c e i n the m e t a l - l i g a n d

bond l e n g t h of ca.

0.2 8 between the two s p i n s t a t e s /6/, i s not t h e r m a l l y overcome. But the trapped HS s t a t e can be pumped back t o the LS s t a t e by i r r a d i a t i n g w i t h red l i g h t (of c a . 5 5 850 nm) i n t o the T -> E a b s o r p t i o n band /7/. 0

The

\

1 2

A-^

r e l a x a t i o n k i n e t i c s was

examined t o pure [ F e ( p t z ) ^ ] ( B F ^ ) ^ c r y s t a l s as

w e l l as f o r mixed c r y s t a l s [ F e ^ n ^ ^ p t z ^ ] ( B F ^ ) I t was

shown t h a t (a) f o r x & 0.1

2

u s i n g o p t i c a l spectroscopy

a s i n g l e - i o n treatment of both the s p i n

/8/.

equili-

F i g . 3: P o t e n t i a l surface diagram according to e x p e r i m e n t a l and c a l c u l a t e d energies of the l i g a n d f i e l d s t a t e s of [Fe(ptz) ] ( B F , ) (from r e f . / 5 / ) .

?

NUCLEAR

COORDINATE

brium ( w i t h A H ^ = H^g-H^g = 510(12) cm and

the T •> n

AS. = S HL

H g

-S

= 5.1(2) cm

l s

/K at T = 100K

r e l a x a t i o n of the l i g h t - i n d u c e d trapped HS s t a t e (with Arrhenius

a c t i v a t i o n energy E° = 810(30) cm ^ and frequency f a c t o r A £z 10"Vs) i s a p p r o p r i a t e a and (b) w i t h i n c r e a s i n g x c o o p e r a t i v e e f f e c t s become more and more important f o r both the HS ^ LS e q u i l i b r i u m and the r e l a x a t i o n of the trapped HS s t a t e . These statements become apparent from F i g s . 4-7.

F i g . 4: R e l a t i v e i n t e n s i t y of the ^A^

*Tj t r a n s i t i o n v s . temperature

f o r (*) [ F e ( p t z ) ] ( B F ) 6

4

[Fe Z _ (p ) ](BF ) x

n i

x

t Z

6

A

2

2

and (o) (x~0.1)

(from / 8 / ) . The abrupt t r a n s i t i o n f o r the pure i r o n complex i s t y p i c a l f o r a f i r s t - o r d e r phase t r a n s i t i o n due t o c o o p e r a t i v e e f f e c t s and agrees w i t h the r e s u l t s from Mossbauer and magnet i c s u s c e p t i b i l i t y measurements / 4 / . For the d i l u t e m a t e r i a l c o o p e r a t i v e e f f e c t s a r e l e s s important, and the s p i n conversion curve can be i n t e r preted as a continuous LS +-+ HS e q u i -

l i b r i u m w i t h AG = G^g-G^g = ^HS~^LS~~ -k T l n K = - ( HS- LS> = H L - H L - - k T In [ d - Y ) / Y ] ( Y ^ - mole T

S

S

A H

B

B

T A S

L S

H L

L S

f r a c t i o n of LS m o l e c u l e s ) . —

experimentol exponentiol

11 fJ / // till/ '/ 'X mi/ y strongly suggests that the photochemical and nonradiative decay modes of ^Ti/ E are coupled and involve the same intermediates. We propose here that the "seven-coordinate" aqua intermediate (Jamieson 1981; Serpone 1983b) e x i s t s i n the ground-state (reaction 3) and undergoes acid-base equilibrium ( r e a c t i o n 4) i n the neutral pH range. E x c i t a t i o n of these species r e s u l t s i n ^T^/^E with the same configuration. The nonradiat i v e behavior of ^T^/^E as a function of pH r e f l e c t s the subtle change of the v i b r a t i o n a l modes of the complex as H2O i s deprotonated; the photochemical pathway can be viewed as a r e l a t i v e l y minor branch o f f the same p o t e n t i a l energy surface. 3 +

3

0

s

2

3

Cr(NN) +

+

3

H0 2

3

H 0•••Cr(NN) + 2

3

< 4

» f

H 0'•'Cr(NN) 2

3+

[3]

3

3

"HO•••Cr(NN) + 3

+

H+

[4]

At high [ C l ~ ] , r e a c t i o n 5 could compete with reaction 3 i n a c i d i c s o l u t i o n , b r i n g i n g C I into the inner-sphere and r e s u l t i n g i n a diminution i n T b . In a l k a l i n e s o l u t i o n , the d r i v i n g force of reaction 4, and the i n t e r a c t i o n of 0H~ with the metal center and, perhaps, the n i t r o g e n - h e t e r o c y c l i c ligands, would minimize the presence of C I i n the inner-sphere. -

0

s

-

Cr(NN)

3+ 3

,CI"

«

"

"CI•••Cr(NN)

3+ 3

[5]

ACKNOWLEDGEMENTS This research was supported i n part by the O f f i c e of Basic Energy S c i ences, D i v i s i o n of Chemical Sciences, U.S. Department of Energy, and m part by the Natural Sciences and Engineering Research Council of Canada. The authors acknowledge the work of t h e i r associates, Drs. G. Neshvad, M. Bolte, and R. Sriram

REFERENCES B a l z a n i V, C a r a s s i t i V (1970) Photochemistry of c o o r d i n a t i o n compounds. Academic Press, New York B o l l e t t a F, Maestri M, Moggi L, Jamieson MA, Serpone N, Henry MS, Hoffman MZ (1983) Photochemical, photophysical, and thermal behavior of tris(1,10-phenanthroline)chromium(III) i o n i n aqueous s o l u t i o n . Inorg Chem 22: 2502-2509 Brunschwig B, S u t i n N (1978) Reactions of the e x c i t e d s t a t e s of subs t i t u t e d polypyridinechromium(III) complexes with oxygen, i r o n ( I I ) ions, ruthenium(II) and - ( I I I ) , and osmium(II) and - ( I I I ) complexes. J Am Chem Soc 100: 7568-7577 Ghosh, PK, Brunschwig BS, Chou M, Creutz C, S u t i n N (1984) Thermal and l i g h t - i n d u c e d reduction of R u ( b p y ) 3 i n aqueous s o l u t i o n . J Am Chem Soc 106: 4772-4783 Henry MS (1977) Prolongation of the l i f e t i m e of the E s t a t e of t r i s (2,2'-bipyridine)chromium(III) i o n by anions i n aqueous s o l u t i o n . J Am Chem Soc 99: 6138-6139 Henry MS, Hoffman MZ (1978) S o l u t i o n medium e f f e c t s on the photophysics and photochemistry of p o l y p y r i d y l complexes of chromium( I I I ) . Adv Chem Ser 168: 91-114 Jamieson MA, Serpone N, Maestri M (1978) Hydroxide i o n a s s i s t e d aquat i o n of t r i s ( 2 , 2 ' - b i p y r i d i n e ) c h r o m i u m ( I I I ) i o n . Inorg Chem 17: 24322436 Jamieson MA, Serpone N, Hoffman MZ (1981) Recent advances i n the photochemistry and photophysics of chromium(III) p o l y p y r i d y l complexes i n f l u i d media. Coord Chem Rev 39: 121-179 Jamieson MA, Langford CH, Serpone N, Hersey MW (1983a) Medium e f f e c t s i n chromium(III) photochemistry. Dynamic vs. s t a t i c processes i n t r i s ( b i p y r i d i n e ) c h r o m i u m ( I I I ) and trans-diammine(tetrathiocyanato)chromium(III) ions i n a c e t o n i t r i l e - w a t e r mixtures. J Phys Chem 87: 1004-1008 Jamieson MA, Serpone N, Hoffman MZ, B o l l e t t a F (1983b) Ground-state quenching of (^T^/^E)Cr(NN)3 . Anion and temperature dependence. Inorg Chim A c t a 72: 247-252 Kane-Maguire NAP, Langford CH (1976) E f f e c t s of quenchers on the emission and photoracemization of t r i s ( 1 , 1 0 - p h e n a n t h r o l i n e ) chromium(III). Inorg Chem 15: 464-466 L i l i e J , Waltz WL (1983) P u l s e d - l a s e r photochemical study of t r i s (2,2'-bipyridine)chromium(III) i o n i n a c i d i c and a l k a l i n e aqueous media. Inorg Chem 22: 1473-1478 L i l i e J , Waltz WL, Lee SH, Gregor LL (1986) P u l s e d - l a s e r photochemi c a l study of tris(1,10-phenanthroline)chromium(III) i o n i n a c i d i c and a l k a l i n e aqueous media. Inorg Chem 25: 4487-4492 Maestri M, B o l l e t t a F, Serpone N, Moggi L, B a l z a n i V (1976) K i n e t i c s of l i g a n d s u b s t i t u t i o n of t r i s ( 2 , 2 ' - b i p y r i d i n e ) c h r o m i u m ( I I I ) i n aqueous s o l u t i o n . Inorg Chem 15: 2048-2051 Maestri M, B o l l e t t a F, Moggi L, B a l z a n i V, Henry MS, Hoffman MZ (1978) Mechanism of the photochemistry and photophysics of the t r i s ( 2 , 2 ' bipyridine)chromium(III) i o n i n aqueous s o l u t i o n . J Am Chem Soc 100: 2694-2701 Neshvad G, Hoffman MZ, Bolte M, Sriram R, Serpone N (to be published) Photophysics of chromium(III)-polypyridyl complexes. Behavior of the ^ T i / ^ E e x c i t e d s t a t e s a a probe of ground-state i o n - p a i r i n t e r a c t i o n s . Inorg Chem Serpone N, Jamieson MA, Henry MS, Hoffman MZ, B o l l e t t a F, Maestri M (1979) E x c i t e d s t a t e behavior of p o l y p y r i d y l complexes of chromium( I I I ) . J Am Chem Soc 101: 2907-2916 Serpone N, Jamieson MA, Sriram R, Hoffman MZ (1981) Photophysics and photochemistry of p o l y p y r i d y l complexes of chromium(III). Inorg Chem 20: 3983-3988 3+

2

3+

Serpone N, P o n t e r i n i G, Jamieson MA, B o l l e t t a F, Maestri M (1983a) Covalent hydration and pseudobase formation i n t r a n s i t i o n metal p o l y p y r i d y l complexes: R e a l i t y or myth? Coord Chem Rev 50: 209-302 Serpone N, Hoffman MZ (1983b) Photochemistry and photophysics of chromium(III)-polypyridyls. A case study. J Chem Educ 60: 853-860 Sriram R, Hoffman MZ, Jamieson MA, Serpone N (1980) Ground state quenching of E excited s t a t e s of Cr(bpy)3 + C r ( p h e n ) 3 . - J A™ Chem Soc 102: 1754-1756 Van Houten J , Porter GB (1978) A u t o c a t a l y t i c chain reaction i n the photochemical decomposition of tris(2,2'-bipyridyl)chromium(III) i n dimethylformamide. Inorg Chem 18: 2053-2054 Wrona PK (1984) E q u i l i b r i u m constants of chromium(III) and chromium(II) inner- and outer-sphere complexes with c h l o r i d e , bromide, and iodide ions. Inorg Chem 23: 1558-1562 2

3

a

n

d

3+

T

a

s

a

F i g . 1. o b s function of the t o t a l concentration of CI" (addition of NaCl) f o r Ar-purged s o l u t i o n s a t 5° and pH 3.3 ( c o n t r o l l e d with HC1) . #, 15 fiU C r (phen) - ; A, 10 /*M C r ( 5 Mephen) +; O, 10 /xM C r ( 5 P h p h e n ) ; V , 10 aM Cr(4,7-Me phen) +; • 10 fiU Cr(3,4,7,8-Me phen) . 3

f

3

3

3

34

3

3

2

>.4

0.0

0.4

0.6

1.2

U

2.0

-log [ c r ]

2.4

2.8

3.2

3.6

3

3+

4

3

COUNTERION EFFECTS ON DOUBLET SPLITTINGS OF CHROMIUM(111) COMPLEXES

P.E.Hoggard

and Kyu-Wang Lee

Department o f C h e m i s t r y , North Dakota S t a t e U n i v e r s i t y , F a r g o , ND 58102, USA

Splittings

within

ions a r e s e n s i t i v e not

very

splitting

1981,

1986).

in

t ot h eexact

strongly affected

field

within

the

splittings,

It

appears,

field

theory

into

a

data.

i nTable

E state

e

splitting

that matter

7r v a l u e s

i s

field

model

p ianisotropyi s

compounds,

beyond

with

d e v i a t i o n from the a b i l i t y of

bounds on t h e

conclusion that ligand predicting (Flint

should

field

splittings 1977).

with

Table 1

n o t , however,

be t h r o w n

t h a t c a n r e a s o n a b l y be

1 are problematic. by s p i n - o r b i t

50 cm ^ w o u l d

ligand

I n an octahedral c o u p l i n g , so t h a t

be e x p e c t e d

I n t h e pentaammine s e r i e s ,

b e t w e e n NH^ a n d t h e o t h e r

+

effects

i sunsplit

complex.

o

simple

centimeters

Thet h e o r y

are s t i l l

much s m a l l e r t h a n

differences

+

a

f o r i f the exact

a r e seen,

of e f f e c t i v e l y

octahedral

e

a ligand

Ligand

t o dominate

that e

calculations.

o f t h edata 2

visible

1981).

the widespread

splittings

easily

from

be a c c o u n t e d

splittings

of reciprocal

as t h e r e

environment,

found

no p i a n i s o t r o p y , a n d l i t t l e

incapable

some o f t h e s e

as long

calculated

(Hoggard

approximation,

c a n be e x p e c t e d

we h a v e

t oe x p l a i n (given reasonable

andcausing

incorporated

All

e^ e f f e c t s although

t h a t f o r some v e r y

symmetry,

magnitudes o f tens

out

t othef i r s t

but

ofthe ligand

(Hoggard 1986)

substantial

i s simply

presents

are,

c o u p l i n g (Hoggard

however,

high

parameters), theory

ligand

butcan i np r i n c i p l e

orthoaxiality, ligand

geometry,

t h a t c a n make l a r g e c o n t r i b u t i o n s t o t h e d o u b l e t

i s known

relatively

bands i n d

o f t h e c o o r d i n a t i n g groups

of s p l i t t i n g s

spin-orbit

factor

geometry

lODq,

t h es p l i t t i n g s ,

a better predictor including

metal-ligand angular

thet r a n s i t i o n s

subshell,

doublet

by d i f f e r e n c e s i n t h e v a l u e s

parameter,

Since

determining

another

the intraconfigurational

f o r any

t h e d i f f e r e n c e s i n lODq

a r e o f t e n l a r g e enough

of thef i r s t

t o produce

q u a r t e t b a n d . B u t i t i s n o t lODq

f o r thedoublet

splittings,

and i n f a c t t h e

o f NH«, C l ~ , B r " , I " , and H 0 a r e n o t m a r k e d l y ?

Unk-Bibliofhek

Regensburg

Table 1 2 Eg S p l i t t i n g s

Nearly Orthoaxial

in

Splitting,

Complex

K [Cr(CN) ] 3

3

5

[Cr(NH ) Br]Br 5

[Cr(NH ) I]I 3

5

2

[Cr(NH ) H 0](C10 ) 3

5

different.

2

4

very

close

luminescence

complexes with

1974 1973

225

Flint n

305

tt

205

ti

to

spectra

different

of

at

most

50

cm

,

and

zero.

of

a number o f

cations

reveal

hexacyanochromium(III)

a considerable

variation

s p l i t t i n g s ( S c h l a f e r 1 9 7 1 ) , f r o m 78 cm ^ f o r t h e L i _1 f o r the Ph,As s a l t . S i m i l a r v a r i a t i o n s are seen 3-

§ 41

Flint

T h u s c a l c u l a t i o n s show s p l i t t i n g s

more t y p i c a l l y

The

3

Ref e r e n c e

^

49 2

2

cm

Complexes

175

6

[Cr(NH ) Cl]Cl 3

Chromium(III)

+

salt

in

to

+

cm

for

4

[Cr(CN)^]

substituted into

1977). T h i s thus

used

Figgis

suggests

the

a strong

known c r y s t a l

1981),

and

have

i n order

in

5

2

Table

1 might

be

orbitals

derived

from

The

Angular

contributions assume t h a t the

represent

sigma

counterions ion,

represented appropriate. electron at

at

any

need

as

only

point

(e

crystal

hypothesis

energetic

of

a

have 1974;

of

that

the

e f f e c t s on

the

counterions.

i n the

for e

of

a

( r , 6,

0

4,-3 E transition 2g g 1

absorption low

temperature

uring

an

spectra of

nents

the

rich

1

of

E

culated

K

1

due

Low

salts

3 a l l five

and

were

v i b r o n i c sidebands

angle

of

relation 10//2 • between the

energy p a r t of

[Cr(NK-j)^] (CdCl ) 3 6 5 r

the at

the

(9

c

u

b

of

f o r meas-

the

hexaammine

s p i n - o r b i t compoincluding

i n both cases

parts

by

f o r the of

(cf. F i g .

complete

• TT/1 80°

spectrum of

LF

d-electron

- 6)

trigonal

ligand

trigonal

the

chromophore can

octahedral

for

absorption

CrN^

absorption 4.2K.

4.2K

identified

certain limitations radial

applied

i n the

-copper

to reasonable

from the parameter (K+K') / Dq -

1

g

which provides

m a t e r i a l s , was

i n Ref. 2

Trigonal distortions

where 6 denotes the

device,

schemes have been r a t i o n a l i z e d

calculations considering

wavefunctions.

solid

in detail 2

f o r about s i x t y

p a r a m e t e r s K and

Figure

of

optical

v i b r o n i c band p a t t e r n

doublets)

electronic level

field

a new

v i b r o n i c s t r u c t u r e of the 2 less intense T. lines in

the

p e n t a c h l o r o c a d m i u m and

elaborated

(Kramers

assingments

Recently,

spectroscopy

extremely

c o m p l e x . As

The

spectra.

rare because the u s u a l l y covers

be

,

cal(1)

a x i s and

one

crystalline

1).

of the m e t a l - l i g a n d v e c t o r s well

as

ground

experimental and

state splittings

findings,

0.23° i n t h e

along

the

( 4 ) . The

and

6

trigonal

axis.

This two

reflects

lattices,

coincides w i t h X-ray r e s u l t s c o n v e n t i o n a l LFT

can

Otherwise

(usually

the the

theory

are

the

compression

copper

of

up

also

that

to high

ir-bonding can of

the

salt

i t i s concluded

accu-

be

neg-

electron repulsion

used) o r e x t e n s i o n s (vide

as

Cd-salt

distortions

f o r the

energies

symmetry and

required

i n the

a slight

expected value

experimental

a high

energies

0.19°

indicating

more s o p h i s t i c a t e d t r e a t m e n t s

spheric parameters are

cular o r b i t a l

t o be

(0.22°). T h e r e f o r e ,

rationalize

r a c y when c o m p l e x e s p o s s e s s

doublet

i n e x c e l l e n t agreement w i t h

i s determined

Cu-salt, respectively,

chromium c o m p l e x i n t h e

lected.

are

calculated

referring

to

mole-

infra).

4 + Angular

Overlap

C a l c u l a t i o n s f o r Os w i t h the

ions

Complexes

In

comparision

is

known a b o u t d - e l e c t r o n i c s t a t e s o f h e a v i e r m e t a l

pounds. Though i n r e c e n t w i t h a b s o r p t i o n and compounds

(e.g.

calculation

Refs.

of

5-8),

first

transition

spectroscopy

less

ions i n complex

com-

of hexacoordinated

assingments even of

levels

p e r i o d , much

s e v e r a l p a p e r s have been p u b l i s h e d d e a l i n g 4 +

transitions

energy

spin-orbit

years

luminescence

intraconfigurational

cluding

from the

are

still

open

the

best i n v e s t i g a t e d

f o r d i s c u s s i o n . The

f o r o c t a h e d r a l l y surrounded

c o u p l i n g , was

performed

Os

i n 1968

first

osmium(IV), i n -

(Dorain et a l . )

using

4 c o n v e n t i o n a l LFT. treated

up

Low

t o now.

To

compounds as w e l l sitions

and

group t h e o r y tures

and

s p e c t r a , band

even

the

of

the

given

levels

low

symmetry

vibronic

electronic

experimental

the molecules.

into

low

transtill

p r e d i c t i o n s of

p a r a m e t e r s o f osmium to the

properties of

splitting

theoretically

assignments are

to e l u c i d a t e the

, when d o p e d

experimental

complexes,

ones By

struc-

by

this

pro-

symmetry K S n C l ^

host

2

pattern of

the

spin-orbit

sta-

T (6,7) i s r e p r o d u c e d by u s e o f a n t i b o n d i n g p a r a -1 9" _i meters e = 9 5 0 0 cm and e = 1 8 0 0 cm . I n v e s t i g a t i o n s on t h e e n e r g y l e v e l schemes o f m i x e d h e x a h a l i d e compounds s u p p o r t t h i s r e s u l t ( 9 ) . In t h e f o l l o w i n g , t h e o b t a i n e d f i n d i n g s a r e a p p l i e d t o t h e w e l l r e s o l v e d 3 2— r

(8).

from

splittings

f o r z e r o - p h o n o n and

u n k n o w n AOM

geometrical

been

i n c o n t r a d i c t i o n to the

energy

f o r OsCl,-

that the

resulting

rules

i n order

hitherto

calculated

found

complexes have not

(6). Nevertheless,

partially

determine

adaptation of

lattice,

assign

selection

(8). Therefore,

have f i t t e d

c e d u r e was

tes

as

have been used

speculative

we

symmetry d

1 1

T

( a l l from i n t h i s molecule

a

-|g)

transitions

in

[OsCl^ox]

, ox

strong d e v i a t i o n from o c t a h e d r a l

a p p e a r s due

to the

rigidity

of

siderations

a bite

angle

about

of

the

= oxalate,

surrounding

o x a l a t e i o n . From g e o m e t r i c a l 74°

i s expected.

In our

AOM

con-

calcula-

tions for

t h ec h l o r i d e antibonding

should

h a s been a c h i e v e d

cant

o f t h echelate ligand

though easy t o handle

a good

field

while series

perfect f i t of the experimental angle

a. The o b t a i n e d

t h einfluence o f covalency

demonstrates that spectrum-structure

above

o f thespectrochemical

by v a r y i n g t h e b i t e

( a = 78 ± 1°) r e f l e c t s

as t h er i g i d i t y

a r eused a s given

lines

h o l d . F i g . 2 shows t h a t an a l m o s t

findings result well

parameters

t h eo x a l a t e parameters t h eguide

( a > 74°) a s

(a o--o/ T,-0.65ns \ • h-S

02 .f />

"

V

1

T~50ps

\ -v ••.

\ x

11t2ns

-J 400

*\ _

L.

440

480

520

560

600

640

680

WAVELENGTH, nm

F i g . 4: W a v e l e n g t h - r e s o l v e d t r a n s i e n t e m i s s i o n s p e c t r a t a k e n a t 0 p s f r o m t h e 266-nm a n d 355-nm l a s e r e x c i t a t i o n o f C r ( 5 , 6 - M e p h e n ) 3 . B o t h s p e c t r a were t a k e n under i d e n t i c a l c o n d i t i o n s except f o r t h e e x c i t a t i o n wavelength. 3 +

2

( d e c a y ) o f t h e 460-nm b a n d ; T ^ 50 p s . F i g u r e 6 s u m m a r i z e s t h e t r a n s i e n t a b s o r p t i o n r e s u l t s a s AA v s . t i m e . C l e a r l y , t h e r e a r e t w o d e c a y i n g t r a n s i e n t s a t ^ 4 6 0 nm a n d t h e r e i s o n e a t 5 4 1 nm ( s e e i n s e r t i n F i g . 6 ) . M o r e i m p o r t a n t , t h e r e i s a n a b s o r p t i o n r i s e f r o m ^ 1 n s t o 10 ns, which i s o u t s i d e o f + 2 c a t both wavelengths. E x c i t a t i o n o f C r ( 5 , 6 - M e p h e n ) 3 " " a t 266 nm s h o w s a s p e c t r u m ( F i g . 7 a ) r e m i n i s c e n t o f s o l v a t e d e l e c t r o n s ( t h u s a CTTS s t a t e i s p o p u l a t e d ; e q n 2 ) ; t h e t r a n s i e n t s p e c t r u m o f t h e f r e e l i g a n d i n 1M HC1 ( F i g . 7b) a l s o s h o w s f e a t u r e s 3

2

1

CK5,6-Me phen)3 in H 0 —i i i \ t i i 2

475

625

2

675

WRVELENGTH

(NM)

(b)

(a)

F i g . 5: ( a ) T r a n s i e n t a b s o r p t i o n s p e c t r a a t -50 p s ( A ) , -20 p s ( B ) , 0 ps (C) , a n d +50 p s (D) d e l a y t i m e s f r o m t h e 355-nm e x c i t a t i o n o f C r ( 5 , 6 - M e p h e n ) 3 • F r o m ( S e r p o n e 1 9 8 7 ) . (b) D i f f e r e n c e s p e c t r a a t v a r i o u s t i m e s a g a i n s t t h a t a t 0 p s ; i n s e r t shows t h e i n v e r s e d e c a y o f t h e 4 6 0 nm b a n d . 3 +

2

3

Cr(5 6-Me phen) * in H 0

24

k

•i 20

-

^

2

3

2

error .

'

541

1

6

transition are also

t h e above e x p e r i m e n t a l

c a n be f o c u s s e d

Ru

from a m e t a l

the lowest

complexes a r e o f the type R u ( L L ' )

where L L ' i s a l i g a n d

The b a s i s f o r

"spatially

and l i g a n d

processes,

o f t h e LUMO o r b i t a l .

energy and symmetry p r o p e r t i e s

The

resembles

centered

the ligand

properties

to correlate

and e m i s s i o n

t h e lowest energy

i n themetal-to-1igand and r e d u c t i o n

electrochemical

absorption

t h e p r o m o t i o n o f an e l e c t r o n

l i g a n d . T h e same m e t a l

the oxidation

studied

p o t e n t i a l s and v i c e v e r s a .

on t h e f a c t t h a t

TT o r b i t a l

centered

to obtain

t o the lowest antibonding,

m

free

that

t h e c o r r e l a t i o n s between o p t i c a l and

from e l e c t r o c h e m i c a l

TT o r b i t a l

t o be o f i n t e r e s t

( O h s a w a , D o d s w o r t h ) a r e much

t r a n s i t i o n involves

ligand the

processes continues

o f f e r the opportunity

such c o r r e l a t i o n s l i e s

centered

c o m p l e x e s a s s e n s i t i z e r s i n a number o f

generating

the reduction

and t h e r e d u c t i o n

potential f o r the free potential for

ligands,

the complexes,

E / (red), 1

2

TI*(LL):

S K

n*(LL')

III Z IU

< E

z u

1 / 2

(red)

: (ox) i/2

m o

i

2+

LL'

Ru(LLULL')

F i g . 1. O r b i t a l d i a g r a m f o r t h e e n e r g y c o r r e l a t i o n s b e t w e e n t h e c a l c u l a t e d e n e r g y o f t h e LUMO o f L L ' , t h e e l e c t r o c h e m i c a l p r o p e r t i e s of t h e f r e e l i g a n d L L ' , and t h e s p e c t r o s c o p i c and e l e c t r o c h e m i c a l p r o p e r t i e s o f t h e complexes.

T a b l e 1. R e d u c t i o n P o t e n t i a l Unoccupied Molecular O r b i t a l

Ligand

E

1

/

2

(LL')

and C a l c u l a t e d P r o p e r t i e s o f t h e Lowest (LUMO) o f t h e F r e e L i g a n d s .

a

LUMO

energy/eV

a) b) c) d) e) f) g) h) i) 1)

i-b iq bpy phen 4 ,4 '-dpb bpym pq biq bpz DP taphen

-2.20 -2.22 -2.04 -2.06 -1.80 -1.94 -1.74 -1.70 -1.18° -1 .26

-9.56 -9.71 -9.77 -9.70 -9.94 -10.01 -10.19 -10.47 -10.66 -10.78

(pN,pN)

(0.35, (0.44, (0.44, (0.41, (0.35, (0.44, (0.39, (0.45, (0.10, (0.12,

b

0.35) 0.44) 0.44) 0.41) 0.35) 0.34) 0.39) 0.45) 0.10) -0.12)

symmetry

*

X

a ) Room t e m p e r a t u r e d a t a i n a c e t o n i t r i l e , u n l e s s o t h e r w i s e n o t e d ; b ) MO a t o m i c c o e f f i c i e n t s o n c h e l a t i n g N p o s i t i o n s ; c ) i n d imethyIformamide.

Fig. bpy

2. L i g a n d s

(LL') and complexes:

and R u ( i - b i q ) ( b p y ) 2

Ru(bpy)2(4f4'-dpb) R

u(bpy) (

R

u(bpy) (bpz)

2

p

q

2

)

2

+

2

against

2 +

r

2 +

2 +

2

2 +

,

> (b)

2 +

,

( d ) 4,4'-dpb and

2 +

,

( f ) pq and

3

2

( i ) DP a n d R u ( b p y ) ( D P )

, (h) bpz and and ( j ) taphen and

.

1

*TT ( L L ) LUMO o f t h e f r e e

correlations

LUMO o f t h e f r e e

complex

( c ) phen and R u ( p h e n )

2

2 +

and R u ( i - b i q ) ^

( e ) bpym a n d R u ( b p y ) ( b p y m )

f

the calculated

causes good

,

(a) i - b i q

(g) b i q and R u ( b p y ) ( b i q )

r

Ru(bpy) (taphen)

the

2 +

a r e found

ligand

indicating that

i n the former

( c l o s e l y resembling that

ligands.

case

of the free

In both

reduction

occurs to

a n d t o t h e LUMO o f t h e

ligand)

i n the latter

AE,/

Fig.

c a s e . As one c a n s e e t h e two c o r r e l a t i o n s

effect lying

unoccupied

affected

Under C

the

ligand

due t o t h e

separation

approximates

^abs

hv

e m

leading to

arguments,

On t h e

t h e HOMO ( m e t a l c e n t e r e d ) and

interaction.

symmetry

transition

symmetry

c e n t e r e d ) o r b i t a l s , F i g . 1, a r e e x p e c t e d t o be most

by t h i s

2 v

o r b i t a l s o f matching

and i f a s i n g l e the excited

singlet)

h

this i s likely

o f t h e f o r m e r and d e s t a b i l i z a t i o n o f t h e l a t t e r .

o f energy

LUMO ( l i g a n d

well

F o r t h e complexes

i n F i g . 3 are characterized

o f i n t e r a c t i o n between o c c u p i e d m e t a l d o r b i t a l s and l o w e s t

stabilization basis

, tV

F i g . 4 . See t e x t .

3. See t e x t .

by d i f f e r e n t s l o p e s .

2

configuration

state,

Ru — >

LL' t r a n s i t i o n

t h e energy o f the a b s o r p t i o n ( t o

and e m i s s i o n ( f r o m t h e t r i p l e t ) maxima o f t h e MLCT * i n v o l v i n g t h e T T ( L L ' ) LUMO i s g i v e n by

( S )

(T)

=

AE =

A

E

1 / 2

1

/

2

+ A + B

w h e r e ^\/2 potential account

~

e

E

t 1 /2 ^

o x

^ "

E

i / 2 ^

r

e

d

^ '

E

l/2^

o

x

^

o f t h e c o m p l e x , and A and B i n c l u d e

solvation energies,

coulombic

energies.

Figure

inner

and o u t e r

i

s

t

h

e

terms

oxidation that

take

4 shows t h e r e l a t i o n

between t h e

spectroscopic

and e l e c t r o c h e m i c a l

observed w i t h

a few e x c e p t i o n s

( f u l l points

i n the figures).

discussion concerning

the reported

deviations w i l l

detailed elsewhere

As

quantities. Linear

relations are A more be

given

(Barigelletti).

one c a n s e e t h e l i g a n d s t r u c t u r e a p p a r e n t l y

properties of Ru-polypyridine * symmetry o f t h e of F i g u r e s ligands

into

sphere b a r r i e r s , and

complexes through

family with

i n designing

predicted

Acknowledgments. This Research C o u n c i l Swiss N a t i o n a l

electrochemical

linear relations

EHMO c a l c u l a t i o n s o n

new c o m p l e x e s o f t h e

by t h e I t a l i a n

Pubblica

free

Ru-polypyridine

and s p e c t r o s c o p i c

work was s u p p o r t e d

and M i n i s t e r o d e l l a

Science

that

a number o f

t h e e n e r g y and

TT ( L L ' ) LUMO. B a s e d o n t h e r e p o r t e d

3 a n d 4, i t i s s u g g e s t e d

can help

determines

properties. National

I s t r u z i o n e a n d by t h e

Foundation.

References

Barigelletti

F, J u r i s

A, B a l z a n i V, B e l s e r

P, v o n Z e l e w s k y A ( t o b e

published) D o d s w o r t h E S , L e v e r A B P ( 1 9 8 6 ) Chem P h y s L e t t

1 2 4 : 152 a n d

references

therein J u r i s A, B a r i g e l l e t t i A ( t o be p u b l i s h e d ) Ohsawa Y, H a n c k KW,

F, C a m p a g n a S, B a l z a n i V , B e l s e r Coord

P, v o n Z e l e w s k y

Chem R e v

D e A r m o n d MK

( 1 9 8 4 ) J E l e c t r o a n a l Chem 1 7 5 : 229

TOWARDS A DYNAMIC MODEL FOR THE R U ( B P Y )

M.A.Collins

2 + 3

SYSTEM

and E.Krausz*

Research School o f C h e m i s t r y , A u s t r a l i a n N a t i o n a l C a n b e r r a 2601, AUSTRALIA

U n i v e r s i t y , G.P.O.Box 4 ,

INTRODUCTION

The R u ( b p y )

2 +

(RBY) chromophore/luminophore

has been the s u b j e c t of a great d e a l o f

study by a range o f s p e c t r o s c o p i c techniques. Some recent evidence,- such as the time resolved luminescence o f Ferguson and Krausz (FK) (1982, 1986a) magnetic

circular

p o l a r i z a t i o n o f luminescence (FK 1982, 1986a,b,c) anomalous Zeeman e f f e c t s (FK 1987),(Krausz 1987), magnetic c i r c u l a r d i c h r o i s m r e s u l t s o f Ferguson, Krausz and Vrbancich (1986) and a l s o s o l i d phase e x c i t e d s t a t e Raman by Krausz (1984), have pointed t o the p o s s i b i l i t y of v i b r o n i c c o u p l i n g i n t h i s system. Summarizing our c u r r e n t i d e a s , much o f the spectroscopy o f RBY r e q u i r e s a d e l o c a l i z e d d e s c r i p t i o n o f the metal to l i g a n d charge t r a n s f e r e x c i t e d s t a t e , yet other e v i d e n c e , p a r t i c u l a r l y e x c i t e d s t a t e Raman measured i n s o l u t i o n p o i n t s to e x c i t a t i o n o f a s i n g l e b i p y r i d i n e l i g a n d . C r i t i c a l o b s e r v a t i o n s o f luminescence changes i n p a s s i n g from r i g i d to l i q u i d phases (FK 1986a,b,1987b) i n d i c a t e s an e n v i r o n m e n t a l l y induced l o c a l i z a t i o n process. Some aspects o f the luminescence below 10 K bear a remarkable resemblance t o the changes i n p a s s i n g from r i g i d to f l u i d environments and i n g e n e r a l p r o v i d e evidence f o r s t r o n g v i b r o n i c c o u p l i n g . Our c o n t e n t i o n i s then, that although d e l o c a l i z e d , the e x c i t a t i o n has a tendency to l o c a l i z e , which becomes more pronounced

i n long l i v e d e x c i t e d s t a t e s below 10 K and

furthermore l e a d s t o the luminophore " d i g g i n g i t s e l f a h o l e " i n f l u i d environments. Thus some i n h e r e n t tendency to l o c a l i z e i s compensated

by a r e l a x a t i o n o f the

environment, which i t s e l f causes a g r e a t e r degree o f l o c a l i z a t i o n e t c . . In order to access the parent ( v i b r o n i c ) problem t h e o r e t i c a l l y , a g r e a t d e a l of s i m p l i f i c a t i o n of our d e s c r i p t i o n s o f the system must be made. We are d e v e l o p i n g a model t h a t c o n t a i n s the b a r e s t e s s e n t i a l s of the known p r o p e r t i e s o f RBY and yet can s t i l l be lead to a u s e f u l v i b r o n i c a n a l y s i s . We c o n s i d e r a s i n g l e ,

non-degenerate

deformation mode o f (each) bpy l i g a n d and couple i t to a s i m p l i f i e d m e t a l - l i g a n d charge t r a n s f e r e x c i t a t i o n process. P o t e n t i a l s u r f a c e s of the r e s u l t i n g

(total-

fnolecule) modes a r e then d e r i v e d a l o n g w i t h v i b r o n i c energy l e v e l s . Some attempts a t c a l c u l a t i n g i n t e n s i t y (Rranck-Condon)

f a c t o r s between v i b r o n i c l e v e l s

Figure 1.

Model for vibronic analysis.

(at 0 K) are absorption

then made, i n order to access the observed Stokes s h i f t between

and

discussed

e m i s s i o n . The relevance to e x i s t i n g e x p e r i m e n t a l i n f o r m a t i o n

is

and o u t l i n e s o f f u t u r e developments g i v e n .

THEORY

C o n s i d e r a t r i g o n a l arrangement of the metal M and In the ground e l e c t r o n i c s t a t e , we c o n s i d e r associated

H

w i t h each l i g a n d (or m e t a l - l i g a n d 3 2 E p /2m - *n n=l

=

g

where p

+

2

+ kq /2 n M

three i d e n t i c a l l i g a n d s

bond). We w r i t e

k'q q n n-l M

M

x

i s the momentum o p e r a t o r of the v i b r a t i o n on the nth l i g a n d , q

n

v i b r a t i o n a l coordinate,

n

m

n

coupling

m

an e l e c t r o n i c e x c i t e d s t a t e o f the ML complex, i n an 3

e x c i t o n model, as a l i n e a r combination o f e x c i t e d s t a t e s a s s o c i a t e d

w i t h each

l i g a n d . The e x c i t e d s t a t e i n our case r e f e r s to the MLCT s t a t e w i t h the

Let

force

to q q - I f a l l the

normal modes o f v i b r a t i o n i n the ground s t a t e are degenerate, then no q q terms w i l l o c c u r . We d e s c r i b e

(1)

7

the

n

m the e f f e c t i v e mass o f the l i g a n d v i b r a t i o n , k the

c o n s t a n t and k' i s a f o r c e constant f o r terms p r o p o r t i o n a l

e l e c t r o n occupying a n

2 3*

j u s t one v i b r a t i o n a l degree o f freedom

transferred

orbital.

|g > be the ground e l e c t r o n i c s t a t e o f l i g a n d n and n

|e > the e x c i t e d s t a t e o f n

l i g a n d n. Thus the e l e c t r o n i c e x c i t e d s t a t e i s w r i t t e n as \Y> = c |e >|g >|g > + c | >|e >|g > + C3| >|g |e > 1

1

2

3

a useful notation

2

gl

2

3

gl

2

(2)

3

i s |g>=|g^>|g >|g > and a* the r a i s i n g o p e r a t o r which c r e a t e s an 2

3

e x c i t a t i o n on the nth l i g a n d (going

from |g > to |e >« Thus equation (2) becomes n

n

3

|T>

= I ca

+

n

n

|g>

(3)

n=l a

i s the r e v e r s e ( d e s t r u c t i o n o p e r a t o r ) and

n

we assume that d i f f e r e n t s t a t e s

are

o r t h o n o r m a l . Thus

e

a

a

e

e

< nl n J n> = < nKlSn> = and

< e

e

n

l n> =

1

4



as no s t a t e e x i s t s below the ground s t a t e a | g > = 0 so that n

= a

n

a

< e

„ K n l 8 n > ' = a

a

n

0

5



When the nth l i g a n d i s e x c i t e d , the v i b r a t i o n a l energy a s s o c i a t e d changed: the Born-Oppenheimer (BO)

p o t e n t i a l energy s u r f a c e

with q

f o r (say)

R

ring

is

s t r e t c h i n g i s d i f f e r e n t f o r e x c i t e d s t a t e bpy" from ground s t a t e bpy. We denote the change i n p o t e n t i a l energy f o r the n'th l i g a n d v i b r a t i o n as A V ( q ) . n

w r i t e the e l e c t r o n i c H a m i l t o n i a n of the e x c i t e d ML^

Thus we

can

complex as

3 H = H + E a a AV(q ) g - n n n' n=l +

V M

v

(6) '

The number o p e r a t o r ( a * a ) w i l l g i v e the eigenvalue 1 i f the nth l i g a n d i s e x c i t e d n

so that the t o t a l energy w i l l be changed by A V ( q ) . We now

c o n s i d e r the e f f e c t of

n

resonant energy t r a n s f e r . Since a l l three l i g a n d s are s i m i l a r , e l e c t r o n i c e x c i t a t i o n can be t r a n s f e r r e d from one l i g a n d to another. This s h a r i n g changes the energy. The o p e r a t o r a _ ^ a n

n

n - l t h l i g a n d . Thus we a r r i v e at our 3 H = Z{p /2m in n=l 2

Hamiltonian

2

+

+ k q / 2 + k'q q ^n n n-l n

(3) and

+

+

+ a a AV(q ) + M[a ,a + a a J) n n n' n-1 n n n-l

M

M

where M i s the energy g a i n (or l o s s ) due equations

total

a c t i n g on |Y> moves the e x c i t a t i o n from the nth to the

1

(7)

J

to resonant

energy t r a n s f e r . Combining

(7) we can w r i t e the BO energy s u r f a c e as the e x p e c t a t i o n v a l u e

of the H a m i l t o n i a n f o r the e l e c t r o n i c s t a t e , n e g l e c t i n g the n u c l e a r k i n e t i c energy ( p ) i n ( 7 ) ; t r e a t i n g the n u c l e a r c o o r d i n a t e s q n

3 = I k q / 2 + k ' q q . - n n n-l n=l 2

1

M

H

M

as parameters we d e r i v e

n

2

+ |c | A V ( q ) + M[c*c n n n n-1 1

1

V M

7

S o l v i n g the s e c u l a r equation H| MO^e)Y> g i v e s

1

- + c* - c } n-1 n J

2

E = z + I kq /2 +

= E

v

'

(8)

k^n^n-l

where e s a t i s f i e s

M M

1

AV(q )-e M 2

M M AV(q )-

(9)

3

The c u b i c e q u a t i o n i n e i s e a s i l y s o l u b l e i f AV^ energies s

1

2

3 = 2M,

-M,

-M

=

2

3 0> g i v i n g the e l e c t r o n i c

(the -M l e v e l i s doubly degenerate).

I f AV i s non

v a n i s h i n g , we assume i t can be expanded i n a power s e r i e s AV(q)

=

VQ

+ v q + v q 1

for s i m p l i c i t y we

2

+

(10)

t r u n c a t e the s e r i e s a f t e r the q u a d r a t i c term; s i g n i f i c a n t v i b r o n i c

e f f e c t s can be d e s c r i b e d at t h i s l e v e l of approximation. equation a r i s i n g from the s e c u l a r determinant truncation,

The s o l u t i o n s to the c u b i c

can be e v a l u a t e d , u s i n g t h i s

by c o n s i d e r a b l e tedious but computer a s s i s t e d a l g e b r a i c m a n i p u l a t i o n ,

to o b t a i n the e n e r g i e s

2 f

3

z

1

e

2

= v

Q

+ 2M + v

= v

Q

- M + v

2

lPl

s

3

= v

2

2

2

lPl

2

/ > l 3 + v ( p ^ + r ) / 3 + | v | r/J6 - r v|/18M 2

+ [v |v |/3v 2

2

/ > l 3 + v ( p ^ + p + p ) / 3 + v^(p|+p )/9M

1

(11)

x

2

2

- v /18M]r cos39

1

2

2

2

- M + v /l6 - r v^/18M

Q

lPl

2

+ [-v |v |/3v 2

1

a r e

where f>i 2 3

t

*

ie

2

+ v^/18M]r cos39

1

n o r m a

Pi = (q +q +q )/>l3, 1

1

2

l

coordinates with frequencies ^

3 defined

2

a s

p =(q -q /2-q /2)^l2/>l3 and p =(q -q )/>l2

3

2

1

2

3

3

and the p o l a r c o o r d i n a t e s have the u s u a l The energy s u r f a c e f o r e

2

(12)

3

definition,

p =rcos9 and 2

p =rsin6 3

has minima at r^O. The s u r f a c e has three l o c a l minima as

3

a f u n c t i o n of 9, the w e l l known Mexican hat s u r f a c e , F i s h e r

Introducing dimensionless

(1984).

v a r i a b l e s , and T being the n u c l e a r k i n e t i c energy

o p e r a t o r , we w r i t e

h

1

= (T+8 -v -2M)/"hw

x

n

= >l(mw / h)p

u

1

= v />l(3m(A) h) ; u

1

0

J

2

1

;

n

;

2

= 2v /(3mco ) u

2

2

h

2

h

n

=

3

(T+s -v +M)/tiw 3

0

2

(13)

2

2

= v /(9Mm« )

3

2

R

the n u c l e a r dynamics a r e d e s c r i b e d

Q

Hamiltonians

2

2

2

2

[P +(w x /(A) ) ]/24-y x +y x^/2+[P +p|/R ]/2+R [l/2+y /2+y ] 1

1

2

1

1

2

2

3

= [P^(w x /w ) ]/2+u x1+u x^/2+[P +P^/R ]/2+R [Up -p ]/2 + 2

2

;

2

= p /^l(mw n)

n

p o l a r c o o r d i n a t e s P , R, 9, P

2

=

x

2

2

by the three n u c l e a r BO

h

= (T+e -VQ+M)/"hw

2

R - ^l(ma> /h)r ; P

2

In dimensionless

h

1

1

2

2

1

2

2

2

2

3

(14)

|u |R/>l2 [p |M |/y -y ]R cos(39)/2 2

1

h

+

2

1

1

3

2

3

2

2

2

2

= [P^ ( w x / w ) ] / 2 u x 4 - u x ? / 2 [ P P / R ] / 2 + R [ l y - y ] / 2 +

1

1

2

+

1

1

2

+

+

+

2

3

-

2

|M |R/>l2 [-y |u |/y M ]R cos(39)/2 1

+

2

1

1+

3

DISCUSSION

The three e l e c t r o n i c e i g e n v a l u e s

z^

2

3

determine three e l e c t r o n i c s t a t e s at each

n u c l e a r c o n f i g u r a t i o n v i a the s e c u l a r equations

( 9 ) . These s t a t e s form a complete

b a s i s f o r the exact v i b r o n i c v a v e f u n c t i o n s , F i s h e r (1984), which have y e t t o be evaluated. Here we d i s c u s s some f e a t u r e s o f the a d i a b a t i c n u c l e a r dynamics and e i g e n s t a t e s determined by the d e r i v e d BO Hamiltonians

h^ 3 2

The nondegenerate v i b r a t i o n , w i t h c o o r d i n a t e X p shows the same o r i g i n and frequency s h i f t s i n a l l three e x c i t e d e l e c t r o n i c s t a t e s : The ground and e x c i t e d s t a t e s u r f a c e s are as shown i n F i g u r e 2 u n l e s s ^ ^ " ( ^ i /

w 2

)

v

»

n

e

n

anharmonic terms a r e s i g n i f i c a n t

and the e x c i t e d s t a t e s u r f a c e may d i s p l a y a double w e l l form. The displacement o f the minimum, p r o p o r t i o n a l to U p w i l l c o n t r i b u t e to a p r o g r e s s i o n of t h i s mode i n the a b s o r p t i o n spectrum as w e l l as a Stokes s h i f t of the order o f 2

((^Uj/o^) - ( c o / ) . 2

The v i b r a t i o n s w i t h c o o r d i n a t e s x and X 3 a r e degenerate i n the ground s t a t e and 2

remain so i n the s t a t e d e s c r i b e d by h p where o n l y a frequency these v i b r a t i o n s e f f e c t a J a h n - T e l l e r d i s t o r t i o n

s h i f t occurs. However

which s p l i t s the degeneracy of the

e l e c t r o n i c s t a t e s o f energy -M, to produce d i s t i n c t BO Hamiltonians

h and h^. I f 2

only l i n e a r e l e c t r o n - n u c l e a r c o u p l i n g i s i n c l u d e d , u =P2=0> the degeneracy of the 2

v i b r a t i o n a l c o o r d i n a t e i s s t i l l r e t a i n e d i n both h^ and h - The r a d i a l dependence o f 2

these p o t e n t i a l energy s u r f a c e s i s shown i n F i g u r e 3, c l e a r l y i l l u s t r a t i n g the displacement

of the minimum i n h^. While v i b r o n i c c o u p l i n g between s t a t e s on these

two s u r f a c e s w i l l be s i g n i f i c a n t f o r a l l v i b r a t i o n a l l e v e l s , the lowest l e v e l s should be approximately

d e s c r i b e d w i t h i n the BO approximation

energy

i f the energy

s p l i t t i n g , p r o p o r t i o n a l to U p i s s u f f i c i e n t l y l a r g e . Assuming that \x^>2 and

Figure 2

Potential energy as a function of the non-degenerate coordinate.

Figure 3

Potential energy as a function of the "Mexican Hat" radius.

1^,1^-0, the J a h n - T e l l e r d i s t o r t i o n i s expected to produce a Stokes s h i f t o f the 2

order of 3y /4-2. I n t e r e s t i n g l y , t h i s c o n t r i b u t i o n to the t o t a l Stokes s h i f t may smaller

vibration

x^.

When U 2 3 = 0 » =u

tne

motion of the angular c o o r d i n a t e

However, the second order c o u p l i n g constants ^ p r o p o r t i o n a l to cos(39) which hinders

y >0, so that the two

9 i s that of a f r e e r o t o r .

and u^ i n t r o d u c e

states

l i g a n d , we expect that UpU2>0 and

terms i n h^ p r o p o r t i o n a l to cos(39) may

3

a potential

the r o t a t i o n a l motion. For e x c i t e d

which i n v o l v e a e l e c t r o n t r a n s f e r to the bpy

The

be

that the c o n t r i b u t i o n caused by the o r i g i n s h i f t of the nondegenerate

be of opposing s i g n s .

d i r e c t i o n of the d i s t o r t i o n a s s o c i a t e d w i t h t h i s angle 9 would depend on

a c t u a l magnitude of u 2

9

and y

v

the

We note that the angular p o t e n t i a l energy i s

p r o p o r t i o n a l to R , so that the cos(39) term i s much more s i g n i f i c a n t i n the e x c i t e d s t a t e where the o r i g i n s h i f t i n c r e a s e s

the average value of

third

R.

While the a n g u l a r momentum i s not constant when U2>3*0, i t f l u c t u a t e s about a u

2

quantized

value,

(1 , 1=1,2,3...) when y

r a d i a l motion i n 113

2

and y^ are s m a l l . In t h i s l i m i t ,

can be approximately d e s c r i b e d

the

i n terms of the r a d i a l p o t e n t i a l

i n F i g u r e 3,

w h i l e the angular motion i s that of a hindered r o t o r at the average

r a d i u s R. The

wavefunctions of t h i s hindered r o t o r may

Mathieu f u n c t i o n s , to d e s c r i b e maxima i n c o s ( 3 9 ) .

the t u n n e l l i n g and

be obtained

i n terms of

" f r e e " s t a t e s below and

Without going i n t o d e t a i l s the Franck Condon (FC)

t r a n s i t i o n s from the ground e l e c t r o n i c / v i b r a t i o n a l s t a t e , where 1=0, s t a t e s of h3

can be evaluated.

of the order of 1 i f 1=0 so on. While one

in

€3.

It i s straightforward The

above the

factors for to the

rotor

to show that the FC f a c t o r i s

f a c t o r i s 0 i f 1-1,

(U3-M21 y-^ | / y

1

)

2

i f 1=2

can i n f e r from the form of the r a d i a l p o t e n t i a l energy t h a t

r a d i a l w a v e f u n c t i o n FC f a c t o r s f o r t r a n s i t i o n s to upper v i b r a t i o n a l l e v e l s o f £3 f a v o r a b l e , o n l y the component of these l e v e l s w i t h 1=0

and

the are

are r e a d i l y e x c i t e d .

L o c a l i z a t i o n corresponds to t r a p p i n g w i t h i n a s i n g l e minimum of the cos(39) p o t e n t i a l w e l l w i t h i n the s t a t e d e s c r i b e d

by h^. Of course e i g e n s t a t e s

t r i g o n a l symmetry of the H a m i l t o n i a n so that no e i g e n s t a t e one w e l l . Any considers

r e t a i n the

can be l o c a l i z e d w i t h i n

l o c a l i z e d wavefunction i s t h e r e f o r e a time dependent s t a t e . I f

one

the e x c i t a t i o n to be i n i t i a l l y l o c a l i z e d , the c o r r e s p o n d i n g wave packet

w i l l spread on a t i m e s c a l e determined by t u n n e l l i n g between the e q u i v a l e n t

minima i n

the cos(39) p o t e n t i a l . I t i s c l e a r that t h i s t u n n e l l i n g time i s long when y^ i s l a r g e and

1Vi^I

i s

l a r g e . The

dominant i n f l u e n c e i s of the l i n e a r c o e f f i c i e n t

FUTURE DIRECTIONS

A n a l y t i c s o l u t i o n s to the e i g e n s t a t e s difficult

to e v a l u a t e .

and

FC f a c t o r s f o r the r a d i a l f u n c t i o n s

Numerical e v a l u a t i o n of the f u l l v i b r o n i c problem i s

are now

f e a s i b l e as we have a n a l y t i c forms f o r the e l e c t r o n i c m a t r i x elements and p o t e n t i a l energy s u r f a c e s ,

together w i t h a BO b a s i s s e t . Numerical c a l c u l a t i o n w i l l a l s o

e v a l u a t i o n o f magnetic moments (and p o l a r i z a t i o n s ) of e i g e n s t a t e s . i n p a r t i c u l a r w i l l be s t r o n g l y i n f l u e n c e d by v i b r o n i c c o u p l i n g

These

allow

properties

parameters and should

allow a u s e f u l d e s c r i p t i o n o f recent experiments to be developed.

REFERENCES

Ferguson J , Krausz E, (1982) The assignment of the Luminescent States of +

R u ( b p y ) . MCPL and Time-Resolved Luminescence 3

at 2K, Chem Phys L e t t

Ferguson J , Krausz E, (1986a) Time Resolved Luminescence

93: 21-25.

and MCPL of R u ( b p y )

2 +

in

Glassy S o l v e n t s a t the F l u i d - G l a s s T r a n s i t i o n , Chem Phys L e t t 127: 551-556.

Ferguson J , Krausz E, (1986b) MCPL Evidence f o r the T r a n s i t i o n from D e l o c a l i z e d to L o c a l i z e d Luminescent States o f R u ( b p y )

2 +

i n Glass-Fluid

Media,

Inorg Chem 25: 3333-3335.

Ferguson J , Krausz E, (1986c) The E x c i t a t i o n Dependence of the Luminescence of R u ( b p y )

2 +

and MCPL

i n R i g i d S o l u t i o n s . J Lumin 36: 129-141.

Ferguson J , Krausz E, (1987a)

Magnetically

Perturbed, Temperature-Dependent and

Time Resolved Aspects o f the P o l a r i z e d Luminescence

of R u ( b p y )

2 +

Below 10 K.

Chem Phys 112: 271-283.

Ferguson J , Krausz E, (1987b) P o l a r i z e d Luminescence

A b s o r p t i o n , Luminescence

and Magnetic C i r c u l a r

o f Dicarboethoxy D e r i v a t i v e s of R u ( b p y )

2 +

i n R i g i d and

F l u i d S o l u t i o n s : Evidence f o r E n v i r o n m e n t a l l y Induced Charge L o c a l i z a t i o n . J Phys Chem 91: ( i n p r e s s ) .

Ferguson J , Krausz E, V r b a n c i c h J , (1986) Magnetic C i r c u l a r Dichroism and the Assignments o f M e t a l - L i g a n d Charge T r a n s f e r Systems, Chem Phys L e t t

Fisher G,(1984)

States

i n Ru(bpy)

2 +

and R e l a t e d

131: 463-467.

V i b r o n i c C o u p l i n g , Academic Press,

London.

Krausz E, (1984) E x c i t e d S t a t e Raman Spectra i n the Luminescent States o f R u ( b p y ) ^ . Chem Phys L e t t

116: 501-504.

Krausz E, (1987) Zeeman E f f e c t s i n A b s o r p t i o n and Luminescence l i n e s i n R u ( b p y ) o ( P F ) . Chem Phys L e t t ( i n p r e s s ) . 6

?

o f the Zero Phonon

BROAD-BAND EMISSION AND ZERO-PHONON L I N E S OF [Ru(bpy) ](PF ) - A COMPARISON 3

6

SINGLE-CRYSTAL

2

E.Gallhuber, G.Hensler,

and

H.Yersin

I n s t i t u t f l i r P h y s i k a l i s c h e und T h e o r e t i s c h e C h e m i e , 8400 R e g e n s b u r g ,

FRG

INTRODUCTION In

this

paper

single-crystal ture

r e p o r t on r e s u l t s o f

[Ru(bpy) ](PF ) . 3

6

1

has

been d e t e r m i n e d :

molecular Thus,

we

For t h i s

2

The

complex

t h r e e f o l d axes a r e p a r a l l e l

[Ru(bpy) ](PF ) 3

spectroscopy,

6

investigations

on

compound t h e c r y s t a l ions

l i e on D

3

sites

strucand

t o the c r y s t a l l o g r a p h i c c

s i n g l e c r y s t a l s are w e l l - s u i t e d f o r

2

which a l l o w s

grouptheoretical

neat

all axis.

polarized

a s s i g n m e n t s o f the e x c i t e d

2

s t a t e s by use of t h e s e l e c t i o n r u l e s may

be much b e t t e r r e s o l v e d due

ening.

Indeed,

a t low

phonon l i n e s ' ^ ' ^ ,

. Moreover,

to a r e d u c t i o n

single-crystal

temperatures i t i s p o s s i b l e to r e s o l v e

which d e l i v e r s c o n s i d e r a b l y

spectra

of inhomogeneous b r o a d the

more i n f o r m a t i o n

lowest e x i t e d s t a t e s t h a n had been deduced from the broad-band 5 6 of t h e complex d i l u t e d i n o r g a n i c g l a s s e s or host m a t r i c e s . f o l l o w i n g we

want t o d e m o n s t r a t e

spectra

t h e zero-phonon

their

and

the p a r a l l e l i s m between the

lines

of

[Ru(bpy) ](PF^) 3

t e m p e r a t u r e dependence and m a g n e t i c - f i e l d

2

with

zero-

about

the

spectra In the

broad-band respect

to

behavior.

TEMPERATURE DEPENDENCE

Broad-band Figure emission

Spectra 1 shows the t e m p e r a t u r e - d e p e n d e n t

spectra

resolution.

(Eic,

E = electric

The main band

On t e m p e r a t u r e i n c r e a s e becomes dominant

a t 1.4

band

K

field

vector)

(band I) has

i n o f band

by a f a c t o r of about

of t h e

r u n a t low

' ' ,

i n which

a b l y more a l l o w e d the

different

4 t o 5 up

s i d e a t 570

t o 10

from t h e l o w e r one,

i n t h e i n s e t of F i g .

increase

nm

nm. and by

K. two-state

from t h e s e c o n d s t a t e i s c o n s i d e r -

transitions involve different

shown s c h e m a t i c a l l y temperature

the t r a n s i t i o n

than the t r a n s i t i o n

spectral

I I i s accompanied

T h i s t e m p e r a t u r e dependence i s r e a d i l y i n t e r p r e t e d by a 9 R f\ model

total

i t s maximum a t 585

I I grows i n on the b l u e

above 2 K. The g r o w i n g

an i n t e n s i t y i n c r e a s e

development

1.

and

i n which

vibronic patterns Thus,

the b l u e

as

is

shift

on

r e s u l t s from a d i s p l a c e m e n t o f the c e n t r e

of the

18000 J

1

cm" i

v L

15000 l2£ . ^ ! ! . e x p ( - A E / k T ) !«• 1r

from

k

I2E'

follows

*2L -150

+ 80

slope: (7.5±1) cm-

1

= AE

-2 0.4

0.2

Fig.

2. A r r h e n i u s p l o t

two l o w e s t

s t a t e s I E ' and

2E*.

The s p e c t r a

and

h e i g h t s . The i n t e n s i t i e s

the

emission

vibronic spectra

corresponding least the

spectra

of

from

cm of

intercept line

of the corresponding

distribution.

spectra

ratio

through

o f these

from

f o r the r a t i o

transitions

crys-

maximum

s p e c t r a are

(the

(T


and

0-

found 5 '

and III>

equilibrium.

1

cm"

1

1

1

\emission

and H

1

The

(abs.)

1

left

733 767

16800

scales

16600

16200 i

(T =

2 K)

16000

i n -

The (see the

1

cm"

are strongly enlarged.

2

II') =0.8 II) • 0.6 IH>

of the wavefunctions

of wavelengths mixing

3

v

IE') =0.6 II) -0.8 in>

16400 i

[Ru(bpy) ](C10^)

H =0T

of single-crystal hand

spectra

II) -*I0> • 481 cm'

A

659 667

17000 i

the m a g n e t i c - f i e l d induced 4 c o n d i t i o n s a r e summarized i n r e f . .

from

17200 i

331 352 372 440 481

respectively.

result

= 6 T,

I11 >

1

| Av = 161 cm'

17400

and a b s o r p t i o n

ni

17600

experimental

The

T

sets).

= 0

I I ' > and

H

states

at

568.5

(emission

x

1. E m i s s i o n

U

Figure

567.5

!

1

111 cm' 1 i /1 \ 1 H = 6T abs,' I \ T\ i», ! line I r \ A

/

\ /1 ]l> 11 III

v

H = 0T

17600

!• A

1

8.2 I cm" I /?*

1 1 line n i i

abs./ / / /

17620

Therefore,

The to

) a r e summarized 6

e n e r g i e s o f Raman m o d e s .

gies

safely

coupled

allows to assign

t o t h e zero-phonon

supported

by t h e f a c t

that

The good

and t h e i r

energy

i n T a b l e I and agreement

separations compared

t h e o b s e r v e d modes t o v i b r a t i o n a l

transition.

Further,

t h e Raman i n t e n s i t i e s

this

modes

assignment

of just

the

c l o s e c o r r e s p o n d e n c e between t h e e n e r g i e s o f t h e

vibronic

t h e Raman modes a l s o

o f l i n e I as

peaks

modes o f [Ru(bpy)-] (CIO.)

Energy separations

[cm

]

[cm

1

]

Raman 6

data [cm

1

]

at T = 2 K

Resonance Raman enhancement factors and

remarks

0

-

17444

161

165

17402

203

198

4

17274

331

337

8

17605

Moreover,

transition.

Table I . V i b r a t i o n a l

1

t h e assignment

.

( l i n e I)

17253

352

-

17233

372

372

17165

440

(464)

17124

481

478

zero-phonon

16946

659

659

16938

667

668

line

4 (20) II>->I0>+481

cm

4 150 II' >-»IO>+667

16872

733

730

>5

16838

767

765

2

16591

1014

1012

4

16579

1026

1025

8

16432

1173

1173

20

16333

1272

1278

6

16282

1323

1317

12

16110

1495

1490

25

16048

1557

1558

58

is

modes

and

substantiates

experiment

these

strongly

Emission

i n t h e r e s o n a n c e Raman

to

between t h e s e e n e r -

are

zero-phonon

enhanced

f r o z e n out

m a i n l y from I I > .

e n e r g i e s o f t h e d o m i n a t i n g peaks

l i n e I ( a t 17605 cm

the

III> i s e s s e n t i a l l y

a t T = 2 K t h e e m i s s i o n from

and t h e s p e c t r u m r e s u l t s

cm

peaks a

With mixing II'>.

application

of

III>

of high

and II>,

mainly

the

spectroscopic

Further,

properties

i0>

* II>

at

reproduced sorption

H = 0 T.

of

I0>

-» I I I ' >

to

8.2 cm"

1

magnetic

higher

fields,

From

the

spectrum

state

at

structure

the

state.

1

lower

AE 5

(at H = 6 T ) . '

these t r a n s i t i o n s occur

ab-

Due t o t h e Zeeman e f f e c t ,

s h i f t e d to

respectively,

t o 11 cm"

spectrum,

induced

energy

and

increasing

8

Also

at exactly

from

under

high

t h e same e n e r g i e s

presented

discussion

i t follows

that

the

vibronic

III>.

Thus,

from

a comparison o f the

the

vibronic

a t H = 6 T one f i n d s

o f t h e o b s e r v e d p r o m o t i n g modes a r e t h e same f o r t h e

example,

states.

distinctly

However,

t h e 481 cm

I I > -» I0>

the

of

for

T = 2 K and H = 6 T ( F i g . l b ) i s m a i n l y g o v e r n e d by

lowest e x c i t e d

tion

part

a t H = 0 T ( F i g . l a ) with the s t r u c t u r e

most

III>-

absorption.

wavefunction of state

while

one a l s o

finds distinct

mode i s more s t r o n g l y t h e 667 cm

mode

promote t h e t r a n s i t i o n III>

coupled

to the t r a n s i -

(and some low

-» 10>.

two

differences.

energy

ones)

Since the d i s t r i b u t i o n

p r o m o t i n g modes i s d i f f e r e n t f o r t h e two e m i t t i n g

states

one

e a s i l y understand the blue s h i f t

s p e c t r a with a p p l i c a t i o n of high The discussed properties 2+ [Ru(bpy)^]

to

spectra

a t H = 6 T (T = 2 K) and a t

the thermal r e p o p u l a t i o n 5

c o n s t a n t o f III > It

of the non-resolved broad band 10 magnetic f i e l d s . o f t h e two l o w e s t e x c i t e d states of

suggest the occurrence of s i m i l a r v i b r o n i c

emission

(due

two

strong

one e x p e c t s a g r o w i n g i n

the enlarged

energy,

( a t H = 0 T)

state

shows t h e m a g n e t i c - f i e l d

I0> -» I I ' > i s s l i g h t l y

i n e m i s s i o n and

that

Indeed,

t o the very lowest e x c i t e d

energy

rate

a

excited

I0> -» I I ' > which i s n o t o b s e r v a b l e

i n Fig. l b , clearly

the

the

lowest

of the o r i g i n a l

with i n c r e a s i n g magnetic f i e l d s

the zero-phonon a b s o r p t i o n

can

one o b t a i n s

t h e r a d i a t i v e d e c a y r a t e from s t a t e III> i s 4 5 t h a n from s t a t e I I > ' , t h e t r a n s i t i o n I I ' > -» I0> r e f l e c t s 7-9

of

of

fields

the perturbed

Due t o t h e f a c t t h a t

much l a r g e r

For

magnetic

giving

is

states

and t h e r e l a t i v e l y

worthwhile t o mention that I I > and III>

t o t h e v i b r a t i o n a l modes,

This

i n d i c a t e s very s i m i l a r geometrical and

III>

with respect

any

pronounced

of

(H = 0 T) radiative

by e x p e r i m e n t .

the emission spectra

do n o t e x h i b i t

regard II>,

high

I0> ) . I n f a c t , t h i s i s s t a t e d

with

!0>,

structures

T « 5 K

from

the

progressions

which a r e l i s t e d

in

Table I.

configurations

of the

t o t h e c o r r e s p o n d i n g normal

states coordi-

nates . Transitions states

could

between

the ground s t a t e

exhibit different properties

and h i g h e r

lying

of the v i b r a t i o n a l

excited coupling. 3

This

has r e c e n t l y

been shown f o r [ R u ( b p y ) ^ ] ( P F ^ ) ^ s i n g l e c r y s t a l s .

It

is

found

that

the a b s o r p t i o n -1

l y i n g about 800 cm 1

1600

cm

can

conclude

above

(bpy-ring

compared

coordinate.

to change

the lowest e x c i t e d

stretching)

on

to that

spectrum t o a s t a t e

a shift

progression.

one,

of the e q u i l i b r i u m

by about 0.02

the i n t e r - r i n g 12

A

ref.

p o s i t i o n of

C-C

11)

i s d o m i n a t e d by

From t h i s p r o g r e s s i o n

o f t h e ground s t a t e a l o n g the

( F o r example,

(2A' see

this

corresponding

separation

is

a

one state

normal

estimated

)

CONCLUSION This detailed

paper p r e s e n t s h i g h l y insight

chromophore.

into

the

very lowest e x c i t e d

distinct

modes promote

to the t r a n s i t i o n from configurations lying

dutrie" cial

111>.

cm

1

for

more s t r o n g l y

Both s t a t e s to that

state

like

allow 2+

[Ru(bpy)^]

magnetic

fields

the t r a n s i t i o n

from

seem t o have s i m i l a r geomet-

o f the ground s t a t e w h i l e

the e q u i l i b r i u m

bpy-ring

a u t h o r s would

Gliemann

the

which

I I > w h i l e o t h e r s c o u p l e more p r o n o u n c e d

state

compared

excited

r e s p e c t t o a 1600 ACKNOWLEDGMENTS

The

of

I t i s shown by i n v e s t i g a t i o n s under h i g h

several

higher

emission spectra

the v i b r o n i c s t r u c t u r e

that

rical

resolved

stretching

position i s shifted

s u p p o r t o f t h i s work.

The

a

with

coordinate.

to express t h e i r thanks t o

and t h e " S t i f t u n g Volkswagenwerk"

for

Professor

"Verband d e r Chemischen a r e acknowledged

for

G. In-

finan-

support.

REFERENCES

[1]

Kober,

E.M.;

[2]

Kober, E.M.;

[3]

Yersin,

Chem. 1986,

134, [4]

[5]

90,

R.S.;

Meyer,

T.J.

J . Phys.

3722

Meyer,

H.;

Lumpkin,

T.J.

Gallhuber,

I n o r g . Chem. 1985, E.; H e n s l e r , G.

24,

106

Chem. Phys. L e t t .

1987,

Chem. Phys. L e t t .

1985,

497

Gallhuber, 120,

C a s p a r , J.V.;

E.;

Hensler,

G.;

E.;

Hensler,

G.;

Yersin,

H.

445

Gallhuber,

Yersin,

H.

Contribution

Proceedings [6]

Poizat,

[7]

G l i e m a n n , G.

O.;

Sourisseau,

C.

J . Phys. Chem. 1984,

Comments I n o r g . Chem. 1986,

5,

263

88,

3007

i n these

[8]

Hensler,

G.; G a l l h u b e r ,

E.; Y e r s i n , H.

Inorg.

Chem. 1987, 26, i n

press [9]

Hensler,

G.;

Gallhuber,

E.;

Y e r s i n , H.

C o n t r i b u t i o n i n these

Proceedings [10]

Elfring,

W.H.;

C r o s b y , G.A.

B a k e r , D.C.; C r o s b y , G.A. [11] Y e r s i n , H.; G a l l h u b e r , [12]

Schonherr, submitted

E.

J . Am. Chem. Soc. 1981, lOJL

2683.

Chem. Phys. 1974, 4, 428 J . Am. Chem. S o c , 1984, 106, 6582

T.; Degen, J . ; G a l l h u b e r ,

E.; H e n s l e r ,

G.; Y e r s i n , H.

HIGHLY RESOLVED OPTICAL SPECTRA OF [ O s ( b p y ) ]

DOPED INTO [ R u ( b p y ) ] X

2 +

3

3

2

G.Hensler, E . G a l l h u b e r , and H . Y e r s i n Institut

f u r P h y s i k a l i s c h e u n d T h e o r e t i s c h e C h e m i e , 8400 R e g e n s b u r g , FRG

INTRODUCTION

Many

i n v e s t i g a t i o n s were c a r r i e d o u t t o d e s c r i b e t h e e l e c t r o n i c 2+ 2+ of [Rufbpy)^] and [ O s t b p y ) ^ ] complexes due t o t h e i r

properties

i n t e r e s t i n g photochemical 1-4 covery

of

lowest

the

MLCT

and p h o t o p h y s i c a l b e h a v i o r .

electronic

states

0-O-transitions

and t h e ground

delivered

the energy

resolved

low-temperature

state

in

The r e c e n t d i s -

occuring neat

between

single

the

crystals,

p o s i t i o n s and s e p a r a t i o n s o f t h e l o w e s t excited 2+ s t a t e s o f [Ru(bpy)~] . I n t h i s c o n t r i b u t i o n we want t o p r e s e n t h i g h l y 2+

[Ru(bpy)^]X extremely

(X = P F ,

2

c

6

structured

e m i s s i o n s p e c t r a of [Os(bpy)^] ^

0

^ single

crystals.

doped

into

To o u r knowledge

s p e c t r a a r e d i s c u s s e d here

f o r the f i r s t

these

time.

RESULTS and DISCUSSION 2+ F i g u r e l a shows t h e E i c - p o l a r i z e d into

[Ru (bpy) ~] (PF.-) ~ (E = e l e c t r i c

the c r y s t a l ) . is

not

e m i s s i o n o f [Os{bpy)^]

field

vector,

The e m i s s i o n o f [ R u ( b p y ) ]

lies

3

reproduced

here

(EIIH)

leads to a d r a s t i c 2

reproduces

high energy intensity of about The

most

conspicuous

(The

i s (37 ± 2) c m .

with

crystal

lines

With

spectrum

of

the

f i e l d s H±c ( F i g . lb) .

dependence i n t h e r e g i o n o f t h e i n c r e a s i n g magnetic

increases d r a s t i c a l l y

field

the

up t o a f a c t o r

f e a t u r e of these emission spectra

structure.

- 1

from t h r e e d i f f e r e n t

not

axis of

(at H = 6 T ) .

occurrence of a t r i p l e lines

field

part of the emission.

3

of h i g h magnetic

change o f t h e o v e r a l l

the magnetic

of the dominating 10

c = needle

a t h i g h e r e n e r g i e s and

( b u t s e e t h e two o t h e r c o n t r i b u t i o n s

authors i n these p r o c e e d i n g s ) . A p p l i c a t i o n

Fig.

doped

sites

The energy

These t r a n s i t i o n s

structures of [ R u ( b p y ) ] ( P F )

application

3

of

are interpreted

of the guest molecules

isomorphous.^) T h i s i n t e r p r e t a t i o n magnetic

fields

6

2

i s the

s e p a r a t i o n between

i n the

to

these result

host matrix.

and [ O s ( b p y ) ^ ] ( P F ) 6

i s c o n f i r m e d by t h e f a c t the t r i p l e

structure

is

2

are that also

14 500 —1 i

14000 Li

13500 1i

cm"

13000 1I

1

H =

12500 i

v

OT

a

Ail *15

H = 6T

b

700

725

750

nm

775

X

800

2+ F i g . 1. E i c - p o l a r i z e d emission s p e c t r a of [Ru(bpy) ](PF ) at H = 0 T and H = 6 T 3

6

2

[Os(bpy) ] (T = 2 K, 3

doped into Ru:Os » 100;

363.8 nm. For a = 632.8 nm the r e s u l t s are i d e n t i c a l ) . The "jt ex i n t e n s i t i e s are not comparable. The Ellc p o l a r i z e d e m i s s i o n intensity =

v

i s weaker by a f a c t o r o f a b o u t 14500

cm

14450

-1

80.

14 400

H = 0T

T

•*"

I

I

1

"

1



" • " i

i

I

'

r

i

i

r

2T

j

\

Fig.

* 1

T

1

r

6T

{

£

, 1

690

,



, "

"

"

T

,

T

692

"

J,

sion

spectra into



r

nm

(Eic, of 1

,

694

"-"

X

f l a n k of the

doped various

,J 688

2. B l u e

2

t h e narrow field 1

cm" .

[Os(bpy) ] 3

[Ru(bpy)^] ( P F g )

magnetic f i e l d Hie,

higher

of

EIIH). The lines

emis2+

2

strengths half-width

appearing

strengths

at

is

at

about

observed

in

Further,

this

the

absorption

a s s i g n m e n t was

spectra

measurements, l e a d i n g t o o n e - s i t e Consequently, [Ru(bpy) 3(PF ) 3

6

different coupled

result

2

sites

The

with

the

transition

(for

magnetic-field into

considerable Figure

the

for

This

2

[Ru(bpy) ](C10 ) 3

is

4

electronic

' .

2

The

lowest

(see

[Os(bpy) ] 3

and

have isomorphous s t r u c t u r e s . ) about 330

i n a n a l o g y t o the

cm

1

,

m a g n e t i c f i e l d e f f e c t (see F i g . 3b) 13500 uooo cm ed i n F i g . 1, b u t l e s s d r a s t i c .

can

get

doped

into

—T

d

4

Furthermore, to

the

[Ru(bpy) ]X 3

the fi

salts

2

2

(PF )2 3 ' .

demonstrat12 500

H = 0T

r— -

result 3

i s s i m i l a r to t h a t 13000

lying

([Os(bpy) ](C10 )

compared

corresponding

The

through

seems t o

sites. 5

2

but higher

transition o a l s o r e f . ). 2+

s p e c t r u m i s much s i m p l e r similar

of

to

zero-phonon

this

s p e c t r u m of

of r e l a t i v e l y

transitions vibrations,

i s strongly forbidden

emission

three

are i n t e r p r e t e d i n analogy 6 7

l o w e s t e x c i t e d one

r e d - s h i f t e d by

compound, b e i n g

site)

into

structure.

strength mixed-in

shows t h e

a distribution

emission

3

doped

s p e c t r a of

intramolecular

a d m i x t u r e of wave f u n c t i o n s

the

oscillator 3a

[Ru(bpy) ]X

2 +

3

the

energies.

site selection

[Os(bpy) ]

respective purely

a specific

t h a t of

3

and

of

from a s u p e r p o s i t i o n of

induced

[Ru(bpy) ](ClO^) . from

spectra.

features

p a t t e r n of a t r i p l e

found

corresponding r e c e n t l y by

emission

changes under m a g n e t i c f i e l d s

behavior

states

emission

very

t o a l a r g e number of phonons and

thus p r o d u c i n g

the

the

a t the

verified

a

1

\

H = 6T b

x6

800

775

750

725

700

2+ Fig. at

3.

Emission

H = 0 T and

comparable.

spectra

H = 6 T

of

[Os(bpy) ]

(T = 2 K;

3

doped i n t o

Ru:Os « 5 0 ) .

[Ru(bpy) ](C10 )

Intensities

3

are

4

2

not

Figure 4 delivers

a synopsis of the temperature 2+

emission of [Osfbpy)^] 1

I

( a t 14169 cm >

increasing 211

cm

1

[Ru(bpy) ](C10 ) . 3

represents the t r a n s i t i o n

temperature (line

doped i n t o

dependence o f t h e

4

At T = 2 K l i n e

2

of h i g h e s t

two f u r t h e r peaks appear, 61 cm

III) at higher energies,

energy. 1

(line

respectively.

With

I I ) and

These

three

transitions

a r e d e t e c t e d i n a b s o r p t i o n a t t h e same e n e r g i e s and t h e r e Q f o r e r e p r e s e n t d i f f e r e n t zero-phonon l i n e s .

Finally,

we want t o f o c u s on t h e v i b r a t i o n a l

satellites

observed

2+

m

the emission

In Table

spectra of [Os(bpy) ] 3

doped i n t o

I we compare t h e e n e r g i e s o f v i b r a t i o n s

[Ru(bpy) ](C10 ) . 3

coupled

4

2

to the lowest 1 0

electronic t r a n s i t i o n f o r t h e c a s e o f H = 0 T t o IR and Raman data 2+ 11 2+ of [Ru(bpy)-] and Raman d a t a o f [Os(bpy)~] . At zero magnetic -1 -1 field, 1445

several

IR

modes a r e

cm ^, 1564 cm

, while

present

( e . g . 1126 cm

f o r H = 6 T those v i b r a t i o n s 1 0

w h i c h show a s t r o n g Resonance Raman e n h a n c e m e n t ' 1325

1

cm ,

1553 cm

1

) .

This

,

result

indicates

1 1

a r e dominant

(e.g.

that

1244 cm

the

1

1172 cm" , vibronic

coupling

of

the t r a n s i t i o n s

from d i f f e r e n t

e x c i t e d s t a t e s t o IR

and

Raman modes, r e s p e c t i v e l y , i s d i s t i n c t .

Emission of 2 +

[Os(bpy).] [cm

line

satellites

]

[cm

I 14169 14009 13959 13924 13891 13850 13796 13751 13727 13687 13526 13496 13440 13402 13143 13100 13044 13011 12997 12925 12844 12724 12678 12616 12605 12561

Table

Vibrational

a

a

I . Comparison

[Os(bpy) ] Raman d a t a

2

+

]

1

[cm

2 +

of 3

[cm

1

2 +

Raman

]

[cm

(464) 643 658 730 765 1025 1069

1243

-

1029

-

1160 1173

-

1175

-

1317

1322

-

1441 1485

-

1490 1558

-

1491 1558

-

1565 1600 satellites

)

--

-

(468) 642 658 732 774 1024 1066 1121 1159

1

-

372

-

2 +

-

-

371 421

of 3

(198) 252 281

-

11

[Os(bpy) ]

-

(195)

into

10

[Ru(bpy) ]

]

-

1607

1610

i n the emission

spectra of

[Ru(bpy).](CIO.) ( a t T = 2 K) w i t h IR and 2 + 2 + and [ O s ( b p y ) 3 complexes. The marked 0

of the [Ru(bpy) ] 3

v i b r o n i c peaks

Raman

3

of observed

doped

of

[Ru(bpy) ]

0 160 210 245 278 319 373 418 442 482 643 673 739 767 1026 1069 1125 1158 1172 1244 1325 1445 1491 1553 1564 1608

a

1 0

IR

3

(a) a r e weak a t H = 0 T and s t r o n g a t H = 6 T.

CONCLUSION

[Ru (bpy) -] X~

CIO.) r e p r e s e n t s an appropriate 4 f o r s p e c t r o s c o p i c studies of [Os(bpy) ] . Due t o weak elec3

matrix

(with

2

X = PF^, 6

3

tron-phonon c o u p l i n g i n t h i s d i l u t e d to

obtain

guest

highly

complex.

different

crystalline

resolved emission

and a b s o r p t i o n

Three zero-phonon t r a n s i t i o n s

electronic

states

and

system i t i s p o s s i b l e 9

the

ground

spectra

of

o c c u r i n g between state

are

the three

detected.

Further,

many

spectra,

with

vibronic t h e energy

satellites

are resolved

s e p a r a t i o n s from

i n the

emission

the O - 0 - t r a n s i t i o n i n agree-

ment w i t h t h e e n e r g y v a l u e s p u b l i s h e d f o r IR a n d Raman modes.

ACKNOWLEDGEMENT

The

authors

would l i k e

Gliemann

f o r support

dustrie"

and

financial

to express

of t h i s

the " S t i f t u n g

their

thanks

work. T h e " V e r b a n d Volkswagenwerk"

t o P r o f e s s o r G.

der Chemischen I n -

are acknowledged f o r

support.

REFERENCES

(1)

H. Y e r s i n , E. G a l l h u b e r ,

(2)

E. G a l l h u b e r , G. H e n s l e r , H. Y e r s i n , Chem. P h y s . L e t t . ,

(3)

G. H e n s l e r ,

46,

G. H e n s l e r ,

J. Physique

( P a r i s ) , 1985,

p.C7-453. 1985, 120,

445. E. G a l l h u b e r , H. Y e r s i n , I n o r g . Chim. A c t a ,

1986, 113,

91. (4)

H. Y e r s i n , E. G a l l h u b e r ,

(5)

M. Z a b e l , U n i v e r s i t y

(6)

G. H e n s l e r ,

134,

in

G. H e n s l e r ,

Chem. P h y s .

Lett.,

497. Regensburg,

E. G a l l h u b e r ,

private

communication.

H. Y e r s i n , I n o r g . Chem.,

1987, 26,

press.

(7)

E. G a l l h u b e r ,

(8)

G. G l i e m a n n ,

(9)

H. Y e r s i n , E . G a l l h u b e r , G. H e n s l e r ,

(10)

O. P o i z a t , C. S o u r i s s e a u , J . Phys. Chem., 1984, 88., 3007.

109,

(11)

G. H e n s l e r ,

H. Y e r s i n , J . Am.

Chem.

S o c , 1987,

i n press.

J . V. C a s p a r , T.

1987,

"Comments I n o r g . Chem." 1986, 5, 263.

T. D. W e s t m o r e l a n d ,

submitted

for publication.

G. H. A l l e n ,

P. G.

Bradley,

J . Meyer, W. H. Woodruff, J . Am. Chem. S o c , 1982, 106, 3492.

EXCITED STATE BEHAVIORS OF RUTHENIUM(11) COMPLEXES AS STUDIED BY RESOLVED AND TEMPERATURE AND SOLVENT DEPENDENT EMISSION SPECTRA

S . T a z u k e , H . - B . K i m , and

TIME

N.Kitamura

Research L a b o r a t o r y o f R e s o u r c e s U t i l i z a t i o n , Tokyo 4259 N a g a t s u t a , M i d o r i - k u , Yokohama 227, JAPAN

Institute

of

Technology,

INTRODUCTION Ruthenium(II) complexes are widely i n v e s t i g a t e d e l e c t r o n t r a n s f e r s e n s i t i z e r s (Kalyanasundaram 1982). The m a i n r e a s o n s a r e ; i ) t h e app r o p r i a t e o x i d a t i o n and r e d u c t i o n p o t e n t i a l s , i i ) the l o n g e x c i t e d s t a t e l i f e t i m e , i i i ) t h e n e g l i g i b l e p h o t o a n a t i o n , and i v ) t h e handy wavelength of photoabsorption. While the f a c t o r s d e t e r m i n i n g the properties m e n t i o n e d a b o v e a r e i n p r i n c i p l e d e t e r m i n e d by e n e r g y l e v e l s o f various e l e c t r o n i c s t a t e s a n d i n t e r a c t i o n s b e t w e e n a n y two e n e r g y l e v e l s ( i . e . , t r a n s i t i o n moment, o v e r l a p , and c o u p l i n g w h i c h d e c i d e a b s o r p t i o n and r a d i a t i v e / n o n r a d i a t i v e p r o c e s s e s ) , the p h o t o p h y s i c s of R u ( I I ) complexes i s not yet f u l l y u n d e r s t o o d . The m a j o r p a r a m e t e r s t o d e t e r m i n e t h e e l e c t r o n i c s t a t e i s c e r t a i n l y the n a t u r e of l i g a n d s . In the p a s t , we synthesized a s e r i e s of R u ( I I ) complexes w i t h v a r i o u s diazadiimine l i g a n d s and showed t h a t t h e r e d o x p o t e n t i a l s i n t h e g r o u n d and excited s t a t e s , t h e w a v e l e n g t h o f a b s o r p t i o n and e m i s s i o n , and t h e e x c i t e d s t a t e l i f e t i m e c o u l d be a l t e r e d ( K i t a m u r a 1 9 8 3 a , 1 9 8 3 b ; K a w a n i s h i 1984 ; Tazuke 1985). W h i l e t h e r e d o x p o t e n t i a l s and t h e a b s o r p t i o n and e m i s s i o n e n e r g i e s were c o r r e l a t e d w i t h l i g a n d p r o p e r t i e s , the dynamics of t h e r e l a x a t i o n f r o m t h e e x c i t e d s t a t e was puzzling. I n t h i s r e p o r t , we a r e g o i n g t o d i s c u s s t h e r e l a x a t i o n p r o c e s s e s o f excited RufbpyK and R u L ? ( C N ) ( L i s 2,2 ' - b i p y r i d i n e ( b p y ) o r 1,10phenanthroline (phen)). T h e s e a r e , f i r s t l y , s o l v e n t e f f e c t s on r e l a x a t i o n p r o c e s s e s , s e c o n d l y , the r e l a x a t i o n p r o c e s s e s from the initially populated excited MLCT s t a t e by means o f t i m e - r e s o l v e d emission spectroscopy. T h r o u g h t h e s e i n v e s t i g a t i o n s , we a r e t r y i n g t o p i n p o i n t the dynamics of the r e l a x a t i o n p r o c e s s e s of the e x c i t e d R u ( I I ) complexes. 2

I.

SOLVENT E F F E C T S ON

EXCITED STATE PROPERTIES.

One way t o m o d u l a t e t h e MLCT e x c i t e d s t a t e p r o p e r t i e s o f m e t a l complexes i s the v a r i a t i o n of s o l v e n t s . As r e p o r t e d p r e v i o u s l y , b o t h a b s o r p t i o n and e m i s s i o n e n e r g i e s o f R u L ( C N ) ( L = d i i m i n e l i g a n d s ) show higher energy s h i f t w i t h i n c r e a s i n g the Gutmann s s o l v e n t a c c e p t o r n u m b e r , AN ( B e l s e r 1 9 8 5 ) . W i t h i n c r e a s i n g AN o f s o l v e n t s , o-donor s t r e n g t h o f t h e c y a n i d e l i g a n d s d e c r e a s e s and c o n s e q u e n t l y , t h e m e t a l t p g o r b i t a l s move t o l o w e r e n e r g y , b r i n g i n g a b o u t t h e h i g h e r e n e r g y s h i f t o f b o t h a b s o r p t i o n and e m i s s i o n . S o l v e n t e f f e c t s on t h e r e d o x p o t e n t i a l s of R u ( p h e n ) ( C N ) are c o n s i s t e n t w i t h the i n t e r p r e t a t i o n (Kitamura 1 987a). The r e d u c t i o n p o t e n t i a l ( i . e . , t h e TT energy of the p h e n l i g a n d ) i s a l m o s t u n a f f e c t e d by s o l v e n t s w h e r e a s t h e o x i d a t i o n p o t e n t i a l ( i . e . , the t o r b i t a l on t h e m e t a l ) d e p e n d s o n s o l v e n t AN. The s p e c t r a l d a t a a n d t h e o x i d a t i o n p o t e n t i a l s a r e c o r r e l a t e d a s s h o w n i n F i g . 1. Changes i n energy l e v e l s s h o u l d a l s o i n f l u e n c e the e x c i t e d s t a t e lifetime. F r o m t h e l i f e t i m e a n a l y s i s by e q . ( 1 ) , t h e t e m p e r a t u r e 2

2

1

2

2

2

a

13.5-

+

+

E 1 / 9 ( R u / R u ° ) vs. F c / F c °

Fig.1 R e l a t i o n s h i p between E or E (•) a n d t h e o x i d a t i o n potential of Ru(phen) (CN) .

(O)

F

i

9 -

2

S

o

l

v

e

n

t

e f f e c t s on I n k

n r

.

a t > s

9

T"

1

= k

+ k

r

n

9

+ k ' e x p ( - A E /RT)

r

(1 )

independent n o n r a d i a t i v e r a t e constant, k^ , and t h e a c t i v a t i o n energy of t h e e m i s s i o n l i f e t i m e , A E , were o b t a i n e d . F i g u r e 2 shows a I n k vs emission energy ( E )plot. The e n e r g y gap l a w (Meyer 1986) i s a p p l i c a b l e f o ra s e r i e s o f s o l v e n t s w h i l e t h e d a t a i n hydrogen bonding s o l v e n t s d e v i a t e from t h e l i n e a r r e l a t i o n . The hydrogen b o n d i n g i n t e r a c t i o n between t h e c y a n i d e l i g a n d s and s o l v e n t s i s c e r t a i n l y i m p o r t a n t for the r e l a x a t i o n of excited Ru(phen) (CN) • On t h e o t h e r h a n d , t h e r e i s a r e a s o n a b l e c o r r e l a t i o n b e t w e e n AE^ a a nndd AN ((FFiigq.. 3 ) . T h e o b s e r v e d I the estin a ' ~ — ^ The e n e r g y d i f f e r e n c e was f e r e n c e b e t w e e n t h e d - d a n d MLCT s t a t e s r

a

e

n

r

m

2

2

r e p o r t e d t o be 5 0 0 0 cm i n an N,N-dimethylformamide/dichloromethane mixture ( B e l s e r 1985). R e c e n t l y , t h e p r e s e n c e o f t h e f o u r t h MLCT e x c i t e d s t a t e ( M L C T ' ) w h i c h l i e s 6 0 0 - 1 0 0 0 cm"' a b o v e M L C T s t a t e w a s s u g g e s t e d ( K o b e r 1984 ; Meyer 1 9 8 6 ) . I n l o w AN s o l v e n t s , t h e MLCT s t a t e l o c a t e s a t l o w e r e n e r g y a s g o m p a r e d w i t h t h a t i n h i g h AN s o l v e n t s s o t h a t t h e r e l a x a t i o n v i a d-d i s u n l i k e l y b u t p r o c e e d s t h r o u g h t h e MLCT' giving a small 4 a* W i t h i n c r e a s i n g AN o f s o l v e n t s , t h e r e l a x a t i o n proceeds v i a d-d and t h e o v e r a l l a c t i v a t i o n energy i n c r e a s e s . Howevej, i t i s experimentally n o t p o s s i b l e t o d i v i d e o v e r a l l AE into AE ( d - d ) and AE ( M L C T ' ) . I f b o t h t h e d - d a n d MLCT' s t a t e s p a r t i c i p a t e s i n t h e r e l a x a t i o n , p h o t o a n a t i o n i n a ^ s e r i e s o f s o l v e n t s w i l l be r e l a t e d t o t h e f r a c t i o n o f d e c a y v i a t h e d-d state. The r e s u l t s i n T a b l e 1 a g r e e w i t h t h i s view i n d i c a t i n g that photoinduced ligand s u b s t i t u t i o n i s f a c i l i t a t ed w i t h i n c r e a s i n g AN. 3

E

Table. 1 Photoreaction with KSCN(0.1M).

"1

m

i o X



J

1



2

• •

a

LU



••



1

< —L_

10

20

1

,

30

,

1

i

40

50

AN

Fig.

3 Solvent

e f f e c t s o n AE„

N,N-dimethylacetamide dimethylsulfoxide N-methylformamide methanol Relative water.

9

13.6 19.3 32.1 41 . 3

t o t h e y i e l d of

9

x

AN

Solvent

a) in

o f Ru(phen) ( C N ) z ^

0.0 13.7 14.5 27.4

Ru(bpy)?*

„a)

II.

T I M E DEPENDENT S H I F T OF

EMISSION. 3

S o l v e n t d i p o l e r e l a x a t i o n i n t h e M L C T e x c i t e d s t a t e c a n be f o l lowed by t i m e - r e s o l v e d e m i s s i o n s p e c t r o s c o p y . I n t e r r e l a t i o n between the r o l e o f s o l v e n t d i p o l e r e l a x a t i o n and l o c a l i z a t i o n / d e l o c a l i z a t i o n o f an e x c i t e d e l e c t r o n i s a p o i n t o f c o n t r o v e r s y . I n t h e ns t i m e r e g i m e , t h e emission spectrum of R u ( b p y ) shows t i m e - d e p e n d e n t (TD) s h i f t a t l o w t e m p e r a t u r e ( F e r g u s o n 1985 ; K i t a m u r a 1 9 8 6 ) . T h i s p h e n o m e n o n was a t t r i b u t e d t o s o l v e n t d i p o l e r e l a x a t i o n and p r o b a b l y , i n p a r t , t o t h e t r a n s i t i o n from the charge d e l o c a l i z e d e x c i t e d s t a t e t o the charge l o calized state. A l t h o u g h t h e TD s h i f t s l i g h t l y d e p e n d s o n t h e n a t u r e o f a c o u n t e r a n i o n ( X = C 1 ~ , C 1 0 " , o r P F ^ " ) o f R ^ b p y ^ X n ( K i t a m u r a 1 986 ) , t h i s d i s c u s s i o n c o u l d n o t be a p p l i e d t o R u L ( C N ) , w h i c h s h o w s e v e n a b i g g e r TD s h i f t t h a n R u ( b p y ) a s s h o w n i n F i g . 4. The TD s h i f t i s s p e c i f i c a l l y o b s e r v e d i n a n a r r o w t e m p e r a t u r e r a n g e j u s t below and above t h e g l a s s t r a n s i t i o n t e m p e r a t u r e o f t h e m a t r i x (T ). For q u a n t i t a t i v e d i s c u s s i o n , we d e f i n e d t h e r a t e o f r e l a x a t i o n a s t h e r e c i p r o c a l o f t i m e r e q u i r e d f o r h a l f r e l a x a t i o n ( k ^ ) and t h e A r r h e n i u s p o l t s a r e shown i n F i g . 5. The p l o t s a r e d e v i d e d i n t w o p a r t s a t 130 K. B e l o w 130 K, t h e a p p a r e n t a c t i v a t i o n e n e r g i e s f o r TD s h i f t , AE , 570 a n d 1360 cm~^ f o r R u ( b p y ) C l and R u ( b p y ) ( C N ) , r e s p e c t i v e l y . The a c t i v a t i o n e n e r g y o f v i s c o u s f l o w f o r a n e t h a n o l / m e t h a n o l m i x t u r e b e l o w 120 K i s 1900 cm ( C a r l i n 1985) so t h a t t h e p r e s e n t AE v a l u e s a r e t o o s m a l l t o be a s c r i b e d t o t h e a c t i v a t i o n e n e r g y f o r t h e phenomena r e l a t e d t o t h e v i s c o s i t y o f t h e medium. S i n c e t h e r a t e o f r e l a x a t i o n depends on t h e nature of s o l v e n t s , solvent d i p o l e r e l a x a t i o n i n the MLCT e x c i t e d s t a t e i s p r i m a r i l y r e s p o n s i b l e f o r t h e TD s h i f t . 2 +

3

4

2

2

2 +

3

a

r

e

a

3

2

2

2

As i u d g e d b y t h e a c c u m u l a t e d e v i d e n c e t h a t a n e x c i t e d e l e c t r o n i n Ru(bpy) or analogous complexes i s d e l o c a l i z e d i n r i g i d m a t r i c e s w h i l e t h a t i s l o c a l i z e d i n f l u i d m e d i a , t h e TD s h i f t i n n e a r T of the s o l v e n t s h o u l d be c l o s e l y r e l a t e d t o s o l v e n t d i p o l e r e l a x a t i o n o r more p r e c i s e ly, solvent assisted electron localization. I n e t h a n o l / m e t h a n o l a t 150 K, t h e e m i s s i o n f r o m R u ( b p y ) o b e y s a s i n g l e e x p o n e n t i a l f u n c t i o n and the decay t i m e i s i n d e p e n d e n t of the m o n i t o r i n g w a v e l e n g t h . However, f o r Ru(bpy) a t 125 K, t h e d e c a y p r o f i l e o b s e r v e d a t 580 nm d o e s n o t a g r e e w i t h t h a t m o n i t o r e d a t 752 nm a s s h o w n i n F i g . 6. S i m i l a r r e s u l t s have been r e p o r t e d by F e r g u s o n e t a l . ( 1 9 8 6 a , 1 9 8 6 b ) . The e f f e c t s a r e m o r e pronounced and c o m p l i c a t e d i n t h e c a s e o f R u ( p h e n ) ( C N ) ^ (Kitamura 1987b). The e m i s s i o n d e c a y m o n i t o r e d a t 580 nm i s m u l t i - o r e v e n n o n e x p o n e n t i a l and t h e decay p r o f i l e v a r i e s w i t h t h e m o n i t o r i n g wavelengths ( F i g . 7). The l o n g e r t h e m o n i t o r i n g w a v e l e n g t h , t h e l o n g e r t h e apparent e m i s s i o n l i f e t i m e . Furthermore, the wavelength dependent emiss i o n d e c a y i s o b s e r v e d a t 150 K. The f o r m a t i o n a n d d e s t r u c t i o n o f t h e hydrogen b o n d i n g i n t e r a c t i o n between t h e c y a n i d e l i g a n d s and a l c o h o l i c solvents around T ( K i t a m u r a 1 9 8 7 a ) c o u l d be r e f l e c t e d o n t h e e m i s s i o n decay p r o f i l e . A l t h o u g h i t i s n o t c l e a r l y s e e n i n F i g . 6 a n d 7, t h e e m i s s i o n f r o m b o t h c o m p l e x e s e x h i b i t s r i s e and d e c a y when m o n i t o r e d a b o v e 700 nm. S i n c e t h e e m i s s i o n s p e c t r u m s h o w s TD s h i f t a t t h i s temperature, the change i n the e m i s s i o n decay p r o f i l e w i t h the m o n i t o r ing wavelength i s not s u r p r i s i n g . H o w e v e r , t a k i n g t h e r e p o r t o f MCPL e x p e r i m e n t s ( F e r g u s o n 1 9 8 6 ) i n t o a c c o u n t , we c o n c l u d e t h a t t h e p h e n o m e n a are c l o s e l y r e l a t e d w i t h the t r a n s i t i o n from the d e l o c a l i z e d e x c i t e d s t a t e t o t h e l o c a l i z e d one. +

3

3

2 +

3

2

A s we h a v e a l r e a d y s h o w n , t h e d e c a y p r o f i l e o f t h e e m i s s i o n b e t w e e n 100 a n d 140 K i s c o m p l i c a t e d a n d c o u l d n o t be f i t i n a s i n g l e o r m u l t i e x p o n e n t i a l mode. I t i s i n d e e d n o n - e x p o n e n t i a l . The m e a n i n g o f n o n e x p o n e n t i a l d e c a y s h o u l d be u n d e r s t o o d i n t w o w a y s . F i r s t l y , because of t h e TD s h i f t o f e m i s s i o n , t h e d e c a y p r o f i l e m o n i t o r e d a t a f i x e d w a v e length provides a f a l s e feature. The t o t a l e m i s s i o n i n t e n s i t y i n t e g -

«

;

' fln K XX) K

o

590

a 110 K

a

-

\ :600

b) -

. \

2 • 610 •

-





E

• • 120K

LU

620 -» m

-

500 1000 1500 Delay Time (ns) •

640



125K 130 K

00

° HOK

1500

1000

500

0

Delay Time (ns) F i g . 4 Time and t e m p e r a t u r e dependence o f t h e e m i s s i o n maximum o f R u ( b p y ) C l (a) a n d R u ( b p y ) ( C N ) (b) i n an ethanol-methanol mixture. 3

150

2

2

110

130 a)

Ru(bpy) X 3

2

2

110 K

150

130

IA , ^

b)RuL (CN) 2

2

^5

cn o

X 8

9 1000/T

7

8

9

1/K

F i g . 5 Temperature dependence o f k ; (a) X - C I ( • ) , C l o : < A ) , and P F , ( o ) , (b) L = bpy(o) and p h e n ( A ) . r

0

2

4 6 8 time l i s

F i g . 6 Emission decay of R u ( b p y ) .

0

profile

3

2 4 6 time |is

F i g . 7 E m i s s i o n decay of Ru(phen) (CN) . 2

8 profile

2

r a t e d o v e r t h e w h o l e w a v e l e n g t h r e g i o n must be p l o t t e d a g a i n s t t i m e . S e c o n d l y , p r o v i d e d t h a t t h e p r o c e d u r e m e n t i o n e d above c o u l d be a d o p t e d , the d e c a y p r o f i l e m i g h t be m u l t i - e x p o n e n t i a l . This i s the true case of time-dependent r a t e . Such n o n - e x p o n e n t i a l decay has been d i s c u s s e d i n a number o f u n i m o l e c u l a r f l u o r e s c e n c e d e c a y o f o r g a n i c c o m p o u n d s s u c h a s t w i s t e d i n t r a m o l e c u l a r CT c o m p o u n d s ( H e i s e l 1 9 8 3 , 1 9 8 5 a , 1 9 8 5 b ) a n d i n t r a m o l e c u l a r e x c i m e r / e x c i p l e x (Tazuke 1986). The work a l o n g t h i s l i n e i s now i n p r o g r e s s .

References B e l s e r P, Z e l e w s k y AV, J u r i s A, B a r g e l l e t t i F, B a l z a n i V ( 1 9 8 5 ) E x c i t e d s t a t e p r o p e r t i e s o f some new r u t h e n i u m ( I I ) c y a n o p o l y p y r i d i n e c o m p l e x e s i n v a r i o u s s o l v e n t s . Gazz Chim I t a l 115: 723-729 C a r l i n CM, D e A r m o n d MK ( 1 9 8 5 ) T e m p e r a t u r e - d e p e n d e n t p h o t o s e l e c t i o n - I n t r a m o l e c u l a r e x c i t o n motion i n [ R u ( b p y ) 3 ] . J Am Chem Soc 1 0 7 : 53-57 F e r g u s o n J , K r a u s z ER, M a e d e r M ( 1 9 8 5 ) C h a r g e l o c a l i z a t i o n i n t h e luminescent state of R u ( b p y ) i n fluid solutions. J Phys Chem 8 9 : 1 8 5 2 - 1 8 5 4 F e r g u s o n J , K r a u s z E ( 1 9 8 6 a ) T i m e - r e s o l v e d l u m i n e s c e n c e a n d MCPL of R u ( b p y ) i n glassy solvents at the fluid-glass transition. Chem P h y s L e t t 1 2 7 : 5 5 1 - 5 5 6 F e r g u s o n J , K r a u s z E ( 1 9 8 6 b ) MCPL e v i d e n c e f o r t h e t r a n s i t i o n f r o m delocalized t o l o c a l i z e d luminescent state of R u ( b p y ) in g l a s s - f l u i d m e d i a . I n o r g Chem 2 5 : 3 3 3 3 - 3 3 3 5 H e i s e l F, M i e h e J A ( 1 9 8 3 ) D y n a m i c a l s t u d y o f t w i s t e d i n t r a m o l e c u l a r charge t r a n s f e r i n p - d i m e t h y l a m i n o b e n z o n i t r i l e s o l u t i o n s . Chem P h y s L e t t 100 : 183-188 2 +

2 +

3

+

3

+

3

H e i s e l F, M i e h e J A ( 1 9 8 5 a ) p - D i m e t h y l a m i n o b e n z o n i t r i l e s o l u t i o n . 1 Time-dependent r a t e i n i n t r a m o l e c u l a r e l e c t r o n t r a n s f e r r e a c t i o n . Chem P h y s 9 8 : 2 3 3 - 2 4 1 . H e i s e l F, M i e h e J A , M a r t i n h o JMG ( 1 9 8 5 b ) p - D i m e t h y l a m i n o b e n z o n i t r i l e i n p o l a r s o l u t i o n . 2 Quantum y i e l d m e a s u r e m e n t s a n d q u a s i - s t a t i o n a r y k i n e t i c study of the e l e c t r o n t r a n s f e r r e a c t i o n . Chem P h y s 9 8 : 243-249 Kalyanasundaram K (1982) P h o t o p h y s i c s , p h o t o c h e m i s t r y and s o l a r energy c o n v e r s i o n w i t h t r i s ( b i p y r i d y l ) r u t h e n i u m ( I I ) and i t s a n a l o g u e s . C o o r d Chem R e v 4 6 : 1 5 9 - 2 4 4 K a w a n i s h i Y, K i t a m u r a N, K i m Y, T a z u k e S ( 1 9 8 4 ) L i g a m d d e s i g n o f ruthenium(II) complexes aiming a t e f f i c i e n t e l e c t r o n t r a n s p o r t s e n s i t i z a t i o n . R i k e n S c i P a p e r s 78: 212-219 K i t a m u r a N, K a w a n i s h i Y, T a z u k e S ( 1 9 8 3 a ) S p e c t r o s c o p i c a n d e l e c t r o c h e m i c a l s t u d i e s on r u t h e n i u m ( I I ) c o m p l e x e s c o n t a i n i n g d i a z a d i i m i n e l i g a n d s . Chem P h y s L e t t 9 7 : 1 0 3 - 1 0 6 K i t a m u r a N, K a w a n i s h i Y, T a z u k e S ( 1 9 8 3 b ) H i g h l y e f f i c i e n t p h o t o r e d u c t i o n o f m e t h y l v i o l o g e n by t r i s ( b i s - d i a z a d i i m i n e ) ruthenium(II) complexes. Chem L e t t : 1 1 8 5 - 1 1 8 8 K i t a m u r a N, K i m HB, K a w a n i s h i Y, O b a t a R, T a z u k e S ( 1 9 8 6 ) T i m e r e s o l v e d e m i s s i o n s p e c t r a o f R u f b p y J ^ C l ? and c i s - R u ( b p y ) ( C N ) a t l o w t e m p e r a t u r e . J P h y s Chem 9 0 : 1 4 8 8 - 1 4 9 1 K i t a m u r a N, S a t o M, K i m HB, O b a t a R, T a z u k e S ( 1 9 8 7 a ) Solvatochromism i n the e x c i t e d s t a t e of c i s - d i c y a n o b i s ( 1 , 1 0 p h e n a n t h r o l i n e ) r u t h e n i u m ( I I ) c o m p l e x . I n o r g Chem : s u b m i t t e d K i t a m u r a N, K i m HB, S a t o M, T a z u k e S. ( 1 9 8 7 b ) I n p r e p a r a t i o n K o b e r EM, M e y e r T J ( 1 9 8 4 ) A n e l e c t r o n i c s t r u c t u r a l m o d e l f o r t h e e m i t t i n g MLCT e x c i t e d s t a t e s o f R u ( b p y ) and O s ( b p y ) . I n o r g Chem 2 3 : 3 8 7 7 - 3 8 8 6 Meyer T J (1986) P h o t o c h e m i s t r y o f m e t a l c o o r d i n a t i o n complexes ; m e t a l t o l i g a n d c h a r g e t r a n s f e r e x c i t e d s t a t e s . P u r e A p p l Chem 58: 1193-1206 T a z u k e S, K i t a m u r a N, K a w a n i s h i Y ( 1 9 8 5 ) P r o b l e m s o f b a c k e l e c t r o n t r a n s f e r i n e l e c t r o n t r a n s f e r s e n s i t i z a t i o n . J Photochem 29: 123-138 T a z u k e S, H i g u c h i Y, T a m a i N o , K i t a m u r a N, T a m a i N a , Y a m a z a k i I ( 1 9 8 6 ) F o r m a t i o n and r e l a x a t i o n o f e x c i t e d complex i n p o l y m e r s . Macrom o l e c u l e s 19: 603-606 2

+

3

+

3

2

THE

LOWEST EXCITED STATES OF (Ru(2 , 2 ' - b i p y r a z i n e )

Hiroshi

K o b a y a s h i , Youkoh K a i z u ,

Department o f C h e m i s t r y , Tokyo Tokyo 1 5 2 , JAPAN

(2,2'-bi p y r i d i n e )

Kazuteru Shinozaki,

)*

2

+

and H i d e y o M a t s u z a w a

I n s t i t u t e o f T e c h n o l o g y , 0-okayama, M e q u r o - k u , y

PROTONATION AND DEPROTONATION OF E X C I T E D

COMPLEXES

e x c i t e d s t a t e o f [ R u ( b p y ) (CN) ]

1

The

lowest

the

"metal-to-bipyridine" charge-transfer excited state.

2

2

(bpy,

2 2 -bipyridine) i s r

Absorption

spectrum o f t h e complex v a r i e s w i t h p r o t o n a t i o n on t h e c o o r d i n a t e d cyano g r o u p s

i nacidified

of deprotonated hydrogen-ion

media, w h i l e

species with a constant

1976).

In highly acidic

as [Ru(phen) (CN) ]

emission

chelate

4

band w i t h v i b r a t i o n a l

complexes.

results

band

with

I t was p r o p o s e d

ligand-localized

spectrum

i svery

(Peterson

[Ru(bpy) (CN) ] 2

2

e x h i b i t s an similar

thecorresponding

to the

Rh(IH)

tris-

that theprotonation i nthe r i g i d

i n an i n v e r s i o n o f t h e lowest 3

species

g l a s s a t 77 K,

s t r u c t u r e which

found

a

complete

(phen, 1 , 1 0 - p h e n a n t h r o l i n e )

2

(IT , TT ) e m i s s i o n

ligand

glass

2

A rapid,

o f theprotonated

H S0 -methanol

2

exhibits

regardless of the

[H ] i n s o l u t i o n .

follows excitation

as w e l l

yield

+

concentrations

deprotonation

emission

(TT,TT*) e x c i t e d s t a t e s

charge-transfer and t h e

(Peterson

1978). 22R e c e n t l y we p r e p a r e d a n i o n c o m p l e x e s [ R u b p y t C N ) ^ ] and [Ruphen(CN) ] . The c o m p l e x e s e x h i b i t m e t a l - t o - b i p y r i d i n e o r - p h e n a n t h r o l i n e charge2+ 4

transfer

bands v e r y

[Ru(bpy) (CN) ] 2

solutions protonated

with

and a f a s t ,

results

+

than

?

I n t h e media

the protonated

i n an one-electron

observed

intense

solution,

theoriginal

short-lived

spin-allowed

emission

transition

+

A further

media

complex.

Ru(II)

blue

a r e observed

e x c i t e d complexes a r e r a t h e r

species.

increase o f [H ]

+

( [H ]

A paramagnetic > 8 . 3 M) e m i t s a t which

has t h e 3+

o f [Rh(bpy) l 3

NMR s p e c t r u m c o n f i r m e d

from

cyano groups i s

lifetime

an intense s h o r t - l i v e d emission 3 theligand (TT,TT*) e m i s s i o n

Ru(nr)

acidic

> 2 M a continuous

+

with

state o f the paramagnetic

,

In dilute

o x i d a t i o n o f t h e complex.

K (Matsuzawa u n p u b l i s h e d ) .

acidic

[Ru(bpy)^]

follows excitation of

6 M > [H ]

complex y i e l d e d i n h i g h l y a c i d i c

structure

with

analogues.

deprotonation

the deprotonated

ambient temperature 7

observed

band and an i n c r e a s e o f decay

increasing [H ]:

Ru(n[)

complete

complex.

o f emission

long-lived

t o those

phenanthroline

s u c h a s [H ] < 0 . 5 M, o n e o f t h e c o o r d i n a t e d

the p r o t o n a t e d shift

similar

and t h e i r

2

at

the spin-doublet

B y a d d i t i o n o f OH~" t o t h e

complex i s recovered.

[Ru(HI)bpy(CN) ]~ 4

The

i sassigned

from t h e t r i p - d o u b l e t s t a t e o f l i g a n d

3

as a

(TT,TT*)

origin.

The i n t e r a c t i o n

with

makes a l l l i g a n d s i n g l e t s (trip-doublets) rise

spin doublet

become d o u b l e t s

and quartets

into

doublets

The p r o t o n a t i o n

gives

t o an e l e c t r o n detachment b u t n o t an i n v e r s i o n o f t h e lowest and t h e l i g a n d - l o c a l i z e d

Both protonated

and deprotonated 2+

1,10-phenanthroline)] proton-dissociation

are emissive constants

media

state.

(Giordano

1978).

On t h e o t h e r

1

4,4 -dicarboxylic o f coordinated

obtained

by a b s o r p t i o n

displacement

ligand

and e x c i t e d s t a t e s a r e

measurements w i t h

decreases

of

E X C I T E D S T A T E S OF

band

9

intensity

o f c a r b o x y l i c a c i d on

titration

curves

were

measurements and a

was a t t r i b u t e d t o a s h i f t

(Giordano

[Rubpz(bpy) ]

i n the excited

[Ru(bpy) (2,2 -bipyridine-

e q u i l i b r i u m upon e l e c t r o n i c e x c i t a t i o n

charge-transfer

[H ] i n

1

the acidity

curves

+

varied

i s more a c i d i c

Two d i f f e r e n t

and emission

of the t i t r a t i o n

protonation

9

i n aqueous s o l u t i o n s and t h e

hand, e x c i t a t i o n

bipyridines.

excited states.

[Ru(bpy) (4,7-dihydroxy-

i n t h e ground

The c o m p l e x

acid)]

^(Tr,Tr*)

forms o f

determined by s p e c t r a l and l i f e t i m e

one

and t r i p l e t s

(trip-quartets).

charge-transfer

the

on t h e c e n t r a l metal i o n

of the

i n the metal-to-

1977).

2 +

2

The

lowest

excited state of [Rubpz(bpy) ]

the

"metal-to-bipyrazine"

2 +

charge-transfer

1

(bpz,

2

2,2 -bipyrazine)

i s

(MLCT) e x c i t e d s t a t e .

Irradiation

o f 4 5 7 . 9 nm l i n e i n t h e r e d c o m p o n e n t o f t h e s p l i t v i s i b l e 3 -1 MLCT b a n d ( b a n d I , 2 0 . 5 x 1 0 cm ) s h o w s a r e s o n a n c e Raman m o d e s o f b i p y r a z i n e , w h i l e i r r a d i a t i o n o f 4 0 6 . 7 nm l i n e i n t h e b l u e c o m p o n e n t 3 -1 band (band I I , 24.8x10 cm ) e x h i b i t s those o f b i p y r i d i n e . [Rubpz2+ (bpy) ] e x h i b i t s emission from t h e lowest e x c i t e d t r i p l e t s t a t e . 2+ 9

Phosphorescence e x c i t a t i o n films

show a h i g h

temperature

spectra

o f [Rubpz(bpy) ] 2

positive polarization

i n t h e band

I , which

(P^2/5)

localized

is

i n a m i r r o r - i m a g e o f t h e weak a b s o r p t i o n

the

S-T

within the coordinated

second-derivative (band I ) .

(singlet-triplet)

absorption

i n PVA

indicates the electronic excitation

is

MLCT b a n d

doped

even a t room

bipyrazine.

Phosphorescence 3 -1

band

(16.2x10

cm

band

) by

spectrum t o the r e d o f the intense

The weak b a n d

i s assigned

as t h e s p i n - f o r b i d d e n

component band o f " m e t a l - t o - b i p y r a z i n e "

MLCT

transition. 2+ [Rubpz(bpy) ] 2

ture: D 0, 2

460

emits

the lifetime

phosphorescence

and y i e l d

i n s o l u t i o n even a t room

i n H 0 a t 2 5 °C a r e 2

T

tempera-

= 8 8 n s , = 0 . 0 0 6 ;

T = 1 9 0 n s , = 0 . 0 1 2 ; C H O H , T = 2 0 0 n s , = 0 . 0 2 6 ; C H C N , T = 3

n s , = 0. 0 2 7 ;

respectively yields,

propylenecarbonate,

(Shinozaki unpublished).

3

T = 4 0 0 n s , =

0.026,

From t h e measured

t h e r a d i a t i v e (k^) and n o n r a d i a t i v e

l i f e t i m e s and

decay r a t e constants ( k

n

r

)

1

are

evaluated according to k = ((JT" a n d knr 4 - 1 6 -1 A 6.8x10* s , k =*11.3xl0 s ; D 0 , k =6.3xl0 b

( l - c j O x " : H~0, k = - i £ i s , k =5.2xl0 s " ; 2

4

9

X

1

=

r

X

r

1

6

X

4

1

1

CH-OH, k =6.7x10* s , k =4.9xlO s ; CH CN, k =5.9xl0 s " , k = 6 -1 i - i £ - i 2.1x10 s ; propylenecarbonate k =6.5xl0 s , k =2.4x10° s . Q

n

r

r

n

r

4

f

The

radiative rate

i s about

7x10

s

independent o f t h e media.

However, t h e l i f e t i m e i s c o n t r o l l e d by t h e r a t e relaxation The

which

increases

i n protic

l i f e t i m e s were measured

ture

(Shinozaki

i n H^O

unpublished).

of

nonradiative

solvents.

and D 0

as a f u n c t i o n

2

A plot of In K

( = 1/T)

o f tempera-

against

1A

T

B

w e l l f i t s t h e e q u a t i o n k = k ° e x p ( - A E / k T ) : k ° = 3 . 8 8 x l 0 s " , AE =270 - 1 0 7-1 -1 cm ; k =2.70x10 s , AE =34 0 cm . P r o t i c s o l v e n t molecules form 7

1

D

D

D

hydrogen bonds w i t h Even

the peripheral

nitrogens

i fthe b a s i c i t y of bipyrazine

from r u t h e n i u m

to bipyrazine

water protons oxygen. -i

(m /m ) D

/

o r deuterons

i s increased

i n the excited

are oscillating

From t h e p l o t o f I n k^/k^ v e r s u s n JJ

9

/

f+/f =1.4 and t h u s

H

f#/f =l.

Q

protonated

species,

minimum b e y o n d protonated

should

state,

transfer

the hydrogen-bonded

i n a minimum n e a r b y 1/k^T, we 13

be t r a n s f e r r e d

to another

1

H

3 +

[RubpzH(bpy) ]

1

D

e m i t s no

2

water

obtained

(AE =270 cm"" ; AE =340 cm

an energy b a r r i e r

species

by charge

bipyrazine.

To f o r m t h e n o n e m i s s i v e

Q

the proton

of coordinated

) .

The

phosphorescence.

A semiempirical

SCKO c a l c u l a t i o n w a s c a r r i e d o u t o n t h e (TT,TT*) e x c i t e d 13 * s i n g l e t and t r i p l e t s t a t e s o f coordinated b i p y r a z i n e . The ' (TT ,TT ) e x c i t e d s t a t e s w e r e a l s o c a l c u l a t e d o n t h e two s t a g e s o f p r o t o n a t i o n 3 * of t h e p e r i p h e r a l n i t r o g e n s . The l o w e s t (TT,TT ) s t a t e o f coordinated 3+ 3 —1 bipyrazine

i n [RubpzH(bpy) ]

(kpy)

triplet

(14xl0

nonemissive stabilized the

3

3

state 1

cm" )

state

cm

) i s lower

1

cm" ), while

low-lying In this

that

t h e MLCT e x c i t e d

o f coordinated

The q u e n c h i n g

) excited

(TT,TT

p a r t i c u l a r case, 1 , 3

activation to the low-lying the l i f e t i m e of the excited

A l l s o p p 1978; D u r h a m 1982; C a s p e r PROTONATION OF [Rubpz(bpy) ] 2+

state

than of

2

state.

The

much l o w e r

than

i n the protonated

relaxation i nthe o f monoprotonated

i ti s not necessary (d,d*)

complexes 1983;

the lowest

[RubpzH ~

bipyrazine i s

t o one o f t h e two n i t r o g e n s

triplet.

i s attributable to fast nonradiative 3 *

nonemissive

thermal

3

i s a t around

by p r o t o n a t i o n

bipyrazine.

limits

(12xl0

(TT,TT*) e x c i t e d

l o w e s t MLCT e x c i t e d

complex

(11x10

2

MLCT e x c i t e d

Allen

excited

t o assume a

states

which

( V a n H o u t e n 1975,

1976;

1984).

2 +

2

In a c i d i c media, nitrogens

[Rubpz(bpy) 1' 2

of coordinated

Predominant

i n 6.0

M>

i s p r o t o n a t e d on t h e p e r i p h e r a l

bipyrazine. +

[ H ] >3.5

The m o n o p r o t o n a t e d

M, w h i l e

the diprotonated

species species

i s i n

+

[H ]

M.

>8.0

dilute

The

protonated

a c i d s o l u t i o n s u c h t h a t no

absorption

measurements,

1

H^o" " i n s o l u t i o n . function

of

pH

However the the of

Two

by

different

of

the

time-resolved excitation, 3 +

which ns)

i s rather

tion

i n the

in acidic

short

curves

the

protonated

i s not

of

the

Since

species

H^0

+

obtained

of

i s so

the

as

controlled protonation dissociation

indication By

of

measurements

species

after

nonemissive

determined *

as

1.1 ns, 2+

[Rubpz(bpy) ]

(88

2

accelerated

that

the

protona-

excited-state

the

excited

2 +

recovery of [Rubpz(bpy) ] *" Measurements determined the 3+ 9

[RubpzH(bpy)2]

COMPLEX FORMATION I N

and

THE

thus

f o l l o w i n g the

rate of

lifetime,

diffusion

complex.

[Rubpz(bpy) ]

is

2

deactivation.

In

i s slower than the emission rate of proton dissociation

y i e l d e d by

EXCITED

a

nonradiative relaxation

i s g o v e r n e d by and

by

measurements.

the

that of

the

a

by

quenched

ground-state

a c r u e o u s m e d i a was

media

are

direct

accomplished w i t h i n the

in acidic

i s detected

the

9

proton

the

curves

intensity

In

a c i d s o l u t i o n where the g r o u n d - s t a t e species i s 2+ [Rubpz(bpy) ] , t h e e x c i t e d c o m p l e x i s q u e n c h e d by 2 +

exclusively diffusion

species

bipyrazine basicity.

in contrast with

encounter of

In a d i l u t e

emission

phosphorescence.

i s partly

excited-state lifetime

e q u i l i b r i u m i s not quenching

controlled

of

the

(Shinozaki unpublished).

process

titration

and

repopulation

the

9

protonated

phosphorescence

absorption

displacement

*[RubpzH(bpy) ]

by

the

MLCT-induced enhancement o f

pulse

the

c o m p l e x e s e m i t no

the

d e a c t i v a t i o n of

recovered

fact,

the

decay. 8 -1 (k__ =2xio s ) 9

excited

species.

STATE

A b s o r p t i o n s p e c t r a v a r y w i t h i-ncreasincr c o n c e n t r a t i o n o f h y d r a t e d Ag ion [Ag ] i n a s o l u t i o n o f [ R u b p z ( b p y ) ] . The f i r s t s t a g e o f t h e 3+ +

+

2 +

9

spectral in

variation

which a

peripheral emission + [Ag of

i s ascribed

hydrated

Ag

the

formation

of

t o one

[RubpzAg(bpy) ] 9

of

the

[RubpzAg(bpy) ] emits to the red of the 2+ [Rubpz(bpy) ] . E m i s s i o n l i f e t i m e s were measured

from

9

9

lifetimes

i n the

,

bipyrazine

+

nitrogens.

] v a r i e d w i t h i n the the

to

ion i s coordinated

first

stage

a b s e n c e and

of

complex formation.

presence of

Ag

+

The

with

ratio

ion, T Q / T ,

i n c r e a s e s w i t h [Ag ] b u t t h e p l o t o f T / x a g a i n s t l o g [ A g ] shows a + -1 p l a t e a u w h e n [Ag ] i s i n c r e a s e d up t o 2 ^ 4 x 1 0 M. The l i f e t i m e o f [RubpzAg(bpy) ] a t 25 °C was d e t e r m i n e d a s 66 n s f r o m t h e p l a t e a u +

+

n

3 +

9

+ v a l u e x^. E m i s s i o n s p e c t r u m v a r i e s w i t h [Ag ] , w h i l e i t i s i n v a r i a n t r e g a r d l e s s o f whether i t i s e x c i t e d i n the a b s o r p t i o n band o f 2+ 3+ [Rubpz(bpy) ] or that of [RubpzAg(bpy) ] - This i n d i c a t e s the e q u i l i b r i u m of complex formation i s accomplished i n a s h o r t e r p e r i o d than the time constant of the e x c i t e d - s t a t e l i f e t i m e s . 2

2

From t h e d e c a y l i f e t i m e s formation 25

ground

of [Ag ],

t h e complex-

i n t h e e x c i t e d s t a t e w a s d e t e r m i n e d K*=130 M*"

On t h e o t h e r

s t a t e was o b t a i n e d

°C, u=3.0 M .

25

+

f o ra variety

1

constant

°C, u=3.0 M.

measured

hand, t h e f o r m a t i o n

1

appreciably

promoted

coordinated

bipyrazine increases

at

i nthe

b y a b s o r p t i o n m e a s u r e m e n t s a s K=2 0 M*"

The complex f o r m a t i o n than

constant

at

i n the excited state i s

t h a t o f t h e ground

state,

the basicity

since the

u p o n t h e MLCT

electronic

excitation.

References Allen

GH, W h i t e R P , R i l l e m a DP, M e y e r T J ( 1 9 8 4 ) S y n t h e t i c c o n t r o l o f

excited-state ligand J

properties.

1

2,2 -bipyrazine,

T r i s - c h e l a t e complexes c o n t a i n i n g t h e 1

2 , 2 - b i p y r i d i n e , and

1

2,2 -bipyrimidine.

Am Chem S o c 1 0 6 : 2 6 1 3 - 2 6 2 0 .

Allsopp

SR, C o x A , Kemp T J , R e e d WJ

solution.

Part-1.

(1978)

Inorganic

Temperature a c t i v a t i o n

photophysics

o f decay processes

i n

i n the

1

luminescence o f t r i s ( 2 , 2 - b i p y r i d i n e ) r u t h e n i u m ( I I ) and t r i s ( 1 , 1 0 phenanthroline) ruthenium (II)

ion.

J Chem S o c F a r a d a y T r a n s I 7 4 :

1275-1289. 2+ C a s p e r J V , M e y e r T J (1983) P h o t o c h e m i s t r y effects.

of Ru(bpy)

.

3

Solvent

J Am Chem S o c 1 0 5 : 5 5 8 3 - 5 5 9 0 .

Durham B, C a s p e r J V , N a g l e J K , M e y e r T J ( 1 9 8 2 ) P h o t o c h e m i s t r y Ru(bpy)

2 + 3

.

G i o r d a n o P J , B o c k CR, W r i g h t o n MS of

ruthenium(II)

Increased

of

J Am Chem S o c 1 0 4 : 4803--4810.

complexes o f

acidity

(1978) E x c i t e d s t a t e p r o t o n

transfer

4,7-dihydroxy-l,10-phenanthroline.

i n the excited state.

J Am Chem S o c 1 0 0 : 6 9 6 0 -

6965. Giordano P J , Bock Excited the

CR, W r i g h t o n MS, I n t e r r a n t e L V , W i l l i a m s

state proton

acid

transfer

t r a n s f e r o f a metal

dissociation

constant

f o ra m e t a l - t o - l i g a n d

state of a ruthenium(II)

RFX

(1977)

complex: d e t e r m i n a t i o n

complex.

of

charge

J Am Chem S o c 9 9 :

3187-3189. M a t s u z a w a H, K a i z u Y, K o b a y a s h i emission Peterson

in

2

S H , Demas J N

transition

metal

aqueous a c i d .

Peterson

H

( t o be p u b l i s h e d )

P r e p a r a t i o n and

spectra o f K [Rubpy(CN) ] and K [Ruphen(CN) ]. 4

2

4

(1976) E x c i t e d s t a t e a c i d - b a s e

complexes:

reactions of

1

Dicyanobis(2,2 -bipyridine)ruthenium(II)

J Am Chem S o c 9 8 : 7 8 8 0 - 7 8 8 1 .

S H , Demas J N

(1978) E x c i t e d - s t a t e a c i d - b a s e

1

dicyanobis(2,2 -bipyridine)ruthenium(II) phenanthroline) ruthenium (II) .

reactions of

and d i c y a n o b i s (1,10-

J Am Chem S o c 1 0 1 : 6 5 7 1 - 6 5 7 7 .

Shinozaki

K, K a i z u

published) the

Y, H i r a i

Protonation

lowest excited

Shinozaki

[RubpzH(bpy) ] 2

Van

Houten

3 +

(19 76) chemical in

lifetime

of a nonemissive

R J (1975) The e f f e c t o f l i g a n d

on t h e e x c i t e d

transfer

state

to solvent.

properties solution.

properties

i o n i n aqueous

Temperature dependence

aqueous

2

Y, K o b a y a s h i H, S u m i t a n i M, Y o s h i h a r a

Excited-state

bipyridyl)ruthenium(II) electron

( t o be i n

K

complex

.

J , Watts

deuteration

H, K o b a y a s h i H

formation of [Rubpz(bpy) ]

state.

K, O h n o 0, K a i z u

(to be p u b l i s h e d )

H, M a t s u z a w a

and complex

and

solvent

of the tris(2,2'-

solution.

J Am Chem S o c 9 7 :

Evidence f o r 3843-3844;

of the photophysical

and photo-

of the tris(2,2'-bipyridyl)ruthenium(II) i o n J Am Chem S o c 9 8 :

4853-4858.

QUENCHING OF E X C I T E D R u ( b p y ) 2

Cz.Stradowski

WITH METHYLVIOLOGEN AT LOW

+

TEMPERATURES

and M . W o l s z c z a k

I n s t i t u t e of Applied Radiation Chemistry, Technical 93-590 L o d z , W r o b l e w s k i e g o 1 5 , POLAND

University

(Politechnika),

There i s a growing i n t e r e s t i n t h e s t u d i e s o f e l e c t r o n t r a n s f e r r e a c t i o n s , i n w h i c h t h e r e a c t a n t s a r e s e p a r a t e d by s e v e r a l m o l e c u l a r r a d i i . A m o n g t h e m p h o t o i n d u c e d e l e c t r o n t r a n s f e r was i n t e n s e l y s t u d i e d ( M i l l e r e t a l . 1982).Well-know 'react i o n t r a n s f e r between e x c i t e d Ru(bpy) ( t r i s ( 2 , 2 ' - b i p y r i d i n e ) r u t h e n i u m ( I I ) d i c a t i o n ) a n d MV"** (methylviologen , 1,1'-dimethy1-4,4'-bipyridinium d i c h l o r i d e ) served as a m o d e l s y s t e m ( M i l o s a v l j e v i c a n d Thomas 1 9 8 5 ) . I t h a s b e e n d e m o n s t r a t e d that m e t h y l v i o l o g e n quenches the luminescence o f Ru(bpy)| i n polymers a t a m b i e n t ( M i l o s a v l j e v i c a n d Thomas 1 9 8 5 ) a n d l o w ( G u a r r e t a l . 1 9 8 5 ) t e m p e r a t u r e s . T h e q u e n c h i n g was a s c r i b e d t o e l e c t r o n t u n n e l l i n g o v e r l a r g e d i s t a n c e s (>10 A ) f r o m e x c i t e d R u ( b p y ) | t o m e t h y l v i o l g e n . T h e s i m i l a r i n t e r p r e t a t i o n was u s e d t o e x p l a i n t h e q u e n c h i n g o f R u ( b p y ) | i n v i s c o u s l i q u i d (Guarr e t a l . 1 9 8 3 ) . However,the d i r e c t p r o o f o f electron t r a n s e f e r v i a long-range tunnelling,showing the a c c e l l e r a t ion o f l u m i n e s c e n c e d e c a y i n t h e p r e s e n c e q u e n c h e r a t 77 K i s s t i l l l a c k i n g . T h e a i m o f t h e p r e s e n t w o r k was t o s t u d y t h e q u e n c h i n g o f l u m i n e s c e n c e i n s o l i d p h a s e down t o 77 K. 2

3

f

+

+

2

The l u m i n e s c e n e o f R u f b p y ) ^ " was s t u d i e d i n e t h y l e n e g l y c o l - w a t e r m i x t u r e , 2 : 1 b y v o l u m e (EG/H^O) a n d i n s e v e r a l p o l y m e r foils.The p r e p a r a t i o n o f t h e samples and l u m i n e s c e n c e measurements a r e d e s c r i b e d e l s e w h e r e ( S t r a d o w s k i a n d W o l s z c z a k ^1987 ).The F i g . l summarizes t h e d a t a o f luminescence o f R u ( b p y ) i n EG/H^O a s m e a s u r e d by t i m e - r e s o l v e d l a s e r p h o t o l y s i s . T h e k i n e t i c s o f t h e l u m i n e s c e n c e , o b s e r v e d a f t e r 10 n s l a s e r p u l s e ( A e x c = 530 nm) was m o n i t o r e d a t 610 nm.The d e c a y o f t h e l u m i n e s c e n c e was a l w a y s monoexponential.The l i f e t i m e s o f l u m i n e s c e n c e a t t e m p e r a t u r e s 290-200 K a r e p r e s e n t e d i n F i g . l . i t i s e v i d e n t t h a t a t t e m p e r a t u r e s 290-200 K t h e p r e s e n c e o f t h e quencher a c c e l l e r a t e d markedly t h e decay o f t h e luminescence.The s y s t e m EG/H2O i s h i g l y v i s c o u s a n d p o s s i b i l i t y o f t h e d i f f u s s i o n o f Ru(bpy)|"** a n d M V * d u r i n g t h e l i f e t i m e o f l u m i n e s c e n c e i s v e r y l i m i t e d . N e v e r t h e l e s s , o n e o b s e r v s e f f i c i e n t quenching o f l u m i n e s c e n c e under t h i s c o n d i t i o n s , w h i c h i s favour o f long-range t u n n e l l i n g as a mechanism o f quenching.On t h e o t h e r h a n d , b e l o w 200 K t h e p r e s e n c e o f the q u e n c h e r h a s v e r y l i t t l e o r no e f f e c t o n t h e r a t e o f l u m i n e s c e n c e d e c a y , T h e d e c a y a t 77 K was s t i l l m o n o e x p o n e n t i a l . T h e lifetime of the l u m i n e s c e n c e w a s 3.1 u s , i n d e p e n d e n t o f t h e q u e n c h e r a d d i t i o n u p t o 0.15 M M V . T h e r e f o r e , w e c o n c l u d e t h a t a t t e m p e r a t u r e r a n g e 7 7 - 2 0 0 K the d y n a m i c q u e n c h i n g o f l u m i n e s c e n c e o f R u ( b p y ) ^ b y m e t h y l v i o l o g e n does n o t o c c u r . I n o r d e r t o f i n d o u t t h e q u e n c h i n g m e c h a n i s m , t h e measurements o f t h e dependence o f luminescence i n t e n s i t y as a f u n c t i o n of M V c o n c e n t r a t i o n w e r e c a r r i e d o u t . T h e i n t e n s i t y o f l u m i n e s c e n c e was m e a s u r e d w i t h a c o n v e n t i o n a l f l u o r i m e t e r . T h e r e s u l t s a r e s u m a r i z e d i n F i g . 2 . C u r v e 1 i n F i g . 2 s h o w s t h a t a t 77 K t h e q u e n c h i n g i s v e r y i n e f f i c i e n t , a n d independent o f t h e n a t u r e o f t h e medium.In ^ e a r l i e r s t u d i e s t h e q u e n c h i n g o f t h e l u m i n e s c e n c e o f R u ( b p y ) | b y MV i n s o l i d s was a s c r i b e d t o l o n g - r a n g e t u n n e l l i n g o f e l e c t r o n f r o m e x c i ted R u ( b p y ) | * t o M V ( M i l o s a v l j e v i c a n d Thomas 1 9 8 5 ; G u a r r e t a l . 1 9 8 5 ) . +

5

2

2 +

2 +

+

Z +

P r e s e n t d a t a s h o w t h a t t h i s i n t e r p r e t a t i o n c a n n o t be u s e d f o r d a t a a t 77 K . T h r e e f o l l o w i n g o b s e r v a t i o n a r e i n d i s a g r e e m e n t w i t h s u c h i n t e r p r e t a t i o n : ( 1 ) T h e d e c a y o f l u m i n e s c e n c e o f R u ( b p y ) | a t 77 K was not a c c e l l e r a t e d i n the presence o f ( 2 ) The q u e n c h i n g c u r v e s h o w n i n F i g . 2 , i s w e l l d e s c r i b e d by l u m i n e s c e n c e q u e n c h i n g i n c o n t a c t p a i r s . The r a d i u s o f s u c h c o n t a c t p a i r , c a l c u l a t e d f r o m c u r v e 1 i n F i q . 2 i s 7.1 A , i . e l e s s t h e n sum o f g e o m e t r i c r a d i i o f R u t b p y ) ^ a n d MV (10 A ) . Such r e s u l t i s m e a n i n g l e s s from t h e p o i n t o f view of l o n g - r a n g e t u n n e l l i n g . ( 3 ) L a c k o f a n y t r a c e s o f MV " r a d i c a l c a t i o n , t h a t i s t h e p r o d u c t o f q u e n c h i n g a t 77 K . T h e r e f o r e , w e p o s t u l a t e t h a t t h e q u e n c h i n g o f l u m i n e s c e n c e o f R u ( b p y ) | b y M V a t 77 K v i a l o n g - r a n g e t u n n e l l i n g i s n e g l i b i l e . I n e f f i c i e n c y o f e l e c t r o n t u n n e l l i n g between e x c i t e d Ru(bpy)| and MV was a s s i g n e d b y S e e f e l d ( S e e f e l d e t a l . 1 9 7 7 ) t o h i g h e n e r g y b a r r i e r b e t w e e n r e a c t a n t s ( c a . 2.5 e v ) . T h u s , t h e q u e n c h i n g a t 77 K i n o u r s y s t e m s h o u l d b e a s c r i b e d t o " s t a t i c " t y p e o f q u e n c h i n g , o c c u r i n g w i t h i n c o n t a c t p a i r s formed i n the ground state.The P e r r i n o r s t a t i c t y p e o f q u e n c h i n g o c c u r i n g i n f i n i t e l y f a s t w i t h i n an a c t i v e s p h e r e , r e s u l t s i n a m o n o e x p o n e n t i a l l u m i n e s c e n c e decay and l e a d s t o a decrase of the i n i t i a l i n t e n s i t y of luminescence.The l i f e t i m e of luminescence remains u n a f f e c t e d by t h i s type of quenching. f

f

4

+

+

+

2 +

2 +

On t h e o t h e r h a n d , t h e c u r v e s 2,3 a n d 4 i n F i g . 2 i n d i c a t e t h a t a t r o o m t e m p e r a t u r e t h e q u e n c h i n g i n s o l i d s t a t e i s much m o r e e f f i c i e n t t h e n a t 77 K . T h e same o b s e r v a t i o n c o n c e r n s v i s c o u s l i q u i d a t l o w t e m p e r a tures (see F i g . 1).Obviously,the p o s s i b i l i t y of the d i f f u s i o n of r e a c t a n t s d u r i n g t h e l i f e t i m e o f e x c i t e d R u ( b p y ) | i s v e r y l i m i t e d under c o n d i t i o n s a p p l i e d i n the p r e s e n t work.Thus,we c o n c l u d e t h a t t h e r m a l l y a c t i v a t e d e l e c t r o n t u n n e l l i n g t a k e s p l a c e . W e h a v e r e c o r d e d some t r a c e s o f M V * c a t i o n r a d i c a l i n p o l y m e r f o i l s a t room t e m p e r a t u r e , w h i c h a d d i t i o n a l l y s u p p o r t s t h i s s u g g e s t i o n . L e t u s d i s c u s s b r i e f l y some p o s s i b l e mechanisms of the t h e r m a l a c t i v a t i o n . +

c,M +

F i g . 2. N o r m a l i z e d i n t e n s i t y o f l u m i n e s c e n c e o f R u ( b p y ) | as a f u n c t i o n o f m e t h y l v i o l o g e n c o n c e n t r a t i o n . C u r v e (1) a t 77 K ( (o) EG/ H 0,(t) c e l l o p h a n e , ( x ) p o l y ( v i n y l a l c o h o l ) , c u r v e s 2,3 and 4 a t room t e m p e r a t u r e ( ( A ) p o l y ( v i n y l a l c o h o l ) i n vacuum, (•) p o l y ( v i n y l a l c o h o l ) in a i r , ( A ) dry c e l l o p h a n e ) .

The f i r s t mechanism i n v o l v e s the i n f l u e n c e o f t e m p e r a t u r e on e l e c t r o n energy l e v e l s o f e l e c t r o n d o n o r , e x c i t e d R u l b p y ) ^ .Thanks t o the f i n e work o f Y e r s i n and G a l l h u b e r ( Y e r s i n and G a l l h u b e r 1984) one knows a g r e a t d e a l about e n e r g y l e v e l s of R u ( b p y ) 3 a t v a r i o u s t e m p e r a t u r e s . However,the q u e s t i o n o f dynamics o f e l e c t r o n l o c a l i z a t i o n o n t o one o f bpy l i g a n d s a t low t e m p e r a t u r e s i n p o l a r s o l v e n t i s s t i l l u n r e s o l v e d ( F e r g u s o n e t a l . 1 9 8 5 ) . The r e o r g a n i s a t i o n o f t h e s o l v a t i o n s h e l l arround e x c i t e d R u ( b p y ) | i n a g l a s s , p o l y m e r i c f i l m , o r the s o l i d s t a t e at low t e m p e r a t u r e s i s l o n g on t h e time s c a l e f o r e x c i t e d s t a t e decay (Meyer 1986).At h i g h e r t e m p e r a t u r e s r e o r g a n i z a t i o n o f t h e medium i s completed a t t i m e s much s h o r t e r t h a n the l i f e t i m e o f l u m i n e s c e n c e . R e l a x a t i o n t i m e o f t h e medium i s s e v e r a l o r d e r s o f magnitude s m a l l e r at room t e m p e r r a t u r e t h e n a t 77 K and e n e r g y l e v e l m a t c h i n g (making e l e c t r o n t r a n s f e r e f f i c i e n t ) c o u l d be much f a s t e r . +

+

The s e c o n d a c t i v a t i o n mechanism i n v o l v e s i n f l u e n c e o f t e m p e r a t u r e on energy l e v e l s i n e l e c t r o n a c c e p t o r , i . e M V . T h e e n e r g y gap between e x c i t e d Ru (bpy )| and M V ' c a t i o n r a d i c a l i s 0.4 eV ( Mi losa,vl j e v i c and Thomas 1 9 8 5 ) . T h i s amount o f e n e r g y s h o u l d be d i s s i p a t e d i n t o t h e medium d u r i n g e l e c t r o n t r a n s f e r , m o s t l y v i a phonon e m i s s i o n . T h i s P r o c e s s i s a l s o b e l i e v e d t o be t h e r m a l l y a c t i v a t e d . z+

+

+

Both f a c t o r s d i s c u s s e d above a r e dependent on the medium n a t u r e . T h i s agrees w e l l w i t h c u r v e s i n F i g . 2 . I t i s d e m o n s t r a t e d t h a t a t room t e m p e r a t u r e t h e q u e n c h i n g i s d i f f e r e n t i n v a r i o u s media w h i l e a t 77 K t h i s i s not c a s e .

A d d i t i o n a l proof f o r the c r u c i a l r o l e of thermal a c t i v a t i o n i nthe q u e n c h i n g o f e x c i t e d Ru c o m p l e x e s c a n b e i n f e r r e d f r o m t h e s t u d i e s o f R u { b p y k (N-N-Me)2 (Sullivan e t a l .1978).In t h i s s t r u c t u r e e l e c t r o n a c c e p t o r o c c u p i e s a p a r t o f t h e l i g a n d sphere o f t h e complex. A t 77 K t h e l u m i n e s c e n c e c h a r a c t e r i s t i c s r e s e m b l e d t h o s e o f R u ( b p y ) | * . A t room t e m p e r a t u r e , h o w e v e r , m u c h w e a k e r , s h o r t - 1 i v e d and r e d - s h i f t e d l u m i n e s c e n c e w a s o b s e r v e d . T h i s e f f e c t was e x p l a i n e d i n terms o f t h e r m a l l y a c t i v a t e d e l e c t r o n t r a n s f e r from bpy l i g a n d t o remote pyridinium s i t e ( S u l l i v a n e t al.1978). +

Generally,the present observation suggest that the quenching of l u m i n e s c e n c e o f Ru(bpy)| b y m e t h y l v i o l o g e n a t 77 K h a s m a i n l y s t a t i c character.At higher temperatures the quenching v i a thermally activated long-range t u n n e l l i n g occurs i n s o l i d phase.The e f f i c i e n c y o f t h i s p r o c e s s d e p e n d s s i g n i f i c a n t l y upon t h e n a t u r e o f s u r r o u n d i n g medium. +

ACKNOWLEDGMENT One o f t h e a u t h o r s ( C z . S ) g r a t e f u l l y a c k n o w l e d g e s measure t i m e - r e s o l v e d luminescence a t Max-PlanckStrahlenchemie,Mulheim,W.Germany.

the p o s s i b i l i t y Institutfur

to

REFERENCES. F e r g u s o n J , K r a u s z E R , M a e d e r M (1985) C h a r g e l o c a l i z a t i o n i n t h e l u m i n e s c e n t s t a t e s o f R u ( b p y ) | * i n f l u i d s o l u t i o n s . J P h y s Chem 89: 18521854. G u a r r T , M c G u i r e M , S t r a u c h S , M c L e n d o n G (1983) C o l l i s i o n l e s s p h o t o i n d u ced e l e c t r o n t r a n s f e r from ruthenium t r i s ( b i p y r i d i n e ) * homologues to methyl viologen (MV ) i n r i g i d g l y c e r o l s o l u t i o n . J Am Chem S o c 105:616-618. G u a r r T , M c G u i r e M E , M c L e n d o n G ( 1985) L o n g r a n g e p h o t o i n d u c e d e l e c t r o n t r a n s f e r i n a r i g i d p o l y m e r . J Am Chem S o c 107:5104-5111. M i l l e r J R , P e e p l e s J A , S c h m i t t M J , C l o s s GL (1982) L o n g - d i s t a n c e f l u o r e s c e n c e q u e n c h i n g b y e l e c t r o n t r a n s f e r i n r i g i d s o l u t i o n s . J Am Chem Soc 104:6488-6493. M i l o s a v l j e v i c BH,Thomas J K (1985) P h o t o c h e m i s t r y o f c o m p o u n d s a d s o r b e d into cellulose.5.Solid-state reduction of methylviologen photosensit i z e d by t r i s ( 2 , 2 ' - b i p y r i d i n e ) r u t h e n i u m ( I I ) . J P h y s Chem 89: 18301835. M e y e r T J (1986) P h o t o c h e m i s t r y o f m e t a l c o o r d i n a t i o n complexes:metal to l i g a n d charge t r a n s f e r e x c i t e d states.Pure A p p l Chem 58:11931206. S e e f e l d K - P , M o b i u s D,Kuhn H (1977) E l e c t r o n t r a n s f e r i n m o n o l a y e r with incorporated r u t h e n i u m ( I I ) c o m p l e x e s . H e l v C h i m A c t a 60:2608-2632. S t r a d o w s k i C z , W o l s z c z a k M ( 1987 ) Q u e n c h i n g o f e x c i t e d R u ( b p y ) f with m e t h y l v i o l o g e n i n s o l i d p h a s e . t o be p u b l i s h e d . S u l l i v a n B P , A b r u n a H D , F i n k l e a H O , S a l m o n D J , N a g l e J K , M e y e r T J (1978) M u l t i p l e e m i s s i o n from charge t r a n s f e r e x c i t e d s t a t e s o f ruthenium ( I I ) - P o l y p y r i d i n e complexes.Chem Phys L e t t 58:389-393. Y e r s i n H , G a l l h u b e r E (1984) On t h e l o w e s t e x c i t e d s t a t e s o f [ R u ( b p y ) ] ( P F ) s i n g l e " c r y s t a l s . J Am Chem S o c 106: 6582-6586. 2 +

+

3

6

2

KINETICS OF

THE

CHEMILUMINESCENT OXIDATION OF

L.El-Sayed, D.Salkin

AQUEOUS BR"

S w a i m , W . K . W i l m a r t h , and +

BY

U n i v e r s i t y o f Southern C a l i f o r n i a ,

A

of

number

of

examples

for

which

the

chemi1 urninescent

emission

comes

3

A.W.Adamson*

Department o f C h e m i s t r y , CA 9 0 0 8 9 - 1 0 6 2 , USA

known,

Ru(bipyr)

, CL,

from

an

Los

redox

Angeles,

reactions

excited

are

now

state

coordination 3+ compound. The b e s t known c a s e i s t h a t o f t h e r e d u c t i o n o f RuL^ , L = 2 , 2 ' - b i p y r i d i n e , by v a r i o u s reductants, w i t h e m i s s i o n from the lowest

2+ * charge

transfer

Gafney

1975;

excited

Martin

state

1972;

of

the

Vogler

product,

1981;

[ RuL^

Bolletta

1981,

]

(Lytle,

1982;

1971;

El-Sayed

1987). As o t h e r e x a m p l e s , e m i s s i o n f r o m t h e d o u b l e t t h e x i s t a t e o f 3 ~l" 2 ~f" 3+ CrL^ h a s b e e n o b s e r v e d on o x i d a t i o n o f C r L « by RuL~ (Vogler 1981) as w e l l a s t h e CL o x i d a t i o n o f M o , C I , , or r e d u c t i o n of 6 14 Mo^Cl^

(El-Sayed

generated on

back

1987).

reaction The

typical

studies

are

rare.

and

and

a

two

diates which

redox

electron

and can

are

An

a

slow

useful

example

such

enough

the

1984;

as

were

between

a

about

the

of

1978,

in

by

kinetic

non-

radical

kinetic

Br

be product

Rubinstein

detailed

properties

aqueous

may

state

one-electron

involve

conventional

oxidation

and

interested

reactions

for

species

excited

Luong

however,

1980)

such

reactant

emitting

fast

information is

of

an

Nocera is

(Stanbury

reactions,

pair

give

reaction

reductant;

often

yield

mediates.

CL

co-workers

complementary

to

( B o l l e t t a 1982;

1981).

Wilmarth

Also,

e1ectrochemica11y,

oxidant interme-

studies,

of

such

inter-

Fe(5-Br-

3 + Phen)^ joint with

RuL 2

has

to

give

study 3 + 3

RuL

been

the

Fe(II)

(El-Sayed

1983),

+

=

3

+

2

Br"

investigated,

2

and

Br

kinetics

(Salkin

2

of

along

+

2

the

1983)

and

analogous

in

a

reaction

Br ~)

emphasis

on

the

Posthumus contribution. To whom c o r r e s p o n d e n c e s h o u l d

latter

be

(1)

3

We

study,

that

(or

the

this

with

Br

of

the

with

RuL^*

analytical reaction.

accompanies

*

the

, 3

that

+

complex

chemiluminescence, report

aspect.

addressed.

briefly

here

CL, on

EXPERIMENTAL

All

chemicals

(as

in

the

tilled

used

case

over

were

of

of

reagent

grade

[RuL^] ( C 1 0 ^ ) ^ ;

sodium

persulfate

the

and

the

or

were

solvent

carefully

water

used

purified was

dis-

vapor

passed through a tube at 3+ 800°C w i t h oxygen c a r r i e r gas. S o l u t i o n s o f RuL were p r e p a r e d 2+ i m m e d i a t e l y b e f o r e u s e by o x i d i z i n g a n a c i d i f i e d Ruh^ solution with PbO ( t h e e x c e s s t h e n f i l t e r e d o f f ) . T h e o x i d i z e d c o m p l e x was also 2+ ?

prepared No

pho t o c h e m i c a l l y

difference

by

in kinetic

photolysis

behavior

Chemiluminescent

intensities,

were

means

measured

which

a

second could

by

solution reactant

be

analytical of

mixtures

then

the

is a

Slawson

minor

correction

allow

of

the

It

was

same the

for

AND

as

was

was

1,

given CL



and

made

established of

of

the

the

some

in Table reaction

(initial

Separate studies analytical

to

with

which

R

the

to

be

dark

RuL^

as

a

having

u

placed

the

determine

and

a

CL

L

product

at

Various

the

and

the

The

from

nm.

of

filters

chamber

spectrum.

453

time,

into

solution

reaction the

of

chamber

conditions.

of

3

±

solution.

function a

s p e c t r o p h o t o m e t r i c a 1ly, 2+

the

Reacting

0.1°C.

water

is

in

the

slightly both

the

reaction.

r e d u c t i o n but

(to within

plots

of

solvent

has

that

absence

Br

(Sutin

chemiluminescent. analytical

and

effect

on

A

the

D i s s o l v e d oxygen

little

the

1.

the

CL

10%

CL

1976,

relatively rate

data

i n c r e a s e s the

the

Br

CL

reduction.

in

2

was

from

reaction

essentially 2-f

RuL^

(1)

and

was

the

also

indeed

that

being

precision). CL

apparent

Figures

spectrum

emission

analytical

about

decrease of

the

photoexcited

s t o i c h i o m e t r y of

Some

to

and

counter

window

as

aerated

DISCUSSION

that

Fig.

initial

under

the

followed

reaction

1976),

this

first

observed

the

slow

solvent

RESULTS

injected

thermostatted

1983;

both

an

observed.

r e a c t a n t would

absorbance

were

was

quantum

d e t e c t o r , so

reaction

There

to

one

a

i n t e r p o s e d between

photomultip1ier

growth

of

of

of

and

intensity, first 3

I,

order

illustrate

with

rate

time

are

shown

constants,

that

the

rate

in are

law

for

is

CL

intensity)

(to

reaction

be (1)

=

reported to

be

- 3 (constant)(Br ) (RuL elsewhere)

showed

3

the

3+2 ) rate-law

(2) for

the

Fig. of vs. of

1.

Semi-logarithmic

chemiluminescence time

f o r t h e Br 3+ Ru(L) i n 0.053

plot

Fig.

intensity

CL

reduction

due

M

HC10

Fig.

3.

Dependence

intensity

(Br")

4 "

1 2 3 4 K>*[Ru(bipy)J*] . M

2.

(corrected

to s o l v e n t

Table

initial f o r that

r e d u c t i o n ) on

.

Dependence

of

intensity

on

i n i t i a l CL 3+ (RuL ' ) .

8

corrected

of

1

Rate

Constants f o r the Analyt 3+ Ru ( b i pyr) by B r .

ical

and

Chemiluminescent

Reduction of

3

t , °c

2

10 [Br"]

1 0 2

k

CL'

S

-1

10

2

k . .. f s AN

-1

17.5

1 . 30

1.13

± 0. 1

0.49

±

0.09

27.5

1. 82

2.53

± 0. 15

1.69

±

0.15

1. 30

1.53

± 0. 09

0.99

±

0.03

0. 781

0.91

± 0. 07

0.578

1.30

2.60

± 0. 10

1.13

37.4

Not

parallel

runs

± ±

k

CL

/ k

AN

2.25

*

0.00 0.03

2 . 30

-

d

It

ln(RuL

follows

3 +

from

expectation k

give

C

using

L

)/dt

3

A

k

Eqs.

is =

/ ^

=

=

A N

(2)

k (Br

and

,

3

±

luminol —5 be 4 . 2 x 1 0 moles 3 + RuL reduced.

system of

as

)

2

confirmed

The

N

the

k (Br

2

+

( 3 ) t ha t - d ( I / I ° ) / d t

qualitatively 2

) +

1

by

the

chemiexcitation

3

3 +

k (Br") (RuL 3

-

data yield

k

=

C L

of

2

(3)

k^.

Table

was

)

This

1,

which

determined,

reference

and

found

state,

per

mole

one

of

excited

( B r u n d r e t t 1974), 2 -f" ^ [RuL, ] , produced

to of

3

Our

results

pathways a

minor

indicate

for

that

[RuL

about

]

3

lies CL

path

law,

but

make

excited

that

Br

CL

pathway

is

the

same

as

a n a l y t i c a l r e a c t i o n , and that v i a this -4 o n l y a b o u t 10 of r e a c t i o n e v e n t s p r o d u c e

one,

the

the

the

product. Note 2+ *

for

that

must

the 48

must

also state

AG°

for

kcal

reaction

above

therefore

the

not

contain

a

formation

step

is

ground

.only

product

(1)

is

-

state.

conform

which

only

to

path,

One

kcal,

Any

is

state while

mechanism

observed

sufficiently

possible.

which

excited 8

the

the

rate

energetic

possibility

to

is

• r a d i c a l s p r o d u c e d as i n t e r m e d i a t e s i n the a n a l y t i c a l reac3+ 2-f can r e a c t w i t h R u L to form [ R u L ( L B r ) J , w h e r e L B r i s some of b r o m i n a t e d b i p y r i d i n e . R e a c t i o n of t h i s l a s t complex with 2+ * another B r ^ ' r a d i c a l c o u l d now h a v e s u f f i c i e n t e n e r g y t o g i v e [ML3 ] tion form

+

Br

3

as

3

kinetics

The

would

present

direct the

products.

A

detailed

conform

system

connection

analytical

2

to

Eqs.

appears can

and

be

mechanism

to

(2)

be

made

and

the

can

written

such

that

the

(3).

only

one

app r o x i m a t e l y

corresponding

be

reported

between

CL

reaction.

in

part

for which

the

a

mechanisms

of

ACKNOWLEDGEMENT

This

investigation

National

Science

was

supported

by

a

grant

from

the

U.S.

Foundation.

REFERENCES

Bolletta of

F,

Rossi

Tris(2,2

f

Metal-Centered Bolletta

F,

Reduction

A,

Excited

Balzani of

Balzani

V

(1981)

Chemi1uminescence

-bipyridine)chromium(II):

V

Bromate

dine)ruthenium(II).

State.

(1982) by J

Am

Inorg

Chemical Chim

Oscillating

Malonic Chem

Acid

Soc

104:

Acta

on

53:

by

4250-4251.

of

a

L23-24.

Chemiluminescence

Catalyzed

Oxidation

Generation

from

the

Tris ( 2,2'-bipyri-

Bolletta tion

F, C i a n o

Metal

chemical

M,

B a l z a n i V,

Complexes

Reduction

Serpone

as L i g h t

N

Emission

(1982)

Polypyridine

Sensitizers

of the P e r s u l f a t e I o n .

Inorg

in

Chim

Transi-

the Acta

Electro6 2 : 2 0 7-

213 . Brundrett

RB , W h i t e

Derivatives El-Sayed

L

Dissertation,

L, Adamson +1+3 bipyridine)^ * HD,

Adamson

Experiment. Luong

Transfer

J Am

Reactions

University

AW

(1975) Educ

of Southern

Processes

Chemiluminescence,

52:

L, W r i g h t o n

(1978)

Ground

Electrogenerated

Soc

5790-5795.

JE

nescence

Quenching

DM

(1971)

Hart

E J , Adamson

from

the Reaction

pyridyl)ruthenium(III). Nocera and

DG,

Gray

HB

(1984)

An

Illuminating

State

Elec-

Involving fac-Tri-carbonylchloro(1,10-

of the Lowest

Martin

California.

and E x c i t e d

Transfer

100:

7497-7502.

Coordination

480-481.

MS

Electron

FE, Hercules

Soc 96,

(1987)

phenanthro 1ine)rhenium(I) .

Lytle

Chem

Involving

Chemiluminescent R e a c t i o n s of Ru(2,2'-1-3 and Mo^Cl^^ ' . I n o r g Chim A c t a accepted.

J Chem

J L , Nadjo

tron

AW

and Chemiluminescen.ee o f

and I s o l u m i n o l .

Chemiluminescent

El-Sayed

Gafney

(1974 ) S y n t h e s i s

of Luminol

(1983)

Compounds.

EH

Photobiol AW,

Gafney

Chem

State.

and

J Am

Chem

13: 123. H, H a l p e r n

of the Hydrated

J Am

Chemi1urninescence

Excited

S o c 94:

J

(1972)

Electron

Chemilumi-

with

Tris(bi-

9238-9240.

Electrochemical Reduction

of Molybdenum(II)

Tungsten(II)

H a l i d e C l u s t e r Ions. Electrogenerated Chemilumi2of M o ^ C l , . J Am Chem S o c 1 0 6 : 824,-825. o 14 I, Bard AJ (1981) E l e c t r o g e n e r a t e d Chemi1urninescence . 37, 2+

nescence Rubinstein Aqueous

E e l Systems

Organic

Acids.

J Am

(1983)

Outer

Salkin Main

DS

Group

Based Chem

T

on R u ( 2 , 2 -

Soc 103: 512-516

Sphere

Substrates.

bipyridine)^

Electron

and c i t a t i o n s

Transfer

Dissertation,

and O x a l a t e

Reactions

University

or

therein, of

Some

of Southern

Calif-

ornia. Slawson

V, A d a m s o n

Stanbury of

DM,

Wilmarth

Thiocyanate

Creutz with

C,

AW

Sutin

(1976) WK,

Khalaf

and I o d i d e N,

Hydroxide

(1976)

and i t s

unpublished

work.

S, Po HN,

by I r i d i u m ( I V ) .

Reaction

of

Application

Byrd

J E (1980)

Inorg

Chim

Acta

53;

Reactions

L35-L37.

Oxidation

19:

2715-2722.

tris(bipyridine)ruthenium(III) i n a Solar

Energy

P r o c N a t A c a d S c i USA 7 2 : 2 8 5 8 - 2 8 6 2 . S u t i n N, C r e u t z C ( 1 9 8 3 ) p r i v a t e communication. V o g l e r A, E l - S a y e d L , J o n e s RG, N a m n a t h J , A d a m s o n Chemiluminescent

Chem

Involving Coordination

AW

Storage

(1981)

System.

New

Compounds.

Inorg

SYNTHESIS AND PHOTOPHYSICAL STUDIES OF ORTHO-METALATED P d ( I I ) TWO NOVEL P d ( I I ) / R h ( I I I ) DIMERS

COMPLEXES

INCLUDING

C . A . C r a i g , F . O . G a r c e s , and R.J.Watts Department o f C h e m i s t r y , U n i v e r s i t y o f C a l i f o r n i a , Santa

B a r b a r a , CA 9 3 1 0 6 , USA

INTRODUCTION The p h o t o p h y s i c s o f c y c l o p a l l a d a t e d compounds h a s r e c e i v e d a t t e n t i o n in the literature recently (Wakatsuki 1985). We were initially interested i n e x p l o r i n g t h e photophysics o f a complex prepared by Kasahara (1968); [Pd(ppy)CI] . The e l e c t r o n i c t r a n s i t i o n s o f this d i m e r i c complex a s w e l l a s f o r s e v e r a l monomeric d e r i v a t i v e s have been characterized as i n t r a ligand transitions of the ortho-metalated 2-phenylpyridine (ppy) l i g a n d ( C r a i g 1987). Our a t t e n t i o n was then focused on combining two d i f f e r e n t metals o f n o n - e q u i v a l e n t valence i n t o a s i n g l e m o l e c u l e . We r e p o r t h e r e t h e s y n t h e s i s , c h a r a c t e r i z a t i o n and photophysics o f two n o v e l mixed-metal o r g a n o m e t a l l i c complexes where p a l l a d i u m ( 1 1 ) and r h o d i u m ( I I I ) have been c o u p l e d v i a a halide bridge. 2

Figure 1. Structures t(ppy)Pd(Cl) Rh(bzq) ] (B). 2

of

[(ppy)Pd(CI)~Rh(ppy)

]

( A ) , and

2

Ortho-metalated transition metal c e n t e r s l i n k e d by a u-dichloro bridge, where t h e metal i s R h ( I I I ) o r i r ( I I I ) , have been r e p o r t e d t o cleave q u i t e r e a d i l y a t t h e b r i d g e when b i d e n t a t e c h e l a t i n g ligands are brought i n c o n t a c t w i t h t h e parent dimer i n s o l u t i o n (Nonoyama 1974). Similar cleavage occurs i n t h e presence o f monodentate coordinating l i g a n d s o r i n s o l v e n t s s u c h a s DMF, DMSO o r acetonitrile r e s u l t i n g i n monomeric d e r i v a t i v e s o f t h e p a r e n t complexes. Not surprisingly, t h i s i s t r u e f o r P d ( I I ) a s w e l l (Cope 1 9 6 5 ; P a r s h a l l 1 9 6 9 ; Trofimenko 1 9 7 2 ; G u t i e r r e z 1 9 8 0 ; Nonoyama 1 9 8 2 ; S p r o u s e 1 9 8 4 ) . We u t i l i z e d t h i s t e c h n i q u e t o p r o d u c e monomeric d e r i v a t i v e s o f t h e P d ( I I ) and R h ( I I I ) ortho-metalated dimers [Pd ( p p y ) C I ] , [Rh(ppy) C1] and [Rh(bzq) C 1 K where: (ppy)=2-phenylpyridine ana (bzq)=benzo[h]quinol i n e . WhSn i r r a d i a t e d i n e q u i m o l a r p r o p o r t i o n c e r t a i n m o n o m e r i c d e r i v atives o f t h e s e compounds combine t o form heterometallie dichlorobridged dimers. The n e w l y p r e p a r e d compounds have the following 2

2

2

formulas: [ ( p p y ) P d ( C I ) Rh(ppy) ] ( A ) , and [ ( p p y ) P d ( C I ) R h ( b z q ) ] ( B ) , w i t h p r o p o s e d s t r u c t u r e s i l l u s t r a t e d i n F i g . 1. H NMR f o r t h e s e n o v e l complexes have been o b t a i n e d and r e v e a l complex splitting patterns. Photophysical data s t r o n g l y suggests that the e m i t t i n g s t a t e s of (A) a n d (B) a r e p r i n c i p a l l y l i g a n d l o c a l i z e d a n d e a c h m e t a l c e n t e r r e t a i n s i t s unique e m i t t i n g manifold. 2

2

EXPERIMENTAL Synthesis

of

[(ppy)Pd(CI) Rh(ppy) ) 2

2

[Pd(ppy)Cl] (0.1441 g) was c o m b i n e d w i t h ( 0 . 1 5 6 7 g) [Rh(ppy}^Cl] ( N o n o y a m a 1 9 7 1 ) i n 100 m l d i c h l o r o m e t h a n e . C a r b o n m o n o x i d e w a s buDblea through t h i s solution f o r three hours. The s o l u t i o n was then broad band irradiated w i t h a 150 W Hg s o u r c e f o r 1 h o u r a n d t h e dichloromethane e v a p o r a t e d u s i n g a f l o w of n i t r o g e n gas. The r e s i d u a l y e l l o w powder was dissolved i n 125 m l o f chloroform, filtered, and the chloroform evaporated. The s o l i d was t h e n r e c r y s t a l l i z e d from d i chloromethane and hexanes t o g i v e 0 . 2 3 2 9 g f i n e n e e d l e c r y s t a l s ( 90 % y i e l d ) . A n a l . C a l c u l a t e d f o r [(ppy)Pd(C1)-Rh(ppy) ]•1/2CH C1 : C, 5 1 . 2 8 ; H, 3 . 1 8 ; N, 5 . 3 5 . F o u n d : C, 5 1 . 4 3 ; H, 3 . 1 2 ; N, 4.92. 2

2

2

Synthesis

of

2

[(ppy)Pd(CI) Rh(bzq) 3 2

2

The procedure was similar t o t h a t used for (A). [ P d ( p p y ) C l J and [Rh(bzq) C1] were combined i n equimolar q u a n t i t i e s , stirred in the presence o f CO f o r 3 h o u r s a n d t h e n i r r a d i a t e d f o r 45 minutes. Upon obtaining t h e s o l i d i t was d i s s o l v e d i n d i c h l o r o m e t h a n e and hexanes and p a s s e d t h r o u g h a c o l u m n c o n t a i n i n g S e p h a d e x LH-20 r e s i n i n order to separate the mixed metal dimer from unreacted s t a r t i n g materials. Mass s p e c t r a l a n a l y s i s gave t h e f o l l o w i n g p e a k s : 791,49 4,459,179,155. Anal. Calculated f o r [(ppy)Pd(CI)-Rh(bzq)A•1/4CH-C1 : C, 5 5 . 1 0 ; H, 3 . 0 1 ; N, 5 . 1 7 . F o u n d : C, 5 5 . 2 5 ; H, 3 . 0 1 ; N, 4.76. 2

2

2

Absorption d a t a w e r e o b t a i n e d w i t h a C a r y 15 s p e c t r o p h o t o m e t e r o r HP 8452A Diode Array Spectrophotometer. Emission lifetime d a t a ^ were o b t a i n e d w i t h apparatus d e s c r i b e d elsewhere (Sprouse 1984). A l l H NMR s p e c t r a w e r e m e a s u r e d w i t h a N i c o l e t N T - 3 0 0 FT NMR spectrometer.

R E S U L T S AND

DISCUSSION

Compounds (A) and (B) a r e f o r m e d f o l l o w i n g initial generation of [Pd(ppy)COC1] and [ R h ( L ) C O C l ] monomeric a d d u c t s of t h e p a r e n t d i m e r s (L=(ppy) or (bzq)) ( C r a i g 1987). We k n o w f r o m infrared data that irradiation of the s o l u t i o n c o n t a i n i n g the carbon monoxide monomers r e s u l t s i n p h o t o l y s i s o f the t e r m i n a l l y bound carbon monoxide ligands on both p a l l a d i u m and rhodium. This suggests formation of two coordinatively unsaturated fragments which then recombine to form compounds (A) and ( B ) . P r e f e r e n t i a l f o r m a t i o n o f the mixed metal species may be e x p l a i n e d u s i n g s i m p l e s t e r i c a r g u m e n t s . We propose that the sterically hindered coordinatively unsaturated rhodium fragment combines readily with the less bulky palladium fragment. Attempts to repeat these reactions using [Pd(ppy)Cl] and flr(ppy) ci] under i d e n t i c a l c o n d i t i o n s have been u n s u c c e s s f u l i n forming the mixed metal species because of the difficulty in photolyzing CO o f f of the i r i d i u m . We f e e l t h a t s u c c e s s i n forming Pd(II)/Rh(III) d i m e r s i s d u e t o f a c i l e CO l o s s u n d e r p h o t o l y s i s foll o w e d by d i m e r i z a t i o n . 2

2

2

B o t h o f t h e mixed m e t a l d i m e r s e x h i b i t u n i q u e H NMR s p e c t r a w h i c h a r e not superposed s p e c t r a of the parent [Pd(ppy)Cl] and [Rh(L) Cl] dimers. H NMg f o r b o t h mixed metal complexes i n t e g r a t e f o r 24 p r o ^ tons. 2D COSY H NMR have been o b t a i n e d f o r (A) and (B) and from t h i s data we a r e able t o a s s i g n a l l o f the chemical s h i f t s i n the proton NMR ( C r a i g 1 9 8 7 ) . 9

Room t e m p e r a t u r e a b s o r p t i o n and 77 K e m i s s i o n d a t a f o r (A) and (B) a r e shown i n F i g . 3. S u p e r p o s i t i o n o f t h e s t a r t i n g d i m e r s p e c t r a with those o f the P d ( I I ) / R h ( I I I ) dimers i l l u s t r a t e obvious similarities between t h e mixed m e t a l systems and t h e i r p a r e n t dimer c o m p l e x e s . The low t e m p e r a t u r e e m i s s i o n s p e c t r a o f [ P d ( p p y ) C l ] and [ R h ( L ) C l ] have been a s s i g n e d a s i n t r a l i g a n d t r a n s i t i o n s (Sprouse 1984; C r a i g 1987). 2

2

2

The emission s p e c t r u m f o r complex (B) e x h i b i t s two distinguishable emission p r o f i l e s . L i f e t i m e s were o b t a i n e d a t t h e maximum peak i n t e n sity positions o f 460 nm and 484 nm (see T a b l e 1 ) . The lifetime obtained a t 484 nm i s slightly less than that measured for [Rh(bzq) C l ] p whereas t h e l i f e t i m e a t 460 nm i s a p p r o x i m a t e l y d o u b l e t h a t o f f p d ( p p y ) C l ] D u e t o t h e s i m i l a r i t i e s o f t h e two components o f t h i s e m i s s i o n s p e c t r u m t o t h e p a r e n t d i m e r m a t e r i a l s i t a p p e a r s as i f each metal c e n t e r e d f r a g m e n t o f t h e h e t e r o - d i m e t a l l i e dimer retains the emission c h a r a c t e r i s t i c s of i t s r e s p e c t i v e parent complex. The lifetime i n c r e a s e a t 460 nm f o r complex (B) r e l a t i v e t o [ P d ( p p y ) C l ] c o u l d be e x p l a i n e d by a d e c r e a s e i n t h e n o n r a d i a t i v e r a t e o f d e a c t i v a tion v i a t h e d i c h l o r o - b r i d g e f o r Pd(ppy) w h i c h i s now bound t o a much h e a v i e r R h ( b z q ) ~ s p e c i e s . The o p p o s i t e e f f e c t i s a l s o o b s e r v e d f o r t h e rhodium portion o f t h e dimer w h i c h i s now c o u p l e d to a lighter palladium moiety. A second source o f t h e l i f e t i m e d i f f e r e n c e s might r e s u l t f r o m d e a c t i v a t i o n pathways v i a s o l v e n t - c h l o r i d e b r i d g e i n t e r a c f

2

tion. The s m a l l e r p a l l a d i u m fragment coupled t o the b u l k i e r rhodium fragment would exclude solvent-chloride i n t e r a c t i o n r e l a t i v e to the [Pd(ppy)Cl]dimer resulting in less non-radiative deactivation through t h i s pathway. The R h ( b z q ) C l p o r t i o n o f c o m p l e x (B) w o u l d b e solvated t o a g r e a t e r d e g r e e a b o u t the c h l o r i d e b r i d g e as a r e s u l t o f having the l e s s s t e r i c a l l y h i n d e r e d p a l l a d i u m fragment bound to i t . This would have the e f f e c t of i n c r e a s i n g the s o l v e n t - c h l o r i d e i n t e r a c tion relative to [Rh(bzq)-CI] a l l o w i n g f o r a g r e a t e r degree of nonr a d i a t i v e d e a c t i v a t i o n r e s u l t i n g i n a decrease i n the l i f e t i m e a t 484 nm. 2

2

300

400

500

300 (nm)

WAVELENGTH Figure 3. Absorption (a) [ ( p p y ) P d ( C D - R h ( p p y ) ] ; (d) [ ( p p y ) P d ( C l ) 2 R h ( b z q ) ] ; 2

400

and 77 K (b) [ P d ( p p y ) C l ] ; (e) [ P d ( p p y ) C 1 ] ;

500

emission spectra (c) [ R h ( p p y ) C I ] (f) [ R h ( b z q ) ^ C l ]

2

of,

2

The e m i s s i o n s p e c t r a f o r d i m e r ( A ) , [ P d ( p p y ) C l ] and [ R h ( p p y ) - C I ] are nearly identical. The lifetimes of t h e s e compounds a r e also very similar. T h e s e r e s u l t s make i t i m p o s s i b l e f o r u s t o d e t e c t a double exponential decay f o r c o m p l e x (A) a n d we t h e r e f o r e r e p o r t a single lifetime. If this complex has n o n - e q u i l i b r a t e d electronic excited states analogous to dimer (B), a l i f e t i m e which i s near that of [ R h ( p p y ) - C l l - and [ P d ( p p y ) C 1 3 - w o u l d be e x p e c t e d . This l i f e t i m e would be a w e i g h t e d a v e r a g e d e p e n d e n t on t h e quantum y i e l d o f e m i s s i o n for each h a l f of the dimer. E x a c t quantum y i e l d s of the p a r e n t d i m e r s are 2

2

n o t known a t 77 K, however t h e 484-460 nm peak i n t e n s i t y r a t i o s o f t h e e m i s s i o n s p e c t r a f o r complex (B) and t h e a b s o r p t i v i t y o f [ R h ( p p y ) - C I ] versus [Pd(ppy)Cl] s u g g e s t s t h a t t h e l i f e t i m e s h o u l d be nearef to that of the [Rh(ppy) C I ] - dimer t h a n the corresponding palladium dimer. Additionally the lifetime i s e x p e c t e d t o be l e s s than the [Rh(ppy)-CI]- dimer (vida s u p r a ) . 2

T a b l e 1. Photophysical data f o r parent dimers, and f o r t h e f r e e l i g a n d s (ppy) and (bzq)

compounds

(B)

ABSORPTION FEATURES (nm)

E

2-pheny1pyridine

240,

295

440

a

1.9(s)

benzo[h]quinoline

278, 352,

303 364

480

a

2.2 ( s )

[Pd(ppy)Cl]

254, 265(sh) 305 ( s h ) , 315 365

2

[Rh(ppy) Cl]

2

[Rh(bzq) Cl]

2

2

2

77 K EMISSION (nm)° 0-0

(A) and

460

77 K . LIFETIMES

a

a

116(us)

240, 310(sh) 461 333 ( s h ) , 380(sh) 393, 450

93(us)

484 255, 277, 330 ( s h ) , 390(sh) 410, 440 (sh)

2.6(ms)

[(ppy)Pd(Cl) Rh(ppy) ]

245, 265(sh) 305, 315 (sh) 365, 393 455(sh)

460

85 (us)

[(ppy)Pd(Cl) Rh(bzq) l

247, 257 3 0 5 ( s h ) , 315 408

460 484

237(us) 2.5(ms)

2

2

2

2

a. P h o s p h o r e s c e n c e b. 4/1/1 V/V/V Ethanol/Methanol/Dichloromethane glass

CONCLUSION Carbon monoxide i s u s e f u l i n c l e a v i n g u - d i c h l o r o - b r i d g e d systems of the t y p e s mentioned. T h i s c a n be used as a method t o d e r i v a t i z e t h e s e d i m e r s (Ryabov 1985; P f e f f e r 1981; C o n s t a b l e 1980). More i m p o r t a n t l y however, f a c i l e CO b r i d g e c l e a v a g e f o l l o w e d by p h o t o l y s i s i s a s i m p l e and efficient means w i t h w h i c h t o p r e p a r e mixed m e t a l systems. The restriction at t h i s p o i n t a p p e a r s t o be t h a t t h e CO l i g a n d must be somewhat p h o t o l a b i l e . I t may be p o s s i b l e however t o overcome t h i s by a l t e r i n g the l i g a n d used i n the cleavage r e a c t i o n . T h i s may actually become an advantage as one m i g h t i m a g i n e t a i l o r i n g reaction and photolysis c o n d i t i o n s a s a method t o s e l e c t i v e l y p r e p a r e mixed metal dimers.

The s i m i l a r i t y o f t h e a b s o r p t i o n and e m i s s i o n s p e c t r a f o r (A) and (B) to those of [ P d ( p p y ) C l ] , [Rh(ppy) C1] and [Rh(bzq) C1] , together with lifetime data i s c o n c l u s i v e evidence that the lowest energy excited s t a t e s of these novel dimers are i n t r a ligand t r a n s i t i o n s of the o r t h o - m e t a l a t e d 2 - p h e n y l p y r i d i n e and b e n z o [ h ] q u i n o l i n e ligands. It might have been e x p e c t e d t h a t t h e s e new d i m e r s would have one equilibrated e x c i t e d s t a t e a l t h o u g h e v i d e n c e has been p r e s e n t e d here a r g u i n g f o r n o n - e q u i l i b r a t e d e x c i t e d s t a t e s i n t h e s e c o m p l e x e s . We a r e currently a t t e m p t i n g t o p r e p a r e new d i m e r s o f t h i s t y p e u s i n g s i m i l a r ortho-metalated dimer p r e c u r s o r s . 2

2

2

2

2

ACKNOWLEDGMENT T h i s work was s u p p o r t e d by t h e O f f i c e o f B a s i c E n e r g y S c i e n c e s , S t a t e s Department o f E n e r g y , P r o j e c t DE-AT03-78ER70277

United

REFERENCES Constable AG, McDonald WS, S a w ^ i n s LC, Shaw BL (1980) Transitionmetal-carbon bonds. Part 45. Attempts to c y c l o p a l l a d a t e some a l i p h a t i c o x i m e s , N N - d i m e t h y l h y d r a z o n e s , k e t a z i n e s and oxime O - a l l y l ethers. Crystal s t r u c t u r e s o f [Pd-(CH-C (CHO-C (=NOH)CHO-C1-] and [Pd(CH C(=NNMe )C(CH ) ) ( a c a c ) ] . J C S D a l t o n 1992-2000 Cope AC, Siekman RW T1965) F o r m a t i o n o f c o v a l e n t bonds f r o m p l a t i n u m or palladium t o c a r b o n by d i r e c t s u b s t i t u t i o n . J Am Chem Soc 87: 3272-3273 C r a i g CA, G a r c e s FO, W a t t s RJ (1987) u n p u b l i s h e d r e s u l t s . G u t i e r r e z MA, Newkome GR, S e l b i n J (1980) C y c l o m e t a l l a t i o n . P a l l a d i u m 2 - a r y l p y r i d i n e c o m p l e x e s . J O r g a n o m e t a l Chem 202: 341-350 Kasahara A (1968) Sigma-bonded 2 - p h e n y l p y r i d i n e p a l l a d i u m complex. B u l l Chem Soc J p n 41: 1272 Nonoyama M, Yamasaki K (1971) Rhodium(III) complexes of b e n z o [ h ] q u i n o l i n e and 2 - p h e n y l p y r i d i n e . N u c l Chem L e t t e r s 7: 943-946 Nonoyama M (1974) S y n t h e s i s o f s e v e r a l bis(benzo[h]quinoline-10-YL-N) r h o d i u m ( I I I ) c o m p l e x e s . J O r g a n o m e t a l Chem 82: 271-276 Nonoyama M (1982) C y c l o p a l l a d a t i o n and cyclorhodation of N-(3t h i e n y l ) p y r a z o l e . J O r g a n o m e t a l Chem 229: 287-292 P a r s h a l l GW (1970) I n t r a m o l e c u l a r a r o m a t i c s u b s t i t u t i o n i n t r a n s i t i o n m e t a l c o m p l e x e s . A c c Chem Res 3: 139-144 Pfeffer M, Grandjean D, L e -Borgne G (1981) Reactivity of cyclopalladated compounds. 6. Synthesis of heterodimetallic s p e c i e s w i t h Pd-Co, Pd-Mo, o r Pd-Fe b o n d s . X - r a y c r y s t a l s t r u c t u r e of (Dimethylphenylphosphine)tricarbonyl(n-cyclopentadienyl) molybdenum ( 8 - m e t h y l q u i n o l i n e - C , N ) p a l l a d i u m ( I I ) ( P d - M o ) . Inorg Chem 20:4426-4429 Ryabov AD (19 85) The a p p l i c a t i o n o f c y c l o p a l l a d a t e d compounds in s y n t h e s i s . 54: 153-170 S p r o u s e S, K i n g KA, S p e l l a n e P J , W a t t s R J (1984) P h o t o p h y s i c a l e f f e c t s o f m e t a l - c a r b o n sigma bonds i n o r t h o - m e t a l a t e d c o m p l e x e s o f Ir(III) and R h ( I I I ) . J Am Chem Soc 106: 6647-6653 Trofimenko S (1973) Some s t u d i e s o f t h e c y c l o p a l l a d a t i o n r e a c t i o n . I n o r g Chem 12: 1215-1221. W a k a t s u k i Y, Y a m a z a k i H, G r u t s c h PA, Santhanam M, Kutal C (1985) Study of intramolecular sensitization and other excited-state pathways i n o r t h o m e t a l l a t e d a z o b e n z e n e c o m p l e x e s o f p a l l a d i u m ( I I ) . J Am Chem Soc 107: 8153-8159 2

PHOTOPROPERTIES OF ORTHO-METALATED

I r ( I I I ) AND R h ( I I I ) COMPLEXES

K.A.King, F.O.Garces, S.Sprouse, and R.J.Watts Department o f C h e m i s t r y , U n i v e r s i t y o f C a l i f o r n i a , Santa B a r b a r a , CA 93106, USA

INTRODUCTION Recent s t u d i e s have served t o provide i n i t i a l c h a r a c t e r i z a t i o n s o f t h e photoproperties o fa v a r i e t y o f ortho-metalated complexes o f I r ( I I I ) ( S p r o u s e 1 9 8 4 ; K i n q 1984, 1 9 8 5 ) , R h ( I I I ) ( B a l z a n i 1986; S p r o u s e 1 9 8 4 ) , R u ( I I ) (Reveco 1985; C o n s t a b l e 1986), P t ( I I ) (Maestri 1985; Chassot 1986), and Pd(II) (Wakatsuki 1985) w i t h 2-phenylpyridine (ppy), benzo[h]quinoline (bzq) a n d r e l a t e d l i g a n d s . While a p o r t i o n o f t h e i n i t i a l impetus f o r these s t u d i e s f o l l o w e d from i n t e r e s t i n t h e characterization o fortho-metalated complexes o ft h ew i d e l y used ligand, 2 , 2 ' - b i p y r i d i n e (bpy) (Watts 1 9 7 7 ; S p e l l a n e 1983; W i c k r a m a s i n g h e 1 9 8 1 ; Nord 1 9 8 3 ; B r a t e r m a n 1 9 8 4 ; S k a p s k i 1985; Cohen 1985; Slama-Schwok 1985; Grutsch 1986; F i n l a y s o n 1986), t h e more traditional orthometalatinq ligands such a s ppy and b z q i m p a r t upon t h e i r m e t a l complexes photoproperties quite d i s t i n c t from those of either N,N' c h e l a t e d o rN,C-ortho-metalated bpy complexes. Of p a r t i c u l a r s i g n i f i cance i st h e a b i l i t y o fthese t r a d i t i o n a l o r t h o - m e t a l a t i n g l i g a n d s t o impart upon their metal complexes t h e thermodynamic potential t o f u n c t i o n a s s t r o n g r e d u c i n q agents i nt h e i r low-enerqy e x c i t e d s t a t e s . Analoqous complexes o f N , N - c h e l a t i n g bpy tend t o be f a r s u p e r i o r oxidizing a q e n t s b u t much p o o r e r r e d u c i n q a q e n t s i n t h e i r low-enerqy excited states. Recent s t u d i e s i n o u r l a b o r a t o r y have focused upon ortho-metalated complexes o f I r ( I I I ) and Rh(III) w i t h ppy asw e l l a s the methyl-substituted ligands 2 - ( p - t o l y l ) p y r i d i n e (ptpy) a n d 3methy1-2-phenylpyridine (mppy). The s t r u c t u r e s o f t h e s e l i g a n d s a r e i l l u s t r a t e d i nF i q . 1 below. 1

2-phenylpyridine PPY

Figure

1.

3-methy1-2-phenylpyridine MPPY

S t r u c t u r e s o fOrtho-metalating

2- (p-tolyl) -pyridine PTPY

Ligands

These s t u d i e s p r o v i d e some i n i t i a l i n s i g h t s i n t o t h e r e l a t i v e e f f e c t s of s u b s t i t u t i o n o f t h e phenyl and p y r i d y l r i n g s on t h e p h o t o p r o p e r t i e s of ortho-metalated complexes o fthese l i g a n d s .

RESULTS

AND

DISCUSSION

A v a r i e t y o f m o n o m e t a l l i c complexes c a n be prepared (Nonoyama 1 9 7 1 , 1974) by f a c i l e r e a c t i o n s o f c h e l a t i n g l i g a n d s w i t h d i m e r i c species o f the type [M(X-ppy) C1] , w h e r e X - p p y i s p p y , p t p y o r mppy. For these studies we c h o s e t o u s e b p y a s t h e c h e l a t i n g l i g a n d b e c a u s e i t s presence i n t h e c o o r d i n a t i o n sphere o f t h e metal i o nassures that both good siqma-donor (X-ppy) and p i - a c c e p t o r (bpy) l i q a n d s a r e s i m u l t a neously coordinated. S e v e r a l i n t e r e s t i n g phenomena a r i s e i n c o m p l e x e s containinq t h i s combination, i n c l u d i n q : a) l o w - e n e r q y m e t a l - t o - l i g a n d charqe-transfer (MLCT) t r a n s i t i o n s ; b ) MLCT t r a n s i t i o n s i n w h i c h a metal e l e c t r o n may b.e p r o m o t e d t o a p i * o r b i t a l o f e i t h e r b p y o r t h e p y r i d i n e r i n g o f ppy; and c) e x c i t e d s t a t e s capable o f f u n c t i o n i n q as e i t h e r good e l e c t r o n donors o r e l e c t r o n a c c e p t o r s . ?

?

Evidence f o r d u a l e m i s s i o n s a r i s i n q f r o m MLCT e x c i t e d states associated with bpy and w i t h p p y i s found i n t h e t i m e - r e s o l v e d emission spectrum of Ir(ppy) (bpy) i n low temperature qlasses as illustrated i n F i q . 2 below. +

2

F i q u r e 2. T i m e - r e s o l v e d E m i s s i o n S p e c t r a o f I r ( p p y ) (bpy) i n E t h a n o l / M e t h a n o l a t 77 K E x c i t e d a t 3 7 7 nm w i t h a P u l s e d Nitroqen Laser. a ) 1 0 0 n s a f t e r e x c i t a t i o n ; b ) 15 / i s a f t e r e x c i t a t i o n .

Similar results have been found f o r Ir(mppy) (bpy) and for Ir(ptpy)-(bpy) . I n each case t h e r e l a t i v e l y unstructured emission a t short d e l a y t i m e s (100 n s ) i s t h e r e s u l t o f o v e r l a p p i n q e m i s s i o n s of states r e s u l t i n q from c h a r q e - t r a n s f e r o f a metal e l e c t r o n t o a c h e l a ting (MLCT/bpy) o r o r t h o - m e t a l a t i n q (MLCT/X-ppy) l i q a n d . At lonqer delay t i m e s (10-15 p s ) a more s t r u c t u r e d e m i s s i o n characteristic of the lower-enerqy MLCT/bpy s t a t e i s e v i d e n t . Further evidence f o r these assiqnments has been found by m o n i t o r i n q t h e emission s p e c t r a o f the i r ( I I I ) complexes as a f u n c t i o n o f e x c i t a t i o n wavelenqth. I n these measurements, excitation a t w a v e l e n q t h s l o n g e r t h a n 4 7 0 nm l e a d s to the same s t r u c t u r e d MLCT/bpy e m i s s i o n a s i s s e e n i n F i g . 2b above, while shorter wavelenqth e x c i t a t i o n gives unstructured luminescence 2

characteristic of o v e r l a p o f t h e h i q h e j e n e r q y MLCT/ppy and lowere n e r q y MLCT/bpy e m i s s i o n s . R h ( p p y ) ( b p y ) , on t h e o t h e r h a n d , d i s p l a y s a sinqle emission c h a r a c t e r i s t i c of a l i q a n d - l o c a l i z e d s t a t e associated w i t h ppy (LL/ppy) i n b o t h t i m e - r e s o l v e d e m i s s i o n spectroscopy and i n e x c i t a t i o n - e m i s s i o n s p e c t r o s c o p y . These r e s u l t s i n d i c a t e t h a t the i n t r a m o l e c u l a r e l e c t r o n t r a n s f e r (Meyer, 1978) f r o m MLCT/ppy to MLCT/bpy i s slow i n I r ( l l l ) complexes i n r i q i d g l a s s e s whereas r e s o n ance enerqy t r a n s f e r ( B a l z a n i , 1980) from (LL/bpy) t o (LL/ppy) i n the Rh(III) complex i s r a p i d . The r e s u l t i s a t t r i b u t e d t o a viscosity dependent Franck-Condon b a r r i e r ( D e l l i n q e r , 1975, 1976; W a t t s , 1978) to i n t r a m o l e c u l a r e l e c t r o n t r a n s f e r which a r i s e s from a large d i s t o r tion of the MLCT(bpy) s t a t e r e l a t i v e t o the qround state. Evidence f o r t h i s d i s t o r t i o n i s f o u n d i n the room t e m p e r a t u r e e m i s s i o n s o f the ir(III) complexes in fluid solutions, which d i s p l a y larqe Stoke's shifts and a s i n q l e e m i s s i o n c h a r a c t e r i s t i c o f t h e MLCT/bpy excited state under these c o n d i t i o n s . In c o n t r a s t , the LL/ppy and LL/bpy states in Rh(ppy)-(bpy) are r e l a t i v e l y u n d i s t o r t e d compared t o the qround s t a t e , and r e s o n a n c e e n e r q y t r a n s f e r p r o c e e d s r a p i d l y without s i g n i f i c a n t Franck-Condon b a r r i e r s . 2

Half-wave p o t e n t i a l s f o r the several Ir(III) and R h ( I I I ) compiled i n Table 1 below.

Table

1.

f i r s t o x i d a t i o n and f i r s t reduction complexes from c y c l i c voltammoqrams

H a l f - w a v e P o t e n t i a l s f o r I r ( I I I ) and R h ( I I I ) C o m p l e x e s T E A H - s a t u r a t e d A c e t o n i t r i l e a t Room T e m p e r a t u r e E

Complex +

2

(bpy)

Ir(ptpy) (bpy) + Rh(ppy) (bpy) 9 z

2

a. b.

'

V vs

+

+

1.28

-1.38

1.21

-1.41

SCE

-1.42

1.18 1.60

in

1 + /0

2 + /1 +

Ir(ppv) (bpy) Ir(mppy)

a

i / r

of are

-1.38

b

A s c a n r a t e o f 1.0 V / s was u s e d i n e a c h m e a s u r e m e n t A n o d i c peak p o t e n t i a l o f i r r e v e r s i b l e wave

The reductive p r o c e s s (+1/0) i s r e v e r s i b l e i n a l l o f the complexes which were s t u d i e d , whereas the o x i d a t i v e process i s r e v e r s i b l e i n the I r ( I I I ) complexes but i r r e v e r s i b l e i n the Rh(III) complex. The reduct i v e p r o c e s s i s b e l i e v e d t o o c c u r a t t h e bpy l i q a n d w h e r e a s t h e oxidative process (+1/+2) i s t h o u a h t t o b e m e t a l - c e n t e r e d i n t h e Ir(III) complexes. The h i g h p o t e n t i a l o x i d a t i v e p r o c e s s i n t h e R h ( I I I ) comp l e x i s i r r e v e r s i b l e a n d o x i d a t i o n may o c c u r a t t h e p p y l i q a n d i n t h i s instance. Variations of 100 mv i n t h e E values for the 1 + /2 + o x i d a t i v e p r o c e s s amonq t h e t h r e e I r ( I I I ) c o m p l e x e s r e f l e c t t h e d e g r e e to which the methyl s u b s t i t u e n t s e n r i c h the e l e c t r o n d e n s i t y at the metal center. / 2

By c o m b i n i n q v a l u e s o f t h e p o t e n t i a l s f o r t h e o x i d a t i v e a n d reductive processes i n Table 1 w i t h estimates of the e x c i t e d s t a t e e n e r q i e s of these c o m p l e x e s t a k e n f r o m low t e m p e r a t u r e e m i s s i o n maxima (2.34 V) , standard e l e c t r o c h e m i c a l p o t e n t i a l s f o r the luminescent e x c i t e d state of e a c h s p e c i e s c a n be e s t i m a t e d . This procedure leads to estimated v a l u e s o f E° (2 + / * l + ) i n t h e r a n g e -1.06 V v s SCE [Ir(ppy) (bpy) ] t o

-1.16 V v s SCE [ I r ( p t p y ) ( b p y ) ] a n d t o v a l u e s f o r E°(*l+/0) o f a b o u t 0.95 V v s SCE f o r a l l f o u r c o m p l e x e s . These e s t i m a t e s assume that e n t r o p y chanqes upon e x c i t a t i o n a r e n e g l i g i b l e , and althouqh they a r e expected t o p r o v i d e adequate estimates o f t h e thermodynamic driving force f o r e x c i t e d s t a t e redox processes, t h e y do n o t r e f l e c t kinetic limitations t o e l e c t r o n t r a n s f e r which miqht a r i s e from Franck-Condon barriers or non-adiabatic behavior (Sutin 1983). In order t o more fully c h a r a c t e r i z e the k i n e t i c s o f e x c i t e d s t a t e o x i d a t i o n and reduct i o n r e a c t i o n s , ^tern-Volmer s t u d i e s o f the quenchinq o f the emission of I r ( p p y ) (bpy) b y a s e r i e s o f o x i d a t i e q u e n c h e r s (nitrobenzenes) (Bock 1975T and a s e r i e s o f r e d u c t i v e quenchers (phenylamines and methoxybenzenes) ( M a r s h a l l 1984) were p e r f o r m e d . The r e s u l t s o f t h e s e s t u d i e s a r e summarized i n F i q . 3 below. 2

a

°DMA

10

0

°PT

b

-0

pDNB

0

mDNB

DPA 0

AN

-

o NBA o CNB

0 0

TMB

NB -

0

MNB

-

DMB° i

i

0.6

0,8

1.0 1.2 QUENCHER

i

i

'

-1.2 0.8 -1.0 REDUCTION P O T E N T I A L (V vsSCE)

F i q u r e 3. Stern-Volmer Quenchinq o f I r ( p p y ) ( b p y ) i n A c e t o n i t r i l e by R e d u c t i v e (a) a n d O x i d a t i v e (b) Q u e n c h e r s . (a) P T , P h e n o t h i a z i n e ; DMA, N , N - d i m e t h y l a n i l i n e ; DPA, diphenylamine; A N , a n i l i n e ; TMB, 1 , 2 , 4 - t r i m e t h o x y b e n z e n e ; DMB, 1 , 4 - d i m e t h o x y b e n z e n e (b) pDNB, p-Dinitrobenzene; mDNB, m - D i n i t r o b e n z e n e ; NBA, m-nitrobenzaldehyde; CNB, p-chloronitrobenzene; NB, nitrobenzene; MNB, p-methylnitrobenzene 2

K i n e t i c estimates of the e x c i t e d s t a t e redox p o t e n t i a l s taken from the breakinq r e q i o n between t h e d i f f u s i o n c o n t r o l l e d l i m i t and t h e l i n e a r r e q i o n i n d i c a t e a v a l u e o f E°(2+/*l+) o f - 1 . 1 V v s SCE a n d a v a l u e of E ° ( * l + / 0 ) o f +0.98 V v s S C E . These v a l u e s a r e i n qood aqreement w i t h the thermodynamic estimates above, and t h e r e l a t i v e l y narrow b r e a k i n q reqion i n the plots i n Fiq. 3 suggest t h a t r e o r q a n i z a t i o n a l b a r r i e r s toward e i t h e r o x i d a t i v e o r r e d u c t i v e e l e c t r o n t r a n s f e r a r e s m a l l .

SUMMARY Combined p h o t o p h y s i c a l , photochemical, and e l e c t r o c h e m i c a l s t u d i e s o f these and r e l a t e d o r t h o - m e t a l a t e d complexes o f a v a r i e t y o f t r a n s i t i o n metals i n d i c a t e t h a t t h i s c l a s s of molecular species provides a u s e f u l basis f o r the study of e f f e c t s of metal-carbon siqma-bondinq on electron-transfer processes. While the covalent nature of these metal-carbon bonds may well assure stronq electronic couplinq of

e x c i t e d s t a t e s i n t h e s e c o m p l e x e s , t h e s e b o n d s may a l s o i m p o s e larqe qeometric d i s t o r t i o n s on e x c i t e d s t a t e s a s s o c i a t e d w i t h l i q a n d s t r a n s to them. T h e a s s o c i a t e d F r a n k - C o n d o n b a r r i e r s may, i n viscous solvents, lead t o dual emissions such as those observed i n t h e Ir(III) complexes. The s t r o n q siqma-donor a b i l i t i e s o f o r t h o - m e t a l a t i n q liqands qreatly enriches the e l e c t r o n denisty a t the metal center i n t h e i r complexes, and leads t o species which are often strong reducinq aqents i n t h e i r excited states. When t h e s e l i g a n d s a r e c o m b i n e d w i t h q o o d electron accepting l i q a n d s , such as bpy, i n the c o o r d i n a t i o n sphere o f a s i n q l e metal, complexes w h i c h c a n be used as e i t h e r e x c i t e d s t a t e o x i d i z i n q or reducinq aqents r e s u l t . Kinetic Stern-Volmer quenching studies indicate that t h e s e s p e c i e s do i n d e e d p a r t i c i p a t e i n outer sphere electron transfer reactions with drivinq forces comparable t o the values e s t i m a t e d from combined s p e c t r o s c o p i c - e l e c t r o c h e m i c a l r e s u l t s . Ortho-metalated c o m p l e x e s show p r o m i s e f o r a p p l i c a t i o n as photocatalysts where t h e r e i s a need f o r s u b s t a n c e s w h i c h c a n a b s o r b visible liqht and convert a larqe f r a c t i o n of the absorbed enerqy i n t o reduci n g power i n r e l a t i v e l y l o n q - l i v e d e x c i t e d s t a t e s .

ACKNOWLEDGMENT T h i s work was s u p p o r t e d b y t h e O f f i c e o f B a s i c E n e r q y S c i e n c e s , S t a t e s D e p a r t m e n t o f E n e r q y , P r o j e c t DE-AT03-78ER70277

United

REFERENCES B a l z a n i V, ( p r i v a t e c o m m u n i c a t i o n 1986) B a l z a n i V , B o l l e t a F , S c a n d o l a F ( 1 9 8 0 ) J Am Chem S o c 1 0 2 : 2 1 5 2 - 2 1 6 3 B o c k CR, M e y e r T J , W h i t t e n DG ( 1 9 7 5 ) J Am Chem S o c 9 7 : 2 9 0 9 - 2 9 1 1 B r a t e r m a n P S , H e a t h GA, M a c K e n z i e A J , N o b l e B C , P e a c o c k RD, Y e l l o w l e s s L J ( 1 9 8 4 ) I n o r q Chem 2 3 : 3 4 2 5 - 3 4 2 6 C h a s s o t L , v o n Z e l e w s k y A, S a n d r i n i D, M a e s t r i M, B a l z a n i V ( 1 9 8 6 ) J Am Chem S o c 1 0 8 : 6 0 8 4 - 6 0 8 5 C o h e n H, S l a m a - S c h w o k A, R a b a n i J , W a t t s R J , M e y e r s t e i n D (1985) J P h y s Chem 8 9 : 2 4 6 5 - 2 4 6 7 C o n s t a b l e E C , H o l m e s J M ( 1 9 8 6 ) J O r q a n o m e t Chem 3 0 1 : 2 0 3 - 2 0 8 D e l l i n q e r B , K a s h a M ( 1 9 7 5 ) Chem P h y s L e t t 3 6 : 4 1 0 - 4 1 4 D e l l i n q e r B , K a s h a M ( 1 9 7 6 ) Chem P h y s L e t t 3 8 : 9-14 F i n l a y s o n MF, F o r d P C , W a t t s R J ( 1 9 8 6 ) J P h y s Chem 9 0 : 3 9 1 6 - 3 9 2 2 G r u t s c h P A , K u t a l C ( 1 9 8 6 ) J Am Chem S o c 1 0 8 : 3 1 0 8 - 3 1 1 0 K i n q KA, F i n l a y s o n MF, S p e l l a n e P J , W a t t s R J ( 1 9 8 4 ) S c i P a p I n s t P h y s Chem R e s 7 8 : 9 7 - 1 0 6 K i n q K A , S p e l l a n e P J , W a t t s R J ( 1 9 8 5 ) J Am Chem S o c 1 0 7 : 1 4 3 1 - 1 4 3 2 M a e s t r i M, S a n d r i n i D, B a l z a n i V , C h a s s o t L , J o l l i e t P, v o n Z e l e w s k y A ( 1 9 8 5 ) Chem P h y s L e t t 1 2 2 : 3 7 5 - 3 7 9 M a r s h a l l J L , S t o b a r t S R , G r a y HB ( 1 9 8 4 ) J Am Chem S o c 1 0 6 : 3 0 2 7 - 3 0 2 8 M e y e r T J ( 1 9 7 8 ) A c c Chem R e s 1 1 : 9 4 - 1 0 0 N o n o y a m a M ( 1 9 7 4 ) B u l l Chem S o c J p n 4 7 : 7 6 7 - 7 6 8 N o n o y a m a M, Y a m a s a k i K ( 1 9 7 1 ) I n o r q N u c l Chem L e t t 7: 9 4 3 - 9 4 6 N o r d G, H a z e l l A , H a z e l l RG, F a r v e r O ( 1 9 8 3 ) I n o r q Chem 2 2 : 3 4 2 9 - 3 4 3 4 R e v e c o P, S c h m e h l R H , C h e r r y WR, F r o n c z e k FR, S e l b i n J (1985) I n o r q Chem 2 4 : 4 0 7 8 - 4 0 8 2 S k a p s k i AC, S u t c l i f f e V F , Y o u n q GB ( 1 9 8 5 ) J Chem S o c Chem Commun 6 0 9 611 S l a m a - S c h w o k A, G e r s h u n i S, R a b a n i J , C o h e n H, M e y e r s t e i n D ( 1 9 8 5 ) J P h y s Chem 8 9 : 2 4 6 0 - 2 4 6 4

S p e l l a n e P J , W a t t s R J , C u r t i s C J (1983) I n o r q Chem 22: 4060-4062 S p r o u s e S, K i n q KA, S p e l l a n e P J , W a t t s R J (1984) J Am Chem Soc 106: 6647-6653 S u t i n N, C r e u t z C (1983) J Chem E d 60: 809-814 W a k a t s u k i Y, Yamazaki H, G r u t s c h PA, Santhanam M, K u t a l C (1985) J Am Chem Soc 107: 8153-8159 Watts R J , H a r r i n q t o n J S , v a n H o u t e n J (1977) J Am Chem Soc 99: 21792187 Watts R J , M i s s i m e r D (1978) J Am Chem Soc 100: 5350-5357 W i c k r a m a s i n q h e WA, B i r d PH, S e r p o n e N (1981) J Chem Soc Chem Commun: 1284-1286

GROUND AND

EXCITED STATE

INTERACTIONS IN MULTIMETAL SYSTEMS

J.D.Petersen Department o f C h e m i s t r y , Clemson U n i v e r s i t y , Clemson, SC 29634-1905, USA

T h i s a r t i c l e d i s c u s s e s d a t a from t h i s and o t h e r l a b o r a t o r i e s w i t h r e s p e c t t o t h e e l e c t r o n i c communication a c r o s s v a r i o u s a r o m a t i c , n i t r o g e n h e t e r o c y c l i c l i g a n d s i n p o l y m e t a l l i c complexes. As t h e n a t u r e and c o m p l e x i t y o f t h e b r i d g i n g l i g a n d i n t r a n s i t i o n m e t a l comlexes i n c r e a s e s o u r u n d e r s t a n d i n g o f the f a c t o r s t h a t a f f e c t g r o u n d - a n d e x c i t e d - s t a t e e l e c t r o n i c c o u p l i n g must be more f u l l y understood. The m a j o r i t y o f t h e work s i t e d h e r e i s f r o m o u r l a b o r a t o r i e s and h a s i n v o l v e d numerous g r a d u a t e s t u d e n t s and p o s t d o c t o r a l f e l l o w s , most n o t a b l y A n d r e a W a l l a c e , Karen Brewer, and Rory Murphy.

BACKGROUND 2+ The e x c i t e d - s t a t e r e a c t i v i t y o f complexes r e l a t e d t o R u ( b p y ) ^ (where bpy = 2 , 2 - b i p y r i d i n e ) has r e c e i v e d c o n s i d e r a b l e a t t e n t i o n b e c a u s e o f t h e l o n g - l i v e d , e x c i t e d - s t a t e o f t h i s s p e c i e s a t room t e m p e r a t u r e i n f l u i d s o l u t i o n , and t h e a b i l i t y o f t h i s complex and i t s d e r i v a t i v e s t o undergo f a s c i l e e x c i t e d - s t ^ t e e l e c t r o n - o r energy -transfer reactions. The f a c t t h a t R u ( b p y ) absorbs v i s i b l e l i g h t ( i n t e n s e m e t a l - t o - l i g a n d c h a r g e - t r a n s f e r t r a n s i t i o n ) h a s made i t a prime c a n d i d a t e f o r a v a r i e t y o f s o l a r - e n e r g y - d r i v e n , f u e l p r o d u c t i o n schemes. 1

3

R e c e n t l y , t h e c a p a b i l i t i e s o f t h e s e complexes have been expandecj by t h e p r e p a r a t i o n and c h a r a c t e r i z a t i o n o f complexes l i k e R u ( d p p ) (where dpp = 2 , 3 - b i s ( 2 - p y r i d y l ) p y r a ^ i n e ) . Like the intensely s t u d i e d Ru(bpy) c e n t e r , Ru(dpp)~ absorbs v i s i b l e l i g h t , has a l o n g - l i v e d , e m i s s i v e , e x c i t e d s t a t e , and i s s t a b l e t h e r m a l l y jiji b o t h o x i d i z e d and r e d u c e d f o r m s . One a d v a n t a g e t h a t R u ( d p p ) has over Ru(bpy)~ i s t h a t t h e f o r m e r i s c a p a b l e o f b i n d i n g an a d d i t i o n a l m e t a l c e n t e r t o e a c h o f t h e dpp l i g a n d s t o f o r m t h e r m a l l y s t a b l e , p o l y m e t a l l i c complexes. In a d d i t i o n , mixedl i g a n d , p o l y m e t a l l i c complexes have been p r e p a r e d u s i n g dpp and o t h e r r e l a t e d l i g a n d s s u c h as 2 , 2 - b i p y r i m i d i n e (bpm), and 2,3-bis(2*-pyridyl)quinoxaline(dpq). W h i l e p o l y m e t a l l i c complexes a f f o r d t h e advantage t h a t s y n t h e t i c a l l y you can b r i n g a l l r e a c t i o n p a r t n e r s t o g e t h e r i n a s i n g l e m o l e c u l a r u n i t (thus a v o i d i n g t h e i n h e r e n t i n e f f i c i e n c y o f b i m o l e c u l a r p r o c e s s e s ) , these systems a r e complex m o l e c u l a r u n i t s w h i c h a r e n o t w e l l u n d e r s t o o d . The f a c t t h a t some o f t h e s e p o l y m e t a l l i c systems e m i t a t room t e m p e r a t u r e i n f l u i d s o l u t i o n w h i l e o t h e r d o n ' t , and t h e i n c o n s i s t e n t t r e n d s i n e l e c t r o c h e m i s t r y i n g o i n g from m o n o m e t a l l i c t o b i m e t a l l i c t o p o l y m e t a l l i c s p e c i e s have g e n e r a t e d numerous and v a r i e d h y p o t h e s e s on t h e e x i s t e n c e and t h e n a t u r e o f m e t a l - m e t a l c o m m u n i c a t i o n i n t h e s e l i g a n d - b r i d g e d systems. +

3

1

3

1

GROUND STATE COMMUNICATION The e l e c t r o c h e m i s t r y o f mono- d i - and p o l y m e t a l l i c complexes o f t h r e e b r i d g i n g l i g a n d s , bpm ( 2 , 2 - b i p y r i m i d i n e ) , dpp and dpq a r e summmarized i n T a b l e I . I n t h e f i r s t two d a t a columns o f T a b l e I , some i n t e r e s t i n g t r e n d s / a r e o b s e r v e d f o r t h e m e t a l o x i d a t i o n s . The comparison ° f T { ^ f i c o u p l e i n a m o n o m e t a l l i c complex w i t h t h e f i r s t Ru couple i n the corresponding b i m e t a l l i c analog shows s l i g h t l y d i f f e r e n t - b e h a v i o r d e p e n d e n t on BL. In t h e c a s e o f BL = bpm, t h e f i r s t Ru c o u p l e i s 0.13 V more p o s i t i v e f o r t h e b i m e t a l l i c [Ru ( b p y ) ] b p m than the mono-metallic Ru(bpy) bpm complex. F o r t h e o t h e r BL e n t r i e s i n T a b l e I t h e d i f f e r e n c e s a r e much s m a l l e r (0.00-0.05 V ) . G a f f n e y and c o w o r k e r s have a t t r i b u t e d t h i s t o g r o u n d - s t a t e m e t a l - m e t a l communication i n the b i m e t a l l i c systems. When BL = bpm, good e l e c t r o n i c c o m m u n i c a t i o n i s e x h i b i t i e d between t h e two r u t h e n i u m c e n t e r s c a u s i n g t h e 0.13 V s h i f t i n p o t e n t i a l and l e a d i n g t o l o s s o f e m i s s i o n (room temperature, f l u i d s o l u t i o n ) f o r the bpm-bridged bimetallic complex. On t h e o t h e r h a n d , dpp and dpq b r i d g e d s p e c i e s show o n l y s m a l l p o t e n t i a l s h i f t s f r o m m o n o m e t a l l i c a n a l o g s (0.00-0.05 V) due t o a l a c k o f g r o u n d - s t a t e c o m m u n i c a t i o n , and t h u s t h e room t e m p e r a t u r e e m i s s i o n i s o b s e r v e d i n t h e p o l y m e t a l l i c complexes and n o t quenched by t h e p r e s e n c e o f t h e s e c o n d m e t a l c e n t e r . 1

R u

4

2

+

2

2

TABLE I . E l e c t r o c h e m i s t r y o f Mono-, D i - , T r i - and Complexes o f Ruthenium P o l y a z i n e Complexes Ei (1) ° b)

Complex

X

H

2 +

Ru(bpy) b p m . [Ru(bpyf ] bpm Ru[(bpm)6utbpy) ] 9

9

2

Ru(bpy) dpp

b + 3

2 +

2

4

+

[Ru(bpyf ] dpp Ru[ ( d p p ) M b p y ) ] 3 9

9

R

2+ Ru(phen) dpp [Ru(phenf ] dpp Ru[(dpp)R6(phen) 2

9

4

9

2

2 +

Ru(bpy) dpq [Ru(bpyf l dpq 2

2

2

Ru(phen) dpq [Ru(phenf dpq 2

+

2+ .

4

+

]3

y

+

c)

X

V D

r

e

-1.02 -0.41

1.33 1. 38 1.50

1.5$ 1.8

-1.06 -0.66 -0.56

1.39 1-44 1.43

1.6| 1.8

-1.07 -0.64 -0.5

1.42 1.47

1.62

-0.77 -0.37

1.42 1.48

1.64

-0.79 -0.40

e

2

H

1.69

1.40 1.53 irreversible

p

V2)°

Polymetallic

e

r

r

d

2

a) b) c) d) e) f)

In a c e t o n i t r i l e w i t h 0.1 M s u p p o r t i n g e l e c t r o l y t e u n l e s s noted otherwise. P o t e n t i a l f o r o x i d a t i o n of f i r s t Ru(II) c e n t e r ( i n V v s . P o t e n t i a l f o r o x i d a t i o n o f s e c o n d R u ( I I ) c e n t e r where a p p r o p r i a t e ( i n V v s . SCE). P o t e n t i a l f o r f i r s t r e d u c t i o n o f complex ( i n V v s . S C E ) . Corresponds c o u l o m e t r i c a l l y t o a t h r e e - e l e c t r o n p r o c e s s . O u t s i d e s o l v e n t window.

SCE)

F o r t h e t e t r a m e t a l l i c c o m p l e x e s , t h e same t r e n d s a r e o b s e r v e d . W i t h bpm as t h e b r i d g i n g l i g a n d , i . e . , Ru [ (bpm) Ru ( b p y ) , no room t e m p e r a t u r e e m i s s i o n i s o b s e r v e d and t h e e l e c t r o c h e m i s t r y i s irreversible. When dpp i s the b r i d g i n g l i g a n d , t h e t e t r a m e t a l l i c complexes e m i t a t room t e m p e r a t u r e and have e l e c t r o c h e m i s t r y c o n s i s t e n t w i t h m i n i m a l communication between t h e p e r i p h e r a l m e t a l c e n t e r s . W h i l e r e s o n a n c e Raman s t u d i e s may i n d i c a t e t h a t t h e h i g h d e g r e e o f e l e c t r o n i c communication i n bpm and l a c k o f e l e c t r o n i c c o m m u n i c a t i o n i n dpp and dpq b r i d g e d systems i s due t o l i g a n d c o n f o r m a t i o n , t h a t may n o t be t h e t o t a l p i c t u r e . E l e c t r o c h e m i c a l o x i d a t i o n o f t h e b i m e t a l l i c complexes o f F e ( I I ) and R u ( I I ) show t h a t t h e e l e c t r o n i c communication as measured by c o m p r o p o r t i o n a t i o n c o n s t a n t i s r o u g h l y t h e same f o r bpm, dpp, and dpq s y s t e m s ( T a b l e I I ) .

Table I I . Comproportionation Complexes.

Constants

Complex

E^mV

[Ru(bpy) ] bpm^/5+/6+ [Ru(bpy) ] d p p ' ' [Ru(bpy)2]2 4+/5+/6+ 2

2

2

dpq

[Rujphe,

2

2

dp j: P

:

[Ru(phen) ] dpq 2

2

[Fe(CN) ] b p m j : ^ : ^ [Fe(CN)*]^dpp 2

4

/ J

1 1

a)

In a c e t o n i t r i l e

b)

E^(2)

u

-E^U)^

w i t h 0.1 from

for Various

13

K

160 180 150 210 160

com 5.1xl0 l.lxiof 3.4x10^ 3.5x10^ 5.1x10

140 150

2.3xl0 3.4xlO

M supporting

Table

Bimetallic

2

2 z

e l e c t r o l y t e unless

I.

Thus, w h i l e e m i s s i o n s t u d i e s i n d i c a t e t h a t e x t e n s i v e g r o u n d - s t a t e c o m m u n i c a t i o n o c c u r s o n l y f o r bpm, t h e e l e c t r o c h e m i s t r y g i v e s ambiguous r e s u l t s .

EXCITED STATE PROPERTIES The bpm, dpp, and dpq m o n o m e t a l l i c complexes and t h e dpp and dpq b i - and t e t r a m e t a l l i c complexes e m i t a t room t e m p e r a t u r e i n f l u i d s o l u t i o n w i t h l i f e t i m e s i n t h e 20 - 300 ns r e g i o n . The e m i s s i o n i s c h a r g e t r a n s f e r i n n a t u r e and i n v o l v e s t h e l o w e s t e n e r g y ir* o r b i t a l (bpm, dpp o r dpq) and t h e Ru d core. R e g a r d l e s s of the c o m p l e x i t y o f t h e s y s t e m , t h e e m i s s i o n ^ e n e r g y depends on whether t h e bpm, dpp, o r dpq l i g a n d i s t e r m i n a l o r b r i d g e d and i s n o t s e n s i t i v e t o t h e number o f m e t a l c e n t e r s p r e s e n t ( T a b l e I I I ) . As an example o f t h i s phenomenon, a l l o f t h e p o l y m e t a l l i c complexes c o n t a i n i n g b r i d g i n g dpp ( T a b l e I I I ) have e m i s s i o n maxima between 746 and 772 nm.

TABLE I I I . E m i s s i o n Maxima and L i f e t i m e s o f Mono-, B i - a n d T e t r a m e t a l l i c Complexes i n A c e t o n i t r i l e a t Room T e m p e r a t u r e

Complex

* max

em

, nm

T,

Monometallics 2 +

Ru(bpm)

639

3

2 +

Ru(bpy) bpm

710

2

2

Ru(dpp)

+

623

131 76 183

3

R u ( b p y ) d p p.2+ 2

Ru(phen) d p p Ru(dpq)

2 +

2 + 3

Ru(bpy) dpq

2 +

2

Ru(phen) dpq

2 +

2

660

226

652

252

716

82

766

71

756

83

756

134

dpp P o l y m e t a l l i c s [Ru(bpy) ] dpp 2

4 +

2

[Ru(phen) ] dpp 2

4 +

746

2

4

Ru(phen) dppRu(bpy)

+

2

Ru[(dpp)Ru(bpy) ]3 2

Ru[(dpp)Ru(phen) ] 2

8 + 3

Ru[(dpp)Ru(tpy)Cl]

5 + 3

752

153 113

772

89

760

87

758

50-200

dpq P o l y m e t a l i l c s [Ru(bpy) ] dpq 2

4 +

2

[Ru(phen) l dpq 2

4 +

2

Ru(phen) dpqRu(bpy) 2

4 + 2

822

}

s e -

1, 2 a n d 3 a n d B L i s a

l i g a n d .

involved

of

bpm

2 , 3 - b i s < 2 - p y r i d y 1 ) q u i n o x a l i n e =

BiBz ImH

weakly

gap c o r r e l a t i o n s .

2 , 2 ' - b i p y r a z i n e

BilmH^

The

a d -

f o l l o w s :

bpy

=

a r e

quantum

Ligands

bpm

=

issues

COMPLEXES

A b b r e v i a t i o n s

BL y

p r o p e r t i e s o f

and s u b s t i t u t i o n

bpy

bpz

report

t o c o o r d i n a t e

o f t h e mononuclear

i n d i c a t e d

i nt h i s

c o o r d i n a t i o n

ions

Ligands

F i g u r e

(Sahai

have

remote

i no u r l a b o r a t o r i e s

p r o p e r t i e s

complexes

complexes

with

(Rillema

One thermal

acetone

b i d e n t a t e

mixed-ligand

1982, 1983; Haga method

t o give

h a s

1983)and photo-

h a s involved

< e q . 1) f o l l o w e d

ligand

complexes

formation o f

b y r e a c t i o n

C R u ( b p y ) -,-BL 1

with

.

a n excess

A more

0

S=CHJCCH R u ( b p y ),,,C1^

*Person

+ 2AgPF,.

t o c o n t a c t

f o r r e p r i n t s

3

> CRu (b p y )

-

+ 2Ag.Cl

+ 2PF, , :

[13

general

route

r e a c t i o n excess of

of

of

to

the

BL

a

v a r i e t y

ligand

ruthenium(I

of

appropriate

I>

in

ruthenium(I

ruthenium

ethylene

complexes

I)

complexes

precursor

g l y c o l

c o n t a i n i n g

according the

ethylene

+

g l y c o l

x's R u C l

EG

the

procedures

Photochemical C l ~

and

was

hV, C Ru < bp z )

were

y i e l d

with

an

ligand

BL3

C !

C23

+

f

who

g l y c e r o l

as

the

g l y c o l .

to

synthesize

loss

an

used

+

was

complexes

effected

acetochloro

excess

of

the

in

that

the

intermediate

BL

ligand

via

could

presence (eq.

eq.

3),

2

CI "

3'~ *

3

used Ligand

to

reacted

(1983),

ethylene

t h e r m a l l y .

a c e t o n i t r i l e

then

Haga

than

r e a c t i o n s

obtained

which

of

rather

Formation

[ Ru < b p y ) ( BL ) ^3

3

medium

be

B 5

CRu(BL> 3 -

followed

of

=

)

an

2.

A

a

r e a c t i o n

not

BL,

3H O

3

eq.

CRu(bpy

7S

Ru(bpy)Cl,

to

involved

with

bibenzimidazo1e

R u ( b p y ) Cl vst

has

complex

>

CRu ( bp z )


R u ( b p m )

5.3

and

e.g.

of

2.

the

F i g .

ligands, the

p r o p e r t i e s

3 +

negative

ligand

stronger

Ru

F i g .

following

"

more

stronger

R u

3

" p o t e n t i a l s

of

(the

the

the

level

ground

£ 3 - . +

and

of

pK^,

of of

bpz

B L l i g a n d s

a l l

a d d i t i o n ,

the

other the

E

t r i s C Ru ( BL

The

x

)

3

3

1

p o s i t i v e

e.g. shows

are

ruthenium are

Ru'-*"""

that

more

complexes.

' &••*•*• p o t e n t i a l

p o t e n t i a l s

+

u

and

(Allen

f i g u r e

p o t e n t i a l s 3

the

the

manifold

state)

p o t e n t i a l s , -

0

chelate

R 3*-"3 *

most



0

by

between

e m i t t i n g

redox

+

determined

ground

redox

^ > •* '

s i m i l a r

that

the

state

3

were

d i f f e r e n c e

state

of

£ 3 /

=

CRu ( b p y ) 3

shows

whereas

energy

excited

v i b r a t i o n a l

+

in

other

p y r i d i n e

- v a l u e s

p o t e n t i a l s

value

the

in

involves

the

*

3

the

p r o p e r t i e s

extremes.

£ «a •+•-'-»•••

F i g .

q u a n t i t i e s . CRu ( b p z

/

E

1987)

.c:. -

CRu(bpy )

Energy

,

u

to

1968))

these

zeroth

-

(pK^.

The

between

R i l l e m a

£&>.•+•«•/•+• the

bpz (Ford

v i b r a t i o n a l

of

3

3

containing

2

Ru(bpy)(CN)(CNH)

+

H

+

«

2

+

+ H

3

320 nm

Fe(III)PP 100

fold

The

photoreduction

ranging

excess of

o f F e ( I I I ) P P was The

c a r r i e d out w i t h pyz/Fe c o n c e n t r a t i o n r a t i o e s

results unequivocally

F e ( I I ) P P ( p y z ) ^ s p e c i e s i s formed i n any

case,

i n d i c a t e t h a t the monomeric

i r r e s p e c t i v e o f the p y r a z i n e

t h a t the p o l y n u c l e a r s p e c i e s i s formed v i a a secondary thermal

the r a t e o f which i n c r e a s e s w i t h d e c r e a s i n g o f the s e c o n d a r y r e a c t i o n was 300/1

t o 1,500/1. In these

much s l o w e r

than

the p y r a z i n e

c o n c e n t r a t i o n . The

c o n d i t i o n s the p o l y m e r i z a t i o n p r o c e s s

the r e d u c t i o n o f F e ( I I I ) P P . One

been reduced when p o l y m e r i z a t i o n b e g i n s .

performed w i t h an excess o f Sodium d i t h i o n i t e and was

f o l l o w e d by m o n i t o r i n g

r e s u l t s show t h a t the p o l y m e r i z a t i o n

b a s i s , we

The

complete r e d u c t i o n the

to

from be

that v i r t u a l l y a l l of

disappearance

the absorbance decrease

f o l l o w s a second o r d e r r a t e law.

propose the f o l l o w i n g mechanism:

K

kinetics

i s observed

can thus envisage

F e ( I I I ) P P was

rate of Fe(II)PP(pyz)

concentra-

reaction,

s t u d i e d w i t h pyz/Fe c o n c e n t r a t i o n r a t i o e s r a n g i n g

F e ( I I I ) P P has

The

a

pyrazine.

from 5000/1 to 1/1.

t i o n and

of

s o l u t i o n s a t p H ~ 1 0 : a) w i t h a 5000 f o l d excess o f p y r a z i n e ; b) w i t h

a t 550 On

this

nm.

C

+

B

(6)

C

+

A

(7)

where, A = F e ( I I ) P P ( p y z ) ; B = Fe(II)PPpyz; C = F e ( I I ) P P p y z F e ( I I ) P P p y z ; 2

C

= pyzFe(II)PPpyzFe(II)PPpyz;

D =

D' =

pyzFe(II)PPpyzFe(II)PPpyzFe(II)PPpyz;

Fe(II)PPpyzFe(II)PPpyzFe(II)PPpyz.

Supposing t h a t E q u i l i b r i u m 1 i s very r a p i d l y e s t a b l i s h e d , t h a t , due p y r a z i n e , r e a c t i o n s 6 and 7

to the excess

of

are n e g l i g i b l e compared with r e a c t i o n 5, and i n t r o d u c i n g

the steady s t a t e a p p r o x i m a t i o n

f o r C, C ,

D

Eq. 8 g i v e s the r a t e o f d i s a p p e a r -

ance o f A ( F e ( I I ) P P ( p y z ) ). -d ( j Q

/dt = (n-l)k K

2

2

Q T j / [pyz]

2

(n-l)k K [ A ]

/

(8)

[£yl]

where n i s the number o f the i r o n c e n t e r s i n the polymeric compound. C o n s i d e r i n g t h a t the steady s t a t e c o n c e n t r a t i o n o f i n t e r m e d i a t e s C, C , very low,

D,

... are l i k e l y to be

n can be taken c o n s t a n t and r e p r e s e n t i n g the number o f the monomeric u n i t s

i n the f i n a l

p r o d u c t . Then, s i n c e the v a r i a t i o n o f the p y r a z i n e c o n c e n t r a t i o n i s

n e g l i g i b l e due

to the excess o f the b a s i s with r e s p e c t to F e ( I I ) P P ( p y z ) ,

-drA~|dt —'

= k

obs

2 r"A""| w i t h k

obs

2 — — 2 - ( n - l ) k K /I pyzj + (n-l)k K / T p y z l 2 — — 3

(9)

L

The v a l i d i t y o f k i n e t i c e x p r e s s i o n 9 has been t e s t e d by p l o t t i n g k then making the b e s t f i t o f the experimental data to the form

obs

vs.

pyz

and

2 y = a/ £pyzj

+

b/J^pyz_J

In F i g . 2 the good f i t o f the experimental p o i n t s with the t h e o r e t i c a l curve i s evident.

k , obs

x 10

0.01

0.03

0,05

[pyz]

_ F i g . 2 - Best f i t

p l o t of experimental k ^ v a l u e s

2

to the form y=a/[pyz] +

b/Qpyz)

Another p e c u l i a r i t y o f the F e ( I I ) P P p o l y n u c l e a r compound i s i t s r e a c t i v i t y r e s p e c t t o oxygen: i n a l k a l i n e s o l u t i o n

with

(pH^vlO) the polymer i s r a p i d l y o x i d i z e d and

d i s g r e g a t e d to g i v e the r e a c t a n t F e ( I I I ) P P . At pHs

c l o s e to n e u t r a l i t y

(^8)

the

s p e c t r a l behaviour and

^

a f t e r oxygenation

bands decreased

shifted;

i s as f o l l o w s : i ) the spectrum

i i ) the a d d i t i o n o f an excess

o f the reduced

e x h i b i t s the OC

i n i n t e n s i t y and the 800-nm a b s o r p t i o n l e s s i n t e n s e and b l u e

polymer; i i i )

o f d i t h i o n i t e r e v e r t s t h e spectrum

the spectrum

to that

o f F e ( I I I ) P P i s o b t a i n e d back by a d d i n g

f e r r i c y a n i d e . These r e s u l t s can be taken as an evidence

t h a t oxygen o x i d i z e s

[Fe(II)PPpyz"] t o a F e ( I I ) - F e ( I I I ) mixed v a l e n c e p o r p h y r i n p o l y n u c l e a r compound. — —' n T h i s compound appears t o be s t a b l e f o r s e v e r a l days. I t forms w i t h p o l y - L - l y s i n e a 1

s o l i d adduct

t h a t p r e s e n t s a spectrum

i d e n t i c a l with t h a t observed

g i v i n g evidence o f i t s p o l y m e r i c s t r u c t u r e . The p a r t i a l

i n solution,

oxidation of —

Vfe(II)PPpyzl — n

by oxygen may be i n t e r p r e t e d as a r i s i n g from a d i f f e r e n t r e a c t i v i t y o f the t e r m i n a l F e ( I I ) atomswith r e s p e c t t o the o x i d a t i o n , compared w i t h t h e o t h e r ones. Thus, the mixed v a l e n c e polymer s h o u l d have the s t r u c t u r e F e ( I I I ) P P p y z F e ( I I ) P P p y z . . . . F e ( I I ) P P p y z F e ( I I I ) P P . In t h i s s t r u c t u r e t h e p y r a z i n e I T system c a l i z e d compared w i t h t h a t o f the reduced

i s expected

t o be l e s s

delo-

polymer, so g i v i n g the r e a s o n o f t h e ob-

s e r v e d d i m i n u t i o n i n i n t e n s i t y and the b l u e s h i f t o f the 800-nm band. The r a p i d and complete o x i d a t i o n observed b r i d g e b r e a k i n g caused rin

by OH

i n alkaline solution i s likely

s p e c i e s . U n f o r t u n a t e l y , any attempt

reduced

t o be due t o the p y r a z i n e

which i s known t o be a good l i g a n d

f o r F e ( I I I ) porphy-

t o i s o l a t e the mixed v a l e n c e as w e l l as the

p o l y n u c l e a r compounds f a i l e d because o f the r a p i d o x i d a t i o n and d i s g r e g a t i o n

o c c u r r i n g as soon as the s o l i c b were s e p a r a t e d from

the excess

o f pyrazine.

References B a r t o c c i C, Scandola F, F e r r i A, C a r a s s i t i V (1980) P h o t o r e d u c t i o n o f Hemin i n A l c o h o l - C o n t a i n i n g Mixed S o l v e n t s . J Am Chem Soc 102: 7067-7072 B a r t o c c i C, M a l d o t t i A, T r a v e r s o 0, B i g n o z z i CA, C a r a s s i t i V (1983) P h o t o r e d u c t i o n o f Chlorohemin

i n Pure P y r i d i n e . Polyhedron

2: 97-102

B a r t o c c i C, A m a d e l l i R, M a l d o t t i A, C a r a s s i t i V (1986) P h o t o r e d u c t i o n o f F e ( I I I ) P r o t o p o r p h y r i n IX i n Ethanol-Water Polyhedron

solutions containing Bifunctional

Ligands.

5: 1297-1301

Fuhrhop JH, Baccouche M, Bunzel M (1980) A P y r a z i n e - B r i d g e d Heme Dimer A b s o r b i n g a t 800

nm. Angew Chem I n t Ed E n g l 19: 322-323

M a l d o t t i A, B a r t o c c i C, A m a d e l l i A, C a r a s s i t i V (1983) An ESR S p i n T r a p p i n g g a t i o n on the P h o t o r e d u c t i o n o f Chlorohemin

Investi-

i n Mixed S o l v e n t s . I n o r g Chim A c t a 74:

275-278 M a l d o t t i A, B a r t o c c i C, C h i o r b o l i C, F e r r i A, C a r a s s i t i V (1985) The Role o f Oxygen i n the Mechanism o f t h e I n t r a m o l e c u l a r Photoredox R e a c t i o n o f F e ( I I I ) P r o t o p o r p h y r i n IX i n A l k a l i n e Aqueous E t h a n o l . J Chem Soc Chem Comm: 881-882 S c h n e i d e r 0, Hanack M (1983) A x i a l p o l y m e r i s i e r t e s ( P h t a l o c y a n i n a t o ) e i s e n ( I I ) m i t Pyrazin, 4 , 4 • - B i p y r i d i n , 1,4-Diisocyanobenzol

oder

1,4-Diazabicyclo(2.2.2)octan

a l s B r i i c k e n l i g a n d e n ; D a r s t e l l u n g , C h a r a k t e r i s i e r u n g und e l e k t r i s c h e

Leitfahigkeiten

Chem Ber 116: 2088-2108 Wang JH, B r i n i g a r WS (1960) D e s i g n

and S y n t h e s i s o f a C a t a l y s t

d a t i o n o f Cytochrome c. Proc N a t l Acad S c i USA 46: 958-963

f o r the A e r o b i c O x i -

CHARGE-TRANSFER STATES AND

TWO-PHOTON PHOTOCHEMISTRY OF

R . M . B e r g e r , A . K . I c h i n a g a , and Department o f

Cu(NN)

+ 2

SYSTEMS

D.R.McMillin

C h e m i s t r y , P u r d u e U n i v e r s i t y , West L a f a y e t t e ,

IN 4 7 9 0 7 ,

USA

1 0

Because Cu(I) has a d electronic configuration, the metalc e n t e r e d a b s o r p t i o n b a n d s t e n d t o o c c u r i n t h e UV s p e c t r a l r e g i o n . But b e c a u s e t h e C u ( I I ) o x i d a t i o n s t a t e i s q u i t e a c c e s s i b l e , m e t a l to-ligand charge-transfer (CT) a b s o r p t i o n bands appear in the visible spectrum when the ligands present low-lying acceptor orbitals. For example, Cu(I) complexes involving chelating heteroaromatic l i g a n d s (NN l i g a n d s ) such as b i p y r i d i n e (bpy) or 1,10-phenanthroline (phen) o r one o f t h e i r d e r i v a t i v e s a r e b r i g h t l y colored. In fact, several different CT excited states are a c c e s s i b l e i n these systems. One r e a s o n i s t h a t t h e l i g a n d s p r e s e n t 2 l o w - l y i n g a c c e p t o r l e v e l s w h i c h O r g e l ( 1 9 6 1 ) d e s i g n a t e d a s x a n d V> orbitals. (They t r a n s f o r m as s y m m e t r i c and a n t i s y m m e t r i c o r b i t a l s , respectively, under r o t a t i o n about the t w o - f o l d a x i s ( F i g . 1).) Further complexity arises i n Cu(NN) systems because the d s h e l l of the metal i s s p l i t into at least four sublevels. F i n a l l y , there i s some evidence that a charge-transfer-to-solvent state can be p o p u l a t e d when a h i g h i n t e n s i t y p u l s e d l a s e r s o u r c e i s u s e d . +

2

I n t h i s r e p o r t we w i l l a t t e m p t t o a s s i g n t h e v i s i b l e a b s o r p t i o n bands of a s e r i e s of copper p h e n a n t h r o l i n e s . A s t h e CT s p e c t r a a r e p o o r l y r e s o l v e d , e v e n a t low t e m p e r a t u r e s , i n most c a s e s t h e s p e c t r a will be a s s i g n e d under the assumption of the highest available s y m m e t r y w h i c h i s D }. However, when p h e n y l g r o u p s a r e p r e s e n t i n t h e 2,9 p o s i t i o n s o f t h e p h e n a n t h r o l i n e c o r e , t h e c o m p l e x e s e x h i b i t a s i g n i f i c a n t d i s t o r t i o n a t low t e m p e r a t u r e s and i n t h e s o l i d s t a t e . T h i s d i s t o r t i o n i s a p p a r e n t l y f a v o r e d by i n t r a m o l e c u l a r i n t e r l i g a n d stacking interactions. 2c

EXPERIMENTAL The l i g a n d a b b r e v i a t i o n s a r e as f o l l o w s : 1,10-phenanthroline, phen; 2,9-dimethyl-l,10-phenanthroline, dmp; 2,9-dimethyl-4,7d i p h e n y l - 1 , 1 0 - p h e n a n t h r o l i n e , bcp; 2 , 9 - d i p h e n y l - l , 1 0 - p h e n a n t h r o l i n e , d p p ; 2, 4, 7 , 9 - t e t r a p h e n y l - l , 1 0 - p h e n a n t h r o l i n e , t p p . The l i g a n d s w e r e obtained from commercial s o u r c e s o r p r e p a r e d by a l i t e r a t u r e m e t h o d ( D i e t r i c h - B u c h e c k e r e t a l . 1981), and t h e c o m p l e x e s • w e r e p r e p a r e d as before (McMillin etal. 1977). Absorption measurements were carried out with a Cary 17D spectrophotometer, and t h e l o w - t e m p e r a t u r e data were o b t a i n e d w i t h a n O x f o r d I n s t r u m e n t s DN-704 c r y o s t a t . A NdrYAG l a s e r ( Q u a n t a Ray DCR-1) served as a high intensity pulsed light source. For p h o t o l y s i s s t u d i e s t h e s a m p l e was d e o x y g e n a t e d i n a q u a r t z c u v e t t e and s t i r r e d d u r i n g i r r a d i a t i o n . T h e r e p r a t e was 10 H z , a n d the w i d t h a t h a l f h e i g h t o f e a c h p u l s e was a b o u t 7 n s .

BAND A S S I G N M E N T S I N D

2 d

SYMMETRY

I n t h e e n e r g y l e v e l scheme d e p i c t e d i n F i g . 1 t h e r e a r e s e v e n symmetry-allowed CT t r a n s i t i o n s . However, two t r a n s i t i o n s a r e e x p e c t e d t o c a r r y most o f t h e i n t e n s i t y . T h i s f o l l o w s f r o m t h e CT theory o f Mulliken which p r e d i c t s that t h e o s c i l l a t o r strength i s m a i n l y due t o t h e c h a r g e - t r a n s f e r term and i s c o n c e n t r a t e d i n

F i g u r e 1. Upper l e f t : The r e l a t i v e w e i g h t s and a t o m i c o r b i t a l s i n t h e x* d V>* o r b i t a l s o f p h e n . Cu(phen) i n D symmetry. Right: one e l e c t r o n Cu(phen) i n D j symmetry. T h e z - p o l a r i z e d CT < I ) i n d i c a t e d by arrows. a

n

+

2

2 d

+

2

1

A

a

2 c

r

p h a s e s o f t h e p?r Lower l e f t : energy l e v e l s f o r transitions ( B 1

2

e

those t r a n s i t i o n s which a r e p o l a r i z e d metal and t h e l i g a n d centers (Mulliken P h i f e r and M c M i l l i n 1986). When t h i s labels are e(xz,yz) > e(V>*) a n d b ( x a s t e r i s k i n d i c a t e s t h a t 7r-antibonding involved. 1

along the axis j o i n i n g the 1 9 5 2 ; Day a n d S a n d e r s 1 9 6 7 ; i s t h e z - a x i s , t h e symmetry -y ) > a ( x * ) where t h e orbitals of the ligand are

2

2

2

+

The absorption spectrum of Cu(dmp) a t 90 K i n a 4:1 ethanol/methanol glass i s presented i n Fig.2. The s p e c t r u m r e v e a l s a s t r o n g b a n d a t 4 6 0 nm w i t h a v i b r o n i c s a t e l l i t e a t 4 4 0 nm. In a d d i t i o n t h e r e i s a w e a k e r maximum a t 3 9 0 nm a n d a s h o u l d e r a t 5 1 0 nm. Similar spectra are obtained from C u ( p h e n ) and C u ( b c p ) ( T a b l e 1 ) . I f t h e bands a r e l a b e l e d as Bands I , I I and I I I i n o r d e r o f i n c r e a s i n g energy, t h e o n l y unambiguous assignment i s t h a t t h e t r a n s i t i o n t o e(V>*) i s c o n t a i n e d i n B a n d I I . This f o l l o w s because the transition t o ij>* i s e x p e c t e d t o be quite intense. In p a r t i c u l a r , i t s h o u l d b e 2-3 t i m e s a s i n t e n s e a s t h e t r a n s i t i o n t o x b e c a u s e t h e 2p7r o r b i t a l o f n i t r o g e n p a r t i c i p a t e s m o r e s t r o n g l y i n the V>* o r b i t a l (Phifer a n d M c M i l l i n 1986) . Band I I I p r o b a b l y represents t h e p a r t i a l l y resolved t r a n s i t i o n t o x*• This assignment i s i n a c c o r d w i t h t h e r e l a t i v e t r a n s i t i o n e n e r g i e s e x p e c t e d on t h e b a s i s o f F i g . l and w i t h t h e f a c t t h a t an a n a l o g o u s t r a n s i t i o n i s n o t r e s o l v e d i n t h e s p e c t r u m o f b p y a n a l o g u e s w h e r e t h e x* orbital i s known t o o c c u r a t h i g h e r e n e r g i e s . I f t h e symmetry i s D , Band I must be a s s i g n e d as x,y-polarized. The r e l a t i v e intensity i s c o n s i s t e n t w i t h t h i s assignment, and t h e r e i s a p r e c e d e n t f o r x , y p o l a r i z e d t r a n s i t i o n s i n t h e s p e c t r a o f W(C0) (NN) complexes ( S t a a l e t a l . 1978). On t h e o t h e r h a n d , B a n d I c o u l d a l s o a c q u i r e i n t e n s i t y from t h e charge t r a n s f e r term i f t h e complexes a r e s u b j e c t t o lowsymmetry d i s t o r t i o n s i n solution. In the solid state Cu(phen) (Healy etal. 1985) and C u ( d m p ) (Dobson e t a l . 1984) have been found t o adopt f l a t t e n e d s t r u c t u r e s with lattice-dependent angles b e t w e e n mean l i g a n d p l a n e s w h i c h a r e s i g n i f i c a n t l y s m a l l e r t h a n 90°. However, the flattening distortions have been connected with intermolecular stacking i n t e r a c t i o n s which do not survive i n solution (Goodwin e t a l . 1986). More e x p e r i m e n t a l work w i l l be needed t o a s c e r t a i n whether any l o w symmetry d i s t o r t i o n s o c c u r i n solution. 2

+

+

2

2

2 d

4

+

2

+

2

700

Wavelength (NM)

+

F i g u r e 2. Absorption spectra of Cu(dmp) (-—) ( ) a t 9 0 K i n a 4:1 e t h a n o l / m e t h a n o l g l a s s . 2

and C u ( d p p )

+ 2

Table

NN

bcp

a

The

LOW

Electronic Absorption

band

phen

dmp

1.

A,

nm

6

I Ila lib III

500 463 435 380

(sh)

I Ila lib III

510 460 440 390

(sh)

I Ila lib III

540 495 460 425

(sh)

€ values

are

SYMMETRY

Data at

90

NN

a

K

band

dpp

II' Ilia' Hlb'

tpp

II III

17,200 12,500 8, 100

A,

1 1

nm

550 436 413

3 , 000 4,400 3,900

590 460

9, 800 10,300

16,500 10,800 4,800

31,600 20,200 10,700

not

corrected

for solvent

contraction

SPECTRA

As can be seen in Fig. 2 the low-temperature absorption spectrum of Cu(dpp) has a very d i f f e r e n t shape i n t h a t two i n t e n s e CT a b s o r p t i o n b a n d s a r e r e s o l v e d i n t h e v i s i b l e r e g i o n . If t h e s e b a n d s c a n b e a s s i g n e d a s t r a n s i t i o n s t o t h e V* a n d x* orbitals of the l i g a n d s , i n view of the r e l a t i v e i n t e n s i t i e s the lower energy band would be assigned to the V* transition. Extended Huckel calculations reveal that the presence of the phenyl groups has l i t t l e e f f e c t on t h e r e l a t i v e e n e r g i e s o f t h e V* a n d x* orbitals, hence the i n c r e a s e d s p e c t r a l r e s o l u t i o n p r o b a b l y r e f l e c t s a change in the separation among t h e d 2 _ y 2 and t h e d and d y orbitals. The s p l i t t i n g i n c r e a s e s u g g e s t s a symmetry change, and i n l i n e w i t h t h i s a r g u m e n t a r e l a t e d c o m p l e x o f a c a t e n a n d l i g a n d has been shown to have a d i s t o r t e d , almost t r i g o n a l pyramidal c o o r d i n a t i o n geometry in the s o l i d state. In t h i s case the r e l a t i v e p o s i t i o n i n g of the ligands appears to be determined by interligand stacking i n t e r a c t i o n s (Cesario e t a l . 1985). Because i n t r a m o l e c u l a r stacking i s i n v o l v e d , t h e l o w s y m m e t r y s t r u c t u r e m i g h t be e x p e c t e d t o o c c u r in solution as well. The Cu(dpp) system also has phenyl s u b s t i t u e n t s i n t h e 2 and 9 p o s i t i o n s , h e n c e i t m i g h t be e x p e c t e d t o have a s i m i l a r s t r u c t u r e . Indeed, the copper catenate, Cu(dpp) and Cu(tpp) a l l exhibit similar low temperature absorption spectra. The indicated conclusion i s that Cu(I) complexes of phenanthroline l i g a n d s bearing 2,9-phenyl s u b s t i t u e n t s are prone to l o w - s y m m e t r y d i s t o r t i o n s due t o i n t r a m o l e c u l a r , i n t e r l i g a n d s t a c k i n g interactions. Because of the a n t i c i p a t e d symmetry differences, p r i m e d a n d u n p r i m e d n u m e r a l s a r e u s e d t o l a b e l t h e b a n d s i n T a b l e 1. Parenthetically, we should note that i n the limit of a large d i s t o r t i o n i t i s not p o s s i b l e to a t t r i b u t e the s e p a r a t e l y resolved t r a n s i t i o n s t o x* a n d V* orbitals. 2 +

2

x

x z

Z

+

2

+

2

+

2

TWO

PHOTON A B S O R P T I O N

Although deaerated s o l u t i o n s of Cu(dmp) + i n C H C 1 are q u i t e p h o t o s t a b l e u n d e r r o o m l i g h t a n d u n d e r e x p o s u r e t o 355 nm r a d i a t i o n f r o m a 1000 W Xe a r c lamp, F i g . 3 shows t h a t t h e s o l u t i o n s a r e r a p i d l y b l e a c h e d when i r r a d i a t e d w i t h a h i g h i n t e n s i t y p u l s e d l a s e r source. The b l e a c h i n g i s e v e n m o r e r a p i d w h e n 3 5 4 . 7 nm light is used. Product a n a l y s i s shows t h a t t h e n e t r e a c t i o n e n t a i l s the oxidation of Cu(dmp) t o t h e C u ( I I ) s t a t e and t h e r e d u c t i o n o f t h e s o l v e n t w i t h concomitant formation of c h l o r i d e . At r e l a t i v e l y low powers (< 3 mJ per pulse a t 3 5 4 . 7 nm) the r a t e of bleaching approximately d e p e n d s on the square of the l a s e r power. This establishes that the bleaching requires the absorption of two photons: 2

2

2

+

2

Cu(dmp)

+ 2

+

2 hv

+ CH C1 2

2

> Cu(dmp)

2 + 2

+ CI" + Prod.

(1)

A t h i g h e r i n t e n s i t i e s t h e b l e a c h i n g r a t e becomes a l i n e a r f u n c t i o n of l a s e r power because a l l of the Cu(dmp) molecules in the i r r a d i a t e d v o l u m e h a v e b e e n d r i v e n i n t o t h e r e l a t i v e l y l o n g - l i v e d CT excited state. Consistent with this interpretation, saturation i s much h a r d e r t o a c h i e v e f o r C u ( p h e n ) w h i c h has a r e l a t i v e l y s h o r t l i v e d CT excited state. The m e c h a n i s t i c d e t a i l s have y e t t o be e s t a b l i s h e d , b u t i t i s p o s s i b l e t h a t two p h o t o n a b s o r p t i o n populates a c h a r g e - t r a n s f e r - t o - s o l v e n t (CTTS) e x c i t e d s t a t e . I n any c a s e t h e s o l v e n t dependence of the bleaching r a t e (CH C1 > C H C N >> C H 0 H ) p a r a l l e l s t h e r e a c t i o n r a t e s o f t h e s o l v a t e d e l e c t r o n w i t h t h e same s e r i e s of solvents. M o r e o v e r , CTTS t r a n s i t i o n s h a v e b e e n o b s e r v e d i n t h e UV s p e c t r a of the r a d i c a l anion forms of v a r i o u s aromatic s y s t e m s ( J o s c h e k and G r o s s w e i n e r 1966). +

2

+

2

2

0.9

2

3

3

-

CD U

c CD

ID

C_

o in -Q

F i g u r e 3. P h o t o l y s i s o f C u ( d m p ) + a t 20° in CH C1 . The s a m p l e was irradiated with 3.2 mJ p u l s e s o f 5 0 2 . 9 nm r a d i a t i o n f o r 1 min i n t e r v a l s where the r e p e t i t i o n r a t e i s 10 Hz. 2

2

0.0 350

550

450

Wavelength

(nm)

2

ACKNOWLEDGMENT T h i s r e s e a r c h was s u p p o r t e d t h r o u g h G r a n t No. CHE-8414267.

by t h e N a t i o n a l Science

Foundation

REFERENCES C e s a r i o M, D i e t r i c h - B u c h e c k e r CO, G u i l h e m J , P a s c a r d C, S a u v a g e , J P (1985) M o l e c u l a r s t r u c t u r e o f a c a t e n a n d a n d i t s c o p p e r ( I ) catenate: Complete overturn o f t h e i n t e r l o c k e d m a c r o c y c l i c l i g a n d s b y c o m p l e x a t i o n . J Chem S o c Chem Commun 244-247. Day R, S a n d e r s N ( 1 9 6 7 ) T h e s p e c t r a o f c o m p l e x e s o f c o n j u g a t e d ligands. Part I I . Charge-transfer i n substituted phenanthroline c o m p l e x e s : I n t e n s i t i e s . J Chem S o c (A) 1 5 3 6 - 1 5 4 1 D i e t r i c h - B u c h e c k e r CO, M a r n o t P A , S a u v a g e J P ( 1 9 8 2 ) D i r e c t s y n t h e s i s of d i s u b s t i t u t e d aromatic polyimine chelates. T e t L e t t 23: 5291-5294 D o b s o n J F , G r e e n BE, H e a l y PC, K e n n a r d CHL, P a s k a w a t c h a i C, W h i t e AH (1984). The s t e r e o c h e m i s t r y o f b i s ( a , a ' - d i i m i n e ) - c o p p e r ( I ) c o m p l e x e s : T h e c r y s t a l amd m o l e c u l a r s t r u c t u r e s o f b i s ( 2 , 9 dimethyl-1,10-phenanthroline)copper(I) bromide hydrate, bis(4,4 6,6 -tetramethyl-2,2 -bipyridine)copper(I) chloride dihydrate, and bis(2,9-dimethyl-l,10-phenanthroline)copper(I) n i t r a t e d i h y d r a t e ( a r e d e t e r m i n a t i o n ) . A u s t J Chem 3 7 : 6 4 9 - 6 5 9 G o o d w i n K V , M c M i l l i n DR, R o b i n s o n WR ( 1 9 8 6 ) C r y s t a l a n d m o l e c u l a r structure of [Ag(tmbp) ]BF . Origin of flattening distortions i n d c o m p l e x e s o f t h e t y p e M ( N N ) . I n o r g Chem 2 5 : 2 0 3 3 - 2 0 3 6 H e a l y P C , E n g e l h a r d t LM, P a t r i c k V A , W h i t e AH ( 1 9 8 5 ) L e w i s - b a s e a d d u c t s o f g r o u p I B m e t a l ( I ) compounds. P a r t 19. C r y s t a l structures o f bis(1,10-phenanthroline)copper(I) p e r c h l o r a t e and d i b r o m o c u p r a t e ( I ) . J Chem S o c D a l t o n T r a n s 2 5 4 1 - 2 5 4 5 Joschek H-I, Grossweiner L I (1966) O p t i c a l g e n e r a t i o n o f h y d r a t e d e l e c t r o n s f r o m a r o m a t i c c o m p o u n d s . I I . J Am Chem S o c 8 8 : 3 2 6 1 - 3 2 6 8 M c M i l l i n DR, B u c k n e r MT, A h n BT ( 1 9 7 7 ) A l i g h t - i n d u c e d r e d o x reaction of bis(2,9-dimethyl-l,10-phenanthroline)copper(I). Inorg Chem 1 6 : 9 4 3 - 9 4 5 M u l l i k e n , RS ( 1 9 5 2 ) M o l e c u l a r c o m p o u n d s a n d t h e i r s p e c t r a . I I . J Am Chem S o c 7 4 : 8 1 1 - 8 2 4 O r g e l LE (1961) D o u b l e b o n d i n g i n c h e l a t e d m e t a l c o m p l e x e s . J Chem S o c 3 6 8 3 - 3 6 8 6 P h i f e r C C , M c M i l l i n DR ( 1 9 8 6 ) T h e b a s i s o f a r y l s u b s t i t u e n t e f f e c t s o n c h a r g e - t r a n s f e r a b s o r p t i o n i n t e n s i t i e s . I n o r g Chem 2 5 : 1 3 2 9 1333 S t a a l L H , S t u f k e n s D J , Oskam A (1978) A s t u d y o f t h e e l e c t r o n i c p r o p e r t i e s o f M ( C O ) D A B (M = C r , Mo, W; DAB = d i a z a b u t a d i e n e ) . I . E l e c t r o n i c a b s o r p t i o n , r e s o n a n c e Raman, i n f r a r e d , c - and N NMR s p e c t r a . I n o r g C h i m A c t a 2 6 : 2 5 5 - 2 6 2 1

1

1

2

4

1 0

+

2

4

1

3

1 5

PHOTOINDUCED MULTIELECTRON REDOX REACTIONS IN THE V I S I B L E LIGHT REDUCTION OF PLATINUM CENTERS

( P t C l ) " / A L C O H O L SYSTEM2

£

6

A . B . B o c a r s l y , R . E . C a m e r o n , and M e i s h e n g Zhou Department o f C h e m i s t r y , P r i n c e t o n

University,

Princeton,

N . J . 0 8 5 4 4 , USA

A l t h o u g h the p h o t o c h e m i s t r y o f o c t a h e d r a l h a l o p l a t i n u m (IV) complexes has been e x t e n s i v e l y i n v e s t i g a t e d , i t has always been viewed i n terms o f l i g a n d s u b s t i t u t i o n processes. However, the preference of platinum f o r the ( I I ) and (IV) o x i d a t i o n s t a t e s , a n d t h e p r e v i o u s o b s e r v a t i o n (Cox e t a l . , 1972) t h a t photoa q u a t i o n o f [ P t C i ] " c a n i n v o l v e a P t ( I I I ) i n t e r m e d i a t e suggests t h a t such complexes may be capable o f photoinduced m u l t i e l e c t r o n charge t r a n s f e r . Such a capability has now been demonstrated i n the p h o t o i n i t i a t e d r e a c t i o n of [ P t C i ] ~ w i t h a l c o h o l s . Up t o f o u r e l e c t r o n s can be t r a n s f e r r e d i n t h i s process l e a d i n g to the f o r m a t i o n of platinum metal (Cameron and B o c a r s l y , 1986) and aldehydes o r ketones depending on whether a primary or secondary a l c o h o l i s i n i t i a l l y employed. Of s p e c i a l i n t e r e s t i s the f i n d i n g t h a t primary a l c o h o l s are n o t o v e r o x i d i z e d to the a c i d . F u r t h e r aldehyde formation can be c a r r i e d out c a t a l y t i c a l l y by a d d i t i o n o f 0 / C u C i t o the r e a c t i o n m i x t u r e as a r e o x i dant o f lower p l a t i n u m o x i d a t i o n s t a t e s back t o P t ( I V ) (Cameron and B o c a r s l y , 1985) . 2

6

2

6

2

2

The p h o t o c h e m i c a l p r o d u c t i o n of p l a t i n u m metal i s an unusual f i n d i n g . The photochemistry o f P t ( I V ) i s t y p i f i e d by an i n a b i l i t y t o generate p l a t i n u m metal. Only r e c e n t l y has p r o d u c t i o n o f metal been noted. T h i s was o b t a i n e d by V o g l e r and H l a v a t c h (1983) who employed the r e l a t i v e l y n o v e l [ P t ( N ) ] ' comp l e x which generates N and metal upon i l l u m i n a t i o n . Since the a b i l i t y t o gen e r a t e a w e l l d e f i n e d p l a t i n u m s u r f a c e i s both s c i e n t i f i c a l l y n o v e l and o f p r a c t i c a l i n t e r e s t w i t h r e s p e c t to heterogeneous c a t a l y s i s and e l e c t r o n i c l i t h o g r a p h y , p h o t o c h e m i s t r y l e a d i n g t o t h i s g o a l i s o f fundamental i n t e r e s t . 2

3

6

2

MECHANISM OF PLATINUM PHOTOREDUCTION 2

The f o u r e l e c t r o n photoinduced r e d u c t i o n o f [ P t C i ] ~ i n aqueous a l c o h o l does not r e q u i r e h e a t i n g and occurs a t a l l wavelengths a t which the complex absorbs l i g h t . Thus, i r r a d i a t i o n a t e n e r g i e s as low as 514 nm, r e p o r t e d t o e x c i t e a [PtCi ] : iAig • T ] p l i g a n d f i e l d t r a n s i t i o n (Swihart and Mason, 1970) y i e l d s p l a t i n u m m e t a l . A l a r g e v a r i e t y o f a l c o h o l r e a c t a n t s undergo two e l e c t r o n o x i d a t i o n i n the presence o f [ P t C i ] ~ . The r e a c t i o n o f [ P t C i j ~ w i t h e t h a n o l and 2-propanol a r e p r o t o t y p i c a l . 6

2 _

3

6

2

2

6

6

The

f a t e o f t h e p l a t i n u m s p e c i e s i n these r e a c t i o n s has been f o l l o w e d u s i n g Pt-FTNMR and U V - v i s i b l e s p e c t r o s c o p y . F i g u r e 1 d e t a i l s the time dependence of t h e NMR s e n s i t i v e p l a t i n u m s p e c i e s d u r i n g the p h o t o r e d u c t i o n o f P t C i " by 2-propanol, a l o n g w i t h o r g a n i c product f o r m a t i o n as determined by gas chromotography. As c a n be seen from these data the i n i t i a l l y observed p l a t i n u m phot o p r o d u c t i s a P t ( I I ) s p e c i e s i d e n t i f i e d as P t C i " u s i n g U V - v i s i b l e s p e c t r o s copy. There e x i s t s a f a i r l y l o n g i n d u c t i o n p e r i o d p r i o r t o metal f o r m a t i o n . The e x a c t l e n g t h o f t h i s p e r i o d depends on the l i g h t i n t e n s i t y employed, and the reagent c o n c e n t r a t i o n s . Once an i n i t i a l amount o f metal i s produced the r e a c t i o n r a p i d l y goes t o c o m p l e t i o n . 1 9 5

2

6

2

4

In g e n e r a l , p l a t i n u m f o r m a t i o n i s not found t o occur u n t i l a ~ 90% y i e l d o f [ P t C i ] ~ has accumulated. T h i s suggests t h a t [ P t C i ] " a c t s as an i n h i b i t o r toward p l a t i n u m m e t a l f o r m a t i o n . I n order t o g a i n i n s i g h t i n t o t h i s process the thermal r e d u c t i o n c h e m i s t r y o f [ P t C i ] ' was examined. [ P t C i ] was found t o r e a c t w i t h 2-propanol i n a redox r e a c t i o n t o produce p l a t i n u m metal 2

2

4

6

2

4

2 _

4

2

and acetone i n a 1:1 s t o i c h i o m e t r y . A d d i t i o n o f [ P t C i ] ' ( o r K C i ) had a s t r o n g i n h i b i t i n g e f f e c t on m e t a l f o r m a t i o n d e m o n s t r a t i n g the source o f the [ptCi ] " inhibition. On the o t h e r hand, a d d i t i o n o f h i g h s u r f a c e a r e a p l a t i num m e t a l enhanced the r e a c t i o n r a t e ; t h u s , t h i s r e a c t i o n i s a u t o c a t a l y t i c i n p l a t i n u m m e t a l . These two f i n d i n g s t a k e n t o g e t h e r e x p l a i n the asymmetry o f the P t ( I I ) v e r s u s time p r o f i l e shown i n F i g . 1. 6

2

6

w i t h 2-propanol as a f u n c t i o n o f time. A l l c o n c e n t r a t i o n s are i n m i l l i m o l a r . The "+" r e p r e s e n t s the [ P t C i ] ~ c o n c e n t r a t i o n , represents [ P t C i ^ ] " , and r e p r e s e n t s one t h i r d o f the t o t a l o r g a n i c concen tration. The l a t t e r i s a sum o f acetone and a c e t a l d e h y d e c o n c e n t r a t i o n s . M e t a l i s o b s e r v e d t o form a t ~ 150 minutes. 2

6

2

2

U n l i k e the r e d u c t i o n o f [ P t C i ^ ] " , which o n l y y i e l d s acetone as the o r g a n i c p r o d u c t , a c e t a l d e h y d e i s i n i t i a l l y the major p r o d u c t d u r i n g the p h o t o r e d u c t i o n o f P t C i ^ " by 2-propanol. F o r m a t i o n o f t h i s s p e c i e s i s i n d i c a t i v e o f methyl f r e e r a d i c a l l o s s from 2-propanol. The e x i s t e n c e o f such a p r o c e s s i s c o n f i r m e d by r e a c t i o n o f t - b u t a n o l w i t h [ P t C J ? ] " . T h i s r e a c t i o n y i e l d s acetone ( a g a i n s i g n i f y i n g methyl l o s s ) and [ P t C i ] " , d i r e c t l y i n d i c a t i n g t h a t [ P t C i ] " a s s o c i a t e d p h o t o c h e m i s t r y i s r e s p o n s i b l e f o r the f o r m a t i o n o f methyl free r a d i c a l s . The e x i s t e n c e o f m e t h y l f r e e r a d i c a l s i n t r o d u c e s two major mechanistic implications. F i r s t , the oxygen based 2-propanol f r e e r a d i c a l , •0-CH(Me) , must be g e n e r a t e d . T h i s i s u n u s u a l s i n c e i t i s the carbon based r a d i c a l w h i c h i s more s t a b l e . Second, the charge t r a n s f e r c h e m i s t r y must i n v o l v e one e l e c t r o n p r o c e s s e s . T h i s l a t t e r c o n c l u s i o n i s c o n f i r m e d by the photochemical r e a c t i o n of c y c l o b u t a n o l with [ P t C i ] ~ . This alcohol i s a known f r e e r a d i c a l c l o c k (Meyer and Rocek, 1972) which produces r i n g opened p r o d u c t s upon one e l e c t r o n o x i d a t i o n . Our o b s e r v a t i o n i n t h i s r e a c t i o n o f one e l e c t r o n o x i d i z e d o r g a n i c p r o d u c t s i m p l i c a t e s a P t ( I I I ) s p e c i e s as a p r i m a r y photoproduct. 2

2

6

2

4

2

6

2

2

6

S i n c e o x i d a t i o n o f an a l c o h o l v i a an u n s t r u c t u r e d o x i d a n t such as Ci« (a p o s s i b l e r e a c t i v e s p e c i e s i n the p r e s e n t system) would l e a d t o the t h e r m o d y n a m i c a l l y f a v o r e d carbon based f r e e r a d i c a l , the a v a i l a b l e d a t a suggest t h a t r e a c t i o n proceeds v i a p h o t o i n d u c e d f o r m a t i o n o f a p l a t i n u m a l k o x y bond f o l l o w e d by o p t i c a l h o m o l y s i s t o g e n e r a t e the i n d i c a t e d p r o d u c t s as o u t l i n e d below: hi/ 2

[PtCi ] "* 6

• R'RCH-OH

2

[ P t C i ( O C H R R ' ) ] ~ + HCi 5

(1)

hi/ [PtCi (OCHRR') 5

2

#

• [ P t C i ] " + 0CHRR' 5

(2)

[PtCi 3 " 2

2

[ P t C i ] " + O-CRR'

+ *OCHRR'

5

2

2[PtCi ] "

(3a)

4

2

2

[PtCi ] - + [PtCi ] "

5

4

•OCHRR'

(3b)

6

0=CR + R' ( f o r R'=Me)

(4)

The e x i s t e n c e o f r e a c t i o n s 3a,b i s s p e c u l a t i v e , however, c o n s i s t e n t w i t h the expected b e h a v i o r o f a P t ( I I I ) s p e c i e s . Support f o r t h i s mechanism comes from the o b s e r v a t i o n t h a t i r r a d i a t i o n o f i s o l a t e d [ P t C i ( O R ) _ ] " complexes (where R = 2 - p r o p y l ) l e a d s t o p l a t i n u m metal p r o d u c t i o n . Thus, r e a c t i o n (2) i s d i r e c t l y v e r i f i e d . M e t a l f o r m a t i o n i s expected t o proceed from the thermal r e a c t i o n o f t h e p r o d u c t s o f r e a c t i o n (3) w i t h t h e a l c o h o l as d i s c u s s e d p r e v i o u s l y . A l t h o u g h t h i s l a t t e r r e a c t i o n proceeds v i a a thermal pathway, i t i s p h o t o c h e m i c a l l y a c c e l e r a t e d by v i s i b l e l i g h t . 2

x

6

x

CATALYTIC PRODUCTION OF ALDEHYDES AND KETONES A l t h o u g h t h e o b s e r v a t i o n t h a t aldehyde can be produced w i t h o u t o v e r o x i d a t i o n to t h e a c i d i s s y n t h e t i c a l l y i n t e r e s t i n g , the u t i l i z a t i o n o f an expensive r e agent ( K [ P t C i ] ) removes any s y n t h e t i c appeal. I n o r d e r t o generate a synt h e t i c a l l y u s e f u l p r o c e s s t h e r e a c t i o n must be c a t a l y t i c i n p l a t i n u m . S i n c e r e o x i d a t i o n o f p l a t i n u m m e t a l i s d i f f i c u l t i t i s n e c e s s a r y t o i n t e r c e p t an i n t e r m e d i a t e o x i d a t i o n s t a t e o f p l a t i n u m . F u r t h e r , i t i s d e s i r a b l e t o t r a p the •OCHRR' p r o d u c t p r i o r t o methyl l o s s i n cases where t h i s i s a p o s s i b l e react i o n pathway. T h i s i s accomplished by adding a C u C i / 0 redox c a t a l y s t t o the system. As shown i n Table 1 under these c o n d i t i o n s aldehyde and ketone products a r e generated i n h i g h y i e l d w i t h o u t methyl l o s s o r o t h e r f r e e r a d i c a l s i d e p r o d u c t s . C o n t r o l experiments i n d i c a t e t h a t n e i t h e r C u C i / 0 alone n o r [ P t C i ] * / 0 alone produces a c a t a l y t i c c y c l e . 2

6

2

2

2

2

2

6

2

Table I : T y p i c a l Product Y i e l d s Alcohol

a

Product

Ethanol 2-Propanol Cyclopentanol Cyclohexanol Cyclobutanol Benzyl Alcohol 2-Hexanol Cinnamyl A l c o h o l

Acetyldehyde 2-Propanone Cyclopentanone Cyclohexanone Cyclobutanone Benzaldehyde 2-Hexanone Cinnamaldehyde

% Yield 94 98 98 92 94 93 84 88

b

0.05 0.06 0.04 0.02 -

0.03 0.02 0.02

1:2 K [ P t C i ] / C u C l c a t a l y s t . R e a c t i o n s were c a r r i e d out i n a c e t o n i t r i l e , acetone, o r water s o l v e n t s , k R e a c t i o n s were c a r r i e d out i n an acetone s o l v e n t u s i n g a t u n g s t e n h a l o g e n source s u p p l i e d w i t h UV and IR c u t - o f f f i l t e r s . Quantum y i e l d f o r p r o d u c t f o r m a t i o n a t 488 nm. a

2

6

2

c

As c a n be seen from d a t a i n Table I t h i s system i s capable o f c a r r y i n g out the s p e c i f i c two e l e c t r o n o x i d a t i o n o f a wide v a r i e t y o f a l c o h o l s . Even low redox p o t e n t i a l a l c o h o l s such as b e n z y l a l c o h o l show no tendency t o be o v e r o x i d i z e d to t h e a c i d . F u r t h e r , r e a c t i v i t y does not appear t o be s i g n i f i c a n t l y i n f l u e n c e d by t h e presence o f s i t e s o f u n s a t u r a t i o n near the a l c o h o l f u n c t i o n a l i t y . Thus, as demonstrated u s i n g cinnamyl a l c o h o l c o n j u g a t e d aldehydes c a n be generated i n good y i e l d . That cyclobutanone i s produced i n h i g h y i e l d from t h e c o r r e s p o n d i n g a l c o h o l i n d i c a t e s t h e process has a "two

e l e c t r o n " c h a r a c t e r t o i t . Presumably t h i s r a d i c a l c l o c k i s s t a b i l i z e d by the r a p i d l o s s o f an e l e c t r o n t o C u , a s p e c i e s known t o be a f a s t r a d i c a l t r a p . For t h e case o f 2 - p r o p a n o l o x i d a t i o n quantum y i e l d s as h i g h as 0.15 have been o b s e r v e d f o r acetone f o r m a t i o n u s i n g 488 nm l i g h t . T u r n o v e r numbers i n excess o f 150 have been o b s e r v e d when w h i t e l i g h t i s employed w i t h o n l y a s l i g h t d e c r e a s e i n c a t a l y t i c a c t i v i t y a t the end o f the r e a c t i o n p e r i o d . C a t a l y s t s t a b i l i t y i s q u i t e good. 2 +

The r e a c t i o n i s found t o be f a i r l y s e n s i t i v e t o t h e amount o f CuC2 present. As the C u C i c o n c e n t r a t i o n i s i n c r e a s e d the turnover r a t e i s observed to increase l i n e a r l y . T h i s phenomenon appears t o s a t u r a t e a t - 1:2 r a t i o o f CuCi to [ P t C i ] " . A d d i t i o n o f an e x c e s s i v e amount o f C u C i causes the s o l u t i o n t o t u r n brown w i t h a c o n c o m i t a n t l o s s o f c a t a l y t i c a c t i v i t y . Pt NMR s t u d i e s demonstrate t h a t C u cannot o x i d i z e [ P t C i ] " . This r e s u l t can be b e s t e x p l a i n e d by assuming t h a t C u i s oxidizing a Pt(III) chloride complex t o r e g e n e r a t e [ P t C i ] ' . T h e r e f o r e the r e q u i r e m e n t o f two e q u i v a l e n t s of C u C i c a n be u n d e r s t o o d i n terms o f i t s d u a l r o l e as an o x i d a n t o f P t ( I I I ) and a r a d i c a l t r a p f o r *0CHRR'. The o v e r a l l c y c l e i s summarized i n F i g . 2. The h i g h p r o d u c t y i e l d s a l o n g w i t h the l a c k o f t y p i c a l o r g a n i c f r e e r a d i c a l p r o d u c t s c a n b e s t be e x p l a i n e d by t h e e x i s t e n c e o f a b i n u c l e a r ( p o s s i b l y c h l o r o b r i d g e d ) p l a t i n u m - c o p p e r complex as t h e a c t i v e c a t a l y t i c s p e c i e s . Such a complex c o u l d p r o v i d e the s t r o n g cage e f f e c t n e c e s s a r y t o produce the observed product y i e l d . 2

2

2

2

6

2

1 9 5

2 +

2

4

2 +

2

6

2

hv PtCI.*-

+ (n) ROH

Pt- +(n) R C B )

hv

o

H

+ ROH

o

A/hv

•Pt(lll)'

+ (n-1) [ROH] •

Cu(l) + R * °

PtCI *- + < n - 1 ) R t 4

CuCI,

PtCI,*.2 ' P t d l D

F i g u r e 2:

H

-

M e c h a n i s t i c sequence f o r t h e r e a c t i o n o f [ P t C i ] ~/C\iC& /0 w i t h p r i m a r y a l c o h o l s and [ P t C i ] " i t s e l f w i t h p r i m a r y alcohols. 2

6

z

2

2

6

Acknowledgment i s made t o t h e Donors o f The P e t r o l e u m R e s e a r c h Fund, a d m i n i s t e r e d by t h e A m e r i c a n C h e m i c a l S o c i e t y f o r Support o f t h i s R e s e a r c h . References: Cameron, RE, B o c a r s l y AB (1985) P h o t o a c t i v a t e d o x i d a t i o n o f a l c o h o l s by oxygen. J Am Chem Soc 107: 6116-6117. Cameron, RE, B o c a r s l y , AB (1986) M u l t i e l e c t r o n - p h o t o i n d u c e d r e d u c t i o n o f c h l o r o p l a t i n u m complexes: V i s i b l e l i g h t d e p o s i t i o n o f platinum metal. I n o r g Chem 25: 2910-2913. Cox, LE, P e t e r s , DG, Wehry, EL (1972) P h o t o a q u a t i o n o f H e x a c h l o r o p l a t i n a t e ( I V ) > J I n o r g N u c l Chem 34: 297-305. Meyer, K, Rocek, J . (1972) O n e - e l e c t r o n v s . t w o - e l e c t r o n o x i d a t i o n s . Ce(IV) and

cyclobutanol.

J Am Chem Soc 94:

1209-1214.

S w i h a r t , DL, and Mason, WR (1970) E l e c t r o n i c s p e c t r a o f o c t a h e d r a l P t ( I V ) complexes. I n o r g Chem 9: 1749-1757. V o g l e r , A, and H l a v a t s c h , J (1983) P h o t o c h e m i c a l f o u r - e l e c t r o n redox r e a c t i o n o f h e x a a z i d o p l a t i n a t e ( I V ) . Angew Chem I n t Ed 22: 154-155.

DYNAMIC AND STATIC OUTER-SPHERE AND INNER-SPHERE QUENCHING PROCESSES

L.Checchi, C . C h i o r b o l i ,

M.A.Rampi S c a n d o l a , and F.Scandola

D i p a r t i m e n t o d i Chimica d e l l ' U n i v e r s i t a , Centro d i Fotochimica d e l CNR, 44100 F e r r a r a , ITALY

INTRODUCTION B i m o l e c u l a r quenching v i a energy o r e l e c t r o n t r a n s f e r o f e l e c t r o n i c a l l y e x c i t e d s t a t e s o f c o o r d i n a t i o n compounds i n f l u i d s o l u t i o n s has been t h e s u b j e c t o f i n t e s i v e i n v e s t i g a t i o n s i n t h e l a s t , t e n years ( B a l z a n i 1978,Sutin 1979,Sutin 1980,Balzani 1981, S u t i n 1982,Balzani 1983). The k i n e t i c s o f such processes can be c o n v e n i e n t l y d i s c u s s e d by s e p a r a t i n g d i f f u s i v e and r e a c t i v e steps as shown i n Scheme 1: Scheme 1. + hv kd kt A + B *A + B •*A B A + B 1/T° k. A +*B The r e a c t i v e s t e p t a k i n g p l a c e i n t o t h e s o - c a l l e d p r e c u r s o r complex *A B, i s c o n s i d e r e d as a u n i m o l e c u l a r p r o c e s s . I n most cases (A and B uncharged o r w i t h p o s i t i v e charge p r o d u c t ) b o t h t h e ground and e x c i t e d s t a t e c o n c e n t r a t i o n s o f A B a r e s m a l l and t h e c o n s t a n t k t can be a t best i n d i r e c t l y i n f e r r e d from t h e second o r d e r quenching r a t e c o n s t a n t kq. I f , , on the o t h e r hand, s t r o n g e l e c t r o s t a t i c a t t r a c t i o n between A and B i s o p e r a t i n g (A and B o f h i g h and o p p o s i t e c h a r g e ) , a s u f f i c i e n t l y h i g h c o n c e n t r a t i o n of t h e ground s t a t e p r e c u r s o r complex may be present t o a l l o w d i r e c t e x c i t a t i o n o f t h i s s p e c i e s and o b s e r v a t i o n o f t h e u n i m o l e c u l a r s t e p . R e c e n t l y , s t u d i e s o f o p t i c a l l y induced energy o r e l e c t r o n t r a n s f e r processes between t r a n s i t i o n m e t a l c e n t e r s c o v a l e n t l y l i n k e d i n a supermolecular s t r u c t u r e have been performed ( V o g l e r 1985, B i g n o z z i 1985, C u r t i s 1985). These processes a r e summarized i n Scheme 2. Scheme 2 - B hv kt *A B -*B d

I f t h e supermolecule A - B forms i n s o l u t i o n upon a d d i t i o n o f A and B ( o r r e l a t e d s p e c i e s ) and t h e c o v a l e n t l i n k a g e does not change s t r o n g l y t h e p r o p e r t i e s o f t h e s u b u n i t s , t h e l o c a l l y - e x c i t e d molecule can be viewed as a c o v a l e n t l y l i n k e d p r e c u r s o r complex o f t h e t r a n s f e r p r o c e s s . From t h i s v i e w p o i n t , a g e n e r a l k i n e t i c scheme (Scheme 3) c a n r e p r e s e n t photoinduced e l e c t r o n o r energy t r a n s f e r between A and B which are capable o f e l e c t r o s t a t i c and/or c o v a l e n t ( u s u a l l y c a l l e d second sphere donor-acceptor) i n t e r a c t i o n . Scheme. 3 •A

B



'

K

° '



* A

1/T

AB

A - B

I n t h i s Scheme, *A B i s t h e p r e c u r s o r complex o f an o u t e r - s p h e r e t r a n s f e r mechanism, w h i l e *A - B can be c o n s i d e r e d as t h e p r e c u r s o r complex of an i n n e r sphere t r a n s f e r mechanism. Depending on the r e l a t i v e c o n s t a n t s o f t h e v a r i o u s ground-state s p e c i e s and on t h e r e l a t i v e r a t e s o f t h e e x c i t e d e s t a t e p r o c e s s e s , t h e complex k i n e t i c b e h a v i o r p r e d i c t e d by t h i s Scheme may g i v e r i s e t o two e x p e r i m e n t a l d i s t i n g u i s h a b l e s i t u a t i o n s ( B a l z a n i 1975, Rybak 1981, Frank 1983, White 1984): 1) i f ( i ) t h e g r o u n d - s t a t e c o n c e n t r a t i o n o f a s s o c i a t e d s p e c i e s i s n e g l e g i b l e o r ( i i ) the e x c i t e d a s s o c i a t e d * s p e c i e s undergo prompt d i s s o c i a t i o n ( k < k _ d ; k < k * _ ) , t h e system behaves as i f *A was the o n l y e x c i t e d s p e c i e s . In t h i s case both e m i s s i o n i n t e n s i t y ( I ) and l i f e t i m e (T) f o l l o w the same S t e r n Volmer b e h a v i o r : T°/T = I°/I = l+k x°[B] . I n t h i s case the quenching i s u s u a l l y c a l l e d dynamic quenching;2) i f ( i ) t h e ground s t a t e c o n c e n t r a t i o n o f o u t e r - s p h e r e and/or i n n e r - s p h e r e a s s o c i a t e d s p e c i e s i s h i g h and ( i i ) t h e i r excited states react b e f o r e d i s s o c i a t i n g ( k > k_^; k > k > v _ i ) , a complex m u l t i e x p o n e n t i a l decay i s e x p e c t e d , w i t h one o r two s h o r t components whose l i f e t i m e i s independent o f B c o n c e n t r a t i o n , f o l l o w e d by a l o n g e r one t h a t obeys Stern-Volmer law. The i n t e n s i t y quenching i s always l a r g e r t h a n t h e l i f e t i m e quenching and u s u a l l y f o l l o w s a q u a d r a t i c law o f t h e t y p e : I°/I- ( l + k x [B] )(1+KA[B] ) where K i s an " e f f e c t i v e " a s s o c i a t i o n c o n s t a n t o f a l l the p r e s e n t a s s o c i a t e d s p e c i e s . I n t h i s case t h e quenching i s u s u a l l y c a l l e d s t a t i c quenching. S t u d i e s i n t h i s f i e l d have been l i m i t e d by the use o f p o s i t i v e s e n s i t i z e r s f o r w h i c h a s m a l l number of n e g a t i v e quenchers i s a v a i l a b l e . We r e p o r t h e r e t h e r e s u l t s o f quenching s t u d i e s i n v o l v i n g r e c e n t l y s y n t h e t i z e d , n e g a t i v e l y charged p h o t o s e n s i t i z e r s , I r ( Q O S C ^ ^ ^ - ^ B a l l a r d i n i 1985) and Ru(bpy)CN^^~( B i g n o z z i 1986) and p o s i t i v e l y charged quenchers. t o

t i

o i

a

t o

ti

0

0

A

q

RESULTS and DISCUSSION 3 +

3 +

System I : I r ( Q 0 9 0 ) 3 - + C r ( b p y ) , C r ( p h e n ) ( D M F , u=0.01M TEAP) The d i f f u s i o n a l parameters have been e s t i m a t e d by n u m e r i c a l i n t e g r a t i o n o f t h e Debye-Smoluchowski, E i g e n - F u o s s e q u a t i o n s ( C h i o r b o l i 1986). They a r e r e p o r t e d i n T a b l e 1. The e m i s s i o n o f I r (QOSC^^ " i s quenched by C r ( b p y ) a c c o r d i n g t o I°/I= (1+ k x°[B])(1+K [B]). By u s i n g the e x p e r i m e n t a l v a l u e o f t h e quenching c o n s t a n t 3

3

3

3

3 +

3

q

A

obtained i n l a s e r

1 0

lifetime

1

measurements (k = 1 . 8 x l 0 M ^ s " ) the a s s o c i a t i o n 3-1 " c o n s t a n t i s o b t a i n e d as K =1.5xlO M. I n s i n g l e photon c o u n t i n g e x p e r i m e n t s , the e m i s s i o n decays a r e n o n e x p o n e n t i a l as shown i n F i g . l . A

Tt3

iu

ft

45

SfftTns

A

c : 8 x l O " M i y =0.01M TEAP.

The s h o r t e r component has a c o n s t a n t l i f e t i m e ( T * = 1 i 0.3 ns) and a r e l a t i v e weight t h a t i n c r e a s e s w i t h quencher c o n c e n t r a t i o n s . The l o n g e r component has a l i f e t i m e t h a t d e c r e a s e s w i t h quencher c o n c e n t r a t i o n s a c c o r d i n g t o a Stern-Volmer kinetic (k =1.8xl0 M ^ s " ) .The absence of a r t i f a c t s i n the appearence of the s h o r t component i s i n d i c a t e d by t h e s t r i c t l y monoexponential decay o b t a i n e d f o r s i m i l a r systems h a v i n g one o f t h e p a r t n e r s as an.uncharged s p e c i e s ( l r ( Q O S 0 ) ~ + benzoquinone, Ir(Q0) + C r ( b p y ) ) . L a s e r p h o t o l y s i s f a i l s t o g i v e any p r o o f f o r energy t r a n s f e r or k _ , a c o n d i t i o n t h a t makes i t p o s s i b l e t o d e t e c t s t a t i c quenching upon e x c i t a t i o n o f *A B ; ( i i i ) s t a t i c quenching shows up b o t h as a d e v i a t i o n o f I°/I from T°/T and as a double e x p o n e n t i a l decay. The s h o r t component o f t h e decay ( * A B = Ins) g i v e s a d i r e c t measurement o f k ( f e w examples o f d i r e c t measurements of k are a v a i l a b l e ( B a l l a r d i n i 1985)); ( i v ) the experimental v a l u e o b t a i n e d from I°/I vs T°/T i s h i g h e r than t h e c a l c u l a t e d one, presumably because o f compenetration e f f e c t s . a b

1 0

1

q

3

3

3

3 +

3

3

q

d

t o

d

t

t o

t Q

3

3 +

3 +

System I I : I r ( Q 0 S 0 ) ' + C o ( N H ) , C o ( e n ) ( H 0 , u=0.01 M NaCl) The e s t i m a t e d d i f f u s i o n a l parameters are r e p o r t e d i n Table 1. The e m i s s i o n decays i n both l a s e r and s i n g l e photon c o u n t i n g experiments a r e a p p r e c i a b l y monoexponential and g i v e k = 1.7x10 s~*. E m i s s i o n i n t e n s i t y quenching g i v e s s m a l l d e v i a t i o n of I°/l from Stern-Volmer b e h a v i o r , s m a l l e r than t h a t c a l c u l a t e d from I°/I=( l + k ° [B] ) ( 1 + K [ B ] ) w i t h the v a l u e s o f e x p e r i m e n t a l k and c a l c u l a t e d K . L a s e r p h o t o l y s i s f a i l s t o g i v e any p r o o f f o r energy or e l e c t r o n t r a n s f e r mechanism f o r t h e quenching. S i m i l a r r e s u l t s have been o b t a i n e d f o r t h e both quenchers. They can be i n t e r p r e t e d i n terms o f Scheme 3 as f o l l o w s : i ) t h e quenching mechanism i s o f t h e o u t e r - s p l i e r e t y p e ; ( i i ) t h e k v a l u e i s i n somewhat smaller than k , implying t h a t k^ *> °f same o r d e r of magnitude as k _ ( 1 x 1 0 s " ) t h i s makes i t d i f f i c u l t t o d e t e c t s t a t i c quenching e f f e c t s ; ( i i i ) i n f a c t , v e r y s m a l l s t a t i c quenching i s o b t a i n e d as d e v i a t i o n of I°/l from T°/T. 3

3

3

6

3

2

q

T

q

A

q

A

q

m a v

s

e

t n e

Q

d

1

d

;

2

3 +

System I I I :Ru(bpy)CN ~ + C r ( H 0 ) ( H 0 , y=0.6 M KN0 ) The e s t i m a t e d v a l u e s o f d i f f u s i o n a l parameters are r e p o r t e d i n T a b l e 1. Aqueous s o l u t i o n s c o n t a i n i n g Ru(bpy)CN and C r ( H 0 ) undergo slow a b s o r p t i o n s p e c t r a l changes i n d i c a t i n g c o o r d i n a t i o n of t h e complex t o the c y n i d e l i g a n d s Ru(bpy)CN " chromophore(Demas 1977, B i g n o z z i 1985, Scandola 1986) a c c o r d i n g t o : A

2

6

2

3

3 +

A

2

6

2

Zf

2

Ru(bpy)CN " A

+ Cr(H 0) 2

3 + 6

^ Ru(bpy)CN -Cr(R* 0) ++H 0 4

2

5

2

2

W i t h t h e same k i n e t i c s t h e e m i s s i o n i n t e n s i t y o f R u ( b p y ) C N ~ decreases w i t h t h e t i m e . E q u i l i b r a t e d s o l u t i o n s do not emit a p p r e c i a b l y . I t i s p o s s i b l e t o p e r f o r m quenching experiments on s o l u t i o n s where the adduct f o r m a t i o n i s n e g l e g i b l e . The e x p e r i m e n t s g i v e c o i n c i d e n t I°/I and T°/T Stern-Volmer p l o t s , y i e l d i n g k =1.6xl0 M s s m a l l e r than X j . L a s e r p h o t o l y s i s does not supply^ any e v i d e n c e f o r e l e c t r o n o r energy t r a n s f e r quenching mechanism. A c c o r d i n g t o Scheme 3, we can c o n c l u d e t h a t : ( i ) t h e system e v o l v e s w i t h the time from o u t e r - s p h e r e dynamic quenching to i n n e r - s p h e r e s t a t i c q u e n c h i n g ; ( i i ) the dynamic quenching has a k lower than t h e k v a l u e , i m p l y i n g t h a t k < k_ ( e s t i m a t e d v a l u e k = 4x10 s " ) ; ( i i i ) ^ t a k i n g t h e lower l i m i t i n g v a l u e from t h e l a c k of e m i s s i o n o f the adduct, k > 1 0 s . T h i s system c l e a r l y shows t h e l a r g e i n c r e a s e i n t r a n s f e r r a t e c o n s t a n t observed upon g o i n g from o u t e r t o i n n e r - s p h e r e mechanism. A

8

-1

_ 1

q

q

1

t o

d

t Q

ti

d

T a b l e 1: D i f f u s i o n a l parameters c a l c u l a t e d k^M'V

B

A

+

Ir(Q0S0,)2~ J Ir(QOS0 ) ~

Cr(bpy)

Ir(QOS0 )^~

Co(NH )^

Ir(QOS0 )^~

Co(en)

Ru(bpy)CN|~

Cr(H 0)^

3

3

3

3

3

3+ Cr(phen)

k. •d>

-1

K ,M

1

A

s

1.8X10

10

1 2X10

7

1.5X10

3

1.8X10

10

1 2X10

7

1.5X10

3

2.0X10

10

8 9X10

7

2.3X10

2

1.8X10

10

1 0X10

8

1.7X10

2

2 .0X10

9

A.3

3

3

2

1

f o r t h e i n v e s t i g a t e d systems.

+ 3

+

+

8.7X10

9

CONCLUSIONS The p o s s i b i l i t y o f measuring d i r e c t l y t h e r a t e c o n s t a n t o f t h e u n i m o l e c u l a r r e a c t i v e s t e p , t a k i n g advantage o f i o n i c o r d o n o r - a c c e p t o r a s s o c i a t i o n , i s r e s t r i c t e d w i t h i n a r a t h e r narrow window o f c o n d i t i o n s . I n f a c t , w i t h t h e " f a s t " C r ( l l l ) r e a c t a n t s t h e r e a c t i v e s t e p o f i o n p a i r i s a t t h e l i m i t o f e x p e r i m e n t a l d e t e c t i o n , whereas w i t h t h e C o ( I I l ) r e a c t a n t s t h e r e a c t i v e s t e p i s a l r e a d y t o o slow t o occur b e f o r e d i s s o c i a t i o n o f t h e e x c i t e d i o n p a i r . The l a r g e i n c r e a s e i n t h e r a t e o f u n i m o l e c u l a r r e a c t i v e s t e p expected i n g o i n g from t h e o u t e r - s p h e r e p r e c u r s o r complex t o t h e i n n e r - s p h e r e adduct i s c l e a r l y shown i n t h e l a s t system. REFERENCES - B a l l a r d i n i . R . ; V a r a n i , G . ; I n d e l l i , M . T . ; S c a n d o l a , F . J.Am.Chem.Soc.1986,25,3858. - B a l l a r d i n i , R . ; G a n d o l f i , M . T . ; B a l z a n i , V . Chem.Phys.Lett.1985,119,459. -Balzani,V.;Moggi,L.;Manfrin,M.F.;Bolletta,F.;Laurence,G.S. Coord.Chem.Rev.1975,15,321. - B a l z a n i , V . ; B o l l e t t a , F . ; G a n d o l f i , M . T . ; M a e s t r i , M . Top.Curr.Chem.1978,75,1. - B a l z a n i , V . ; S c a n d o l a , F . i n " P h o t o c h e m i c a l C o n v e r s i o n and Storage o f S o l a r Energy";J.S., Ed.; Academic P r e s s : New York,1981,Chapter 4,p.97. - B a l z a n i , V . ; S c a n d o l a , F . i n " E n e r g y Resources through P h o t o c h e m i s t r y and C a t a l y s i s " , Graetzel,M.,Ed.; Academic P r e s s : London,1983;Chapter1,p.1. -Bignozzi,C.A.;Roffia,S.;Scandola,F. J.Am.Chem.Soc.1985,107,1644. - B i g n o z z i , C . A . ; C h i o r b o l i , C . ; I n d e l l i , M . T . ; R a m p i Scandola,M.A.;Varani,G.;Scandola,F. J.Am.Chem.Soc.1986,108,7872. -Chiorboli,C.;Scandola,F.;Kisch,H. J.Am.Chem.Soc.1986,90,2211. -Curt i s , J . C . ; B e r g s t e i n , J . S . ; M e y e r ,T. J . Inorg.Chem.1985,24,385. -Demas,J.M.;Addington,J.W.;Peterson,S.H.;Harris,E.W. J.Phys.Chem.1977,81,1039. -Frank,R..;Rau,H. J.Phys.Chem. 1983,87,5181. -Rybak,W.;Haim,A,;Netzel,T.L.;Sutin,N. J.Phys.Chem.1981,85,2856. - S c a n d o l a , F . ; B i g n o z z i , C . A . ; B a l z a n i , V . in"Homogeneous and Heterogeneous P h o t o c a t a l y s i s " P e l l i z z e t t i , E . and Serpone,N.eds.; D.Reidel:Dordrecht,1986. - S u t i n , N . J.Photochem.1979,10,19. -Sutin,N.;Creutz,C. Pure Appl.Chem.1980,52,2717. -Sutin,N.;Creutz,C. J.Chem.Educ.1983,60,809. -Vogler,A.;Osman,A.H.;Kunkely,H. Coord.Chem.Rev.1985,64,159. -White,H.S.;Becker,W.G.;Bard,A.J. J.Phys.Chem.1984,88,1840.

PHOTOCHEMISTRY AND SPECTROSCOPY OF ION PAIR CHARGE TRANSFER COMPOUNDS

H.Hennig, D.Rehorek, and R . B i l l i n g S e k t i o n Chemie, K a r l - M a r x - U n i v e r s i t a t , L e i p z i g , GDR

Ion

pairs

charge

o f metal

transfer

Linhard

c h a r a c t e r i z e d by s p e c t r o s c o p i c i o n p a i r

(IPCT) t r a n s i t i o n s

(1944),

concerning

complexes

but until

the general

have been d e s c r i b e d

now t h e r e

behaviour

a r e no s y s t e m a t i c

of this

interesting

first

time by

investigations class

o f com-

pounds . Examples rare

o f IPCT compounds b a s e d

on m e t a l

( B a l z a n i 1 9 8 6 ) . We h a v e b e e n a b l e

complexes a r e s t i l l

t o prepare

compounds w h i c h a r e d i s t i n g u i s h e d by i n t e r e s t i n g photocatalytic ciates

behaviour.

Our i n v e s t i g a t i o n s

o fcopper(II)complexes

nylborate lates

(Hennig

1983;

with diphenyliodonium

photochemical and

concern

andc o b a l t ( I I I ) a m m i n e s

Rehorek

1979,

1980) as w e l l

c a t i o n s (Rehorek

very

some f u r t h e r I P C T

1979;

i o np a i r with

asso-

tetraphe-

as of cyanometalBilling

1985).

These compounds a r e d i s t i n g u i s h e d by s p e c t r o s c o p i c t r a n s i t i o n s visible

which

ming t h e i o np a i r s sfer

but which are t o consider

excitation

dox

r e a c t i o n s i n low-energy regions

(as

o f these

[Co(NH^) ]^

+

charge

tran-

b r u t t o quantum y i e l d

efficient

where t h e p a r e n t

photo r e -

complexes

alone

f o r i n s t a n c e ) show n o t any p h o t o

values

concerning

the formation

and Mo(V) ( 1 ) , ( 2 ) a r e due t o t h e f o r m a t i o n

tetraphenylbor radicals

bute

t overy

reactivity.

high

Co(ll)

t o overcome

>

{[Co(NH ) ] 3

6

; B

Systematic

back

2

+

2 +

3

investigations

6

4

*{Mo(CN) J 8

3

of

short-li-

which

contri-

processes.

*(co(NH ) l ; B 0 ' }

J-^—Z

of both

and d i p h e n y l i o d i n e r a d i c a l s electron transfer

4

{[Mo(CN) ] -;0 I 8

fast

0 i-ii_v:

4

ted

IPCT s t a t e s l e a d s

and [Mo(CN)gJ^~,

6

redox

ved

as i o n p a i r

for-

transitions.

The

The

i n the

c a n n o t b e e x p l a i n e d a s t h e sum o f t h e c o m p o n e n t s

• ....

;

~>

c a s e s o f BET

RuL

a 3

*

+

within

geminate

"charge of the,

radical

pair.

TMPD

If y o u f o c u s on t h e c h a r g e o f t h e m e t a l c o m p l e x , the p r o c e s s can be regarded as "charge s e p a r a t i o n " . And, i f y o u f o c u s on TMPD, the p r o c e s s c a n be? r e g a r d e d a s " c h a r g e r e c o m b i n a t i o n " . The whole? a s p e c t of t h e s e BET i s i n t e r p r e t e d t o f a l l b e t w e e n t h e t w o e x t r e m e s s o that t h e maximum o f k*, c o u l d b e o b s e r v e d a t a h i g h e r e x e r g o n i c i t y compared w i t h t h e p r e d i c t i o n a n t h e i n t r a m a 1 e c u 3. a r m o d e d e p & n d i n g F r a n c: k - C o n d o n i ntegral. It i s a pleasure to acknowledge a number of very illuminating c J i s c u s s i o n w i t h P r o f . N.Mataqa of Osaka U n i v e r s i t y and P r o f . U . S t e i n e r of Konstanz University. I thank Dr. T-Ulrich of Konstanz U n i ver s i t y f o r t r an s I at i n g t h & man usc r i p t . -

E i g e n M. ( 1 9 5 4 ) Z . p h y s . C h e m . NF 1, 1 7 6 - 2 0 0 . I n d e l l i M.T, B a l l a r d i n i R , S c a n d o l a F, ( 1 9 8 4 ) J . P h y s . C h e m . 8 8 , 2 5 4 7 - 5 1 . K a k i t a n i T, M a t a g a N, ( 1 9 8 5 ) J P h y s . Chem. 8 9 , 4 7 5 2 - 7 . Ohno T. K a t o S. Y a m a d a A, T a n n o T, ( 1 9 8 3 ) J . P h y s . C h e m . 8 7 , 7 7 5 - 8 1 .

PHOTOCHEMISTRY OF COPPER COMPLEXES AND ITS CATALYTIC ASPECTS

J.sykora Slovak T e c h n i c a l U n i v e r s i t y , Department o f I n o r g a n i c C h e m i s t r y , 812 37 B r a t i s l a v a , CSSR

Within t h e vehement development o f photochemistry o f c o o r d i n a t i o n compounds a n d i t s p h o t o c a t a l y t i c aspects i n t h e past t e n years / H e n n i g 1 9 8 5 / a p r o g r e s s w a s made a l s o i n t h e f i e l d o f c o p p e r p h o t o c h e m i s t r y , The presented c o n t r i b u t i o n summarizes and analyzes t h e c u r rent state i n t h e f i e l d o f photochemical behaviour o f copper complexes m a i n l y from t h e p o i n t o f view o f c a t a l y s i s . The h i t h e r t o known p h o t o c h e m i c a l r e a c t i o n s o f copper c o o r d i n a t i o n compounds a r e p r e s e n ted w i t h i n t h e c l a s s i f i c a t i o n suggested i n o u r laboratory. The state r e a c h e d i n some t y p e s o f c o p p e r p h o t o c h e m i c a l r e a c t i o n s i s i l l u s t r a ted b y purposefully selected representative examples; mainly r e s u l t s / a f t e r 1979/ n o t i n c l u d e d i n t h e l a t e s t review a r t i c l e i n t h e f i e l d / P e r r a u d i 1 9 8 1 / a r ep r e f e r r e d f o rd i s c u s s i o n i n t h i s l e c t u r e . C u / I / PHOTOCHEMISTRY The v a r i e t y o f p o s s i b i l i t i e s o f p h o t o c h e m i c a l C u / l / complexes b e h a v i o u r i s c o n d i t i o n e d b y t h enature o f p h o t o c h e m i c a l l y a c t i v e e x c i t e d s t a t e / s / : LIICT, LMCT, CTTS a n d i n t r a l i g a n d e x c i t e d s t a t e s . S o t h a t a many v a r i o u s r e d o x r e a c t i o n s were observed a s a consequence o f d e activation o f these excited states / e . g . photooxidation o f C u / l / met a l center accompanied b y formation o f solvated electron followed b y H2 p r o d u c t i o n , p h o t o i n d u c e d i n t r a m o l e c u l a r e l e c t r o n t r a n s f e r etc./, A number o f p h o t o c h e m i c a l p r o c e s s e s where c o o r d i n a t i o n compounds o f C u / l / catalyze transformations o f t h eorganic substrates was reviewed r e c e n t l y b y Salomon /1983/ and Kutal /1985/. According t o K u t a l ' s c l a s s i f i c a t i o n o f o l e f i n photo-transformations i n the presence o f C u / l / complexes three types o f such phototransformation reactions can b e d i s t i n g u i s h e d Type A C u / l / ^ [ c u / I ^ - ^ [ c u / l / - o l e f i n f — * C u / l / + o l e f i n ' Type B C u / l / + o l e f i n ^ C u / l / - o l e f i n - ^ p u / l / - o l e f i n ] — • C u / I / - o l e f i n ' Type C o l e f i n ^ - * o l e f i n *[cu/I/-olefin]—*Cu/l/ + o l e f i n ' I t i so f i n t e r e s t t o note t h a t i n c o n n e c t i o n w i t h t h e p o s s i b l e a p p l i cation o f photoisomerisation o f olefins catalyzed b y C u / l / complexes

applicable rated

to the solar

a Cu/l/

le-light Cu/Il/

by

rapid

or

ground

active

state;

i s usually

observed

internal

Sakaki

state,

/1984/

working

marily

populated,

toactive

dublet

on p u b l i s h e d

chemistry

c a n be

S=solvent,

very

elabo-

under

visib-

/Sykora

I^S, L

dublet

dub-

accompanied

excited

state

states

are

state

CU[L]*

i s

state

conversion take

1982/ i n t o

pri-

t o t h e pho-

the Cu/Il/

three

ligand

photo-

place.

behaviour

=oxidized

transfer

i s often

excited

internal

excited

on photochemical

classified ligand

field

rapid

transfer

data

d-d

intraligand excited

usually

charge

ligand

charge

reaction

t o the lowest

respectively,

V/hen s p i n - a l l o w e d

spin-allowed

photoredox

conversion

inert,

where

problem

efficiently

PHOTOCHEMISTRY

excited

Based

storage

system

irradiation,

Photochemically let

energy

photocatalytic

classes

photoA, B, C

or solvent,

respecti-

ox vely. Class

A

Cu/ll/LS C U / I I / L

Cu/l/S S - ^ C U / I / L

2

— ^

2

C

Cu/Il/L

Cu/Il/L

h v

main

aspects

use

the data

nic

substrates.

a

X

—Cu/ll/

o

The

/Cervone

C l * also closing

+

Cu/l/

i n photochemical

those

S

+

was

concentrated

transfer

a

excited

by

of 02

i n the

results

laser

dioxygen often

to

orga-

oxidation

flash agent-

again

regarded i n this

of oxidation

i r r a d i a t e d under

of

state

i s of significance

the yields

cataly-

systems

by pulsed

powerful

oxidable

The p r e s e n c e

studies,

of these

evidenced

i s formed,

o f systems

the

i n order

of phototransformations

radical

to increase

upon

photochemistry

1979/. Besides

the c y c l e .

i t possible with

2

charge #

L ^ S

C u °

photosensitivity

o f C l ~t o C l

+

.

i n the field

observed

spin-allowed

compared

+

2

halogenocomplexes

of lowest

makes

L'

of our research

obtained

radical

ox

+

^ C u / I l / L Cu/I/L

of Cu/Il/

2

ox

» Cu/I/...1^

the oxidation

drawback

and

L +

attention

as C l

L

^ Cu/Il/L +

Cu/Il/L

tic

+

+ S*—^[Cu/Il/Lg, • £ ] — C u / l / L

2

2Cu/I/L Cu/I/L

thus

X

—iSU. C u / I l l / . . . L ~

Cu/l/...Lo

The

Cu/I/L * C u ° +

Class

Cu/Il/

Q

L

Cu/Il/L

-the

S

I '

B

photolysis

+

2

Cu/Il/LL;-^Cu/I/LL'+

Class

in

QX

C u / I l / L Cu/I/L

region

L

+

anaerobic

to as

case

products conditions.

T h e s e r e s u l t s l e d u s to s u g g e s t p h o t o a s s i s t e d c a t a l y t i c r e a c t i o n o f the C u / I l / - C u / I / redox cycle, which would render possible the o x i d a t i o n o f organic substrates j e . g . a l i p h a t i c alcohols /Sykora 1982/, u n s u b s t i t u t e d and a l k y l s u b s t i t u t e d phenols /Engelbrecht 1986, Sykora 1 9 8 6 / - P i g . 1 / s c h e m e suggested f o r p h o t o o x i d a t i o n o f p h e n o l s / .

o

2

I

Fig.

o

2

I

o

2

I

1

It was found t h a t s e l e c t i v i t y o f quinone f o r m a t i o n c a n be r e g u l a t e d by c o m p o s i t i o n o f t h e system / t h e c o m p o s i t i o n o f copper complexes present i n solution i s of great importance/* The p o s s i b i l i t i e s o f p r a c t i c a l u s e o f knowledge o n copper c o o r d i n a t i o n compounds photochemistry and p h o t o c a t a l y s i s i n t h e f i e l d o f p o l y m e r c h e m i s t r y , p h o t o s y n t h e s i s o f o r g a n i c a n d c o o r d i n a t i o n compounds!, s o l a r energy s t o r a g e , p h o t o e l e c t r o c h e m i s t r y and o t h e r s were reviewed r e c e n t l y / H e n n i g 19855 S y k o r a 1986j V/atanabe 1985j M c M i l l i n 1 9 8 5 / .

References Cervone E , Diomedi-Camassei P, Giannini I, Sykora J /1979/ Photoredox behaviour o f c h l o r o c o p p e r / l l / complexes i n a c e t o n i t r i l e : m e c h a n i s m a n d q u a n t u m y i e l d s • J P h o t o c h e m 11: 521-332 E n g e l b r e c h t P Thomas P h , H e n n i g H , Sykora J / 1 9 8 6 / P h o t o o x y g e n i e r u n g v o n P h e n o l i n G e g e n w a r t v o n C h l o r o c u p r a t e n . Z Chem 2 6 : 137 Perraudi G, Muralidharan S /1981/ Photochemical properties o f copper c o m p l e x e s . C o o r d Chem R e v s 36: 45-88 H e n n i g H , Rehorek D , A r c h e r RD / 1 9 8 5 / P h o t o c a t a l y t i c systems w i t h l i g h t - s e n s i t i v e c o o r d i n a t i o n compounds a n d p o s s i b i l i t i e s o f t h e i r s p e c t r a l s e n s i M z a t i o n - a n o v e r v i e w . C o o r d Chem R e v s 61: 1-53 KXrtal C /1985/ P h o t o c h e m i s t r y o f t r a n s i t i o n m e t a l - o r g a n i c systems. C o o r d Chem R e v s 6 4 : 1 9 1 - 2 0 6 M c M i l l i n E R , K i r c h h o f f J R , Goodwin KV /1985/ E x c i p l e x quenching o f p h o t o - e x c i t e d c o p p e r c o m p l e x e s . C o o r d Chem R e v s 64s 8 3 - 9 2 S a k a k i S, O k i t a k a I, Ohkubo K / 1 9 8 4 / T r a n s - c i s i s o m e r i z a t i o n o f s t i l bene photocatalyzed by c o p p e r / l / complexes. The f i r s t example o f copper/l/ photocatalysis efficient under visible-light irradiation. I n o r g C h e m 23: 1 9 8 - 2 0 3 f

Salomon RG /1983/ Homogeneous m e t a l - c a t a l y s i s i n organic p h o t o c h e m i s t r y . T e t r a h e d r o n 39s 4 8 5 - 5 7 5 Sykora J /1982/ Photochemical reactions o f copper complexes and t h e i r c a t a l y t i c a s p e c t s . Chem l i s t y 7 6 : 1 0 4 7 - 1 0 6 7 S y k o r a J , ICurekova* m , E n g e l b r e c h t P , Thomas P h , H e n n i g H / 1 9 8 6 / P h o t o o x i d a t i o n s c a t a l y z e d b y copper complexes-a new r o u t e o f p r e p a r a t i o n o f m o n o - a n d d i r a e t h y l b e n z o q u i n o n e s . P r o c Symp P o l y g r a f i a A c a demica'86 373-375 Sykora J , Jakubcovd M, Cvengrosova Z /1982/ Photooxidation effect o f cupric complexes on a l i p h a t i c alcohols i n nonaqueous s o l u t i o n s . C o l l e c t C z e c h C h e m C o m m u n 47: 2 0 6 1 - 2 0 6 8 Sykora J Sima J /1986/ Photochemistry o f coordination compounds. Veda, Bratislava #

V / a t a n a b e T , M a c h i d a IC, S u z u k i H , K o b a y a s h i M , H o n d a K / 1 9 8 5 / lectrochemistry -224

of metallochlorophylls.

C o o r d Chem R e v s 6 4 :

Photoe207-

INTRAMOLECULAR EXCITED STATE ELECTRON TRANSFER FROM NAPHTHALENE TO

A.H.Osman

COBALT(III)

and A . V o g l e r

I n s t i t u t f u r A n o r g a n i s c h e Chemie d e r U n i v e r s i t a t R e g e n s b u r g , U n i v e r s i t a t s s t r . 3 1 , 8400 R e g e n s b u r g , FRG

Introduction

The

majority

of intramolecular

photoredox processes o f metal

complexes

which

1 2) h a v e been r e p o r t e d excitation. excited

* ' takes place

As an a l t e r n a t i v e i n t r a m o l e c u l a r

state electron

u n d e r g o an e l e c t r o n intermolecular tor

t r a n s f e r . An e x c i t e d

defined

recent

electron t r a n s f e r occurs i n

environment. Although these features

make i t a t t r a c t i v e t o s t u d y

state electron transfer this

subject

largely

excited

state electron

transfer

i s asso-

a t t e m p t s t o u n d e r s t a n d t h e p r i m a r y e v e n t s o f p h o t o s y n t h e s i s and t o systems f o r t h e n a t u r a l

an e x c i t e d

state

light

into chemical

rapid

downhill

uphill

energy.

and an a r t i f i c i a l

electron transfer

photosynthesis.

i s required

In s i m p l e systems t h i s

charge recombination.

a c h i e v e d by i n t r o d u c i n g

first

linked covalently

be

attached

as e x c i t e d

t o a q u i n o n e as e l e c t r o n

acceptor.

as a d o n o r t o a c c o m p l i s h c h a r g e s e p a r a t i o n

T. J . M e y e r and h i s r e s e a r c h g r o u p h a v e i n v e s t i g a t e d separation

i n compounds w h i c h c o n t a i n I

n

t

n

e

s

e

c

a

s

e

s

i n order t o convert

step

i s followed

by a

a b a r r i e r f o r back e l e c t r o n t r a n s f e r . R e c e n t l y model

f o u n d much a t t e n t i o n c o n s i s t s o f a p o r p h y r i n is

In t h e f i r s t

In t h e p h o t o s y n t h e s i s a c h a r g e s e p a r a t i o n

p o u n d s h a v e been d e s i g n e d t o s t u d y t h e c h a r g e s e p a r a t i o n

phores 4)^

has been

a few y e a r s ago.

interest in intramolecular

d e s i g n model step

o f t h e same c o m p l e x . W h i l e i n

i s n o t known i n t r a m o l e c u l a r

excited

neglected u n t i l

ciated with

chromophoric group o f a complex can

p h o t o r e d o x p r o c e s s e s t h e s t r u c t u r a l a r r a n g e m e n t o f d o n o r and a c c e p -

intramolecular

The

c h a r g e t r a n s f e r (CT)

p h o t o r e d o x p r o c e s s e s may o c c u r by an

t r a n s f e r t o o r from another p a r t

i n the encounter pair

a better

upon d i r e c t o p t i c a l

metal

in detail.

A system

state electron

donor

is comwhich which

In a d d i t i o n , a c a r o t e n e 3) over

large

distances

the light-induced

c o m p l e x e s as i n i t i a l l y

may

excited

charge chromo-

t h e c h a r g e r e c o m b i n a t i o n r e g e n e r a t e d t h e s t a r t i n g com-

pounds. Under s u i t a b l e c o n d i t i o n s compete w i t h

the

a n o t h e r s e c o n d a r y r e a c t i o n may

c h a r g e r e c o m b i n a t i o n . As

a result

stable

be

rapid

enough

p h o t o p r o d u c t s can

to

be

formed. In

1969

ligand

Adamson e t

( I L ) e x c i t a t i o n of

carboxylate releases of

a l . studied

the

excited

i t s ligands

[Co

other complexes of the naphthyl

Excited

state electron

(NH ) TSC] 3

an

efficient

type

the

also

as

an

1

. Upon

electron

2

to

Co(III)

^.

same b e h a v i o r as

the

TSC

The A

variety

group 7,8)

complex

Co(III)

Co(II)

place.

R = aromatic

1

intra-

trans-4-stilbene

t r a n s f e r from aromatic molecules t o

intermolecular an

=

[Co** (NH^OOCR] " " w i t h

shows q u a l i t a t i v e l y t h e

assumption that

an

TSC"

type

charge recombination takes

8 place

of t h i s

with

2 +

5

TSC-ligand transfers

before

s u c h as

i n

a photoreaction

ammines

takes

9)

reaction

'

. First

energy t r a n s f e r occurs to

observations

r e a c t i v e CT

were e x p l a i n e d

states

of the

complex

9) H o w e v e r , more r e c e n t

i n v e s t i g a t i o n s h a v e shown t h a t

explained

b e s t by

an

In t h e

present

study the

with

n = 1 to

excited

complexes

5 were i n v e s t i g a t e d

requirements f o r excited

Results and

state electron

a l l results

t r a n s f e r mechanism

"

can

2

in order to

state electron

n

l e a r n more a b o u t t h e

transfer

in t h i s

be

.

[2-naphthyl-C0NH-(CH ) -C00Co

I H

(NH ) ] 3

2 +

5

structural

system.

Discussion

Synthesis

The

free

benzyl

ligands

esters

were s y n t h e s i z e d

of the

amino

by

sodium s a l t s

3

5

the

protonated

2

n

2

n

2

ligands +

2

n

2

2

3

4

3

from acetone y i e l d e d

5

and

2 +

n

were o b t a i n e d

the

sodium s a l t s

analytically

pure

as

6

6

and

the

5

compounds.

H0 2

complexes

perchlorates

of the

+

5

w h i c h w e r e c o n v e r t e d by

2 - n a p h t h y l - C 0 - N H - ( C H ) - C 0 0 ~ N a . The

[Co(NH ) H 0](C10 )

2-naphthoic acid

NH -(CH ) -C00CH -C H 2

C0NH-(CH ) -C00Co(NH ) ] 2

of

2-naphthyl-C0-NH-(CH ) -C00-CH -C H

Saponification yielded the

reaction

acids:

2-naphthyl-C00H + -

the

ligands.

by

the

NaOH t o

[2-naphthylreaction

by

of

Recrystallization

Absorption Spectra

The

electronic

s p e c t r a o f t h e sodium

thyl-C0-NH-(CH ) -C00~Na 2 0 0 nm a n d a 1-cm

3

cell.

The

absorption

bands a t x

m

a

spectrum o f [ T l ( b i p y ) I ] 2

= 374 nm (

x

i n CH CN ( F i g . 1) c o n s i s t s o f 3

+

2

3

= 4 7 0 0 ) , 302 nm ( 2 3 2 1 0 ) ,

e

and 244 nm ( 2 8 2 0 0 ) .

w a v e l e n g t h b a n d a t 374 nm may be due t o a J " -* T l ( I I I ) [T1I ]"

shows s u c h an a b s o r p t i o n

4

chemical

behavior

of [ T l ( b i p y ) I ] 2

a s s i g n m e n t . As a r e a s o n a b l e bipy

assigned

this

x

( s e e below)

+

2

= 7000)

e

to the ™ *

8

)

* \

spectral

(

LMCT t r a n s i t i o n

absorption

changes

a

type

could

x

this

[Be(bipy)1^3

shows s u c h a LLCT

a t 302 nm

+

2

of the bipy

to a J" -

should

l i g a n d which absorbs i n

also contribute to this

band

a r e expected t o appear near t h i s

a t 244 nm i s c e r t a i n l y behavior

a I

wave-

- * T 1 ( I I I ) LMCT band

of L T 1 ( b i p y ) I ] . +

2

> 2 0 0 nm) o f [ T l ( b i p y ) I l

x m

The c o m p l e x

(IL) t r a n s i t i o n

agreement w i t h t h e photochemical Irradiation

i s not consistent with

2

intraligand

The t h i r d

5

. The s e c o n d band o f [ T l ( b i p y ) I ]

low-energy absorptions' o f t h i s

length

since

a l t e r n a t i v e t h e band a t 374 nm may be a s s i g n e d

r e g i o n . An I " - T l ( I I I )

since

in

a

LMCT t r a n s i t i o n

= 397 nm ' ^ . However, t h e p h o t o 4

m

l i g a n d t o l i g a n d ( L L ) CT t r a n s i t i o n .

band a t 3 6 8 nm ( be

at x

The l o n g e s t

2

2

+

2

i n CH CN was a c c o m p a n i e d by 3

( F i g . 1) w h i c h a r e c o n s i s t e n t w i t h

a reductive elimination according

to:

[Tl

In t h e p h o t o l y z e d

(bipy) I ] 2

2

+

- T l

+

+ 2 bipy + I

J

a s u p e r i m p o s i t i o n o f a b s o r p t i o n maxima o f I

(x = 280 nm). The p r e s e n c e o f r e l e a s e d b i p y max

by b a n d s a t x

quantum y i e l d s

302

nm, a n d 2 . 9 x 1 0 The

(

=

x m

a

i s also

bands o f [ T l ( b i p y ) I 2

o f t h e r e d u c t i v e e l i m i n a t i o n (* = 0.54 a t x

photochemistry

2

x

indi-

= 2 3 5 and 243 nm.

In a c c o r d a n c e w i t h t h e a s s i g n m e n t s o f t h e a b s o r p t i o n the

2

2

nm) a n d f r e e b i p y ^

cated

H

s o l u t i o n t h e a b s o r p t i o n maximum a t 360 nm i s c a u s e d by I . The new

b a n d a t 2 8 6 nm i s a p p a r e n t l y 289

I

a t 366 nm) d e c r e a s e d w i t h

i r r

2

]

+

= 254 nm, 0 . 0 3 a t

i n c r e a s i n g wavelength o f i r r a d i a t i o n .

o f some t h a i 1 i u m ( I I I ) c a r b o x y l a t e s o f t h e t y p e

Tl(RC00)

3

where

2) R i s a larger these

aliphatic

g r o u p was s t u d i e d by K o c h i

compounds i n b e n z e n e s o l u t i o n

carboxylate

(RC00" - e" - R • + C 0 ) . 2

and B e t h e a

ledt o the formation

;

. The p h o t o l y s i s o f

o f T l ( I ) and o x i d a t i o n o f

In t h e p r e s e n t not

w o r k we i n v e s t i g a t e d t h e p h o t o l y s i s o f T 1 ( C H C 0 0 ) 3

d i s s o l v e i n benzene. In t h e s o l i d

three chelating acetate

ligands

partially

substituted

generally

less e f f i c i e n t

out

dissociation.

state Tl(III)

. I n aqueous

Since

i sessentially

solution the acetate

in acetonitrile

hexacoordinated

by

ligands are

such l i g a n d s u b s t i t u t i o n s a r e

i t is*assumed t h a t T1(CH C00) 3

The a b s o r p t i o n

which does

3

d i s s o l v e s i n CH^CN w i t h -

3

spectrum of T1(CH C00) 3

3

in acetonitrile

( F i g . 2)

abs

1.4

t

1



200

300

500 nm

400

Fig. 2 Absorption i n CH CN, x 3

is

spectra of 9.9x10" i

r

> 2 0 0 nm, 1-cm

r

M [ T l ( C H C O O ) ] ( a ) and i t s p h o t o l y s i s p r o d u c t ( b )

5

3

3

cell

r a t h e r f e a t u r e l e s s . The c o m p l e x s t a r t s

tion

r e g i o n . The

absorp-

i n c r e a s e s t o w a r d s s h o r t e r w a v e l e n g t h . A maximum a p p e a r s a t 2 0 3 nm (e = 1 2 4 3 0 )

while can

t o absorb i n t h e v i s i b l e

shoulders

certainly The

acetate

a t 2 4 0 nm ( e = 6 4 4 0 ) a n d 3 9 5 nm ( e = 1 6 6 0 ) . T h e s e

be a s s i g n e d

spectral

pressure

occur

t o acetate -

Tl(III)

LMCT

transitions.

changes which accompanied t h e i r r a d i a t i o n

mercury a r c ) o f T1(CH C00) 3

3

(white

light

i n CH CN i n d i c a t e d t h e f o r m a t i o n

( F i g . 2 ) w h i c h shows a b s o r p t i o n

absorptions

3

bands a t x

from a h i g h of T l ( I )

= 2 5 6 nm a n d 2 1 4 nm. A l t h o u g h max

the tion

o x i d a t i o n products takes

place

were n o t i d e n t i f i e d

according

t o the equation:

i t i s assumed t h a t t h e r e d u c t i v e e l i m i n a -

T1

I I I

(CH C00) 3

The

methyl

254

nm t h e q u a n t u m y i e l d

T1 (CH C00) + 2 C0 I

3

3

2

+ 2 CH^

r a d i c a l s may u n d e r g o d i m e r i z a t i o n o r o t h e r s e c o n d a r y

d r o p p e d t o * = 0.01 a t x.

reactions. At x

f o r t h e d i s a p p e a r a n c e o f T l ( C H ^ C O O ) ^ was * = 0 . 1 4 . I t = 395 nm.

References 1) V o g l e r , A.; Q u e t t , C ; P a u k n e r , A.; K u n k e l y , H. J . Am. Chem. S o c . 1 9 8 6 , 1 0 8 , 8263. 2 ) K o c h i , J . K.; B e t h e a , T. W. J . O r g . Chem. 1 9 6 8 , 3 3 , 7 5 . 3 ) S a g i , S. R.; P r a k a s a R a j u , G. S.; Appa Rao, K.; P r a s a d a Rao, M. S. T a l a n t a 1 9 8 2 , 2 9 , 4 1 3 and r e f e r e n c e s c i t e d t h e r e i n . 4 ) M a t t h e w s , R. W.; W a l t o n , R. A. J . Chem. S o c . A 1968, 1 6 3 9 . 5 ) Day. P.; S e a l , R. H. J . Chem. S o c . D a l t o n 1972, 2054. 6 ) B e c k , W.; F e h l h a m m e r , W. P.; P o l l m a n n , P.; S c h u i e r e r , E.; F e l d l , K. Chem. B e r . 1967, 1 0 0 , 2 3 3 5 . 7 ) Sutton7~~G. J . A u s t r . J . S c i . R e s . , A 1 9 5 1 , 4, 6 5 4 . 8) C o a t e s , G. E.; G r e e n , S. I . E. J . Chem. S o c . 1 9 6 2 , 3 3 4 0 . 9 ) F a g g i a n i , R.; B r o w n , I . D. A c t a C r y s t . B 1 9 7 8 , 3 4 , 2 8 4 5 . 10) L e e , A. G. The C h e m i s t r y o f T h a l l i u m , E l s e v i e r A m s t e r d a m 1 9 7 1 .

TOPIC 5 Organometallic Photochemistry

PHOTOPHYSICS AND

PHOTOCHEMISTRY OF

TUNGSTEN CARBYNE COMPLEXES

A . B . B o c a r s l y * , R.E.Cameron, A . M a y r * , and Department o f C h e m i s t r y , P r i n c e t o n

G.A.McDermott

University, Princeton,

NJ

08544,

USA

T r a n s i t i o n m e t a l complexes t h a t luminesce a t room temperature i n f l u i d s o l u t i o n upon e x c i t a t i o n w i t h v i s i b l e l i g h t have a t t r a c t e d much a t t e n t i o n s i n c e such s p e c i e s have l o w - l y i n g e x c i t e d s t a t e s which may a l l o w the u t i l i z a t i o n o f o p t i c a l energy i n the p r e p a r a t i o n o f u s e f u l chemical p r o d u c t s . Despite t h i s i n t e r e s t only few such s p e c i e s have been d i s c o v e r e d . I n most cases luminescence i s a s s o c i a t e d w i t h a charge t r a n s f e r t r a n s i t i o n i n v o l v i n g m e t a l d7r e l e c t r o n s and the TT* o r b i t a l of l i g a t e d a r o m a t i c d i i m i n e s . Here we d e s c r i b e some o f the p h o t o p h y s i c a l and photochemical p r o p e r t i e s of bis-donor l i g a n d - s u b s t i t u t e d tungsten arylcarbyne complexes [(W=CAryl)X(CO) L2] ( X - h a l i d e , L»donor l i g a n d ) ( F i s c h e r 1977), a new c l a s s o f l u m i n e s c e n t o r g a n o m e t a l l i c s p e c i e s ( B o c a r s l y 1985). The e m i s s i v e e x c i t e d s t a t e i s a s s o c i a t e d w i t h the lowest energy a b s o r p t i o n band, which i s a s s i g n e d to a d-metal t o 7r*(M=CAryl) t r a n s i t i o n . Quenching experiments i n d i c a t e t h a t a s i g n i f i c a n t amount o f t r i p l e t c h a r a c t e r i s a s s o c i a t e d w i t h the e m i s s i v e e x c i t e d s t a t e . B i m o l e c u l a r o x i d a t i v e and r e d u c t i v e charge t r a n s f e r quenching i s a l s o observed, d e m o n s t r a t i n g the e x c i t e d s t a t e to be s t r o n g l y r e d u c i n g and o x i d i z i n g . Photoinduced a s s o c i a t i v e l i g a n d s u b s t i t u t i o n s occur i n these m o l e c u l e s (Cameron 1986). 2

ELECTRONIC ABSORPTION SPECTRA The s p e c t r o s c o p i c p r o p e r t i e s o f t u n g s t e n carbyne complexes o f the type [(W=CR)X ( C O ) L ] are l i s t e d i n Table 1. As a c h a r a c t e r i s t i c example the spectrum o f [(W=CPh)Br(CO) (tmeda)] i s shown i n F i g . 1. The e l e c t r o n i c a b s o r p t i o n s p e c t r a f o r t u n g s t e n p h e n y l c a r b y n e complexes o f the type [ (WsCPh)X(CO) L ] , where X - C l , Br, I and L - 2 p y r i d i n e ( p y ) , t e t r a m e t h y l e t h y l e n e diamine (tmeda), and b i s d i p h e n y l phosphinoethane (dppe) , e x h i b i t a f a i r l y weak a b s o r p t i o n a t about 450 nm and a more i n t e n s e a b s o r p t i o n a t about 350 nm. The lowest energy a b s o r p t i o n s are assigned to d -• 7r(M=C)* t r a n s i t i o n s ( z - a x i s c o i n c i d i n g w i t h M^C bond a x i s ) . For p h e n y l c a r b y n e t u n g s t e n complexes the 7r(M=C)* o r b i t a l i s c o n j u g a t e d w i t h the 2

2

2

2

2

2

x y

T a b l e 1.

E l e c t r o n i c A b s o r p t i o n and Emission Data.

[(W^CR)X(CO) L ] R X L 2

2

2

A Ph Ph Ph Ph Ph Ph CMe

3

CI Br I CI Br CI CI CI

tmeda tmeda tmeda 2py 2py dppe tmeda 2py

448 450 454 460 460 435 364 475

(393) (400) (560) (1064)* (1086)* (368) (617)

*(M«C) - 7r(M=C)* [nm], ( e l M - W ] )

Emission

1

m a x

330 327

(5500) (13000)

340 (17000)+ 350*+ 360 (10000 270 (8000) 354+

*shoulder "•"solvent dependent, v a l u e s i n d i c a t e d are i n n o n p o l a r s o l v e n t s .

640 630 630 625 630 660 660

200

300

400

500

WAVELENGTH

600

700

800

550

600

(nm)

650

WAVELENGTH

tl Ik!

700

750

(nm)

F i g u r e 1. E l e c t r o n i c A b s o r p t i o n Spectrum and E m i s s i o n Spectrum o f [(WCPh)Br(C0) (tmeda)]. 2

7r-system o f the p h e n y l group. M o l e c u l a r o r b i t a l c a l c u l a t i o n s by K o s t i c and Fenske (1982) on the r e l a t e d compound [ ( C r - C P h ) C l ( C 0 ) ] i n d i c a t e t h a t t h i s c o n j u g a t i o n i s s i g n i f i c a n t . A s i m i l a r assignment has been s u g g e s t e d b y V o g l e r (1983) f o r [(Os«CPh)Cl(CO)(PPh ) ]; a l t h o u g h t h i s complex has a d i f f e r e n t geometry from the t u n g s t e n systems, t h e l o w e s t l y i n g e x c i t e d s t a t e seems t o be s i m i l a r i n nature. Replacement o f the phenyl group by a t e r t - b u t y l group r e s u l t s i n a s h i f t o f the l o w energy a b s o r p t i o n band toward the b l u e b y about 85 nm. T h i s i s c o n s i s t e n t w i t h removal o f the c o n j u g a t i o n from the LUMO o r b i t a l , TT(M=C)*. On the o t h e r hand, replacement o f the p h e n y l group w i t h a 2-naphthyl group l e a d s t o a r e d s h i f t by about 15 nm, i n d i c a t i n g an e x t e n s i o n o f t h e c o n j u g a t e d system. The n a t u r e o f the donor l i g a n d s a l s o s i g n i f i c a n t l y i n f l u e n c e s the low energy a b s o r p t i o n . R e p l a c i n g tmeda b y two monodentate p y r i d i n e l i g a n d s causes a s h i f t toward the r e d by about 10 nm, r e p l a c i n g tmeda by t h e phosphorous-based dppe l i g a n d causes a b l u e s h i f t b y about 15 nm. Assuming t h a t the energy o f TT(MKC)* remains more o r l e s s u n a f f e c t e d by these l i g a n d s u b s t i t u t i o n s , the o b s e r v e d changes i n a b s o r p t i o n e n e r g i e s may be e x p l a i n e d by a weak 7r-donor a b i l i t y o f the p y r i d i n e and a weak 7r-acceptor a b i l i t y o f dppe l i g a n d s , r e s p e c t i v e l y . R e p l a c i n g tmeda by 2 , 2 ' - b i p y r i d i n e o r by phenant h r o l i n e causes a s i g n i f i c a n t r e d s h i f t (38 nm) i n the l o w e s t a b s o r p t i o n band o f the t u n g s t e n carbyne system. However, by comparison w i t h the a b s o r p t i o n spectrum o f [ W ( C 0 ) ( b p y ) ] t h i s e l e c t r o n i c t r a n s i t i o n i s b e l i e v e d t o c o n t a i n a l a r g e component o f m e t a l d -+ bpy 7r* c h a r g e - t r a n s f e r c h a r a c t e r . V a r i a t i o n o f the h a l i d e l i g a n d t r a n s t o t h e carbyne has o n l y a minor e f f e c t on the p o s i t i o n o f the low energy abs o r p t i o n , r u l i n g out these o r b i t a l s as the HOMO and f u r t h e r s u g g e s t i n g t h a t t h e h a l i d e p - o r b i t a l s ( l o n e p a i r s ) are n o t s i g n i f i c a n t l y i n t e r a c t i n g w i t h the metal c e n t e r i n these t u n g s t e n carbyne complexes. 4

3

2

4

The more i n t e n s e a b s o r p t i o n a t about 350 nm f o r [ ( W * C P h ) X ( C 0 ) L ] i s a s s i g n e d t o 7r->7r* t r a n s i t i o n s i n the c o n j u g a t e d M*CPh systems i n analogy t o the absorption i n d i p h e n y l a c e t y l e n e (295 nm, 29000 cm" M * ) . I n cases where t h e l i g a n d s L cont a i n a 7r* system, f o r example L - p y r i d i n e , t h e r e i s a l s o a component o f the abs o r p t i v i t y i n t h i s r e g i o n a s s o c i a t e d w i t h an MLCT t r a n s i t i o n . 2

1

2

1

LUMINESCENCE IN ROOM TEMPERATURE FLUID SOLUTION S e v e r a l t u n g s t e n p h e n y l c a r b y n e complexes o f the type [(W*CPh)X(CO) L ] have been found t o l u m i n e s c e a t room temperature i n f l u i d s o l u t i o n upon e x c i t a t i o n w i t h v i s ible light. The e m i s s i o n spectrum o f [(W»CPh) B r ( C 0 ) ( t m e d a ) i s shown i n F i g . 1. I t i s t y p i c a l f o r t h i s c l a s s o f compound, b e i n g s t r u c t u r e l e s s b o t h a t room temper a t u r e and a t 77K i n a f r o z e n g l a s s . T h i s i s i n d i c a t i v e o f a l a r g e degree o f v i b r a t i o n a l c o u p l i n g s i m i l a r t o t h a t observed f o r the s o l u t i o n e m i s s i o n o f [ R u ( b p y ) ] t 2

2

2

2

3

We a s s o c i a t e the luminescence w i t h the l o w e s t energy a b s o r p t i o n band a t 450 nm based on the o b s e r v e d o v e r l a p o f the e m i s s i o n onset w i t h the low energy t a i l o f the 450 nm a b s o r p t i o n band. A l a r g e Stokes s h i f t on the o r d e r o f 180 nm i s seen by a l l t h e s e e m i s s i v e complexes. T h i s may be due t o s i g n i f i c a n t s t r e t c h i n g o f the m e t a l - c a r b o n t r i p l e bond and/or bending o f the carbyne l i g a n d i n the e x c i t e d s t a t e . The quantum y i e l d o f e m i s s i o n ( $ ) f o r the t u n g s t e n p h e n y l c a r b y n e complexes i s i n the range o f 10" i n room temperature f l u i d s o l u t i o n , Table 1. Irradiation i n t o the h i g h e r energy a b s o r p t i o n peaks a l s o l e a d s t o e m i s s i o n from the ?r(M=C)* o r b i t a l o f t h e s e complexes. A p p a r e n t l y , e f f i c i e n t n o n r a d i a t i v e c o u p l i n g between these h i g h e r energy s t a t e s and the LUMO o r b i t a l e x i s t s . Consistent with t h i s res u l t i s the f i n d i n g t h a t the r a d i a t i v e quantum y i e l d f o r t h i s system i s wavel e n g t h - i n d e p e n d e n t f o r a l l wavelengths t e s t e d . E

3

V a r i a t i o n o f t h e carbyne s u b s t i t u e n t R has a s t r o n g i n f l u e n c e on the e m i s s i o n . I f the p h e n y l group i s r e p l a c e d by a t e r t - b u t y l group, the complex i s found not to emit i n f l u i d s o l u t i o n . Absence o f f l u i d s o l u t i o n e m i s s i o n under t h e s e c o n d i t i o n s f u r t h e r s u g g e s t s t h a t c o n j u g a t i o n o f the m e t a l - c a r b o n t r i p l e bond and the p h e n y l ?r* system i s e s s e n t i a l t o o b t a i n a p p r e c i a b l e r a t e c o n s t a n t s f o r r a d i a t i v e decay. Replacement o f the p h e n y l group w i t h a 2-naphthyl group l e a d s t o an extended m e t a l - c a r b y n e 7r* system and c o r r e s p o n d i n g l y to a r e d s h i f t i n the e m i s s i o n band. The n a t u r e o f the donor l i g a n d s L has o n l y a s m a l l i n f l u e n c e on the o b s e r v e d l u minescence p r o p e r t i e s , p r o v i d e d the l i g a n d s do not c o n t a i n low l y i n g TT* o r b i t a l s themselves. As w i t h the a b s o r p t i o n s p e c t r a , v a r y i n g the h a l i d e l i g a n d t r a n s t o the carbyne has o n l y a minor e f f e c t on the e m i s s i o n band. Donor l i g a n d s w i t h low l y i n g TT* o r b i t a l s s t r o n g l y a f f e c t the e m i s s i o n . I n t r o d u c t i o n o f 2 , 2 ' - b i p y r i d i n e l e a d s t o t o t a l quenching o f the f l u i d s o l u t i o n e m i s s i o n . W i t h 1,10-phenanthrol i n e an e m i s s i v e complex i s o b t a i n e d , however, the luminescence i s s i g n i f i c a n t l y red-shifted. F o r t h e s e complexes, the l o w e s t energy e x c i t a t i o n appears t o be the x y "* * ( ^ ) c h a r g e - t r a n s f e r t r a n s i t i o n . C o n s i s t e n t w i t h t h i s assignment i s the o b s e r v a t i o n t h a t the e m i s s i o n o f the p h e n a n t h r o l i n e complex i s b l u e s h i f t e d I n more p o l a r s o l v e n t s , u n l i k e the o t h e r t u n g s t e n p h e n y l c a r b y n e e m i s s i o n s which show no s o l v e n t dependence. d

n

2

The e x c i t e d s t a t e l i f e t i m e s o f a l l l u m i n e s c e n t t u n g s t e n carbyne complexes were a n a l y z e d and a r e l i s t e d i n T a b l e 2. The r e l a t i v e l y l o n g l i f e t i m e s found f o r the e m i s s i v e e x c i t e d s t a t e suggest the t r a n s i t i o n t o the ground s t a t e i s f o r b i d d e n . T a b l e 2.

E m i s s i o n Quantum Y i e l d s , E m i s s i o n L i f e t i m e s , and R a d i a t i v e Rate C o n s t a n t s i n Toluene a t 298K.

[(Tr*)C0 and M(diT)-KTT*) R 5 t r a n s i t i o n s a r e thought to be c l o s e i n energy and may c o n t r i b u t e s u b s t a n t i a l l y to t h e e x c i t e d s t a t e c h a r a c t e r [12-14], E m i s s i o n l i f e t i m e s were o b s e r v e d t o be s h o r t e r than 1 ns f o r each complex, c o n s i s t e n t w i t h an e x c i t e d s t a t e t h a t c o n t a i n s LF c h a r a c t e r which can d e a c t i v a t e r a p i d l y i n room-temperature s o l u t i o n v i a e f f i c i e n t n o n r a d i a t i v e processes. The p h o t o p h y s i c a l c h a r a c t e r i s t i c s o f these systems a r e c u r r e n t l y b e i n g f u r t h e r i n v e s t i g a t e d . 5

c

H

ACKNOWLEDGEMENT. We a r e g r a t e f u l to the P e t r o l e u m Research Fund, a d m i n i s t e r e d by t h e American Chemical S o c i e t y , f o r t h e i r support o f t h i s r e s e a r c h .

REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

A . J . Lees, Chem. Rev. (1987) i n p r e s s . S. Chun, E.E. G e t t y and A.J. Lees, I n o r g . Chem. 2 3 , 2155 (1984). A . J . Lees, J.M. Fobare and E.F. M a t t i m o r e , I n o r g . Chem. 2 3 , 2709 (1984). R.M. K o l o d z i e j and A.J. Lees, O r g a n o m e t a l l i c s 5 , 450 (1986). D.M. Manuta and A . J . Lees, I n o r g . Chem. 2 5 , 1354 (1986). P.C. S e r v a a s , H.K. v a n D i j k , T.L. S n o e c k , D.J. S t u f k e n s and A. Oskam, I n o r g . Chem. 2 1 , 4494 (1985). P . J . Giordano and M.S. W r i g h t o n , I n o r g . Chem. 16, 160 (1977). D.M. Manuta and A . J . L e e s , I n o r g . Chem. 2 5 , 3212 (1986). P.J. G i o r d a n o , S.M. F r e d e r i c k s , M.S. W r i g h t o n and D.L. M o r s e , J . Am. Chem. S o c . 100, 2257 (1978). P . J . Giordano and M.S. W r i g h t o n , J . Am. Chem. Soc. 101, 2888 (1979). J . Van Houten and R.J. Watts, J . Am. Chem. Soc. 9 8 , 4853 (1976). G.L. G e o f f r o y and M.S. Wrighton i n " O r g a n o m e t a l l i c Photochemistry," Academic P r e s s : New York, 1979. N.J. Gogan, C.-K. Chu, J . Organomet. Chem. 9 3 , 363 (1975). D.L. L i c h t e n b e r g e r and R.F. Fenske, J . Am. Chem. Soc. 9 8 , 50 (1976).

PHOTOCHEMICALLY INDUCED C-C-BOND FORMATION IN THE COORDINATION SPHERE OF TRANSITION METALS

C.G.Kreiter

and K . L e h r

F a c h b e r e i c h Chemie d e r U n i v e r s i t a t

Unsaturated when

hydrocarbons a l t e r

coordinated

possibilities potential

of

thoroughly

to

transition

f o r the readily

hydrocarbons

induced

i n the

have

shown

irradiation

in

reactivity

metals

and

hydrocarbon

interesting

Nevertheless,

the s y n t h e t i c

complexes type

i s f a r from

years

ago,

that

(A

+

related

reaction to

behaviour.

principle

is

[Cr(CO)3(n&-C7He)], 1,3-Cyclopentadiene

n6-1,3,5-cycloheptatriene

the

C5H5)(n3-C5H7 ) ] high

yields.

cycloadduct,

but

s y s t e m 2.

spiro 2

and

conjugated

dienes

6 ] - c y c l o a d d i t i o n , forming

f»6-bi-

however.

cyclic

a

ligand

[Cr(CO)3(n6-C8Hs)],

respectively

[6+2]-cycloadduct i s

not

shifts

n6-1,3,5-cycloheptatriene

complete

the

reaction

the

formed

.

complexes, a

different substitute

[Cr(CO)2(n5-

are

formed

expected

with

1

an

in

[6+4]-

uneffected

tricarbonyl-n4 : 2-tricyclo-

1,3-Cyclohexadiene y i e l d s

2

show

photochemically.

7

to the

Other

dienes

[6.3.2.0 > ]trideca-3,5,9-triene-chromium(0). tion

complexes

or 1,3,5,7-cyclooctatetraene

spiro[4.4]nona-l,3-diene

With

free

tricarbonyl-n&-1,3,5-

acyclic,

limited and

and

metals.

cyclo[4.4.1]undeca-2,4,8-triene-tricarbonyl-chromium(0)

This

being

of r e a c t i o n s i s t h e

of t r a n s i t i o n

reacts with

a smooth

fundamentally,

f o r m a t i o n between complexed

c o o r d i n a t i o n sphere several

FRG

offer

used. A p r o m i s i n g

C-C-bond

cycloheptatriene-chromium(0) upon

their

organic synthesis. available

i n v e s t i g a t e d and

photochemically

We

K a i s e r s l a u t e r n , 6750 K a i s e r s l a u t e r n ,

After

ligand,

a

metal

[4+2]-cycloaddiassisted

1,5-H

.

Tricarbonyl-n6-1,3,5-cyclooctatriene-chromium(0) n 6 - 1 , 3, 5, 7-cyclooctatetraene-chromium(0)

do

not

or

react

tricarbonylwith

dienes

at a l l .

the

complexes

to

photochemically

the

complexes v e r y

closely

homologue

substitute Only

In

[Mo(C0)3(n©-C7Ha)]

photochemically

[W(C0)3(n*-C7Ha)],

and

[Cr(C0)3(n6-C7Hs)],

conjugated

1,3,5-cycloheptatriene related

ligand.

[ C r ( C 0 ) 3 (r»6 -C7 H8 ) ] , l i k e

to

tricarbonyl-n -8,8-dimethylheptafulvene-chromium(0)

3

6

0

6 : 6-heptafulvalene-dichromium(0),

with

conjugated

dienes

(n

3 : 5

5,

with

8

-

D

show

also

[6+4]-cycloadditions

.

tricarbonyl-n -8,8-dimethylheptafulvene-chromium(0) 6

Unexpectedly, forms

5

4

hexacarbonyl-

f

hexacarbonyl-n6 : 6 - i ( 2 , 4 , 6 -

and

cycloheptatrien-1-yl)dichromium(0)

dienes

2,3-dimethyl-1,3-butadiene the

- C i 4 Hi 6 ( C H 3 ) 2 ) ] ,

w h i c h a t ambient

d i c a r b o n y l complex

[Cr(C0)2-

c o n d i t i o n s adds c a r b o n

monoxide

6 .

[ C r ( C 0 ) 3 ( n 6 - C i o H i 2 )]

+

>

C4H4(CH3)3

[ C r ( C 0 ) 2 ( 0 3 : 5-C14H16 (CH3 )2 )] [ C r ( C 0 ) 2 (r.3: 5 - C 1 4 H 1 6 (CH3 )2 )]

+

CO

+

CO

>

[ C r ( C 0 ) 3 ( n 6 - C i 4 H i e (CH3 )2 )] The

formation

reaction

with

carbon

[6+4]-cycloaddition the to

[ C r ( C O ) 2 ( n 3 : 5 - C i 4 Hi 6 ( C H 3 ) 2 ) ]

of

monoxide sheds some l i g h t i n the

c o o r d i n a t i o n sphere

p h o t o r e a c t i o n proceeds an

activated

stepwise.

complex and

vene-r>2 - d i e n e - c h r o m i u m ( 0 ) . dimethylheptaf ulvene

and

its

smooth

on

t h e mechanism o f

of

chromium.

the

diene

i s coordinated

bond f o r m a t i o n between CI o f t h e c\ - d i e n e 2

n*-8,8-

of the

l i g a n d s produces the n (

n >: (1+n > - 1 - ( b u t e n e - 1 , 2 - d i y l ) - 7 - i s o p r o p y l i d e n e c y c l o h e p t a d i e n y l (n

=0,

for

2,

this

4).

ligand

immediately Only

Different i n the

forms a

of

loose

CC

A

new

type

i n the

incident.

We

tochemically

under

quite

unusual

way.

10,

the

K

with

After

-

ligand considered

intermediate

[6+4]-cycloadduct.

like

[Cr(C0)3(n3: 3 -

conditions,

between s i m p l e , of a t r a n s i t i o n

and

unsaturated metal

was

shown, t h a t d e c a c a r b o n y l - d i m a n g a n e s e ( 0 ) 1,3-butadiene

a s h o r t time

1-diyl-enneacarbonyl-dimanganese 9,

stability

the

5

form

6.

of c y c l o a d d i t i o n

a t 253

most c a s e s yields

photochemical

c o o r d i n a t i o n sphere

have

In

bond and

moderate

CO

[ C r ( C 0 ) 2 ( n 3 ; 5-C14H16 (CH3 )2 ) ] 5,

carbons

o f c o o r d i n a t i o n have t o be

intermediate.

second

intermediates

Ci 4Hi 6 ( C H 3 ) 2 ) ]

kinds

the

Obviously,

tricarbonyl-n*-8,8-dimethylheptaful-

forms CC

CI

First,

and

i s the

of

i n n-hexane irradiation

predominating

hydro-

found

r e a c t s pho-

solution u-n3

by

:

i n an

1-2-butene-

reaction

product

[Mn2(CO)io]

+

C4H6

[Mn2(C0)9(u-n3; 1 - C 4 H 6 ) ]

formation of [Mn2(C0)9(u-n

The stepwise

attack of

to

the

yield

other

>

[Mn(C0)5-]

• 1 - C 4 H 6 ) ] c a n be r a t i o n a l i z e d

3

by a

t o CI and C4 o f 1 , 3 - b u t a d i e n e

radicals

i n t e r m e d i a t e {[(CO)5MnC4H6Mn(CO)5]},

c a r b o n y l - n i - e n y l complexes

+C0

CO and

which l o o s e s ,

[(C0)4Mn(u-n : 3

yields

like

1-C3H4-

CH2)Mn(C0)5]. When ted

the photoreaction

with conjugated

atoms,

the reaction

reaction

with

reaction

leads to

i s transferred

The tives

products

substantially

n -E-pentadienyl,

complexes.

1-C4H6)]

s h o u l d be

when

3

with

1

*>

CsHe

{[Mn2(C0)9(n = 1-CsHs)]} 3

In diene

a further

under l o s s [Mn(C0)5H] When

instead

1 , 3 - p e n t a d i e n e and i t s d e r i v a -

A

corresponding

to

[Mn2(C0)9(n

1 -

hypothetical

respect t o a (3-elimination,

{[Mn2 (C0)9 ( n : 1-CsHe )]}

>

[Mn(C0)4(n -C5H?)]

3

[Mn(C0)5H]

by w h i c h

a r e formed.

>

3

3

+

CO

+ [Mn(CO)sH]

reacts photochemically

with

free

are

used

o f CO t o [ M n ( C 0 ) 4 ( n - C s H 9 ) ] . 3

+

>

CsHe

E,E-2,4-hexadiene o r of 1,3-butadiene

nyl-manganese ligands

step,

tet-

12.

3

+

of t h e

t h e mam

and n - p e n t e n y l

[ M n ( C 0 ) 4 ( n - C 5 H 7 ) ] and p e n t a c a r b o n y l - h y d r i d o - m a n g a n e s e [Mn2(CO)io]

those

from

intermediates,

a r e assumed.

instable,

carbon

In a k i n d o f d i s p r o p o r t i o n a t i o n h y d r o -

[Mn2(CO)io] with

understood,

o r more

and Z - l , 3 - p e n t a d i e n e

3

mononuclear

reactions of

[Mn2(C0)9(u-n : C5H8)]

differ

W i t h £-,

between two d i e n e m o l e c u l e s

are easily 3

containing a chain of f i v e

1,3-butadiene.

racarbonyl-manganese gen

o f d e c a c a r b o n y l - d i m a n g a n e s e ( 0 ) i s conduc-

dienes,

from

3

+

CO

2,4-dimethyl-l,3-pentadiene

i n the

complexes were

consisting

[Mn(C0)4(n -CsH9)]

reaction with

[Mn2(CO)io],

o b t a i n e d as b y - p r o d u c t s

two d i e n e m o l e c u l e s

with

tricarbo-

hydrocarbon

w i t h one h y d r o g e n

less.

% [Mn2 (CO)io ]

+

2 CeHio

>

[ M n ( C 0 ) 3 (C12H19 )] + 2 CO + {H}

^

+

2 C7H12

>

[Mn(C0)3 (C14H23 ) ] + 2 CO + {H}

[Mn2 (CO)io ]

An sence in

X-ray n

of an

this

diffraction 3

complex

nonadien-l-yl

13

1 4

>

.

ligand

was

The

ligands

readily

suggest

:

2

the

i f l NMR

[5

+

spectrum

for

both n : 2-2,6-cyclo3

p a t t e r n s of

a formal

ligand

-4,5,8-trimethyl-2,6-cyclo-

by

substitution

manganese

formed

related It

complexes,

4]

cycloadditon

of

the

a certain

In

3 :

2

3

irradiation

CO.

The

proove

2,5-pentadien-l-yl)] [5

l-yl)]

+ 4]

and

this

formed

good

methyl

may

substituted

complexes.

h y p o t h e s i s , we

1,3-butadiene

cycloaddition,

i s formed

hereby

[ M n ( C 0 ) 3 ( n 5 - 2 , 5 - p e n t a d i e n - l - y l ) ] complexes,

-2,6-cyclononadien-l-yl)]

order to

3

[Mn(C0)4(n -£-2,4-dimethyl-2,4-pentadien-l-

and

during the

substituted

are

[Mn(CO)4(n -

amount o f

f u r t h e r with the excess of the dienes t o the

[Mn(CO)3(n

complexes

°C.

i s r e a s o n a b l e t o assume, t h a t

methyl

Such

tetracarbonyl-n ~E~2,4-pentadien-l-yl-manganese

from

c o m p l e x e s on warming t o 60

looses already

react

respectively. 3

E-2,4-hexadien-l-yl)],

mal

prooven

3

5

tricarbonyl

yl)]

an n

Similarily,

t o n 5 - 2 , 4 - h e x a d i e n - l - y l , and n - 2 , 4 - d i m e t h y l - 2 , 4 - p e n t a d i e n - l - y l

dienes

and

the pre-

• 2 - i , 3 , 5 , 5 , 7-pentamethy 1 - 2 , 6 - c y c l o n o n a d i e n - 1 - y 1

[Mn(C0)3(Ci 2H19 ) ] . nonadien- 1 - y l

[ M n ( C 0 ) 3 ( C i 4 H 2 3 ) ] shows

s t u d y of

with UV-light. [Mn(CO)3(n

the simple

[Mn(CO)3(n 5

irradiated

3: 2

In a f a s t ,

for-

-2,6-cyclononadien-

yield.

(C0) Mn 3

Again

the question

generally yl)]

applicable

complexes.

quite

has

also

to

be

answered, whether t h i s

t o o t h e r d i e n e s and

other

E~l,5-pentadiene, [Mn(C0)3(n -CsH7)] reacts 5

With

smoth r e a c t i o n

similarily.

In c o n t r a s t ,

%-l,5-pentadiene

o n l y when benzene i s p r e s e n t i n t h e r e a c t i o n m i x t u r e as a In yl )],

the f i r s t

case

i n the second A

further

dienyl)].

With

[Mn(C0)3(n

3

we

have i n v e s t i g a t e d ,

1,3-butadiene,

butadiene

is

i s obtained.

[Mn(C0)3(n -cyclohexa5

the only product i s the c h e l a t e

3

yields

a

mixture of

nona-3,8-dien-7-yl)]

and

2,4-cyclohexadiene)]. complexes

varies

with

catalyst.

2

c a s e t h e c o r r e s p o n d i n g endo i s o m e r

system,

in a

reacts

•-ej£p-5-methyl-2,6-cyclononadien-l-

[Mn(C0)2(n : -1-(3-buten-l,2-diyl)-2,4-cyclohexadiene)]. 4

reaction i s

[Mn(C0)3 (f»5 - d i e n -

complex

2-Methyl-l,3-

[Mn(CO)3 (r» : - 3 - m e t h y l - b i c y c l o [ 4 . 3 . 1 ] 3

2

[Mn(C0)2(n : - 1 - ( 3 - m e t h y l - 3 - b u t e n - l , 2 - d i y l ) 4

Interstingly, the

reaction

3

the

ratio

between

temperature.

Low

these

two

temperature

favours

the

dominantly adds

formation the

o f t h e Mn(C0)2

Mn(C0)3

complex. At

room t e m p e r a t u r e

[Mn(C0)3 ( n • 2 - 3 , 4 -

[Mn(C0)3 (r»5 - c y c l o h e x a d i e n y l ) ] and

c l e a n l y to

dimethyl-bicyclo[4.3.l]nona-3,8-dien-7-yl)]

[Mn(C0)3 (n5-CeH7 )]

+

is

3

obtained.

> [Mn( C 0 ) 3 ( n : - C H 3 Cs Hi 2 ) ] 3

i-CsHs

2

[Mn(C0)2 ( n 4 . 3 - C n H i 5 )] [Mn(C0)3 (H5-C6H7 ) ]

(CH3)2C4H4

+

pre-

2,3-Dimethyl-l,3-butadiene

complex i s o b t a i n e d .

+

CO

> [Mn(C0)3 ( 0 3 : 2 - ( C H 3 ) 2 C 9 H l l ) ]

These

r e a c t i o n s show c l e a r l y , bicyclo[4.3.1]nonane

chemically chances, ferent

to extend

from the

There tion

are

reaction

a first

step,

{[Mn(C0)3(n -dienyl)]}

with

dienes

bond

between

principle

a l s o some i n f o r m a t i o n s In

3

good

t o systems d i s t i n c t l y

dif-

complex.

about t h e mechanism o f t h e

photochemically

{[Mn(C0)3(n -dienyl)(n2-diene)]}. the

3

n -dienyl

2

and

n -diene

Formation of

2 , 6-cyclononadien-l-yl)],

a second

reacts

F o r m a t i o n o f one

ligands

yields

C-C

unstable

{[Mn(C0)3(n : - 1 - ( e n d i y l ) 2

or C-C

reac-

a c o o r d i n a t i v e l y un-

i s formed, w h i c h

3

to

photo-

There are

intermediate

{[Mn(C0)3(n4: 1 - l - ( e n d i y l ) - 2 , 4 - d i e n e ) ] > 2,4-diene)]}.

a t manganese.

Mn(C0)3(n5-pentadienyl>

parent

available.

saturated

the

that i t i s possible to b u i l d

systems

bond l e a d s t o

photochemically

induced

CO

3

[Mn(C0)3(n :

loss to

3

2

[Mn(C0)2-

(n4:3endiyl)-2,4-diene)]. [Mn(C0)3(n5-dienyl)]

>

{[Mn(C0)3 ( r » - d i e n y l ) ] } 3

+

{[Mn(C0)3(n -dienyl)]} 3

diene

>

{[Mn(C0)3(n -dienyl)(n -diene]} 3

3

2

{[Mn(CO)3(n - d i e n y l ) ( n - d i e n e ] }

2

>

{[Mn(C0)3(n4: 1 - ( e n d i y l ) d i e n e ) ] } {[Mn(C0)3 (r»4: 1 - ( e n d i y l ) d i e n e ) ] }

>

[Mn(C0)3(n

3 :

2

-2,6-cyclononadien-l-yl)]

[Mn(C0)2(n4: - ( e n d i y l ) d i e n e ) ] 3

-

+

CO

1

S. O z k a r , metal.

2

H. K u r z ,

D. Neugebauer, and C. G. K r e i t e r ,

J . Organo-

Chem., 160, 115 (1978).

C. G. K r e i t e r ,

E. M i c h e l s ,

and H. K u r z ,

J . Organometal.

Chem.,

232, 249 (1982). 3

J . A. S. H o w e l l ,

B. F. G. Johnson,

and J . L e w i s ,

J . Chem. S o c . ,

D a l t o n T r a n s , p. 293 (1974). 4

J . D. Munro, and P. L. Pauson, J . Chem. S o c , (1961) 3484.

5

E. M i c h e l s ,

and C. G. K r e i t e r ,

J . Organometal.

Chem., 252, CI

(1983) . 6

E. M i c h e l s , 964

7

W. S. S h e l d r i c k ,

and C. G. K r e i t e r ,

Chem. B e r . , 118,

(1985).

C. G. K r e i t e r ,

and E. M i c h e l s ,

J . Organometal.

Chem., 312, 59

(1986). 8

C. G. K r e i t e r ,

E. M i c h e l s ,

and J . Kaub, J . O r g a n o m e t a l .

Chem.,

312, 221 (1986). 9

C. G. K r e i t e r , Chem.,

Int.

and W. L i p p s ,

Ed. E n g l . ,

10

C. G. K r e i t e r ,

11

M. L e y e n d e c k e r , C31

12

13

20, 201 (1981).

and W. L i p p s ,

Chem. B e r . , 115, 973 ( 1 9 8 2 ) .

and C. G. K r e i t e r ,

J . Organometal.

Chem., 249,

and M. L e y e n d e c k e r ,

J . Organometal.

Chem., 280,

(1983).

C. G. K r e i t e r , 225

Angew. Chem., 93, 191 (1981); Angew.

(1985).

C. G. K r e i t e r ,

14 C. G. K r e i t e r ,

M. L e y e n d e c k e r , Adv. O r g a n o m e t a l .

and W. S. S h e l d r i c k ,

unpublished.

Chem., 26, 297 (1986).

T R I P L E T QUENCHING BY METAL CARBONYLS

M.Kucharska-Zon

and

A.J.Poe

The D e p a r t m e n t o f C h e m i s t r y and E r i n d a l e C o l l e g e , U n i v e r s i t y o f M i s s i s s a u g a , O n t a r i o , L 5 L 1C6, CANADA

Toronto,

The q u e n c h i n g o f t r i p l e t s t a t e s by o r g a n o m e t a l l i c compounds i s w e l l e s t a b l i s h e d though not w i d e l y s t u d i e d . V o g l e r (1970, 1975) reported b e n z o p h e n o n e - p h o t o s e n s i t i z e d s u b s t i t u t i o n r e a c t i o n s o f M ( C O ) (M = g

Cr, Mo, W) i n benzene. I t was p o s t u l a t e d t h a t t r i p l e t e n e r g y was t r a n s f e r r e d t o t h e m e t a l c a r b o n y l , l e a d i n g to CO d i s s o c i a t i o n . F e r r o c e n e quenches t r i p l e t s t a t e s o f many o r g a n i c m o l e c u l e s i n benzene ( F r y , 1966; K i k u c h i , 1974; F a r m i l o , 1975) and i t was c o n c l u d e d ( F a r m i l o , 1975) t h a t t r i p l e t e n e r g y t r a n s f e r o c c u r s to a d i s t o r t e d e x c i t e d s t a t e of f e r r o c e n e . T r a v e r s o et a l . (1978) showed t h a t M(/7~CgHg)2 (M = Fe, Ru, Os) quench t r i p l e t u r a n y l i o n i n a c e t o n e by e l e c t r o n t r a n s f e r as do s e v e r a l mononuclear c a r b o n y l s and one d i n u c l e a r one, Mn^iCO)(Sostero, 1979). I t has a l s o been shown (Fox,

1982)

that

that

triplet

CCl^

and

CCl^

to form M n ( C 0 ) g C l .

this

biacetyl,

BA,

i s quenched by M n g C C O ) ^ i n

s e n s i t i z e s the Mn2(C0)^g towards r e a c t i o n The

simplest

explanation

i s that

with

triplet

e n e r g y t r a n s f e r l e a d s t o h o m o l y s i s o f the Mn-Mn bond and r e a c t i o n o f the Mn(C0)g r a d i c a l s w i t h the s o l v e n t . R e g f C O ) ^ d i d not quench BA but

Re^(CO)g(PPhg)^

Re(CO)^(PPhg)CI.

d i d and We

was

s e n s i t i z e d to formation

r e p o r t here data

of

f o r phosphorescence

o f BA by a wide r a n g e o f m e t a l c a r b o n y l s , t r i p l e t b e n z i l , BZ, q u e n c h i n g .

and

a few

quenching

examples

of

RESULTS

Phosphorescence kinetics.

intensities

Values of k

showed good agreement w i t h

f o r BA

i n benzene a r e

given

Stern-Volmer

in Table

1

q together

with

estimated

by

values

f o r the

means o f equ. k

where AE(T) the rate This the

q

triplet

(1)

energies,

(Herkstroeter,

= k / { l + exp. m

i s a measure o f the

quencher exceeds that

o f BA

o f the

t o w h i c h the

700

cm

1

) , and

k

triplet ffl

controlled rate

energy

of

i s the maximum 1 0

x 10*** M~*s~* f o r a d i f f u s i o n

1964) (1)

c o n s t a n t f o r t r i p l e t e n e r g y t r a n s f e r t a k e n as 1 x 1 0 i s c l o s e t o t h e h i g h e s t v a l u e o f k^ o b s e r v e d h e r e but 1.6

quenchers

Sandros,



(n -C H )Ir(CO)(S) 5



5

C

5

(n -C -H )Ir(CO)(H)(C .H -) c

s

f

+

c

S

(3)

H

6 6

Scheme 2

5

(n -C H )Ir(CO) * 5

5

2

«

3

» k

(n -C H )Ir(CO) (S) 5

3

(n -C H )Ir(CO) (S) 5

5

5

(4)

2

2



2

C

5

(n -C H )Ir(CO)(H)(C H ) 5

5

6

+

5

CO

+

S

(5)

H

6 6

Quantum y i e l d s have been measured f o r C-H a c t i v a t i o n o f benzene i n p e r f l u o r o benzene s o l u t i o n s s a t u r a t e d w i t h CO ( c a . 1 0 ~ M [ 1 5 ] ) , and the d a t a a r e shown i n T a b l e 2. The r e s u l t s i l l u s t r a t e t h a t the e f f e c t of added CO on i s n e g l i g i b l e a t any o f the benzene c o n c e n t r a t i o n s measured. T h i s o b s e r v a t i o n argues a g a i n s t the mechanism i n v o l v i n g i n i t i a l CO d i s s o c i a t i o n from the p h o t o e x c i t e d complex (Scheme 1). On the o t h e r hand, a h a p t i c i t y change (n^-Mri ) mechanism (Scheme 2) would not be expected to be a f f e c t e d by the CO c o n c e n t r a t i o n . Low-temperature experiments p r e v i o u s l y c a r r i e d out on the c l o s e l y r e l a t e d ( n ^ - C M e ) I r ( C O ) complex have prov i d e d a d d i t i o n a l support f o r a h a p t i c i t y change mechanism; even a f t e r p r o l o n g e d p h o t o l y s i s o f t h i s complex i n Ar o r N m a t r i c e s a t 12 K no more than t r a c e q u a n t i t i e s o f (n -C -Me -)Ir(CO) have been observed [ 1 6 ] , 2

3

5

5

2

2

5

t

c

Quantum y i e l d s (c|>) f o r the c o n v e r s i o n o f (n - C c H ) I r ( C O ) ( C O ) ( H ) ( C H ) i n p e r f luorobenzene a t 293 K.

T a b l e 2.

5

to (n - C c H c ) I r -

2

a

6

[C H ], 6

6

5

M

4

0.01 0.025 0.05 0.10 0.25 0.50 11.3

b

4>

0.013 0.017 0.018 0.021 0.027 0.029 0.030

d

a

b

0.015 0.020 0.028

R e p o r t e d v a l u e s e s t i m a t e d to be a c c u r a t e to ±10%; e x c i t a t i o n wavelength i s 366 N ~purged solutions. C O - s a t u r a t e d s o l u t i o n s (-10 M i n d i s s o l v e d CO c o n c e n t r a t i o n , see r e f . 15). N e a t benzene s o l v e n t .

nm.

2

c

d

2

E x c i t a t i o n o f 3.8 x 1 0 ~ M ( n - C H c ) I r ( C O ) i n N -purged benzene a t 20°C w i t h the t h i r d harmonic l i n e o f a Korad Nd g l a s s l a s e r (353 nm, 20 ns p u l s e w i d t h ) produces an absorbance change immediately f o l l o w i n g the l a s e r p u l s e t h a t i s d e p i c t e d i n F i g . 2. A p p r o x i m a t e l y 1.1 x 10 M (n - C H ) I r ( C 0 ) undergoes p h o t o d i s s o c i a t i o n f o l l o w i n g t h i s e x c i t a t i o n . T h i s v a l u e has been determined from the l a s e r p u l s e energy, the i r r a d i a t e d volume, absorbance, and quantum y i e l d o f ( n - C H ) I r ( C 0 ) i n the t r a n s i e n t a b s o r p t i o n experiment. No f u r t h e r absorbance changes were observed. These a b s o r p t i o n f e a t u r e s c l o s e l y match those o b t a i n e d i n the s t e a d y - s t a t e p h o t o l y s i s experiment and i t i s c o n c l u d e d t h a t ( n - C H ) I r ( C 0 ) ( H ) ( C H ) has been formed. T h i s r e s u l t demonstrates t h a t the i n t e r m o l e c u l a r C - H a c t i v a t i o n o f benzene by the p h o t o e x c i t e d m e t a l complex takes p l a c e on a v e r y f a s t t i m e s c a l e ( w i t h i n the 20 ns l a s e r p u l s e ) ; t h u s , a lower l i m i t f o r k = 4.4 (±0.9) x 1 0 M" S " (k k / [ C H ] ) can be e s t i m a t e d f o r the C - H a c t i v a t i o n process. Any t r a n s i e n t produced f o l l o w i n g p h o t o e x c i t a t i o n i s v e r y s h o r t l i v e d and r a p i d l y scavenged by the s o l v e n t m o l e c u l e s p r e s e n t (neat benzene a t 20°C i s 11.3 M). 3

5

5

2

5

2

5

2

5

5

5

6

5

b

Q b s

6

6

5

5

1

1

5

2

_J 400

I 500

I 600

1 700

nm F i g u r e 2.

Photoproduct spectrum o b t a i n e d i n t r a n s i e n t a b s o r p t i o n experiment f o l l o w i n g 353 nm e x c i t a t i o n o f 3.8 x 1 0 ~ M (n -C -H -)Ir(CO) i n benzene at 20°C. 3

5

c

t

2

S i m i l a r experiments have been c a r r i e d o u t f o r (n - C ^ H ^ I K C O ) ^ i n N^-purged p e r f l u o r o b e n z e n e c o n t a i n i n g 5 x 1 0 M benzene. Immediately f o l l o w i n g e x c i t a t i o n a t r a n s i e n t w i t h a broad absorbance ( c e n t e r e d a t 625 nm) was r e c o r d e d , which subs e q u e n t l y decayed w i t h k = 4.8(±1.0) x 10° s ~ ( t h u s k = 9.6(±1.9) x 10° M s t o form t h e product ( n ~ C H ^ ) I r ( C O ) ( H ) ( C H ) . T h i s t r a n s i e n t a b s o r p t i o n f e a t u r e i s a s s i g n e d to t h e ( r - C ^ ) I r ( C 0 ) ( S ) s p e c i e s i n accordance w i t h t h e above a n a l y s i s . Moreover, we were u n a b l e to o b s e r v e absorbance changes r e p r e s e n t i n g product f o r m a t i o n f o l l o w i n g l a s e r p h o t o e x c i t a t i o n o f ( n ^ - C ^ H ^ ) I r ( C 0 ) i n neat p e r f l u o r o b e n z e n e ; t h i s r e s u l t i s c o n s i s t e n t w i t h the n back r e a c t i o n (see e q u a t i o n 4) t a k i n g p l a c e i n the absence o f s c a v e n g i n g benzene m o l e c u l e s . 3

1

Q b s

1

1

5

5

6

5

2

2

ACKNOWLEDGMENT. We a r e g r a t e f u l t o the donors o f the P e t r o l e u m Research Fund, a d m i n i s t e r e d by the American C h e m i c a l S o c i e t y , f o r support o f t h i s r e s e a r c h . We thank Ms. A. S. Lee f o r a s s i s t a n c e w i t h i n i t i a l experiments and P r o f . A. W. Adamson f o r use o f the Nd g l a s s l a s e r and t r a n s i e n t a b s o r p t i o n equipment.

REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

G.W. P a r s h a l l , A c c . Chem. Res. 8, 1 13 (1975). A.E. S h i l o v and A.S. Shteinman, Coord. Chem. Rev. 2 4 , 97 (1 977). A.E. S h i l o v , Pure A p p l i e d Chem. 50, 725 (1978). G.W. P a r s h a l l , C a t a l y s i s 1, 335 (1977). D.E. W e b s t e r , Adv. Organomet. Chem. 1 5, 147 (1977). J.P. Collman and L.S. Hegedus, " P r i n c i p l e s and A p p l i c a t i o n s o f O r g a n o t r a n s i t i o n M e t a l Chemistry," U n i v e r s i t y S c i e n c e B o o k s : M i l l V a l l e y , CA, 1980. G.W. P a r s h a l l , "Homogeneous C a t a l y s i s , " Wiley:New York, 1980. A.H. J a n o w i c z and R.G. Bergman, J . Am. Chem. Soc. ^0^, 352 (1982). W.D. Jones and F . J . Feher, O r g a n o m e t a l l i c s 2, 686 (1983). J.K. Hoyano and W.A.G. Graham, J . Am. Chem. Soc. 1 04, 3723 (1982). J.K. Hoyano, A.D. M c M a s t e r a n d W.A.G. Graham, J . Am. Chem. Soc. 105, 7 1 9 0 (1983). E.O. F i s c h e r and K.S. B r e n n e r , Z. N a t u r f o r s h 16B, 774 (1962). A . J . Lees and A.W. Adamson, I n o r g . Chem. 20, 4381 (1982). R. Fukuda, R.T. W a l t e r s , H. Macke and A.W. Adamson, J . Phys. Chem. 83, 2097 (1979). D.D. Lawson, A p p l . Energy 6, 241 (1980). A.J. R e s t , I . W h i t w e l l , W.A.G. Graham, J.K. Hoyano, a n d A. M c M a s t e r , J . Chem. Soc. Chem. Commun. 624 (1 984).

I D E N T I F I C A T I O N OF H - , D -, N - BONDED INTERMEDIATES IN THE PHOTOCATALYZED HYDROGENATION REACTIONS 2

2

2

A.Oskam, R . R . A n d r e a ,

D . J . S t u f k e n s , a n d M.A.Vuurman

A n o r g a n i s c h Chemisch L a b o r a t o r i u m , U n i v e r s i t y o f Amsterdam, N i e u w e A c h t e r g r a c h t 1 6 6 , 1 0 1 8 WV A m s t e r d a m , THE NETHERLANDS

The

mechanisms

complexes

of photochemical

have

been

the

attempts

have

been

performed

by

studying

inert

matrices

characterized to

use

This

followed

under

the it

have

A

special

matrix

combination

and

noble

reactions,

site

regions,

sufficient

stabilize long

enough

symmetry

combination

ESR

and N M R - s p e c t r o s c p i c

In

order

and

(Andrea

to stabilize

photochemical

solutions useful

hydrogenation

with

of H , D

FTIR.

primary

Xenon

reactions

i |

presence

The

2

several

of

methods

of

i s t h e use o f

c a n be

i n the

used

of

to

study

(photochemical)

a n d do n o t show a n y

o f most

o f t h e compounds i n

i n t h e sample

cell

i s large

r e p o r t s about

i n solutions

IR-

at various

t h e components

identification

Several

studies

photoproducts we

have

enough

IR, U V - v i s i b l e ,

of liquid

i n LXe

and N 2

This

mechanisms

of dienes. has

and s t u d y

extended

(LXe, 170-240K).

at the reaction

Cr ( C O ) ( n o r b o r n a d i e n e )

because

noble

gases

1986).

reactions

i n liquid

to look

methods.

photoproducts

reactions

s o l v e n t s do n o t a b s o r b

solubility

s p e c t r o s c o p i c measurements.

appeared

spec-

techniques

consuming

of primary

intermediates

pathlength

for

have

possible

valuble technique f o r

ongoing

are inert,

reactive

a long

in

c a n be

t h a t r e a c t i o n s c a n be

a n d money

mobility

f o rspectral

splittings.The

with

of

as s o l v e n t s . T h e s e

spectral

be

o f t h e components.

the advantages

show

can

resolved

time-resolved

i s a very

i n studying

and m o b i l i t y

of

UV-visible

as time

Many

photoproducts

fast

advantage

spectroscopy

This

I t i s also

with

This

metal

papers.

intermediates

spectroscopy.

and c o n f o r m a t i o n a l a n a l y s i s

gases

temperatures,

reactions

restrictions

limitations

of diffusion

liquid

these

i n combination

isolation

identification

and p r i m a r y

Usually

conditions.

transition

recent

intermediates.

molecules

has t h e g r e a t

normal

several

identify

glasses.

technique

has severe

lack

parent

photolysis

troscopy.

Although

to

in

by IR a n d U V - v i s i b l e

flash

however

made

or s o l i d

reactions involving

subject

of

the

purpose

irradiated

The p h o t o p r o d u c t s

CO-frequencies

their

Were

various

thermal

experiments

solvent

of Cr(CO)

For this been

our

to

i s especially photocata1yzed

6

a at

solution 183K

mainly

of

i n the

identified

photoproducts

were

assigned

with

experiments The

the

in

use

and

infrared

of

the

data

obtained

from

irradiation

CH^-matrices.

spectrum

of

Cr(C0) H c

as

o

an

intermediate

of

the

d

D

irradiation o f C r ( C O ) ^ and in liquid Xenon has been p u b l i s h e d b e f o r e s h o w i n g a C r ( C O ) - p a t t e r n and an H - s t r e t c h i n g vibration at -1 3 0 3 0 cm (Upmacis 1985 ) . W i t h D instead of H t h e same spectra -1 a p p e a r e d b u t w i t h t h e D ^ - s t r e t c h i n g v i b r a t i o n a t 2241 cm , slightly higher than could be calculated f o r an uncoupled vibration. The L-experiment r e s u l t s i n C r ( C O ) N . w i t h a N«

^

at

2237

trans

d

cm"

and

with

after

two

prolonged

different

irradiation

sets

(a

frequencies

(Turner

Irradiation

Cr(CO)^(norbornadiene)

a

possible

rection resp.

2

a

intermediates Because

ligand

were

photocatalyzed

i.e.

H^be

too

changes

could

be 2

Cr(CO)(N)

e q

and

and

a^)

of

N^-stretching

and

or

the

D^-

i n order catalyzed

stretching The

to

identify

hydrogenation

vibration

of

c o n c e n t r a t i o n of

these

low. the

CO-stretching

reaction N^.

we

Here,

repeated three

region this

during

this

experiment

eventually

four

with photo-

identified;

a X

Cr(CO)^(N )

d

2

or

of

detected.

in

hydrogenation

Cr(CO)^(norbornadiene) products

no

could

s i m p l y was

there

b^

with

intermediate

norbornadiene

as

+

< 1

d

in C r ( C O ) ^ ( ) , cis

1 98 3).

H^-bonded

of

D.

o

c

(norbornadiene),

(norbornadiene), 2

Cr(C0) and

l j

(N )(n

Identification the

bands

the

Cr (CO)

Cr(C0) (=

1 |

norbornadiene),

2

C r ( CO ) ^ (

) ^ ( rj

of these

i n the (N

2

N «

photoproducts

as

2

norbornadiene).

well

as

)(nor bornadiene) 2

(N )(rj 2

norbornadiene)

were

i n the

4)

on

the assignments

CO-stretching region.

products (=

based

Figure)

(=

and

3)

grow

in

C r ( CO ) ^ ( N

2

and

At

of

first

later

on

) ( n-norbornadiene ) 2

2).

The stead

same

experiments

of

propose

N

2

with

show

the

the

same

that

Complete

proof of

same

H

2

or

D

patterns

type

of

and

2

in

the assignments

radiation

in

intensity

decrease

very

end

presence

and

of

of

the

with

Cr(CO)^(norbornadiene ) with the

(Cr(CO)^(norbornadiene ) i n CO-region.

products arise 13

progress.

the

(see

free

CO H

2

in

labeling and

D

2

norbornadiene

the

parent

bands

large

bands

which

of

Therefore,

these

we

experiments.

experiments

is in

after

prolonged i r -

shows

no

detectable

Cr(CO)^(norbornadiene)

evidently

belong

to

at free

norbornane. Further

experiments

catalyzed

in

hydrogenation

liquid

xenon

reaction

of

to

unraffle

the

norbornadiene

mechanism are

in

of

the

progress.

CO-region

a-.

3 6

I)

V uu

Sir?

z5s5

Hii

iioi

Hal

2T92 iTii

01 ZO B7 2699 1393 198.5 T5si

STTe i&as

Wi^V£NU|1BERS

UAVFMf IMBrH« PRODUCTS;

6=Cr(

1 2

4=Cr(

1 2

3=Cr(

1 2

Figure

6

2

C0) (77 -NBD)(N ) 4

2

4

C0) (77 -NBD)(N 3

3'=Cr( 2-Cr(

C0)

1 2

1 2

a x 2

4

C0) (77 -NBD)(N 3

C0) (7 3

, i 7

e q 2

-NBD)(N )

P h o t o l y s i s of Cr(CO),(norbornadiene) with

2

N

) )

1 &37 1&89 t623

REFERENCES Andrea

RR,

Applied Turner

H,

Spectroscopy

J J , Simpson

Inorg. Upmacis

Luyten

MB,

Vuurman

MA,

Stufkens

DJ

4 0 : 1184 a n d r e f e r e n c e s Poliakoff

M,

and

Oskam

A

(1986)

and Graham

MA

( 1 983 )

therein

Maier

I I WB

Simpson

MB,

Chem. 2 2 : 911 RK,

Simpson

Gadd

GE,

Poliakoff

AF ( 1 9 8 5 ) J.Chem.

M,

Turner

S o c . Chem. Commun. 27

J J , Whyman

R,

SPECTROSCOPY AND PHOTOCHEMISTRY

OF N i ( C O ) ( a - D I I M I N E )

COMPLEXES

2

P . C . S e r v a a s , D . J . S t u f k e n s , and A.Oskam A n o r g a n i s c h Chemisch L a b o r a t o r i u r n , U n i v e r s i t y o f Amsterdam, N i e u w e A c h t e r g r a c h t 1 6 6 , 1018 WV A m s t e r d a m , THE NETHERLANDS

INTRODUCTION During

the

laboratory

last to

photophysics most

of low-valence

of these

charge

t e n years

complexes

transfer

d -M(COK(a-diimine) 8

1984),

d -Fe(CO)

a reaction

quantum

yields

Because

of these

close-lying from

these

states In

of

close-lying

and

especially

the s t e r i c

a-diimine

study

t h e most

states, very

and because

cases, v i z . 1985) and

published;

MLCT

Kokkes

although the low

(cJXO.01 ) .

of the presence

reactions normally

a t room

For

to a-diimine

Dijk

always

photochemical

cases

temperature

of

occur

when t h e s e L F

occupied.

LF s t a t e s

photochemical

represents

be

i n our

complexes.

few

van

to

these

paid i n some

i s metal

in a

1980;

were

yields

LF s t a t e s ,

states,

state

(van Dijk, from

been and

a-diimine

Only

(Balk

reactions

l o w quantum

to investigate

photochemistry from

these

reactive latter

excited

(M=Cr,Mo,W)

was o b s e r v e d

has

metal

i n character.

become t h e r m a l l y

order

transition

(a-diimine)

of

attention

photochemistry

the lowest

(MLCT)

6

recently

much

the spectroscopy,

complexes taking

of

simple

and e l e c t r o n i c without

place,

we

the Ni(C0)

a-diimine

(= R-DAB; R-N=CH-CH=N~R). The r e s u l t s

effects

disturbing

started

(R-DAB)

ligand

of this

on t h e MLCT reactions

a spectroscopic

complexes.

R-DAB

1,4-diaza-1,3-butadiene study

are presented

here.

R E S U L T S AND D I S C U S S I O N Ni(CO)^(R-DAB) complexes bulky

therefore Both

confined

complexes

region, at

with

maxima

MLCT t r a n s i t i o n

an

be p r e p a r e d

a

transition.

2

configuration CNDO/S

i n benzene 2

and

f o r R-DAB l i g a n d s w i t h

2

The

using

band

2

in

the

visible

2

the c h a r a c t e r i s t i c

H e ( I ) and

He(II)

by A n d r e a orbitals.

known

study i s

a t 19-34 kK f o r N i ( C O ) ( t - B u - D A B ) a n d 2

reported

This

Ni(CO) (2,6-iPr ~Ph-DAB).

absorption

(2 , 6 - i P r - P h - D A B ) . T h i s

of- t h e m e t a l - d

method,

(t-Bu-DAB)

intensive

and i t shows

Ni(CO) (t-Bu-DAB),

the

t o Ni(CO)

show

1 8 . 4 8 kK f o r N i ( CO)

such

could only

s u b s t i t u e n t s R a t t h e c o o r d i n a t i n g n i t r o g e n atoms.

bond

(1985) From

band

i s assigned

solvent

dependence o f

photoelec trori pointed MO

to a

to a

spectra

of

tetrahedral

calculations

d i s t a n c e s - and a n g l e s

following of

other

tetrahedral

Ni(CO)^(a-diimine)

1 9 8 5 ),

scheme

a MO

shown i n F i g u r e

has been

complexes composed;

( v o n Hausen

the relevant

1972;

part

Sieler

of which i s

1 .

1

(DAB)

d 2. 2 X

dy d

Z

Z

X2

Figure

MO-diagram

-+—

-4—

The

d

t >

b

transition

overlap

between

possible tions.

in

the

measured

both

and

CT

the

metal

transition

will

absorption d^

z

(b^)

in detail

NJ ( C O ) ^ ( R - D A B )

some

be

(t-Bu-

due

ligand Raman

the character complexes

characteristic

t h e most

spectrum and

t h e use o f the resonance

to determine For

M L

2^ 2*

allowed

With

of Ni(CO)

-DAB)

y 2

z-polarized

involved.

1.

ones

to

strongly the

TT*

strong

orbitals

(rR) technique of these

these are

MLCT

spectra shown

i n

i ti s transi-

have

been

F i g . 2.

These

spectra

indicate

a

The

appearance

in

the

rR

of

with

found

of

had

then

been

C0-7T*

orbitals. -1

773

the

cm

that

character

therefore The

rR

that

N i (CO)

) and

the

transition

of

quasi

the

pseudo

shown

effects

The

also

for v

as

the

(see s y m

at

metal

S y m

rR

The cm"

two

D

bands

modes

of

for

these

bonds

we

the

2^ 2*

is

can

rR

D

the

say

spectra

transition

solvatochromism

and

at

effect

There

has

to

Ni(R-DAB)

be

order

to

anti-

cannot

arise

out

These

how

change

for

the

have

19 81)

latter

The

a

measured

complexes

44.5°.

no

structural we

(Svoboda

1 9 81), of

transition

prepared

complexes

Ni(c-Hex-DAB)

ligands

to

structural

find

(torn D i e c k

2

a-diimine

321

Unfortunately, be

complexes.

2

a

at

characterizes

2^°2*

could

Ni-a-diimine

tetrahedral

b

from

strong

bonding

(Ni-C)

the

complex.

2

In

cm" )

S y m

of

(Ni-C)

1

(IT*) v

S y m

v

1475

with

(2,6-iPr -Ph-DAB)

of

and

for

line

appreciably

appearance 1

)- l i g a n d

2

two

of

differs

206

(CN)

(d

laser

complex.

rR-spectra

the

was and

bending

from

large

4).

Ni(CO) (t-Bu-DAB)

from

(C0)

a-diimine-

for

summary

z-polarized

Fig.

(Ni-N)

strong

Ni(CO)

none In

in

1980)

observed

derived

a

S y m

(Balk

to

a

reflected

between

is

that

ligand with

CT-character.

2

to

having

results

are

3. show

strong the

with pseudo

shows s t r o n g

means

sight

transition. R-DAB

observed

effect

showing

Ni(2,6-Me ~Ph-DAB)

a

for

transition DAB).

a

similar

(R-DAB) c o m p l e x e s shows

of

exciting

of

between

the

is

overlap

CT-transition.

determination.

spectra

Ni(CO) DAB)

of

the

in Fig.

These

rR

first

accordance

effect

also

2

the

varying

A rR

Ni(CO) (2,6-iPr^-Ph-DAB)

the

to

planar

angle

that

such

spectra

of

in

This

space

transition

strongly

of

affect

rR

any

this

this

tetrahedral

structures

an

as

structure

changes

(CN)

, r e s p e c t i v e l y , belonging

(t-Bu-DAB)

crystals

at

electronic

is

e f f e c t s are

ligand vibrations (v

respect

X-ray

through

rR

amount o f

However,

resonance

single

2006 cm" .

MO-diagram,

of

2

weak

from a

1

at

a

vibrations (v

cm"

with

(t-Bu-DAB)

Hardly

with

a large

metal-ligand

bonding.

cm

of

the

spectrum of

by

during

accordance from

s y m

v

CT-character.

(C0)

which

main

for

s t r e t c h i n g modes w h i c h

affected

in

the

band

N i (CO)

Strong -1

913

severely

is

S y m

moiety.

metal-ligand

derived

of

explained

and

NiNCCN

the

intensive

of

M ( C O ) ^ ( R - D A B ) [M=Cr,Mo,W] c o m p l e x e s

and at

an

v

f o r the

differences

CT-character

considerable

observation

also

striking

in

spectrum

transition the

exhibit

change

rR

rR

M-L strong planar

features

i n F i g . 2. effect

stretching CT-character complex

e f f e c t s f o r the

The

for

v

as

the

tetrahedral S y m

(CN)

modes.

at

This

just

as 2

complex

1 496 result

found

Ni(2,6-Me -Ph-DAB) M-L

spectra

for 0

on

s t r e t c h i n g modes and

cm"

1

of

Ni(c-Hexand

points Ni(CO) the

the

other

a weak

weak to

a

(t-Buhand effect

for

s y m

v

(CN)

which

is in

Ni(CO)^(2,6-iPr^-Ph-DAB). spectrum Fig.

good

agreement

For

of the t e t r a h e d r a l

reasons

complex

with

of

the

rR

comparison

Ni(4-Me-Ph-DAB)

spectrum also

the

of rR

i s presented i n

3.

Ni(cHex-DAB)„

u Ni{4-Me-Ph-DAB).

Figure rR 1200

This

spectrum

spectra

complexes

— * cm

shows

3-

similar

which

rR

N i ( c-Hex-DAB ) and

of

determined scheme

by

has

distorted

t h e change

been

that

of

tetrahedral

the

differences

(Fig.

Based

on

a

4).

yz

a b

a a

0 #

#

+n

TT n

* — • — •—#

-

+7T

*(co)

Figure

D A 8

+ d

xz n + +d x y d 2 z

M

0

4.

d i a g r 6a m

of Ni(CO), 2

(2 , 6-iPr -Ph-DAB) . 2

the

primarilyMO

d -TT^

yz *DAB)

between

a

2

these

analogue

(2,6-iPr ~Ph-DAB ) assuming

"2(00)

d

structural

N i ( 2 , 6-Me^-Ph-DAB ) ^ a r e

f o r ' Ni(CO)

geometry

as

the s t r i k i n g

structure.

calculated

Ni(R-DAB),

( i n C^H^).

effects

Ni(c-Hex-DAB)^, spectra

means

rR

of

results

It

is

obvious

CT-transition of

the

bond

that

orbital

character of

during

the N i - C O

TT*-CO

a

photochemistry

primary The

of

of Ni-CO

the

Fig. 4

in particular

mixing

change in

from

bonds

in

during

this

the

main

a r e weakened

both

the

the main

compound

b+b*

HOMO

z-polarized

as

and

transition

v i z . release

the

result This

LUMO.

is

reflected

CO

of

as

the

photoprocess.

photochemical

schematically

behaviour

of both

Ni(CO)

(R-DAB)

complexes

is

shown

i n Scheme I .

Ni(CO) (t-Bu-DAB) 2

1.

+ PR

2.

+ R'-DAB (toluene)

(toluene)

3.

C H m a t r i x 10 K

4.

pentane 168 K

3

1 0 0

-

K

Ni(C0)(PR )(t-Bu-DAB) 3

—Ni(CO) (R*-DAB) 2

- ( no CO dissociation)

4



(high concentration)

dinuclear complex

^ ^

B r e a k i n g of a N i - N

bond

Ni(C0) (2,6- i P r - P h - D AB) 2

1. + P R

3

2

(toluene)

m

2. + R'-DAB (toluene) 3.

pentane 168 K

(high

concentration)

lfl6

K

- Ni(C0)(PR )(2,6-iPr -Ph-DAB)

r

Ni(R'-DAB)(2,6~iPr -Ph-DAB)

3

2

no reaction ^ ^

B r e a k i n g of a N i - C O

Scheme

shows

to

Ni-N

rather

high

pentane. whereas

In

the bond

case

i s

i t c a n be

leading of

the

the

to

the

complex

breaking

2

mostly said

of

behaviour.

affected

the

upon

structural

strongly

of

irradiated

2

that

Ni(CO)

formation are

Ni(CO) (2,6-iPr ~Ph-DAB)

complexes which

photochemical

complex

2

causes of

(R-DAB).

(2,6-iPr ~Ph-DAB)

breaking

which

conclusion 2

Ni(CO)

Irradiation i n the

broken

of Ni(CO)

concentrations

Ni(CO) (R-DAB) the

bond

I. Photochemistry

Contrary

is

2

when K in

bond

excitation

both

168

(Ni-N)

particular

differences

affect

dimers at

weakest that

(t-Bu-DAB)

(Ni-CO).

exist

t h e rR

bond

between

spectra

and

REFERENCES Andrea

RR,

He(I)

Louwen

and

He(II)

Complexes

RW,

Kokkes

a

T,

o f Chromium, Raman S p e c t r a

Chem.

3015-3021.

19: H,

Svoboda

Aromatischen van

Dijk

HK,

Electronic in

Spectra

DJ,

Oskam

Molybdenum and

Dijk

von

Hausen

Oskam

Transition

M,

Greiser

T

N-Substituenten, Servaas

Effects

PC, on

the

HK,

e t . a l . , t o be

HD,

Krogmann

K

and

A

A,

Metal

ligand.

(1980)

J.

(1985) Carbonyl

Organomet.

(1981) Z.

(Diimine)Carbony1

Tungsten: Relationship

Photosubstitution

Quantum

DJ ,

Quantum

Yield

Oskam

Inorg.

between

Yields.

Inorg.

Nickel(0)-bis(chelate)

Naturforsch.

Stufkens

W(CO)^(a-diimine) Complexes.

van

of

DJ,

1,4-diaza- 1,3-butadiene

Stufkens

Resonance

Dieck

Stufkens

273-289.

Snoeck

Complexes

torn

MW,

Photoelectron

containing

Chem. 2 8 1 : Balk

JN,

of

A

36b:

( 1 985 )

Steric

Photosubstitution

Chim.

Acta,

mit

823-832.

1 04:

and of

CO

1 7 9 - 1 83-

published.

(1972)

Die

Krista11struktur

diacetylbis(dimethy1 hydrazon)-Nickel(0).

Z.

Anorg.

von Allg.

DicarbonylChem.

389:

247-253. Kokkes

MW,

Stufkens

(a-diimine) Sieler

J,

struktur Anorg. Svoboda

iron

Than von

Allg. M,

(chelate) 814-822.

DJ,

Oskam

A

( 1 984 )

Photochemistry

c o m p l e x e s . J . Chem. S o c . , D a l t o n

NN,

Benedix

R,

Dinjus

E,

Walther

of

Tricarbonyl

Trans.: D

(1985)

1005-1017. Kristall-

4 , 6 -d im e t hy 1 - 2 , 2 *-d ip yr id y 1 -d ic a r bo ny 1n ic k e 1 (0 ) . Chem.

torn mit

Dieck

522: H,

Z.

131-136. Kruger

Aliphatischen

C,

Tsay

YH

N-Substituenten.

(1981) Z.

Nickel

(O)-bis-

Naturforsch.

36b:

Fe(CO) (R-DAB), A

COMPLEX WITH TWO

3

D . J . S t u f k e n s , H.K.van D i j k ,

and

CLOSE-LYING REACTIVE EXCITED STATES

A.Oskam

A n o r g a n i s c h Chemisch L a b o r a t o r i u m , U n i v e r s i t y o f Amsterdam, N i e u w e A c h t e r g r a c h t 166, 1018 WV A m s t e r d a m , THE NETHERLANDS

INTRODUCTION The

complexes

=N-R),

spectra,

the

the

band

and

accompanied

by

from

Although

the

therefore (cj)-0.2)

are

found the

for this

higher

energy

Figure

1.

into modes

has

distortion

in

Fig.

1,

2).

The

(Fig.

excitation deformation

excited

expected

to

nm

no

this

of

the

only

1983).

character

complex.

for

state

to the

be

assumption

called fairly

photosubs t i t u t i o n

presence

excitation

(still

reactive,

of

comes

into

the

a

intensive Raman

show

RR

This

means

but

Similar

(RR)

effects

that

that

i t

results

of

'MLCT' high CO

in

from 500

the nm

increase

by

of

Fig.

quantum a

close-lying reactive

is were

3)

Figure

nucleophile. LF

u p o n

state going

2

Molecular

Structure

of

(R-DAB)

Fe(CO)

spectrum

is

yields

band.

Absorption

Fe(CO)

an

Resonance

band,

(Kokkes

MLCT

possess

calculations.

lowest

not

points

support

a

m.o.

shown

500

involved

by

obtained

about

FeCO

transition

This

structure

at

obtained

R-DAB

=1,4-diaza-1,3-butadiene;R-N=CH-CH-

3

having

absorption

for

Fe(CO) (R-DAB)(R-DAB

of

(c-Hex-DAB) i n

toluene

and to

The

transition

responsible tentative the

the lowest

LF

f o r the absorption

to

band

energy

level

photochemical

state,

which

however, place

more

i s shown

will

i s , at

a t about

than

take

^MLCT.

will

n o t be o c c u p i e d

side

o f t h e 5 0 0 nm b a n d .

may

occur

state. these

Thus,

lead

from

t h e ^MLCT

to occupation of

two d i f f e r e n t

complexes

state.

when

,

reactions which

the

irradiation case

energy

may t a k e

will

be

LF

temperature,

In that

Higher

part,

temperature

from

LF and t o a r e a c t i o n

photochemical

a t low temperatures

place

At lower

LF s t a t e

however,

in

( F i g .2). A

i n F i g . 3. A t room

preferably

reactive

least

380 nm

a t t h e low energy

reaction will,

i s much 3

the

diagram

reaction

state

takes only

a

excitation from

that

placef o r

discussed

i n

detail.

LF LF

MLCT

MLCT

>0 Figure of

3. T e n t a t i v e

energy

level

diagram

Fe(CO) (R-DAB) 3

ROOM TEMPERATURE PHOTOCHEMISTRY Irradiation

o f Fe(CO)

substitution reaction mechanisms

(R-DAB) i n t h e p r e s e n c e

o f a CO l i g a n d .

i s observed. have

been

WITH P H O S P H I N E S

I n the absence

o f PR^ c a u s e s

of a subtituting

For the photosubstitution

proposed

( F i g . 4) ( K o k k e s

the photoligand

reaction

1984; T r o g l e r

no two

1986). I n

the

first

second

mechanism

one

between

a solvent

molecule

to

energy

will

cause

(excimer

o=c-

these

two

(mechanism

and

X

=

308

i s broken

mechanisms 1) w i l l

breaking

the disappearance laser,

photoprocess latter

photoprocess

a m e t a l - n i t r o g e n bond

discriminate

lower

the primary

of

a

show

f o r a l l complexes

cause

band.

that

i— N

-

The

o f CO,

o f t h e 500 band

f o r Fe(CO)

CO

i s the

(t-Bu-DAB).

i s broken.

hv

CH \ CH

0 =

C-

i=

-Fe.

N = \ R

\ R

CH \ H

CO

C

R

MECHANISM 1

x

\ Q = C — F e .

=

L

CH -

CH

H

V

\

hi/

= C H

°*

c

S

A

R

O L

c O = C



Fe v

^

^ C

O*

MECHANISM

H C

V

N | R

H

j-CO

2

R

i \ O EEC — Fe C - Fe ^ C

Figure CO

4.

Possible

i n Fe(CO)

\ ^ N = C H

^

V

\ R

mechanisms

(R-(DAB)

f o r the p h o t o s u b s t i t u t i o n s

of

may

CO

nm

by band

(mechanism

flashphotolysis of

i n the

Flashphoto1ysis

substitution

a shift

release

except

c o m p l e x a m e t a l - n i t r o g e n bond

-Fe:

first. since

meta1-nitrogen

of t h i s

nm)

i s release

of

2)

results primary In

the

By

irradiation

in

n-pentane

Fe ( CO ) ^ ( t - B u - D A B ) c a n Bu-DAB)(P(c-Hex)^), t-Bu-DAB

type

IN

of

with

except

for

formation this

a

with

X>500nm

the of

500

nm

band

region.

At

the

stretching

The

shift

of

concomitant whether frequency

decrease

in

unstable

in

the at

A

with

of

s

(LXe)

further

i n IR,

Vis

region

UV.

which

photolysis in

in

the

the

the

in

CO

visible the

is

modes

In

a

with

observed.

moiety.

points

result

order is

to

to

a

from

a

find

reflected

the

reaction inert

is

IR

be

out in

very can

CO-

observed.

Fe(CO)^

solvent

of

in

is

only

is

shows

of

yield

intermediates this

The

substituents

the

ligand,

5

react.

irradiation

free

R-DAB

LXe

Excita-

complexes

Fe(CO)^(R-DAB)-

up

can

R-DAB. to

the

dependence

appear

no

on

bulky

CO-stretching

of

as

show

contains

170K.

Figure

Just

not

Upon

bands

while

to

and

upon

nm.

the

Fe.(CO)_(R-DAB)_, c. b d

too

bands

this

at

advantage

and

X = 565

the

a l l

CO-frequency

quantum

IR

still

photoproducts

CO-stretching 170K

v (CN)

low

not

low

new

of

does

(R-DAB).

new

used.

for

photoproduct

ir-backbond i n g

Xenon

which

depends

wavelength

a

with

TT-backbonding of

Fe ( CO ) ^ ( o~-N-1

(P=20BAR,T=170K)

150K

presumably

Tr-backbonding

of

liquid

1986).

transparency

LXe

of

of

frequencies

frequencies

increase

in

no

photoproduct

metal-CO

performed

(Andrea

higher

decrease

this

which

three

higher the

Fe(CO) complex

and

P(c-Hex)^,

in

concentration

primary

disappears

at

the

reaction with

time

the

complex

from

same

the

on

at

photoproduct

complex,

compound

2

XENON

i n n-pentane

which

the

(R-DAB)

different

that to

decrease

of

of

into

mechanism

LIQUID

appearance

reaction

region

means

the

This

Fe(CO)

IN

and

evident

region.

parent

an

a completely

This

is

from

by

in

dimeric

(t-Bu-DAB)

and

formed

ligand a

presence

iron.

reaction

gives

dimer

to

the

quantitatively

(T=150K)AND

R-DAB

nm

carbonyl

be

The

the

Fe(CO )

reaction

will

R,

of

of

bridging

(S)

R

in

converted

bonded

N-PENTANE

A and R e l a t i v e R a t i o o f t h e P r o c e s s e s ( 1 ) and ( 2 ) .

*1

*1

L

k

8

io

8

2 X

io

8

2 X

io

8

9 x

P(OEt)

3

4 x

q

P(0Ph)

P(0i-Pr)

Q

o

5

10

CO

k

PEt3

9 X

10

8

P(n-Pr)

5 X

10

8

10

8

io

7

4 X

( 9 X 10

7 )

6

io

5

4 X io

3

3 X

(3 X

5

10 )

. *2 Ratio (D/(2)

e*

1.1

95

2.2

109

1.0

130

1.8

130

io

4

3 X io

4

7 X io

3

0.8

132

7 X io

3

1.7

132

7 X io

3

(9 X 1 0 )

1.1

132

2 X

io

3

(2 X 1 0 )

1.4

143

io

2

(4 X 10

4 )

3

0

P(n-Bu) P(i-Bu) PPh

3

2 X

3

7 X

3

(1 X 1 0 ) 7 ( 2 X 10 ) (1 X i o ) 8

3

3

144

7

Q

P(i-Pr)

3 X

3

io

6

(4 X

6

10 )

2 X

(1 X

V a l u e s i n p a r e n t h e s i s ( W a l k e r and H e r r i c k *1 m o l - 1 dm3 s " ; *2 Of t h e s y s t e m s b y 3 5 5 *3 L i g a n d s t e r i c p a r a m e t e r s ( T o l m a n 1977) 1

Effect

on

the R a t i o of the Processes

2

io )

1.3

160

1984) nm e x c i t a t i o n ;

(l)/(2)

In a d d i t i o n t o t h e above o b s e r v a t i o n s , the r a t i o i n t h e o c c u r r e n c e of t h e p r o c e s s e s ( l ) and ( 2 ) c o u l d be d e t e r m i n e d f o r e a c h L ( T a b l e 1 ) . The v a l u e s a r e a l i t t l e s c a t t e r e d i n t h e r a n g e o f 0.8-2.0, h o w e v e r i t c a n be s a f e l y n o t e d t h a t i n t h e p h o t o c h e m i c a l e v e n t , t h e p h o s p h o r u s l i g a n d may n o t a f f e c t on t h e e x c i t e d s t a t e n a t u r e o f t h e m e t a l - m e t a l b o n d ing. T h i s i s i n q u i t e c o n t r a s t w i t h the ground s t a t e events mentioned above. F o r e x a m p l e , t h e compound o f L = P ( i - P r ) , w h i c h u n d e r g o e s v e r y f a c i l e m e t a l - m e t a l b o n d c l e a v a g e i n t h e d a r k , s h o w s a l m o s t t h e same i n the r a t i o of the p r o c e s s e s ( l ) / ( 2 ) t o those of the t h e r m a l l y very s t a b l e analogs. 3

Occurrence

of

a Third

Process

B i s i d e s a f o r e m e n t i o n e d l i g a n d e f f e c t s , a new p h e n o m e n o n h a s b e e n o b s e r v e d i n the p h o t o l y s i s of L=P(n-Bu)3Another t r a n s i e n t a b s o r p t i o n w i t h X a r o u n d 4 7 0 nm g r o w s i n 100 u s a n d d i s a p p e a r s w i t h i n 2 ms ( F i g . 3 ) . M

A

X

T h e a b s o r b a n c e a t 3 8 0 nm r e c o v e r s w i t h t h r e e s t e p s a n d t h e k i n e t i c s o f each s t e p c o r r e s p o n d s t o t h e p r o c e s s ( 5 ) , t h e d i s a p p e a r a n c e o f t h e a b s o r p t i o n a t 4 7 0 nm, a n d t h e p r o c e s s ( 6 ) u n d e r CO a t o m o s p h e r e s h o w i n g t h a t t h e t h i r d compornent d e c a y s a l s o back t h e s t a r t i n g compound. Both t h e g r o w t h a n d d e c a y o f t h e a b s o r b a n c e a t 4 7 0 nm f o l l o w t h e f i r s t o r d e r k i n e t i c s a n d t h e c o v e r i n g g a s ( A r o r CO) h a s n o e f f e c t o n t h e k i n e t i c s . Solvent (cyclohexane, benzene, o r t e t r a h y d r o f u r a n ) does n o t almost a f f e c t it's rate. A d d i t i o n o f C C I 4 quenches the occurrence of t h e t h i r d compernent. These f a c t s s t r o n g l y suggest t h e p r e s e n c e o f a t h i r d p r o c e s s t o g i v e an u n k n o w n i n t e r m e d i a t e w h i c h may s e c o n d ary .give t h e compornent w i t h X x a t 4 7 0 nm. I t d e s e r v e s f u r t h e r s t u d y on t h e n a t u r e o f t h e new p r o c e s s , b u t n o t e worthy i s t h a t t h e t h i r d compornents a p p e a r o n l y i n t h e c a s e s o f L = P R , R= n-alkyl. When R=Me, i - P r , o r P h , t h e primary processes a r e s i m p l y (1) and (2) . m

a

3

F i g u r e 3. Growth and decay o f t h e a b s o r b a n c e a t 4 7 0 nm: 1 d i v . = 100 u s .

References Y e s a k a H, K o b a y a s h i T, Y a s u f u k u K, N a g a k u r a S ( 1 9 8 1 ) L a s e r P h o t o l y s i s o f D i m a n g a n e s e D e c a c a r b o n y l . R e z a - K a g a k u K e n k y u 3: 9 7 - 9 9 Y e s a k a H, k o b a y a s h i T, Y a s u f u k u K, N a g a k u r a S ( 1 9 8 3 ) L a s e r P h o t o l y s i s S t u d y o f t h e P h o t o s u b s t i t u t i o n i n D i m a n g a n e s e D e c a c a r b o n y l . J Am Chem Soc 1 0 5 : 6249-6252 Rothberg L J , Cooper N J , P e t e r s KS, V a i d a V (1982) P i c o s e c o n d Dynamics of S o l u t i o n - P h a s e P h o t o f r a g m e n t a t i o n of [Mn2(CO)iol• Chem S o c 104: 3 5 3 6 - 3 5 3 7 H e p p A F , W r i g h t o n MS ( 1 9 8 3 ) R e l a t i v e I m p o r t a n c e o f M e t a l - M e t a l B o n d S c i s s i o n and Loss o f Carbon Monoxide from P h o t o e x c i t e d Dimanganese D e c a c a r b o n y l : U n s a t u r a t e d , C O - B r i d g e d D i n u c l e a r S p e c i e s i n Low-Temp e r a t u r e A l k a n e M a t r i c e s . J Am Chem S o c 1 0 5 : 5 9 3 4 - 5 9 3 5 C h u r c h S P , H e r m a n n H, G r e v e l s F-W, S c h a f f n e r K ( 1 9 8 4 ) T h e P r i m a r y Photop r o d u c t s o f M n 2 ( C O ) i o : D i r e c t I.R. O b s e r v a t i o n a n d Decay K i n e t i c s o f Mn(C0) and Mn (C0)9 i n Hydrocarbon S o l u t i o n a t Room T e m p e r a t u r e . J Chem S o c Chem Commun 7 8 5 - 7 8 6 Y a s u f u k u K, N o d a H, I w a i J , O h t a n i H, H o s h i n o M, K o b a y a s h i T ( 1 9 8 5 ) L a s e r P h o t o l y s i s S t u d y o f D i r h e n i u m D e c a c a r b o n y l : E v i d e n c e f o r a Nonr a d i c a l P r i m a r y P r o c e s s . O r g a n o m e t a l 4: 2 1 7 4 - 2 1 7 6 K o b a y a s h i T, O h t a n i H, N o d a H, T e r a t a n i S, Y a m a z a k i H, Y a s u f u k u K ( 1 9 8 6 ) E x c i t a t i o n Wavelength Dependence o f P h o t o d i s s o c i a t i o n and t h e Secondary L a s e r P u l s e P h o t o l y s i s of Dimanganese D e c a c a r b o n y l . Organometal 5: 1 1 0 - 1 1 3 Y a s u f u k u K, N o d a H, O n a k a S, T e r a t a n i S, K o b a y a s h i T ( t o b e p u b l i s h e d ) Laser F l a s h P h o t o l y s i s Study o f Dimethylbis[pentacarbonylmanganese]t i n ( I I ) , 2(Mn-Sn). W a l k e r HW, H e r r i c k R S , O l s e n R J , B r o w n T L ( 1 9 8 4 ) F l a s h P h o t o l y s i s S t u d i e s o f D i n u c l e a r M a n g a n e s e C a r b o n y l C o m p o u n d s . I n o r g Chem 2 3 : 3 7 4 8 - 3 7 5 2 H e r r i c k RS, Brown TL (1984) F l a s h P h o t o l y t i c I n v e s t i g a t i o n o f P h o t o m d u ced Carbon Monoxide D i s s o c i a t i o n from D i n u c l e a r Manganese C a r b o n y l C o m p o u n d s . I n o r g Chem 2 3 : 4 5 5 0 - 4 5 5 3 T o l m a n CA ( 1 9 7 7 ) S t e r i c E f f e c t s o f P h o s p h o r u s L i g a n d s i n O r g a n o m e t a l l i c C h e m i s t r y a n d H o m o g e n e o u s C a t a l y s i s . Chem R e v 7 7 : 3 1 3 - 3 4 8 J

5

2

A

m

TOPIC 6 Methods, A p p l i c a t i o n s , and Other Aspects

ELECTRON TRAPPING IN COLLOIDAL T i 0 2 20 ps TO 10 ns K I N E T I C S

C . A r b o u r , D.K.Sharma, a n d

PHOTOCATALYSTS:

C.H.Langford

Canadian Centre f o r Picosecond Laser Flash P h o t o l y s i s , Concordia 1455 W e s t , de M a i s o n n e u v e , M o n t r e a l ( Q u e b e c ) H3G 1M8, CANADA

University,

ABSTRACT The t r a p p i n g of excess electrons i n surface s i t e s i n < 0.05 um c o l l o i d a l p a r t i c l e s of Ti02 i n a c i d media has a time constant near 2 ns, independently of the excess e l e c t r o n population being produced by i n j e c t i o n from an e x c i t e d dye or hole scavenging. I t i s suggested t h a t t h i s r e l a t i v e l y long l i v e d state i s one involved i n e l e c t r o n t r a n s f e r t o s o l u t i o n acceptors i n p h o t o c a t a l y t i c processes. INTRODUCTION Titanium dioxide photocatalysis has been studied since the 1930's. The e f f o r t t o avoid degradation of organic matrices c o n t a i ning the oxide as a white pigment stimulated an a c t i v e program of " a n t i - p h o t o c a t a l y t i c " research. The r e s u l t s were methods to d e a c t i vate Ti02 surfaces. Since the s t r i k i n g report of the photoassisted e l e c t r o l y s i s of water by Fujishima and Honda i n 1972, the d i r e c t i o n of research has reversed. Beyond p h o t o l y s i s of water, major i n i t i a t i v e s have included the Krautler-Bard (1977) photo-Kolbe r e a c t i o n and photochemical degradation of r e f r a c t o r y c h l o r i n a t e d aromatics introduced by Carey et a l . (1976) and Carey and O l i v e r (1980). The development of techniques f o r working with c o l l o i d a l p h o t o c a t a l y t i c Ti02 by Duonghong et a l . (1981) has made i t p o s s i b l e t o analyze the elementary events which occur i n p h o t o c a t a l y t i c r e a c t i o n s using the t o o l s of f l a s h p h o t o l y s i s . There are two e s s e n t i a l questions which must be addressed i n a n a l y s i s of e i t h e r photoxidation or photoreduction: what i s the rate of i n t e r f a c i a l e l e c t r o n t r a n s f e r , and what i s the f a t e of c a r r i e r s generated i n Ti02?

E a r l y work i n d i c a t e d that f a s t e l e c t r o n t r a n s f e r occurs with adsorbed partners. E a r l y subnanosecond studies confirmed e l e c t r o n i n j e c t i o n from E r y t h r o s i n B i n CH3CN i n l e s s than 250 ps (Kamat and Fox, 1983) and i n j e c t i o n from adsorbed e x c i t e d t e t r a s u l f o n a t o copper phthalocyanine i n l e s s than 100 ps (Kirk et a l . 1984). I t w i l l be reported below that hexasulfonated t r i s (phenanthroline)ruthenium(II) captures holes from e x c i t e d Ti02 i n l e s s than 50 ps. The f a t e of c a r r i e r s i n Ti02 was f i r s t e l u c i d a t e d by f l a s h p h o t o l y s i s studies by Henglein (1982) and Bahnemann et a l . (1984). An e l e c t r o n spectrum i n Ti02 (pH = 1.5) was e s t a b l i s h e d by e l e c t r o n i n j e c t i o n from r a d i o l y t i c a l l y generated organic r a d i c a l s . This spectrum has a peak near 625 nm and a shoulder near 500 nm. The exact shape of the spectrum v a r i e s with d e t a i l s of the preparation of the c o l l o i d s . This spectrum was a l s o generated by adsorption of p o l y v i n y l a l c o h o l (PVA) on the Ti02 followed by d i r e c t i r r a d i a t i o n of the c o l l o i d a t 347 nm. PVA y i e l d s the e l e c t r o n spectrum by scaveng i n g holes, h* , to allow an e l e c t r o n build~up i n preference to recombination. The r e a c t i o n with PVA i s " r a p i d " on the time scale of 15 ns. The decay of the e l e c t r o n s i g n a l i s slow on microsecond time s c a l e unless an e l e c t r o n acceptor i s present i n the s o l u t i o n . Henglein et a l . assumed t h a t e l e c t r o n s are trapped near the surface. The nature of a trapped e l e c t r o n remaining a f t e r steady-state i r r a d i a t i o n i s e l u c i d a t e d by ESR recorded at 77 K (Howe and G r a e t z e l ,

3 +

1985). Two s i g n a l s are observed which may be assigned t o T i . A small s i g n a l i s a s s o c i a t e d with i n t e r s t i t i a l ions i n anatase. The l a r g e r s i g n a l resembles T i 3 i n s i l i c a t e g l a s s e s and shows an environmental s e n s i t i v i t y (e.g. pH response) suggestive of a s u r f a c e location. As Bahnemann et a l . (1984) summarized the matter: "photoc a t a l y t i c r e a c t i o n s i n Ti02 s o l s can be achieved with s i z a b l e y i e l d s only i f two scavengers are present (one f o r e~, one f o r h ) and a t l e a s t one of them i s adsorbed on the c o l l o i d a l p a r t i c l e s . I t i s the adsorbed scavenger which determines the y i e l d of the r e a c t i o n of the non-adsorbed one". Recombination can be f a s t , scavenging by adsorbed molecules can be f a s t , and trapped excess c a r r i e r s can be long l i v e d . Recently, Rothenberger e t a l . (1985) have provided d i r e c t picosecond information on the recombination process i n the absence of scavengers. Using a 25 ps pulse of about 2.5 mw power a t 355 nm (Nd/YAG t h i r d harmonic), a t r a n s i e n t i s produced which decays w i t h a time constant of l e s s than 500 ps. The decay i s a second order process depending on the square of the number of photons i n i t i a l l y absorbed. The decay i s a t t r i b u t e d t o hole e l e c t r o n recombination. The i n t e r e s t i n g p o i n t i s t h a t the spectrum does not agree with the spectrum of the surface trapped e l e c t r o n reported before o r the spectrum of e l e c t r o n s seen at pH = 3 a f t e r steady s t a t e or long p u l s e i r r a d i a t i o n by K o l l e , Moser, and G r a e t z e l (1985). The t r a n s i e n t which a r i s e s i n the absence of scavenging has a maximum a t an energy near but t o the b l u e of 600 nm and does not drop s h a r p l y toward the blue. The spectrum obtained i n the absence of scavengers appears promptly a t a 20 ps probe p u l s e delay and decays' i n a second order process. I t i s a f l a t band with a maximum somewhat t o the blue o f the other s p e c t r a obtained a t longer times. I t seems probable t h a t there are two forms of t r a n s i e n t s a s s o c i a t e d w i t h c a r r i e r s i n T i 0 2 . One i s produced promptly on e x c i t a t i o n w i t h greater than band gap photons. The other a r i s e s a f t e r development of an excess e l e c t r o n population and has a long l i f e t i m e . +

+

E X P E R I M E N T A L

Ti02 c o l l o i d s were prepared by the slow a d d i t i o n of T i C l 4 to c o l d water. Concentrations were v a r i e d between 1.0 and 16 g/L. The pH of s o l u t i o n s was near 1 and were not r a i s e d . The s i z e of the p a r t i c l e s v a r i e d as a f u n c t i o n of both the c o n c e n t r a t i o n and the d e t a i l s of p r e p a r a t i o n . The p a r t i c l e s i z e estimation was based on the s h i f t t o the blue o f the absorption edge as the p a r t i c l e s i z e becomes small as d e s c r i b e d by Nozik (13). The procedure was c a l i b r a ted by dynamic l i g h t s c a t t e r i n g s t u d i e s of p a r a l l e l p r e p a r a t i o n s . (We thank Prof. Janos F e n d l e r f o r a s s i s t a n c e with these measurements and access t o h i s equipment.) The dyes were the t e t r a s u l f o n a t e d copper phthalocyanine used p r e v i o u s l y ( K i r k e t a l . . 1984), a hexasulfonate d e r i v a t i v e of t r i s p h e n a n t h r o l i n e r u t h e n i u m ( I I ) which i s t e t r a a n i o n i c and was the generous g i f t of Dr. Ann E n g l i s h , and commercial e r y t h r o s i n . Picosecond f l a s h p h o t o l y s i s experiments were c a r r i e d out u s i n g a Nd/YAG mode locked l a s e r i n the second and t h i r d harmonic modes (562 nm and 355 nm). The p u l s e width i s 30 ps and the zero of time i s adjusted a t the maximum when 50% of the p u l s e has passed. A f r a c t i o n of the fundamental of the e x c i t a t i o n pulse i s passed through a c e l l c o n t a i n i n g D2O t o generate a continuum p u l s e u s e f u l f o r p r o b i n g t h e absorption spectrum from 425 t o 675 nm. The probe pulse, which has the same time p r o f i l e as the e x c i t a t i o n pulse, i s delayed from 20 ps to 10 ns from the c e n t r e of the e x c i t a t i o n pulse. Each spectrum i s the r e s u l t of averaging ten shots.

RESULTS a. Absorption spectra. The p a r t i c l e s i z e of the Ti02 may be monitored by r e c o r d i n g the absorption spectrum of T i 0 2 . Up t o a p a r t i c l e s i z e of 0.025 urn, the observed band edge s h i f t s toward the red. T h i s i s i l l u s t r a t e d by the spectra shown i n F i g . 1 f o r samples of Ti02 a t concentrations of 1.0 t o 16 g/L. In a d d i t i o n t o the increase of concentration, t h i s s e r i e s r e f l e c t s an increase of p a r t i c l e s i z e and the red s h i f t i s observable. The p a r t i c l e s i z e range i n our experiments was c a l i b r a t e d by the study of independently prepared samples which were examined by dynamic l i g h t s c a t t e r i n g .

WAVELENGTH

F i g u r e 1. The absorption spectra of Ti02 given i n absorbance/gm.

colloids.

Absorptivity i s

b. Picosecond f l a s h p h o t o l y s i s . Figure 2 e x h i b i t s the spectrum obtained on f l a s h i n g Ti02 alone. The t r a n s i e n t observed i s present promptly 20 ps a f t e r the 355 nm pulse. I t s decay i s nearly complete w i t h i n 1 ns. These observations are e n t i r e l y concordant with those of Rothberger e t a l . (1985). F i g u r e 3 shows a r e p r e s e n t a t i v e t r a n s i e n t spectrum f o r a sample of Ti02 of 1.3 g/L with 6.7 X 10~ M t e t r a s u l f o n a t e d copper phthalocyanine ( C u P c S ) adsorbed on the oxide (as demonstrated by the f a c t t h a t the c o l o u r of the dye may be removed along with the c o l l o i d by f i l t r a t i o n or c e n t r i f u g a t i o n ) . I n i t i a l l y (20 p s ) , b l e a c h i n g of the dye and e x c i t e d s t a t e absorption centred a t 520 nm are observable. At 100 ps, b l e a c h i n g and new absorbances are i n approximate balance and the absorbance change l i e s near zero a t a l l wavelengths. Subsequently, the strong absorption i n the red grows i n . 5

4-

F i g u r e 2 . Subnanosecond t r a n s i e n t s i n Ti02 a f t e r i r r a d i a t i o n with 2.5 mJ, 20 ps h a l f width, Nd/YAG t h i r d harmonic pulses a t 355 nm. The p a r t i c l e s i z e i s near 500 A. The c o n c e n t r a t i o n i s 18 g/L.

WAVELENGTH (nm)

F i g u r e 3. Transient s p e c t r a under spectrometer c o n d i t i o n s of previous f i g u r e f o r Ti02 - CuPcS*- system.

F i g u r e 4 presents a r e p r e s e n t a t i v e experiment using the a n i o n i c Ru(II) complex adsorbed on T i 0 2 . In the p a r t i c u l a r case, the s o l u t i o n c o n t a i n s 2.5 X 10-5 M hexasulfonated t r i s ( p h e n a n t h r o l i n e ) r u thenium(II) (Ru(phen)3S*~) adsorbed onto 4.0 g/L of Ti02 of approximately 50 A p a r t i c l e s i z e . In t h i s system, the c o l l o i d has a band gap absorbance a t 355 nm of 0.20. The Ru(II) complex has an absorbance of 0.08. At 20 ps, absorbance due t o d i r e c t e x c i t a t i o n of Ti02 i s observable. I t decays r a p i d l y . The red band observed p r e v i o u s l y has grown c o n s i d e r a b l y a t 5ns.

4

F i g u r e 4. T r a n s i e n t spectra f o r Ru(phen)3S ~ - Ti02 system under spectrometer c o n d i t i o n s of Figure 2. F i g u r e 5 shows a f i n a l s e t of t r a n s i e n t s f o r 1.2 X 10~ M e r y t h r o s i n adsorbed onto 4.0 g/L T i 0 2 . Bleaching a t the center of the spectrum due t o the l o s s of the strong absorption of the dye depresses the spectrum a t a l l times recorded, but the growth of red t r a n s i e n t i s again observable. The growth of the s i g n a l i n the red has been evaluated k i n e t i c a l l y u s i n g 625 nm as the monitoring wavelength. In e i g h t s o l u t i o n s of the CuPcS*- over the p a r t i c l e s i z e range the r a t e constant was 8 6 X 10 s " i . For four samples of c o l l o i d s s e n s i t i z e d with the Ru(II) complex, the r a t e constant was 6.5 I X 10* s~i . For the s i n g l e p a r t i c l e s i z e used with e r y t h r o s i n the r a t e constant was 5.5 I X 10 s ~ i . The r a t e constants are i n d i s t i n g u i s h a b l e as the s e n s i t i z e r varies. In c o n t r a s t , there may be some r e a l v a r i a t i o n with p a r t i c l e p r e p a r a t i o n , although t h i s i s not e s t a b l i s h e d . Although i t i s d i f f i c u l t t o c o r r e c t the spectra f o r the spectra of the s e n s i t i z e r s , the e x t i n c t i o n c o e f f i c i e n t of the red band i s approximately 2 X 10 M~ cm~ . I t i s a l s o important t o observe t h a t the k i n e t i c s are the same whether the primary absorber i s the s e n s i t i z e r or the Ti02 c o l l o i d itself. 6

8

8

4

1

1

140

. 100

g

.060 1

. 0 2 0 -f

, 020 400.

450.

500.

550.

600.

650.

50 ps 1

700.

WAVELENGTH (nm)

F i g u r e 5.

T r a n s i e n t s p e c t r a f o r the e r y t h r o s i n - Ti02 system.

DISCUSSION There are three aspects of the present experiments which can be analyzed t o lead t o a reasonable i n t e r p r e t a t i o n . These are the k i n e t i c s of the growth of t h e s i g n a l i n the red, the e x t i n c t i o n c o e f f i c i e n t of the r e d band, and the s p e c t r a l shape of the absorbance. The f i r s t p o i n t i s t h e k i n e t i c behaviour. In a l l three cases, the choice of s e n s i t i z e r i s unimportant t o the r a t e of growth of the r e d band. Nevertheless, a s e n s i t i z e r i s important t o the growth of the r e d band. The r o l e of the s e n s i t i z e r i s t o ensure an excess o f e l e c t r o n s . A n a l y s i s of the e n e r g e t i c s of each of the s e n s i t i z e r s i n d i c a t e s t h a t they can p a r t i c i p a t e i n two processes. The e x c i t e d dyes are capable of i n j e c t i n g e l e c t r o n s i n t o the conduction band of Ti02. S i m i l a r l y , a hole i n the Ti02 valence band can o x i d i z e the dyes. Thus, e i t h e r o r both of the e x c i t a t i o n processes t a k i n g p l a c e can lead t o development of excess e l e c t r o n s i n the c o l l o i d . There are two p o s s i b i l i t i e s f o r the o r i g i n of the r e d t r a n s i e n t with a "grow i n " time of ~2 ns which are c o n s i s t e n t with the independence of the s e n s i t i z e r . E i t h e r the process i s a t r a p p i n g process i n the c o l l o i d o r i t i s the formation of a s o l v a t e d e l e c t r o n i n the solution. The i n t e n s i t y of t h e red t r a n s i e n t i s greater than the t r a n s i e n t produced i n i t i a l l y o r when Ti02 alone i s e x c i t e d . The observed value i s very c l o s e t o t h a t reported f o r a s o l v a t e d e l e c t r o n (14). However, the a b s o r p t i o n maximum i s not i d e n t i c a l t o s o l v a t e d e l e c t r o n s p e c t r a i n water. Moreover, the r a t e constant f o r proton quenching of a hydrated e l e c t r o n i s 2.1 X 10*0 M~* s ~ i (Hart, 1965). In a s o l u t i o n a t pH ~ 1, t h e l i f e t i m e of a s o l v a t e d e l e c t r o n should be near one ns. The s o l v a t e d e l e c t r o n explanation seems t o be excluded. In c o n t r a s t , an e x t i n c t i o n c o e f f i c i e n t near t h a t of the s o l v a t e d e l e c t r o n and a spectrum with peaks s i m i l a r t o those f i r s t d e s c r i b e d by Bahnemann e t a l . (1984) a t 500 nm and 625 nm i s c o n s i s t e n t with the ESR evidence f o r a Ti3+ s p e c i e s i n the surface of the p a r t i c l e . The two bands are reasonably those of a Ti06 d-d band and a broadened red s h i f t e d band corresponding t o d e l o c a l i z a t i o n o f the acceptor

orbital. I t appears that the band which grows i n with a time constant of ~2 ns i s r e l a t e d t o bands associated with e l e c t r o n t r a n s f e r from T i 0 2 . I t i s important t o r e a l i z e that "surface" states of hydrous oxides c o l l o i d s may not be e n t i r e l y l i k e surface s t a t e s of c r y s t a l s . Hydrous oxide c o l l o i d s may be "water swollen g e l s " with the e n t i r e s t r u c t u r e of a small p a r t i c l e i n contact with "solvent" and a c c e s s i b l e as a s i t e f o r adsorption of a s e n s i t i z e . Thus, the s t a t e which i s described may not correspond t o a s t a t e i n c r y s t a l l i n e T i 0 2 . A f i n a l question presents i t s e l f . What i s the nature of the r a p i d l y decaying s i g n a l seen when e l e c t r o n s and holes are generated i n equal numbers? This i s not a question t o which a d e f i n i t i v e answer can be given from the a v a i l a b l e evidence. However, one p o s s i b i l i t y does suggest i t s e l f . A spectrum f o r excess holes was presented e a r l y on (Bahnemann e t a l . . 1984). I t includes a band i n the blue.A combination of that band envelope and a gently r i s i n g absorbance t o the r e d could produce the broad envelope of the s o r t seen i n a s i t u a t i o n where a sum of an e l e c t r o n and a hole spectrum should be expected.

REFERENCES Bahnemann, D., Henglein, A., L i l i e , J . , and Spanhel, L., (1984), J . Phys. Chem., 88, 207. Carey, J.H. , Lawrence, J . , and Tosine, H.M., Contam. T o x i c , 16, 697.

(1976), B u l l . E n v i r .

Carey, J.H. and O l i v e r , B.G. , (1980), Water P o l l . Res. J . Canada, 15 157. Duonghong, D. , B o r g a r e l l o , E., and G r a e t z e l , M., (1981), J . Amer. Chem. Soc, 103, 4685. Fujishima, A. and Honda, K., (1972), Nature, 238, 37. Hart, E.J., (1965), "The Solvated E l e c t r o n " , ACS Advances i n Chemistry, American Chemical Society, Washington, D C , p. 51. Henglein, A., (1982), Ber. Bunsenges., 86, 241. Howe, R.F. and G r a e t z e l , M., (1985), J . Phys. Chem., 89, 4495. Kamat, P.V. and Fox M.A.,

(1983), Chem. Phys. L e t t s . , 102, 379.

K i r k , A.D., Langford, C.H., S a i n t - J o l y , C., Sharma, D.K., and LeSage R., (1984), JCS Chem Comms., 961. K o l l e , U., Moser, J . , and G r a e t z e l , M., (1985), Inorg. Chem., 24, 2253. K r a u t l e r , B. and Bard, A.J., (1977), J . Amer. Chem. S o c , 99, 7729. Nozik, A. e t a l . .

(1985), J . Phys. Chem., 89, 397.

Rothenberger, G., Moser, J . , Graetzel, M., Serpone, N., and Sharma, D.K., (1985), J . Amer. Chem. S o c , 107, 8054.

THE RADIATION S E N S I T I V I T Y OF SELECT METAL CHELATE MECHANISTIC CHANGES AT HIGHER ENERGIES

R.D.Archer, C . J . H a r d i m a n , and Department

POLYMERS:

A.Y.Lee

o f C h e m i s t r y , U n i v e r s i t y o f M a s s a c h u s e t t s , A m h e r s t , MA

01003,

USA

INTRODUCTION Our

interest

first

circuit and

i n the radiation

sensitivity

s p a r k e d by t h e g o a l o f enhanced (IC) chip

closer

niques

features.

o f heavy

As t h e f e a t u r e s

together a t t h e submicron

must use h i g h e r energy

level,

photons

metal polymers

miniaturization

o f IC chins

get closer

microlithographic

(orelectrons,

was

of integrated tech-

e t c . ) than a r e

i currently pass

used.

cuits.

The t h i n

lithographic higher the

Otherwise, d i f f r a c t i o n

through adjacent features

energy

blur

o r g a n i c polymer

resists,

suffer

radiation.

oxide layer which

effects

the features

films,

which

from an i n a b i l i t y

The u n a b s o r b e d

i s n o r m a l l y between

by t h e photons and a l l o w

short

which cir-

a r e n o r m a l l y used as t o absorb

radiation

a l lo f the

backscatters

the r e s i s t

from

and t h e semi-

conductor . Heavy

atom-containing polymer

ty

to applied

of

the photoelectric

which

i s Z

radiation

films

because

effect

s h o u l d have an enhanced

o f t h e a t o m i c number

which

sensitivi-

(Z) d e p e n d e n c e

h a s an a t o m i c a b s o r p t i o n

coefficient

atoms o n l y

o r g r e a t e r (Evans 1972) w h e r e a s p h o t o n s c a t t e r i n g by h e a v y 2 2 has a Z dependence. To t e s t t h i s c o n c e p t , we s y n t h e s i z e d

and

a number o f u r a n y l

tested

dicarboxylate

polymers

f o r gamma-ray

1 V i s i b l e a n d u l t r a v i o l e t r a d i a t i o n p a s s e d t h r o u g h masks o r o r o j e c t e d o n t o t h e s u r f a c e p r o v i d e t h e mass p r o d u c t i o n n e c e s s a r y f o r t h e l o w c o s t d e v i c e s c u r r e n t l y on t h e m a r k e t . A l t h o u g h e l e c t r o n beam l i t h o graphy can p r o v i d e h i g h e r r e s o l u t i o n , t h e throughput r a t e and backs c a t t e r i n g p r o b l e m s s u g g e s t t h a t x - r a y o r l o w - e n e r g y gamma-ray m e t h odology i s needed. F o r more d e t a i l s s e e e i t h e r o f two r e c e n t r e v i e w volumes (Thompson 1 9 8 3 , 1984) 2 P o l y m e r s w i t h m a i n g r o u p h e a v y e l e m e n t s h a v e shown i n c r e a s e d s e n s i t i v i t y u s i n g t h e e m p i r i c a l method o f d e t e r m i n i n g s o l u b i l i t i e s b e f o r e a n d a f t e r r a d i a t i o n (Webb 1 9 7 9 ; H a l l e r 1 9 7 9 ) . Such s e n s i t i v i t i e s a r e based on t h e dose p e r u n i t a r e a r e q u i r e d t o d i s s o l v e t h e i r r a d i a t e d p o l y m e r w i t h 1/2 o f t h e u n i r r a d i a t e d p o l y m e r s t i l l o n t h e s u b s t r a t e (for a p o s i t i v e r e s i s t and v i c e v e r s a f o r a n e g a t i v e r e s i s t ) . They are s o l v e n t a n d l a b o r a t o r y d e p e n d e n t , c f . Thompson (1983, 1 9 8 4 ) , a n d are n o t as fundamental as G v a l u e s .

sensitivity. chemistry,

c f . Burrows

mixed w i t h hydrogen a

sizable

o n u r a n y l c a r b o x y l a t e Dhoto

From t h e e x t e n s i v e l i t e r a t u r e

( 1 9 7 4 ) , we a n t i c i p a t e d

abstraction

(Rehorek

number o f t h e u r a n y l p o l y m e r s

irradiation,

b u t they

crosslink

C0 evolution, 2

1982).

s h o w n o CO^ l o s s

with very

possibly

Much t o o u r s u r p r i s e , 137

high efficiency

during

Cs

instead.

METHODOLOGY The

irradiation

s t u d i e s were

conducted

with

a c e s i u m - 1 3 7 gamma

photon

source

(662 k e V ) w i t h d o s e r a t e s o f 0.022 t o 0.073 M r a d / h r b a s e d

Fricke

dosimetry

(Hine

1956; G e t o f f

1962).

mass a b s o r p t i o n c r o s s s e c t i o n s b e t w e e n polymers

w e r e made s u b s e q u e n t l y

t e r p o l a t e d when n e c e s s a r y . sealed

Pyrex

mers b e f o r e (or s i z e

o r quartz and a f t e r

on U l t r a s t y r a g e l

polystyrene

standards

(GCMS), e l e c t r o n netic

resonance

( i n NMP).

spin

resonance

were used

1964)

and r e i t e r a t e d

1/M '

= 1/M ° + n

where M ^

0

1

M G

g

G^

1/M '

s

x

and

G

the

i sthe radiation i sAvogadro's t o Megarads

dose

s

products. (1954, 1960,

scissions

dose

after

i nelectron

irradiation, irradiation,

p e r 100 e l e c t r o n

p e r 100 e l e c t r o n

(Mrad) t h e e q u a t i o n

volts

volts,

volts,

p e r gram, and

becomes:

6

x 10" R)

x

[2]

on random s c i s s i o n

molecular weight

independent.

before

number,

a r e based

possible

dose dependence

(UVV)

[1]

i s t h e number o f c h e m i c a l

n

x

spectroscopy

F o u r i e r t r a n s f o r m n u c l e a r mag-

(IR), and u l t r a v i o l e t - v i s i b l e

i s t h e number o f c r o s s l i n k s

r

guide

(NMP)

with

a

J

best

Gas c h r o m a t o g r a p h y - m a s s (ESR),

i s t h e number-average m o l e c u l a r weight

random i n i t i a l

permeation

had been c a l i b r a t e d

i s t h e number-average m o l e c u l a r weight

These e q u a t i o n s

of the poly-

(1973):

= 1 / M ° 4- ( G - G ) ( 1 . 0 4

n

via gel

i n -

using

(G -G ) (r/100N )

Na Converted

i n vacuo

u s i n g t h e method o f C h a r l e s b y

by Dole

1960)

(GPC) i n N - m e t h y l p y r r o l i d o n e

to help elucidate

G v a l u e s were d e t e r m i n e d

(Mann

analysis

conducted

columns, which

(NMR) a n d i n f r a r e d

spectroscopies

n

were

on

different

and t h e u r a n y l

data

irradiated

Molecular weight

irradiation

e x c l u s i o n ) chromatography

solutions

the dosimeter

using literature

Samples were

tubes.

Corrections for

Even

and c r o s s l i n k i n g

(H /M = 2), and w i t h G w' n ' s f o r n o n - i d e a l systems, they provide t h e distributions

t o t h e magnitude o f t h e r a d i a t i o n

i s apparent

processes

from

plots

o f 1/M

n

vs dose

effects, i n Mrad.

and t h e

The

synthesis and c h a r a c t e r i z a t i o n o f the uranyl dicarboxylates i s de-

tailed

elsewhere

(Archer

1987;

Hardiman

1 9 8 7 ) . The e s s e n t i a l

synthetic

reaction i s U0 (0 CCH ) .(H 0) 2

2

3

2

2

+ H0 CRC0 H-5-5-5^.

2

2

[U0 (0 CRC0 )2

2

2

2

2

n

[3 J

+ CB^CO^

2 6 The

molecular

weights

h a v e b e e n d e t e r m i n e d b y GPC, v i s c o s i t y , 13

end-group a n a l y s i s . to

confirm

uranyl

or

t h e c o o r d i n a t i o n modes o f t h e c a r b o x y l a t e

ion.

19 8 7 ) ; occur

S o l i d - s t a t e C-NMR h a s a l s o been u s e d

The r e s u l t s

t h a t i s , both such

that

monodentate and b i d e n t a t e predominates

two moles o f s o l v e n t coordinated

carboxylate

coordination

and

one a r o m a t i c

with the

no evidence entire

4.09

of C0

absorption

barns/atom

type,

The d a t a

CROSSLINK

f o r four branched

dicarboxylates which

alkyl,

sensitive to one a l k e n e ,

appear t o e x c l u s i v e l y

e v o l u t i o n , a r e summarized

2

for the lighter

e i t h e r one

ion.

a n t i c i p a t e d , t h e u r a n y l d i c a r b o x y l a t e polymers a r e very

gamma-ray i r r a d i a t i o n .

(Hardiman

i n polymers with

to theuranyl

URANYL POLYMERS WHICH A P P E A R TO E X C L U S I V E L Y As

ligands t o the

a r e as a n t i c i p a t e d from IR r e s u l t s

7-coordination

a n d NMR

( A r c h e r 1987)

elements

i n Table

(0.257,

crosslink, 1. W h e r e a s

1.54, 2 . 0 4 ,

and

f o r H, C, 0, a n d S, r e s p e c t i v e l y ) i s o f t h e C o m p t o n

f o r uranium 50% i sp h o t o e l e c t r i c absorption

(47.7

barns/atom

total).

T h u s , t h e u r a n i u m a t o m c o n s t i t u t e s f r o m 50 t o 5 8 % o f t h e a b -

sorption

i n theunit at this

mass a b s o r p t i o n

coefficient

to water,

t h e absorber

typically

lower

than

2

0.083 c m / g u s i n g polymers. sorb

from

of t h e Fricke dosimeter.

water;

G values

as h i g h

i nTable

poly(methyl

lower

links.

Extra crosslinks

G

values—a

Organic

polymers are

than

PMMA, i s the uranyl

-G . x

curvature

was o b s e r v e d high

value

With

until

above

1934).

for scission,

i n c r e a s e d dose

thus,

levels, a l l

consequence o f fewer e f f e c t i v e

The v a l u e s

do n o t i n c r e a s e t h e

i n t h e t a b l e a r e f o r 2 Mrad

and phthalate 3 Mrad

cross-

d e r i v a t i v e s a s no

f o r these

two s p e c i e s ) .

The

f o r t h e t e t r a p i m e l a t e . d e r i v a t i v e must be r e -

t o them o b i l i t y of the longer radicals

(Thompson

b e t w e e n t h e same c h a i n s

for the succinate

extremely

a s PNMA (G = 1.3) a n d o r g a n i c

a s 10 a r e k n o w n

logical

weight any f u r t h e r .

( o r 3 Mrad

tertiary

13 t o 1 6 % r e l a t i v e

methacrylate),

1 show a n y t e n d e n c y

i se s s e n t i a l l y

exhibit

lated

e.g.,

6 0 0 t o 7 0 0 % a s much r a d i a t i o n

G -G v a l u e s x

doses

but only modifies the

t h e same n u m b e r s , o r 17 t o 2 0 % l o w e r

None o f t h e s p e c i e s

molecular

(66 2 k e V ) ,

However, on a r e p e a t i n g u n i t b a s i s , t h e u r a n y l p o l y m e r s a b -

polymers with

the

energy

f o r t h e polymer by about

coupled

with

alkyl

efficient

chain energy

coupled

with

transfer.

stabilized

Table

1.

Gamma-ray

Empirical

Formula U n i t

(bridging

U0

2

Sensitivity

of Negative

a

M

Resist Uranyl

b

G

R

Polymers

G

G

s~ x°

G

s~ x

G

carboxylate)

0 CC(CH ) CH C0 2

3

2

2

2

(C H SO) 2

9,000

6

g

~14

g

0.100

-12

g

(2,2-dimethylsuccinate) U0

2

0 CC(CH ) CH CH C0 2

3

2

2

2

(C^SO)

2

48,OOO

f

-3.1

f

0.100

-2.1"

(2,2-dimethylglutarate) U0

2

0 CCH C(CH ) CH C0 2

2

3

2

2

2

(C H SO) 2

6

12,000

g

-8.0

12,000

g

-43

g

0.100

-6.9

0.099

-37

g

(3,3-dimethylglutarate) U0

2

0 CC(CH ) (CH ) C(CH ) C0 2

3

2

2

3

3

2

2

(C H SO) 2

6

g

g

(2,2,6,6-tetramethylpimelate) U0 (Z-0 CH-CHC0 )(C H S0) 2

2

2

2

6

1

7

9,300

5

-3.3

0.099

-2.9

(maleate) U0 (o-0 CC H C0 )(C H SO) 2

2

6

4

2

2

6

17,800

2

g

-3.7

g

0.097

-3.3

g

(phthalate) a

Repeating

kfl

unit

r

e

chain

o f samples n o t i r r a d i a t e d ;

standards, d

o f polymer

Measured

o r b y NMR

including

based

o n GPC

i n NMP

end-group a n a l y s i s i f so

net G value

using

equation

2 a n d GPC

with

polystyrene

indicated 137 after Cs

irradiation

2

M a s s a b s o r p t i o n c o e f f i c i e n t s i n cm / g f o r 6 6 2 k e V i r r a d i a t i o n . 1 , . . .. ^ __2 137 Corrected G values r e l a t i v e t o F r i c k e dosimeter(0.086 cm / g f o r Cs)

"^Polymer h a s p o o r M d i s t r i b u t i o n g

solvation

M

values

URANYL

On

for this

POLYMERS

the other

ligands noted

2.

a l l show l a r g e G

a t r u e measure o f G .

for both

scission

g

shown.

reliable

g

toward

three values

different thio-bridged upon i r r a d i a t i o n

crosslinking;

uranyl

U n f o r t u n a t e l y , they

thus

G

g

i s larger

a r e so s e n s i t i v e

show

molecular

weights

were used

S

"

G X

i s

evidence G^-G^

to radiation

that

These

high

f o r t h e t h i o - b r i d g e d p o l y m e r s w o u l d be e v e n h i g h e r

polystyrene-equivalent

G

the

are impossible to obtain.

than

as

thiodigly-

that i s ,

The GPC's o f t h e o t h e r s

and c r o s s l i n k i n g ;

independent values

Gg-G^values

detn

NMR

The c l e a n e s t one i s t h e p o l y m e r i c

shows no t e n d e n c y

probably

value

by

end-group

WHICH UNDERGO S C I S S I O N WITH GAMMA R A D I A T I O N

and fumarate

which

agreement w i t h

polymer--end-group c a l i b r a t e d

hand, u r a n y l polymers w i t h

i n Table

colate,

and poor

i f the

i n s t e a d o f t h e NMR

Table

2.

Gamma-ray S e n s i t i v i t y

of Positive

a

E m p i r i c a l Formula U n i t /,.-,. (bridging carboxylate)

M n

U0 (0 CCH SCH C0 )(C H SO) 2

2

2

2

2

2

6

b

c

G -G s x

n

14,000

2

Resist Uranyl

g

56

u/o r'y

g

Polymers

f

d e

G -G s x

0.097

50

g

(thiodiglycolate) U0 (0 CCH SSCH C0 ) ( C ^ S O ) ^ 2

2

2

2

g

j

300 ~

g

h

103 '

h

i

12,000 ~

2

g

j

0.097

280 ~

g

j

g

h

0.096

93 '

g

h

i

0.098

55 '

h

1

(dithiodiglycolate) U0 (0 CCH SCH SCH C0 )(C H S0) 2

2

2

2

2

(methylenebis

2

2

6

thioglycolate )

U0 (E-0 CCH=CHC0 )(C H SO) 2

15,000 '

2

2

2

2

6

26,OOO '

2

h

63 '

(fumarate)

a

e

Same as Table

^G v a l u e s g

M

1

based on f i r s t

adjusted

M

distribution

-'polymer v e r y distribution

poor;

scission

results

diglycolate,

the

have G - G g

very

about

and methylenebis x

values

5 t o 7 times

(such with

tremely level,

o f about

thioglycolate

high

results

sensitivity

to this

these

GCMS r e s u l t s

a n d S-S s c i s s i o n

no evidence

above r e s u l t s

balt(III)

with

polymers

These polymers

absorb

w e i g h t o f 100 a t t h i s

small

from

change

occurs.

Even

A t low dose

i nmolecular modified

i n d i c a t e S-C s c i s s i o n

s p i n d e n s i t y on s u l f u r

weight molecular

f o r methylene-

i ndithiodiglycolate.

uranyl polymers

poly-

energy.

atoms p e r r e p e a t i n g u n i t , e x -

have d r a s t i c a l l y

f o r uranium(V),

And ESR

a t o m s f o r t h e same

e v e n a t -77°K.

l e d us t o synthesize

c o n t a i n i n g two 6-diketones

- S 0 - , &-S0 -) f o r b r i d g e s 2

dithio-

were o r i g i n a l l y c a l c u l a t e d

gamma r a d i a t i o n

a very

uranyl species

indicate appreciable

polymers with

-SS-,

a molecular

w h e r e PMMA s h o w s o n l y

thioglycolate

thiodiglycolate,

100, 400, and 160, r e s p e c t i v e l y , u s i n g

t h e l i g a n d s t h a t have two s u l f u r

distribution,

The

Specifically,

a s much e n e r g y p e r p o l y m e r u n i t a s a n o r g a n i c

a s PMMA) w i t h

weight d i s t r i b u t i o n . bis

approximate

polystyrene-equivalent calibrations.

mer so,

and c r o s s l i n k i n g

s e n s i t i v e t o r a d i a t i o n - - n o n i r r a d i a t e d samples change M s i g n i f i c a n t l y d u r i n g i r r a d i a t i o n o f other samples

end-group determined weights.

to

only

t o a g r e e w i t h NMR e n d - g r o u p a n a l y s i s

^Polymer undergoes both 1

0.5 t o 0.6 M r a d

bridged

with

linear coS a t o m s (-S-,

and l e u c i n e as a nonpolymerizable

third

bidentate polymers. atoms and

l i g a n d , which

allows

These and s i m i l a r

(Archer

(III)

VO

of linear

fl-diketonates

gamma i r r a d i a t i o n

polymers.

Space

F o r example, produces

limitations

coordination

bridged

1986) show r a d i a t i o n e f f e c t s w h i c h

s t a t e / s o l v e n t dependent.

balt(II),

the synthesis 2+

with

are both

sulfur

wavelength

instead of reduction

facile

precludes

C-S s c i s s i o n further

t o co-

i nthe cobalt-

details.

ACKNOWLEDGEMENTS The

financial

interactions Getoff

(Univ.

support with

o f t h e U.S. O f f i c e o f N a v a l

Professors

J.C.W. C h i e n

Wien) a r e g r a t e f u l l y

Research

and h e l p f u l

(Univ. Massachusetts)

a n d N.

acknowledged.

REFERENCES A r c h e r RD, T r a m o n t a n o V J , L e e A Y , G r y b o s R ( 1 9 8 6 ) T h i o - , d i t h i o - a n d sulfoxo-bis-13-diketonate metal c h e l a t e polymers. I n t e r n a t i o n a l Confe r e n c e on C o o r d i n a t i o n Compounds, A t h e n s , Greece A r c h e r RD, D i c k e n s o n L C , L e e A Y , O c h a y a VO, C h i e n JCW ( 1 9 8 7 ) M o n o d e n tate and bidentate carbonyl c o o r d i n a t i o n i n c o o r d i n a t i o n polymers o f u r a n i u m ( t o be p u b l i s h e d ) B u r r o w s HD, Kemp T J ( 1 9 7 4 ) T h e p h o t o c h e m i s t r y o f t h e u r a n y l i o n . Chem S o c R e v 3: 1 3 9 - 1 6 5 C h a r l e s b y A (1954) M o l e c u l a r w e i g h t c h a n g e s i n d e g r a d a t i o n on l o n g c h a i n p o l y m e r s . P r o c R o y a l S o c L o n d o n , S e r A 224: 120 C h a r l e s b y A (1960) A t o m i c r a d i a t i o n a n d p o l y m e r s . Pergamon, O x f o r d C h a r l e s b y A , M o o r e N ( 1 9 6 4 ) C o m p a r i s o n o f gamma a n d u l t r a - v i o l e t r a d i a tion e f f e c t s i n polymethylmethacrylate a t higher temperature. I n t J A p p l R a d i a t I s o t 15: 703-708 D o l e M ( 1 9 7 3 ) T h e r a d i a t i o n c h e m i s t r y o f m a c r o m o l e c u l e s , V o l 2. A c a d e m i c P r e s s , New Y o r k E v a n s RD (1 9 7 2 ) A m e r i n s t p h y s h d b k , 3 r d ed. M c G r a w - H i l l , N Y , s e c 3 , p 2 0 9 G e t o f f N (1 962) F o r t s c h r i t t e d e r S t r a h l e n c h e m i e wa.6riger L o s u n g e n . 5 s t e r r Chem Z t g 6 3 : 9 1 - 9 8 H a l l e r I , F e d e r R, H a t z a k i s M, S p i l l e r E A ( 1 9 7 9 ) C o p o l y m e r s o f m e t h y l methacrylate and m e t h a c r y l i c a c i d and t h e i r metal s a l t s as r a d i a t i o n sensitive resists. J- E l e c t r o c h e m S o c 1 2 6 : 154-161 H a r d i m a n C J , A r c h e r RD ( 1 9 8 7 ) D i o x o u r a n i u m ( V I ) c a r b o x y l a t e p o l y m e r s : synthesis and c h a r a c t e r i z a t i o n o f t r a c t a b l e coordination polymers and evidence f o r r i g i d r o d conformation. Macromol ( i n press) H i n e G J , B r o w n e l l GL ( e d s ) ( 1 9 5 6 ) R a d i a t i o n d o s i m e t r y . A c a d e m i c P r e s s , New Y o r k M a n n RA ( 1 9 6 0 ) Gamma r a y c r o s s s e c t i o n d a t a . G e n e r a l E l e c t r i c A i r c r a f t P r o p u l s i o n Dept, C i n c i n a t t i R e h o r e k D, P u a u x J P ( 1 9 8 2 ) F o r m a t i o n o f r a d i c a l s d u r i n g t h e p h o t o l v s i s of u r a n y l s a l t s i n a l i p h a t i c c a r b o x y l i c a c i d s . Radiochem. R a d i o a n a l . L e t t 52: 29-35 Thompson L F , W i l l s o n CG, Bowden M J (eds) (1983) I n t r o d u c t i o n t o m i c r o l i t h o g r a p h y : t h e o r y , m a t e r i a l s & p r o c e s s i n g , ACS S y m p o s i u m S e r i e s No. 2 1 9 . A m e r i c a n C h e m i c a l S o c i e t y , W a s h i n g t o n , DC Thompson L F , W i l l s o n CG, F r e c h e t J M J (eds) (1984) M i c r o l i t h o g r a p h y : r a d i a t i o n s e n s i t i v e p o l y m e r s , ACS S y m p o s i u m S e r i e s No. 2 6 6 . A m e r i c a n C h e m i c a l S o c i e t y , W a s h i n g t o n DC Webb D J , H a t z a k i s M ( 1 9 7 9 ) M e t a l m e t h a c r y l a t e s a s s e n s i t i z e r s f o r p o l y (methyl methacrylate) e l e c t r o n r e s i s t s . J V a c S c i T e c h n o l 16: 20082013

TEMPERATURE DEPENDENT EMISSION OF

COPPER PORPHYRINS IN

M o t o k o A s a n o , Osamu Ohno, Y o u k o h K a i z u ,

and

Hiroshi

LIQUID SOLUTION

Kobayashi

D e p a r t m e n t o f C h e m i s t r y , Tokyo I n s t i t u t e o f T e c h n o l o g y , 0-okayama, M e g u r o - k u , T o k y o 152, JAPAN

INTRODUCTION Copper p o r p h y r i n s e x h i b i t a s h o r t - l i v e d phosphorescence at ambient temperature. F l u o r e s c e n c e i s quenched f o r a prompt i n t e r s y s t e m c r o s s i n g t o t h e l o w e s t e x c i t e d t r i p l e t s t a t e c a u s e d by t h e i n t e r a c t i o n s o f 13 * an u n p a i r e d e l e c t r o n i n t h e h i g h e s t c o p p e r da o r b i t a l and t h e ' (TTR TT ) e x c i t e d c o n f i g u r a t i o n s . The i n t e r a c t i o n m a k e s a l l s i n g l e t s b e c o m e d o u b l e t s and t r i p l e t s s p l i t i n t o d o u b l e t s ( " t r i p - d o u b l e t " ) and quart e t s ( " t r i p - q u a r t e t " ) (Ake 1 9 6 9 ; S m i t h 1 9 6 8 ) . An e n e r g y g a p b e t w e e n t h e l o w e s t t r i p - q u a r t e t a n d t r i p - d o u b l e t was est i m a t e d a s 2 6 0 - 3 3 0 cm" f o r PCu (P: p o r p h i n ) by h i g h r e s o l u t i o n a l e m i s s i o n and a b s o r p t i o n measurements a t low t e m p e r a t u r e ( N o o r t 1976 ; Bohandy 1980). T h e m e a s u r e m e n t s o f z e r o - f i e l d a n d Zeeman s p l i t t i n g s o f t h e t r i p - q u a r t e t s t a t e o f PCu p r o v i d e d k n o w l e d g e on t h e s t r u c t u r e o f t h e t r i p - q u a r t e t (Van D o r p 1 9 7 5 ; V a n D i j k 1 9 7 9 , 1981). 1

The r e l a x a t i o n p r o c e s s e s a t room t e m p e r a t u r e o f e x c i t e d c o p p e r p o r p h y r i n h a v e b e e n s t u d i e d by use o f p i c o - s e c o n d f l a s h p h o t o l y s i s t e c h n i q u e ( K o b a y a s h i 1979; Kim 1 9 8 4 ) . Copper p r o t o p o r p h y r i n i n the 2 l o w e s t e x c i t e d " s i n g - d o u b l e t " ( S,) s t a t e r e l a x e s i n t o t h e l o w e s t 2 "trip-doublet" ( T ) s t a t e w i t h i n 8 ps and t h e n t o a t h e r m a l e q u i 2 4 librium state of T^ a n d t h e l o w e s t " t r i p - q u a r t e t " ( T^) s t a t e w i t h a t i m e c o n s t a n t o f 450-460 P S (Kobayashi 1979). The p h o s p h o r e s c e n c e o b 2 s e r v e d a t room t e m p e r a t u r e i s a s c r i b e d t o a d e l a y e d T emission 4 2 c a u s e d by a t h e r m a l a c t i v a t i o n f r o m T state to state. T h e e m i s s i o n b a n d o f O E P C u (OEP: 2,3,7,8,12,13,17,18-octaethylporphin) i n b o t h t o l u e n e and p o l y ( m e t h y l m e t h a c r y l a t e ) f i l m i n c r e a s e s p r o m i n e n c e b u t shows o n l y a s l i g h t s h i f t w i t h d e c r e a s i n g t e m p e r a t u r e . The e m i s s i o n s p e c t r u m o f TPPCu (TPP: 5 , 1 0 , 1 5 , 2 0 - t e t r a p h e n y l p o r p h i n ) in polymer f i l m i s r a t h e r i n v a r i a n t with temperature ( 3 0 0 — 7 7 K) a n d w e l l c o r r e s p o n d s t o t h e s p e c t r u m i n t o l u e n e r i g i d g l a s s a t 77 K. On t h e o t h e r hand, a b e l l - s h a p e d e m i s s i o n i s observed i n t o l u e n e s o l u t i o n a t room t e m p e r a t u r e and t h e band s h i f t s t o t h e r e d w i t h d e c r e a s i n g temp e r a t u r e d o w n t o 200 K. n

1

I n t h i s p a p e r , we d i s c u s s t h e s t r u c t u r e o f t h e t r i p - d o u b l e t a n d tripq u a r t e t s t a t e s i n f o u r c o p p e r p o r p h y r i n s i n t o l u e n e l i q u i d s o l u t i o n on t h e b a s i s o f t h e d e c a y l i f e t i m e s and e m i s s i o n y i e l d s m e a s u r e d w i t h d e c r e a s i n g t e m p e r a t u r e n o t so as t o f r e e z e t h e medium. S-T

A B S O R P T I O N S P E C T R A OF

COPPER(II)

PORPHYRINS

Copper p o r p h y r i n s e x h i b i t a b s o r p t i o n bands v e r y s i m i l a r t o t h o s e observed w i t h the corresponding diamagnetic porphyrins. However t h e s e p a r t i c u l a r p a r a m a g n e t i c p o r p h y r i n s do e x h i b i t a w e a k a d d i t i o n a l a b s o r p t i o n b a n d (OD c a . 0.1 i s o b s e r v e d w i t h a n a l m o s t s a t u r a t e d s o l u -

t i o n o f 10 M) t o t h e r e d o f t h e Q b a n d . The weak band f o r m s a m i r r o r image o f t h e e m i s s i o n o b s e r v e d a t room t e m p e r a t u r e . The a b s o r p t i o n b a n d i s a s s i g n e d t o a S-T (s_ing-doublet-to-£i:ip-doublet) transition. TEMPERATURE

DEPENDENCE

OF E M I S S I O N

I N O E P C u AND

TFPPCu

The t r i p - d o u b l e t e m i s s i o n o f OEPCu a n d T F P P C u (TFPP: 5,10,15,20-tetra( p e n t a f l u o r o p h e n y l ) p o r p h i n ) i n l i q u i d m e d i a 10 t i m e s i n c r e a s e s i t s i n t e n s i t y p e r s i s t i n g t h e s p e c t r a l p r o f i l e u p o n t e m p e r a t u r e down f r o m 300 K t o 2 0 0 K. L i f e t i m e i n c r e a s e s f r o m 1 0 5 n s ( O E P C u ) , 68 n s ( T F P P C u ) a t 300 K t o 1 2 0 0 n s ( O E P C u ) , 1 2 5 0 n s ( T F P P C u ) a t 2 0 0 K, r e s p e c t i v e l y . A scheme i s g i v e n f o r t h e r e l a x a t i o n p r o c e s s o f t h e e x c i t e d s p e c i e s a s i n f i g u r e 1. Assuming t h a t a p h o t o s t a t i o n a r y s t a t e i s o b t a i n e d , t h e y i e l d o f e m i s s i o n from t h e t r i p - d o u b l e t i s figure 1 K+k /k (1) a E *2 2r- 'isc'k K+k (k /k +l) 1 k 4

3

X

= k

2

4

1 AE K= exp(-j^)

where

2

3

-3 k.

:

2

isc

k

>

! K+k^/k^=K,

>

k

>

>

and

k

thus

2 4 the equation

l+k /k =l 2

(1)

2r

K

k K+k 2

=

j{k

2

+

k

3

+

k

4

+

k_ ±J{(k 3

rate

2

+

k^»—k~i~ k i 2 2r 2nr

4

+

k_ )} 3

2 +

4k k_ 3

k =k A

4

A

+k

A

4r

4nr

3

The o b s e r v e d d e c a y c o r r e s p o n d s t o t h e s l o w c o m p o n e n t >> k , k , t h e l i f e t i m e i s g i v e n b y 2

4nr

o f e m i s s i o n i s d e s c r i b e d as

k )-(k 3

4r

S;

4

On t h e o t h e r h a n d , t h e d e c a y

(J)

2nr k

(2) isc

k

i s rewritten 2

2

2r

and

3

as Y

3

k^+k^j^ v

Since

Ti

g.

Since

k ,k_ 3

3

4

k

K+k

3

.

From t h e e q u a t i o n s T/ = k - < j > 2 r

i s c

(3) (2) a n d ( 3 ) , i t f o l l o w s

(l+K)/K.

that

(4)

H e r e t h e t e m p e r a t u r e v a r i a t i o n o f t h e r a t i o r/cf) i s a t t r i b u t a b l e o n l y t o t h e e q u i l i b r i u m c o n s t a n t K, s i n c e k^ and ^ s c l dependent a

r

e

e s s

r

on t e m p e r a t u r e . U s i n g t h e l e a s t - s q u a r e s method, t h e v a l u e s o f K a r e e v a l u a t e d as a f u n c t i o n o f t e m p e r a t u r e , from w h i c h t h e energy gap 2 4 (AE) b e t w e e n t h e T., a n d T^ s t a t e s c a n b e d e t e r m i n e d a c c o r d i n g t o 1 -i 1 _ i -1 the r e l a t i o n s h i p K = y e x p ( - A E / k T ) : O E P C u , 3 1 0 cm ; T F P P C u , 3 9 0 cm . TEMPERATURE

DEPENDENCE

OF E M I S S I O N

I N T P P C u AND

T(EtO)PPCu

TPPCu shows a b e l l - s h a p e d e m i s s i o n band a t room t e m p e r a t u r e , however the e m i s s i o n p r o f i l e v a r i e s and t h e band peak s h i f t s t o t h e r e d w i t h reducing temperature. The l i f e t i m e , on t h e o t h e r hand, i n c r e a s e s w i t h

d e c r e a s i n g t e m p e r a t u r e down t o 2 5 0 K w h i l e i t d e c r e a s e s u p o n f u r t h e r c o o l i n g : 3 0 0 K, 29 n s ; 2 5 0 K, 39 n s ; 2 0 0 K, 27 n s . T h e e m i s s i o n o f T(EtO)PPCu(T(EtO)PP: 5,10,15,20-tetra(p-ethoxyphenyl)porphin) also shows a s m a l l r e d s h i f t a t l o w t e m p e r a t u r e . The l i f e t i m e o f t h i s c o p p e r p o r p h y r i n s i m p l y d e c r e a s e s w i t h d e c r e a s i n g t e m p e r a t u r e : 3 0 0 K, 17 n s ; 2 0 0 K, 1 3 . 5 n s . I n t h e s e t w o c o p p e r p o r p h y r i n s , t h e e m i s s i o n i n t e n s i t y i n t o l u e n e s o l u t i o n i s much l e s s t h a n t h a t i n p o l y m e r f i l m but v a r i e s only t o a l e s s e r extent with temperature i n c o n t r a s t w i t h OEPCu. Temperature dependence o f e m i s s i o n s p e c t r a and decay l i f e t i m e s o f TPPCu a n d T ( E t O ) P P C u c a n n o t be d e s c r i b e d b y means o f t h e s i m p l e d i s s i p a t i o n k i n e t i c s a s i n f i g u r e 1.

STRUCTURE OF THE T R I P - D O U B L E T AND T R I P - Q U A R T E T S T A T E S I N COPPER PORPHYRINS The

absorption

a ^

and

bands o f a t y p i c a l

(IT, IT ) t r a n s i t i o n s

lowest u

orbitals

degenerate

which

metalloporphyrin arise

areascribed to the

from t h e h i g h e s t

i n a c c i d e n t a l degeneracy

occupied

t o t h e lowest

a

2

u

vacant

e

orbital pair. The l o w e s t e x c i t e d s i n g l e t s t a t e s a r e a s 1 1 of (a, e ) and (a^e ), while t h e lowest e x c i t e d lu g 2u g ^ states a r eapproximately a single configuration ^ i ^ g

50-50 a d m i x t u r e s

a

triplet 3

(a

o

C

r

T

e ).

0

2u In

e

u

g

t h e case o f paramagnetic

electron

i n copper

nitrogens. phyrin

d^2_y2

Exchange

copper porphyrins,

^k-^ ) o r b i t a l

interactions

LUMO's a n d HOMO'S g i v e

rise

however,

migrates

into

of theunpaired t o a mixing

orbitals, g , 1

= 2 0 0 - 2 5 0 cm , since

t h e a.^

HOMO a

n

2u

( b ^ j a ^ )

orbital

and a

orbitals l u _ n

unpaired

the porphyrin

electron with

between

l o w e s t (TT,TT ) e x c i t e d s i n g l e t s a n d t r i p l e t s . The e x c h a n g e i n t e r a c t i o n s b e t w e e n c o p p e r b, o r b i t a l LUMO e

an

porphyrin

and p o r p h y r i n

were e v a l u a t e d :

1

( b ^ - J a ^ )

x

= 3 0 0 - 3 5 0 cm , w h i l e

h a s no p o p u l a t i o n

por-

on t h e n i t r o g e n s

( b , e eb, ) 1 1 - 0

(Asano

unpublished). In

OEPCu a n d T F P P C u , t h e l o w e s t t r i p - q u a r t e t a n d t r i p - d o u b l e t a r e i 4 2 3 m a i n l y o f | ' (b, ( a , e ) ) > o r i g i n , whereas i n TPPCu a n d T ( E t O ) P P C u 4 2 3 1 1 , 4 2 3 I ' (b, (a~e))> t u r n s o u t t o be lower than | ' (b, (a,e))>. There

l

^

z

2

1

i s o n l y a s m a l l e n e r g y g a p b e t w e e n t h e T.. a n d T -1 -1 ( 3 3 0 cm ) a n d T F P P C u ( 3 5 0 cm ), while a qreater -1 -1 n

cm is

) and T(EtO)PPCu

(—800 cm

).

Since

observed decay

a b o u t — 3 0 n s i n TPPCu a n d — 2 0 n s i n T ( E t O ) P P C u ,

librium other state close

between t h e lowest

1

s t a t e s i n OEPCu g a p i n T P P C u (~7 00 2 rate

from

a Boltzmann

equi-

e x c i t e d s t a t e s i s n o t e s t a b l i s h e d . On t h e 4 2 2 T and T a r e f a rfrom t h e o f TPPCu a n d T ( E t O ) P P C u a r e

hand, t h e second e x c i t e d s t a t e s i n OEPCu a n d T F P P C u , w h i l e t h o s e 2 t o T^ s t a t e .

2

2

CONCLUSION The

lowest excited

t r i p - d o u b l e t and t r i p - q u a r t e t c o n f i g u r a t i o n s o f i 2 4 3 OEPCu a n d TFPPCu a r e m a i n l y | ' ( b ( a , e ) ) > , w h i l e t h o s e o f TPPCu i 2 4 3 2 4 T ( E t O ) P P C u a r e | ' {b (a e))>. An e n e r g y gap b e t w e e n T and 1

1

2

±

and was

1

o b t a i n e d 3 0 0 — 4 00 c m " f o r OEPCu and T F P P C u by k i n e t i c s s t u d y and t h e 2 4 T^ a n d T^ s t a t e s a r e i n a B o l t z m a n n e q u i l i b r i u m . I n c a s e o f TPPCu and T(EtO)PPCu, t e m p e r a t u r e dependence o f e m i s s i o n s p e c t r u m and lifetime i s v e r y anomalous i n t o l u e n e s o l u t i o n . A p o s s i b l e i n t e r p r e t a t i o n i s as f o l l o w s . Rotation of peripheral phenyl groups can cause d e l o c a l i z a t i o n o f TT-electrons o f the p o r p h y r i n macrocycle to the s u b s t i t u e n t s . I t follows that the t r a n s i t i o n energ i e s v a r y w i t h t e m p e r a t u r e i n l i q u i d s o l u t i o n s i n c e t h e r o t a t i o n depends on t e m p e r a t u r e . i t i s n o t e d t h a t a.^ o r b i t a l h a s no p o p u l a t i o n on a 2

u

t h e meso-carbons to which phenyl substituents o r b i t a l does have. I n TPPCu and T ( E t O ) P P C u ,

are bonding, while anomalous temperature

dependence o f e m i s s i o n s p e c t r u m and decay l i f e t i m e i s a t t r i b u t a b l e t o the v a r i a t i o n of phenyl groups r o t a t i o n . In f a c t , spectrum of these copper p o r p h y r i n s i n polymer f i l m , which i s c o i n c i d e n t w i t h that i n t o l u e n e r i g i d g l a s s a t 77 K, p e r s i s t s i t s p r o f i l e a n d s h o w s n o s h i f t with decreasing temperature. However, i n case o f TFPPCu, t h e l o w e s t ,24 3 e x c i t e d t r i p - d o u b l e t and t r i p - q u a r t e t c o n f i g u r a t i o n s | ' (b^ ( a e ) ) > are l e s s influenced by t h e r o t a t i o n a n d ortho-fluoro substituents of p h e n y l g r o u p s may i n h i b i t it. 1

References Ake RL, G o u t e r m a n M (1969) P o r p h y r i n s XIV. Theory f o r the luminescent s t a t e i n VO, C o , Cu c o m p l e x e s . T h e o r e t Chim A c t a 15: 20-42. A s a n o M, Ohno 0, K a i z u Y, K o b a y a s h i H ( t o b e p u b l i s h e d ) T h e l o w e s t e x c i t e d states of copper porphyrins. B o h a n d y J , K i m BF ( 1 9 8 0) T e m p e r a t u r e d e p e n d e n c e o f Mg p o r p h i n , C u p o r p h i n , and Pd p o r p h i n l u m i n e s c e n c e . J Chem P h y s 7 3 : 5 4 7 7 - 5 4 8 1 . K i m D, H o l t e n D, G o u t e r m a n M ( 1 9 8 4 ) E v i d e n c e f r o m p i c o s e c o n d t r a n s i e n t a b s o r p t i o n and k i n e t i c s s t u d i e s o f c h a r g e - t r a n s f e r s t a t e s i n c o p p e r ( I I ) p o r p h y r i n s . J Am Chem S o c 1 0 6 : 2 7 9 3 - 2 7 9 8 . K o b a y a s h i T, H u p p e r t D, S t r a u b KD, R e n t z e p i s PM ( 1 9 7 9 ) P i c o s e c o n d k i n e t i c s o f copper and s i l v e r p r o t o p o r p h y r i n s . J Chem P h y s 7 0 : 1720-1726. N o o r t M, J a n s e n G, C a n t e r s GW, v a n d e r W a a l s J H ( 1 9 7 6 ) H i g h r e s o l u t i o n s p e c t r a o f p a l l a d i u m - , p l a t i n u m and c o p p e r p o r p h y r i n s i n n - o c t a n e crystals. S p e c t r o c h i m A c t a 32: 1 3 7 1 - 1 3 7 5 . S m i t h BE, G o u t e r m a n M (1968) Q u a r t e t l u m i n e s c e n c e f r o m c o p p e r porphyrins. Chem P h y s L e t t 2: 5 1 7 - 5 1 9 . V a n D i j k N, v a n d e r W a a l s J H ( 1 9 7 9 ) R a d i a t i v e d e c a y o f m e t a s t a b l e quartet state of copperporphin. M o l P h y s 38: 1 2 1 1 - 1 2 2 3 . V a n D i j k N, N o o r t M, v a n d e r W a a l s J H ( 1 9 8 1 ) Z e e m a n s p e c t r o s c o p y o f 4 2 the B-j^ p h o s p h o r e s c e n c e o f c o p p e r p o r p h i n i n an n - a l k a n e s i n g l e c r y s t a l . I. T h e e n e r g y p r o b l e m , I I . T h e i n t e n s i t y p r o b l e m . Mol Phys 44: 8 9 1 - 9 1 1 , 9 1 3 - 9 2 3 . V a n D o r p WG, C a n t e r s GW, v a n d e r W a a l s J H ( 1 9 7 5 ) T h e l o w e s t q u a r t e t state of copper p o r p h i n : Z e e m a n e x p e r i m e n t s a t 4.2 K. Chem P h y s L e t t 35: 450-456.

PRESSURE EFFECTS ON NONRADIATIVE DEACTIVATION FROM METAL COMPLEX E X C I T E D STATES IN SOLUTION

P.C.Ford

and

Department of

J.DiBenedetto Chemistry, University

o f C a l i f o r n i a , S a n t a B a r b a r a , CA

93106,

USA

T h i s a r t i c l e s u m m a r i z e s some o b s e r v a t i o n s i n t h i s a n d o t h e r l a b o r a t o r i e s r e g a r d i n g t h e e f f e c t o f p r e s s u r e on r a t e s o f n o n r a d i a t i v e d e a c t i v a t i o n f r o m m e t a l c o m p l e x e x c i t e d s t a t e s (ES) i n f l u i d solutions. S t u d i e s here ( p a r t i a l l y i n c o l l a b o r a t i o n w i t h Henry Offen a t UCSB a n d w i t h R u d i v a n E l d i k a t t h e U n i v e r s i t y o f F r a n k f u r t , FRG) have been concerned w i t h u s i n g pressure e f f e c t s t o probe p h o t o r e a c t i o n mechanisms and o t h e r p r o p e r t i e s of m e t a l complex e x c i t e d s t a t e s ( F o r d 1986, D i B e n e d e t t o and F o r d 1985). Nonradiative deactivation often i s the p r i n c i p a l pathway f o r e x c i t e d s t a t e decay; thus u n d e r s t a n d i n g o r , a t l e a s t , d e t e r m i n i n g the s e n s i t i v i t y of t h i s pathway t o such a systemic p e r t u r b a t i o n i s c r u c i a l to i n t e r p r e t i n g the pressure e f f e c t s on o t h e r e x c i t e d s t a t e p r o c e s s e s . A C T I V A T I O N VOLUMES The a p p l i c a t i o n o f h y d r o s t a t i c p r e s s u r e c h a n g e s a number o f p a r a m e t e r s f o r a s o l u t i o n p h a s e r e a c t i o n w h i c h w i l l be r e f l e c t e d i n t h e r e a c t i o n dynamics. A p p l i c a t i o n o f t r a n s i t i o n s t a t e t h e o r y l e a d s t o an a c t i v a t i o n volume d e f i n e d according t o . (1)

AV* 1

d(ln

k.)

= -RT( 1

dP w h e r e k. i s t h e r a t e c o n s t a n t f o r a p r o c e s s o f i n t e r e s t . D e s c r i b i n g t h e p r e s s u r e dependence of t h e r e a c t i o n r a t e as an a c t i v a t i o n "volume" p r o v i d e s a c o n v e n i e n t , q u a l i t a t i v e p e r c e p t i o n of t h e d i s t o r t i o n s t h a t may be o c c u r r i n g a l o n g t h e r e a c t i o n c o o r d i n a t e o f a molecular process. H o w e v e r , t h i s v i e w may be m i s l e a d i n g s i n c e p r e s s u r e may p e r t u r b o t h e r s y s t e m i c p a r a m e t e r s i n c l u d i n g s o l v e n t d e n s i t y , v i s c o s i t y a n d d i e l e c t r i c c o n s t a n t , w h i c h may profoundly i n f l u e n c e the r e a c t i o n dynamics. D e s p i t e t h i s q u a l i f i c a t i o n , t h e use o f m e a s u r e d p a r t i a l m o l a r volumes and a c t i v a t i o n v o l u m e s as d e f i n e d a c c o r d i n g t o eq. 1 a l l o w s the c o n s t r u c t i o n o f r e a c t i o n volume p r o f i l e s which have p r o v i d e d v a l u a b l e i n s i g h t s i n t o t h e natures of the mechanisms o f numerous t h e r m a l r e a c t i o n s (van E l d i k 1986). The s i t u a t i o n w i t h e x c i t e d s t a t e s i s somewhat more c o m p l i c a t e d . A n a l y s i s o f ES d y n a m i c s a c c o r d i n g t o t r a n s i t i o n s t a t e t h e o r y c a n o n l y be v a l i d f o r s l o w e r p r o c e s s e s where t h e r e l e v a n t s t a t e s have a c h i e v e d v i b r a t i o n a l e q u i l i b r a t i o n w i t h t h e medium. In a d d i t i o n , the p a r t i a l m o l a r v o l u m e s o f s h o r t - l i v e d e l e c t r o n i c s t a t e s c a n n o t b e m e a s u r e d by the conventional methodologies, adding a f u r t h e r element of uncertainty i n t o the i n t e r p r e t a t i o n . The u n i m o l e c u l a r d e c a y o f a s i n g l e ES may b e s u m m a r i z e d i n t e r m s o f t h r e e t y p e s o f p r o c e s s e s , r e a c t i o n t o p r o d u c t s ( r a t e c o n s t a n t k ), r a d i a t i v e d e a c t i v a t i o n ( k ) and n o n r a d i a t i v e d e a c t i v a t i o n ( k ) , e a c h o f w h i c h p o s s i b l y a c o m p o s i t e of s e v e r a l competing mechanisms. The sum o f t h e d e c a y r a t e c o n s t a n t s k = £k. i s e q u a l t o t h e i n v e r s e o f t h e l i f e t i m e > w h i l e t h e q u a n t u m y i e l d 0. of a p a r t i c u l a r p r o c e s s i s d e s c r i b e d by t h e p r o d u c t o f 0^ r k. a n d T * , w h e r e 0. i s the e f f i c i e n c y of forming the r e l e v a n t s t a t e v i a i n t e r n a l c o n v e r s i o n / i n t e r s y s t e m c r o s s i n g . V a l u e s o f k^ t h u s c a n be d e t e r m i n e d as f u n c t i o n s of p r e s s u r e f r o m t h e c o r r e s p o n d i n g values of 0±, 0 i c and r . r

n

H

1

c

1

PHOTOREACTION

AV

's

T h i s a p p r o a c h was u s e d s u c c e s s f u l l y t o ^ d e t e r m i n e AV* v a l u e s f o r t h e l i g a n d l a b i l i z a t i o n pathways from t h e E l i g a n d f i e l d (LF) s t a t e of t h e h a l o p e n t a a m m i n e r h o d i u m ( I I I ) i o n s ( e q . 2, A = NH-, o r ND^ X = CI o r B r ) (Weber 1 9 8 3 , 1 9 8 4 ) . f

6

y—» R h A ( H 0 ) 5

(2)

[RhA X

2 +

5

]*

+

3 +

6

+ X

2

H 0 2

2 +

^—» R h A ( H 0 ) X 4

2

+ A

A volume p r o f i l e f o r t h e c h l o r i d e complex i s represented i n F i g . 1 w h e r e i t i s s e e n t h a t , w h i l e AV f o r NH^ l o s s f r o m t h e L F e x c i t e d s t a t e i s l a r g e and p o s i t i v e , c o n s i s t e n t with a l i m i t i n g d i s s o c i a t i v e mode f o r t h i s e x c i t e d s t a t e s u b s t i t u t i o n m e c h a n i s m , A V f o r C l ~ loss f r o m t h e same s p e c i e s i s - n e g a t i v e . This seemingly contradictory r e s u l t i s e a s i l y e x p l a i n e d i n terms of s o l v e n t c o n t r a c t i o n around t h e t r a n s i t i o n s t a t e of__the l a t t e r pathway o w i n g t o t h e c r e a t i o n o f c h a r g e ( d i s s o c i a t i o n of CI l e a v e ^ a +3 r h o d i u m ( I I I ) fragment). The volume d i f f e r e n c e s b e t w e e n t h e A V 's o f t h e t w o p a t h w a y s a r e i n d e e d c l o s e t o the d i f f e r e n c e s i n t h e p a r t i a l molar volumes of t h e r e a c t i o n products. T h u s , i t was. c o n c l u d e d t h a t t h e p r e s s u r e e f f e c t s o n t h e L F e x c i t e d s t a t e s u b s t i t u t i o n r a t e s f o r t h i s and r e l a t e d R h ( I I I ) complexes were c o n s i s t e n t w i t h t h e proposed d i s s o c i a t i v e mechanism.

Figure 1 Volume p r o f i l e diagram f o r the competitive p h o t o a q u a t i o n o f NH^ and o f CI ^ f r o m Rh(NH ) Cl i n aqueous s o l u t i o n v i a a proposed l i m i t i n g dissociative mechanism. 3

5

RXN COORD PHOTOPHYSICAL

AV*'s

P r e s s u r e e f f e c t s on r a d i a t i v e d e a c t i v a t i o n have n o t been w i d e l y explored f o r metal complexes i n s o l u t i o n , i n part because emission quantum y i e l d s a r e o f t e n ( n o t a l w a y s ! ) s m a l l . Limited studies i n s o l u t i o n a r e c o n s i s t e n t w i t h t h e changes i n k correlating with pressure induced changes i n t h e square of t h e solvent r e f r a c t i v e index as p r e d i c t e d b y t h e S t r i c k l e r - B e r g e q u a t i o n (Drickamer 1982). r

With regard t o n o n r a d i a t i v e d e a c t i v a t i o n , pressure e f f e c t s on k would depend on t h e d e t a i l e d mechanism. D e a c t i v a t i o n f r o m a p a r t i c u l a r ES may o c c u r d i r e c t l y t o t h e g r o u n d s t a t e o r b y c r o s s i n g o v e r t o a n o t h e r ES ( e . g . , o n e o f d i f f e r e n t o r b i t a l p a r e n t a g e ) w h i c h d e a c t i v a t e s more efficiently. F o r an i n d i v i d u a l s t a t e , k i s d e t e r m i n e d by v i b r a t i o n a l and e l e c t r o n i c f a c t o r s . V i b r o n i c c o u p l i n g has been a n a l y z e d i n terms o f t h e "weak" a n d " s t r o n g " c o u p l i n g l i m i t s . The f o r m e r c a s e h a s a r e l a t i v e l y s m a l l d i s p l a c e m e n t o f t h e ES p o t e n t i a l e n e r g y s u r f a c e , t h u s n

n

k

i s

d

o

m

i

n

a

t

e

d

b

t n

n Y e h i g h f r e q u e n c y m o l e c u l a r modes and i s p r e d i c t e d t o i n c r e a s e e x p o n e n t i a l l y as A E b e t w e e n t h e g r o u n d and e x c i t e d s t a t e s d e c r e a s e s ( t h e " e n e r g y gap l a w " ) . The s t r o n g - c o u p l i n g l i m i t i n v o l v e s a l a r g e r d i s p l a c e m e n t o f t h e ES p o t e n t i a l e n e r g y s u r f a c e ( a t l e a s t o n e n o r m a l mode) r e l a t i v e t o t h e a c c e p t o r s t a t e s u c h t h a t t h e surfaces c r o s s n o t f a r f r o m t h e minimum of the h i g h e r s t a t e . According to t h e o r y , s t r o n g - c o u p l i n g s h o u l d show an A r r h e n i u s t y p e t e m p e r a t u r e d e p e n d e n c e w h i l e w e a k - c o u p l i n g s h o u l d be e s s e n t i a l l y t e m p e r a t u r e independent. S t r o n g c o u p l i n g c a n a l s o be a s s o c i a t e d w i t h c h e m i c a l d e a c t i v a t i o n p a t h w a y s , t h u s may c o n t r i b u t e t o k i n those cases where unimolecular r e a c t i o n s o f t h e ES a r e common. n

I n g e n e r a l one m i g h t e x p e c t t h a t weak c o u p l i n g s h o u l d show a r a t h e r small s e n s i t i v i t y to pressure. Changes i n h y d r o s t a t i c p r e s s u r e may p e r t u r b t h e ES e n e r g y by c o m p r e s s i o n o f t h e c o m p l e x o r c h a n g i n g t h e s o l v e n t d i e l e c t r i c c o n s t a n t , and k should respond to - A E exponentially. F o r e x a m p l e , S a l m a n and D r i c k a m e r (1982) i n v e s t i g a t e d t h e p r e s s u r e e f f e c t s on t h e m e t a l t o l i g a n d c h a r g e t r a n s f e r (MLCT) p h o s p h o r e s c e n c e s p e c t r a , l i f e t i m e s and quantum y i e l d s f o r t h e c o m p l e x e s R e C l ( C O ) ^ ( p h e n ) and R e C l ( C O ) ( 4 , 7 - P h p h e n ) as f u n c t i o n s o f pressure i n several solvents. By s y s t e m a t i c v a r i a t i o n o f s o l v e n t p r o p e r t i e s with pressure, they demonstrated a l i n e a r r e l a t i o n s h i p b e t w e e n l n ( k ) and A E i n d i c a t i v e of a weaj^-coupling deactivation mechanism f o r each complex. V a l u e s of AV c a n be c a l c u l a t e d f o r e a c h c o m p l e x i n t h e v a r i o u s s o l v e n t s , and f o r tRe p o l a r s o l v e n t s dimethyl f o r m a m i d e a n d a c e t o i j i i - t r i l e , t h e s e a r e q u i t e s m a l l , 0 t o +1 cm / m o l . , but i n m-xylene A V 's a r e l a r g e r r e f l e c t i n g t h e greater c o m p r e s s i b i l i t y of ?hat solvent. 3

2

2+ A s i m i l a r o b s e r v a t i o n h a s b e e n made f o r t h e R u ( b p y ) - . cation in polar s o l v e n t s at ambient temperature. Early studies o v e r t h e r a n g e 0.1 to 230 MPa i n d i c a t e d t h a t AV i s s m a l l and n e g a t i v e (Kirk' 1980). S u b s e q u e n t e x p e r i m e n t s ( F e S t e r o l f 1985) confirmed the small ^ under these c o n d i t i o n s but a l s o demonstrated a d r a m a t i c temperature sensitivity for AV (see b e l o w ) . n v

n

u

Given t h a t the s t r o n g - c o u p l i n g mechanism i s o f t e n c l o s e l y a s s o c i a t e d w i t h u n i m o l e c u l a r r e a c t i o n s o f t h e ES, one m i g h t e x p e c t a c o r r e l a t i o n b e t w e e n p r e s s u r e e f f e c t s e x p e r i e n c e d by t h e r a t e s o f c h e m i c a l d e a c t i v a t i o n and t h e a s s o c i a t e d c o n t r i b u t i o n s t o n o n r a d i a t i v e deactivation rates. T h i s a p p e a r s t o be t h e c a s e f o r t h e Rh(III) ammine s y s t e m s d i s c u s s e d a b o v e . P r e s s u r e e f f e c t s on k values f o r the l o w e s t LF s t a t e s g i v e m e a s u r a b l e AV values which p a r a l l e l those of t h e p r e d o m i n a n t p h o t o s u b s t i t u t i o n r e a c t i o n s b o t h i n m a g n i t u d e and sign (Weber 1 9 8 3 ) . S u c h a n o b s e r v a t i o n may indicate a substantial s t r o n g - c o u p l i n g component t o the k m e c h a n i s m as p r o p o s e d e a r l i e r as an e x p l a n a t i o n o f t e m p e r a t u r e e f f e c t s on a p p a r e n t n o n r a d i a t i v e d e a c t i v a t i o n r a t e s of hexaamminerhgdium(III^ (Petersen 1974). We h a v e found t h a t a p l o t of AV vs 0 • A V + 0 •A V (the o r d i n a t e r e p r e s e n t i n g t h e sum o f ? h e ES r e a c t i o n a c t i v a t i o n v o l u m e s w e i g h t e d by t h e i r r e s p e c t i v e a m b i e n t p r e s s u r e quantum y i e l d s ) i s l i n e a r f o r the halopentaammine complexes. A l t h o u g h the q u a n t i t a t i v e s i g n i f i c a n c e of t h i s p l o t has y e t t o be d e l i n e a t e d , t h e c o r r e l a t i o n b e t w e e n A V and t h e w e i g h t e d c o n t r i b u t i o n s of t h e p h o t o s u b s t u t i o n pathways i s c l e a r l y s u g g e s t i v e of the c o n t r i b u t i o n s of s t r o n g - c o u p l i n g pathways t o the d e a c t i v a t i o n modes. n

N

n

a

A R h ( I I I ) complex which does not f i t the above c o r r e l a t i o n i s trans-Rh(cyclam)(CN) (cyclam = 1,4,8,11-tetraazacyclotetradecane), w h i c h i s i n a c t i v e t o w a r d p h o t o s u b s t i t u t i o n b u t has a r e m a r k a b l y l o n g l i v e d LF e m i s s i o n i n a m b i e n t a q u e o u s s o l u t i o n (8.1 u s e e ) ( M i l l e r 2

F I G U R E 2: P l o t o f

AV

vsthe n

summed p r o d u c t s AV*0 A

for

Rh(III)

+ AV*0 A

X. A.

complexes

. 2 +i n D 0 a: R h ( N D ) c C i ; R M N H ^ C l ^ i n HCONH. b: c : R h ( N H ^ ) ^ C l ^ i n DMSO d: R h ( N H ^ ) ^ C l ^ i n DMF e: R h ( N H ^ ) ^ B r ^ i n H 0 RMND^Br f in d i a m o n d : Rn (bpy) Clt> in H 0 2

3

1

9

2

2

AVJ

1983). T h e l a c k o f p h o t ^ o r e a c t i v i t y may b e a t t r i b u t e d t o t h e l o w e s t e n e r g y L F ES b e i n g t h e A . For this state, ligand lab^lization, expected t o be e q u a t o r i a l i n analogy t o t h e Rh(NH^) CN i o n (Skibsted 1983), i s b l o c k e d by t h e c y c l a m ^ m a c r o c y c l e * We h a v e f o u n d t h a t u n d e r p r e s s u r e > i s s h o r t e n e d a n d A V = - 4 . 4 cm / m o l , a n d we i n t e r p r e t t h i s |s s u g g e s t i n g t h a t t h e modes n e c e s s a r y f o r s t r o n g - c o u p l i n g from t h e A state also involve d i s t o r t i o n along the macrocycle^constrained equatorial metal-ligand bonds. Thus, t h e n e g a t i v e AV v a l u e may i n d i c a t e t h e r o l e o f an a l t e r n a t i v e ^ d e a c t i v a t i o n pathway, t h e c r o s s i n g o f t h e s y s t e m t o t h e h i g h e r e n e r g y _E s t a t e f r o m w h i c h nonradiative deactivation occurs. A negative AV f o r t h e A —> E transition might be e x p l a i n e d i n terms of s o l v a t i o n c o n t r i b u t i o n s t o V o f t h e l a t t e r s t a t e o w i n g t o t h e more i o n i c n a t u r e o f t h e Rh-CN b o n d i n t h e latter state. 2

5

d

2

2

A s t r o n g c o u p l i n g mechanism w i t h s i g n i f i c a n t volume changes would c e r t a i n l y b e e x p e c t e d i f t h e t h e r m a l l y r e l a x e d ES h a s a c o n s i d e r a b l y d i f f e r e n t s t r u c t u r e than does t h e ground s t a t e . An example i s t h e four coordinate N i ( I I ) complex N i ( d p p e ) C l (dppe = 1 , 2 - b i s ( d i p h e n y l p h o s p h i n o ) e t h a n e ) f o r which p r e s s u r e e f f e c t ^ on n o n r a d i a t i v e d e c a y ( A m i r - E b r a h i m i 1 9 8 4 ) g a v e A V ^ = - 1 0 cm / m o l . T h i s was i n t e r p r e t e d a s i n d i c a t i n g t h a t t h e t r a n s i t i o n s t a t e f o r g d e a c t i v a t i o n more c l o s e l y r e s e m b l e s t h e s q u a r e p l a n a r d i a m a g n e t i c d ground s t a t e than t h e l e s s t i g h t l y solvated t e t r a h e d r a l , t r i p l e t E S . The h i g h s p i n / l o w s p i n r e l a x a t i o n o f F e ( I I ) c h e l a t e s , e . g . , F e ( p y i m ) (pyim = 2 - ( 2 - p y r i d y l ) i m i d a z o l e ) i s somewhat a n a l o g o u s , a l t h o u g h i n t h i s case r a d i a l c o n t r a c t i o n rather than coordination sphere t w i s t i n g was a r g u e d t o b e r e s p o n s i b l e f o r t h e n e g a t i v e A V 's ( D i B e n e d e t t o , A r k l e e t c . 1985). 2

2 +

3

n

A s s u g g e s t e d a b o v e , n o n r a d i a t i v e d e a c t i v a t i o n may o c c u r v i a c r o s s i n g t o a n o t h e r ES f r o m w h i c h d e a c t i v a t i o n i s much more r a p i d . I n such a c a s e , t h e r e may a l s o b e v o l u m e d i f f e r e n c e s b e t w e e n t h e t w o E S . This i s d r a m a t i c a l l y d e m o n s t r a t e d b y the_ e m i s s i o n s p e c t r u m o f t h e iridium(III) cation Ir(Mephen) C1 i n DMF ( F i g . 3 ) w h i c h e m i t s f r o m two s t a t e s ( F i g . 4 ) . F o r t h i s s y s t e m , i t i s e v i d e n t t h a t increased p r e s s u r e l e a d s t o e n h a n c e d c h a r g e t r a n s f e r e m i s s i o n ( 5 5 0 nm) a t t h e e x p e n s e o f L F e m i s s i o n ( 7 2 0 nm) w i t h l i t t l e o r n o s h i f t s a p p a r e n t i n the peak maxima. The s p e c t r a l c h a n g e s were a t t r i b u t e d t o s h i f t s i n t h e r e l a t i v e p o p u l a t i o n s o f t h e t w o ES o w i n g t o p a r t i a l m o l a r v o l u m e d i f f e r e n c e s b e t w e e n t h e L F a n d MLCT s t a t e s ( D i B e n e d e t t o 1 9 8 4 ) . A plot of t h e l o g o f t h e CT/LF i n t e n s i t y r a t i o v s P p r o v e d l i n e a r . From t h e slope and t h e assumption that t h e r a t i o of t h e r a d i a t i v e rate c o n s t a n t s i s p r e s s u r e independent, an apparent volume d i f f e r e n c e o f 2

2

4.2 cm / m o l b e t w e e n t h e s t a t e s w a s c a l c u l a t e d a c c o r d i n g t o e q . 3, t h e L F ES b e i n g t h e l a r g e r . That t h e LF s t a t e i s t h e l a r g e r i s c o n s i s t e n t with the population of antibonding o r b i t a l s i n t h a t ES l e a d i n g t o e x t e n s i o n s o f t h e M-L b o n d s . f

(3)

AV

^ app

=

d(ln(kf/ki )) -RT( ) + d

AV eq

p

NANOMETERS

F I G U R E 3 ( l e f t ) : E m i s s i o n s p e c t r u m o f I r ( M e p h e n ) JZ1~ i n DMF a t 0.1 MPa ( a ) a n d a t 3 0 0 M P a ( b ) s h o w i n g t h e i n c r e a s e I n t h e MLCT e m i s s i o n i n t e n s i t y a t t h e expense o f t h e longer wavelength LF e m i s s i o n a t t h e higher pressure. FIGURE 4: different

Scheme f o r l u m i n e s c e n c e o r b i t a l parentages. K

from two e m i t t i n g defined as equal

states of t o [MLCT]/[LF]

F o r I r ( M e p h e n ) C 1 2 / t h e MLCT i s t h e l o w e r e n e r g y s t a t e y e t t h e t w o ES a r e i n t h e r m a l e q u i l i b r i u m a s e v i d e n c e d by t h e w a v e l e n g t h i n d e p e n d e n t emission lifetimes. L i f e t i m e m e a s u r e m e n t s i n DMF s o l u t i o n s h o w t h a t the a p p l i c a t i o n of pressure decreases the d e a c t i v a t i o n rates with t h e l n ( k . ) v s P p l o t g i v i n g t h e A V v a l u e +4.0 + 0.2 cm / m o l . The u n i m o l e c u l a r d e a c t i v a t i o n r a t e c o n s t a n t k^ i s r e l a t e d t o t h e v a r i o u s c o n s t a n t s n o t e d i n F i g . 4 a c c o r d i n g t o e q . 4 . ^However, s i n c e t h e * ' s a r e m u c h s m a l l e r t h a n t h e k 's a n d , f o r s u c h d complexes, n o n r a d i a t i v e d e a c t i v a t i o n i s g e n e r a l l y much f a s t e r f r o m L F s t a t e s t h a n 2

d

r

f r o m MLCT s t a t e s , case K is

>>

e q

1,

consistent

k

simplifies to k* (1+ K f

d

eq. 5 would hold, with

this

thus

the

AV

l

)~ . n

For the limiting

v a l u e o f +4.0

3

cm /mol

model.

(4)

(5)

A

vJ

= -RT[d(ln

f

k* )/dP]

-

AV

e q

A two s t a t e model has a l s o been proposed t o e x p l a i i j p r e s s u r e e f f e c t s on t h e d e a c t i v a t i o n r a t e s o f R u ( b p y ) . S m a l l A V "s w e r e f o u n d a t l o w t e m p e r a t u r e s , b u t a v a l u e o f +7.5 cm / m o l w a s t h e c a s e f o r 7 0 aqueous s o l u t i o n s ( F e t t e r o l f 1985). T h i s was e x p l a i n e d i n t e r m s o f 3

3

two c o m p e t i n g n o n r a d i a t i v e p r o c e s s e s , slow w e a k - c o u p l i n g d i r e c t l y t h e e m i s s i v e MLCT s t a t e and c o m p e t i t i v e t h e r m a l p r o m o t i o n t o a n o n l u m i n e s c e n t , h i g h e r e n e r g y LF s t a t e f r o m w h i c h n o n r a d i a t i v e d e a c t i v a t i o n i s extremely r a p i d .

from

CONCLUDING REMARKS The above has been c o n c e r n e d w i t h t h e p r e s s u r e e f f e c t s e x p e r i e n c e d by t h e n o n r a d i a t i v e d e a c t i v a t i o n f r o m m e t a l complex e x c i t e d s t a t e s . S u b s t a n t i a l e f f e c t s j f t e n r e s u l t f r o m t h e i n v o l v e m e n t o f s e v e r a l ES, so t h a t a p p a r e n t AV ' S may r e f l e c t d i f f e r e n c e s between two ES r a t h e r t h a n t h e d i s t o r t i o n s i n h e r e n t t o a s p e c i f i c d e a c t i v a t i o n mode. N o n e t h e l e s s , i t a p p e a r s t o be a s a f e c o n c l u s i o n t h a t t h o s e s y s t e m s f o r w h i c h a w e a k - c o u p l i n g n o n r a d i a t i v e d e a c t i v a t i o n mechanism i s d o m i n a n t , p r e s s u r e e f f e c t s on k a r e s m a l l ( a s a r e t e m p e r a t u r e e f f e c t s ) . In c o n t r a s t , d e a c t i v a t i o n by s t r o n g - c o u p l i n g p a t h s n o t o n l y i s t e m p e r a t u r e d e p e n d e n t , b u t may a l s o be much more p r e s s u r e d e p e n d e n t , s i n c e t h e s e a p p e a r t o i n v o l v e much more d i s t o r t i o n p r i o r t o t h e d e a c t i v a t i o n event. R e c e n t l y , we have e x t e n d e d o u r i n v e s t i g a t i o n s t o d i n u c l e a r complexes. G i v e n t h a t l o w e s t e n e r g y ES f o r many o f t h e s e d e r i v e f r o m e l e c t r o n p r o m o t i o n between o r b i t a l s d e l o c a l i z e d between t h e two c e n t e r s , s u b s t a n t i a l d i s t o r t i o n s o f t h e m e t a l - m e t a l bonds often result. An i n t r i g u i n g s u b s e t i s t h a t where b o t h m e t a l c e n t e r s have t h e d c o n f i g u r a t i o n s u c h t h a t t h e h i g h e s t o c c u p i e d MO i s M-M a n t i b o n d i n g b u t t h e LUMO i s M-M b o n d i n g , t h u s t h e l o w e s t ES h a s a s i g n i f i c a n t l y s h o r t e r M-M bond t h a n t h e g r o u n d s t a t e ( M a r s h a l l 1986). P r e l i m i n a r y p r e s s u r e s t u d i e s ( F e t t e r o l f 1987) have shown t h a t t h e phosphorescence l i f e t i m e s i n ^ a c e t o n i t r i l e of the t e t r a b r i d g e d i o n Pt~ (^-pop) ^ (§°P ^ 2 ° 5 2 ' ^^tle a f f e c t e d by p r e s s u r e ( Z V l = -176 cm /mol) b u t trie d i b r i d g e d complex I r ^ (ju-pz ) (COD) ( p j H i s p y r a ^ o l e , COD i s c y c l o o c t a d i e n e ) has a s u b s t a n t i a l l y p o s i t i v e AV" (4.6 cm / m o l ) . These o b s e r v a t i o n s s u g g e s t t h a t P t ( P O P ) . d e a c t i v a t e s by a w e a k - c o u p l e d pathway w h i l e t h e i r i d i u m a i m e r i n v o l v e s s t r o n g - c o u p l i n g d e a c t i v a t i o n . The much g r e a t e r t e m p e r a t u r e d e p e n d e n c e of k^ f o r t h e l a t t e r s p e c i e s i s f u l l y c o n s i s t e n t w i t h t h i s m o d e l . n

s

P

H

a

r

e

2

2

n

2

Acknowledgement: T h i s r e s e a r c h was s u p p o r t e d by t h e US N a t i o n a l S c i e n c e F o u n d a t i o n (CHE84-19283 and INT83-04030) REFERENCES: A m i r - E b r a h i m i V, McGarvey J (1984) I n o r g Chem A c t a 89: L39 D i B e n e d e t t o J , A r k l e V, Goodwin H, F o r d PC (1985) I n o r g Chem 24: 455 D i B e n e d e t t o J , F o r d PC (1985) C o o r d Chem Rev 64: 361-382 D i B e n e d e t t o J , W a t t s R J , F o r d PC (1984) I n o r g Chem 23: 3039-3040 D r i c k a m e r HG (1982) Ann Rev Phys Chem 33: 25-47 F o r d PC (1986) Chpt 6 i n I n o r g a n i c H i g h P r e s s u r e C h e m i s t r y . van E l d i k R ( e d ) , E l s e v i e r , Amsterdam F e t t e r o l f ML, O f f e n HW (1985) J Phys Chem 89: 3320-3323 F e t t e r o l f ML, Yang YY, O f f e n HW, F r e i d m a n A, F o r d PC (1987) manuscript i n preparation K i r k AD, P o r t e r GB (1980) J . Phys Chem 84: 2998-2999 M a r s h a l l AL, S t i e g m a n AE, G r a y HB (1986) ACS Symp S e r 307: 166-176 M i l l e r DB, M i l l e r PK, K a n e - M a g u i r e NAP (1983) I n o r g Chem 22: 3832 P e t e r s e n JD, F o r d PC (1974) J Phys Chem 78: 1144-1149 Salman OA, D r i c k a m e r HG (1982) J Phys Chem 77: 3337-3343 S k i b s t e d LH, F o r d PC (1983) I n o r g Chem 22: 2749-2453 van E l d i k R ( e d , 1986) I n o r g a n i c H i g h P r e s s u r e C h e m i s t r y , K i n e t i c s a n d M e c h a n i s m s . E l s e v i e r , Amsterdam Weber W, v a n E l d i k R, Kelm H, D i B e n e d e t t o J , Ducommun Y, O f f e n H, F o r d PC (1983) I n o r g Chem 22: 623-628 Weber W, D i B e n e d e t t o J , O f f e n H, v a n E l d i k R, F o r d P (1984) I n o r g Chem 23: 2033-2038

HETEROGENEOUS PHOTOCATALYSIS

H.Kisch,

W.Hetterich,

BY METAL SULFIDE SEMICONDUCTORS

and G.Twardzik

I n s t i t u t f u r Anorganische Chemie der U n i v e r s i t a t E g e r l a n d s t r . 1 8520 E r l a n g e n , FRG

Erlangen-Nurnberg

f

Metallized fide

may

semiconductor

photocatalyze

compounds. except

the reduction

In t h e l e t t e r

(Bucheler

1982;

2,5-dihydrofuran

hitherto the

case

unknown

Zeug

no

compounds

1 - 3

formation

i s coupled

a noble

metal

catalyst.

of

2,5-DHF

zinc

d e p e n d s on of water,

sulfide

Competition

and

the

nature

The

sulfides

fate

and

reactions

were

by

Yanagida

1985).

This

2 , 3-dihydrofuran

traces

evolution

organic

(Fox

1983)

(2,3-DHF)

water

and

which

report

zinc

reaction affords the

from

THF

of the 2,3'-isomer.

I n t h e f o l l o w i n g we

sul-

photoexcited

amounts,

from

2

of

obtained

ethers

in preparative

cadmium

Their

occurs

how

with-

the r e a c t i o n

3

1

centration of

and

materials

(4) w i t h o u t

to hydiugen

dioxide

of c y c l i c

and

1

Scheme

titanium of water

new

1985;

(2,5-DHF)

2,2'-bitetrahydrofury1

out

like

i n the dehydrodimerization

sulfide from

powders

by

t h e method 2,5-DHF

cadmium

inhibition

of i n t e r f a c i a l

a t room

were

prepared

temperature

and

of c a t a l y s t zinc

sulfide

sulfide,

and

o r homogeneous

experiments

give

electron transfer

by

preparation,

some

the

the

substitution

s o l u t i o n s of basic

con-

ZnS/CdS.

insights

into

processes.

a d d i t i o n of sodium

( Z n S - A ) o r by

on

on

sulfide

the r e a c t i o n of

to zinc

zinc

sul-

sulfate

with

thiourea

samples of

(Kurian

were

cubic

1972)

obtained

zinc

as

sulfide.

in alkaline

amorphous

The

solution

powders

sulfides

ZnS-B

a t 80°C

containing have

(ZnS-B) .

various

surface

A l l

amounts

areas

o f 10

-

15

2 m

/g

( B E T - m e t h o d ) and

that

the r a t i o

/0.68 Zn

2 +

when

/0H"

tent

All

the s u l f i d e

of zinc

pared

sulfides

originate

from and

which

sulfides

19

ml

from

1.00/0.83

a solution

with

respectively.

the higher

zinc

the reaction

absorption 2 +

and

Zn (0)

i s equal

activity

induces

ZnS-A^_

a t 354

The

rate

shows

to

1.00

the r a t i o higher

to sulfur

temperature

from

impurity changes

4

by

con-

ratio,

50% as

com-

luminescence

spectra

the l a t t e r of Mn(II).

a t 430, and

No

i n the emission

are p r e c i p i t a t e d o f ammonia, ratios

reflectance

nm,

(Kurian

which

1972).

of ZnS-A^_

on

as

, ZnS-A

9

and

4

upon

670

traces

spectra

nm

of

obvious

rates

of ZnS-A^_

the presence

corand

o f ZnS-A^,

When

thus

1/20

of

a t 336 The

respectively.

t h e ammonia

ca-

con-

medium

1.00/0.83

Induction

nm

inter-

the lower

the a l k a l i n e

and

the

intersti-

i n h i b i t s the reaction;

1.00/0.55

and

contain

3

sulfide.

and

cona r e 7,

1/7,

absorption

zinc

explainable.

which

solutions

= 1/0,

3

has t h i s

of pure

i s 1.00/0.87, ZnS-A.,

/NH

recombination

becomes

oxide

2 +

spectra

ZnS-A

i n the case

of zinc

the surface 1

3

Zn

from

the i n i t i a l

indicates

promote e l e c t r o n - h o l e

i s t o o low*

of ZnS-A

an

slight

Diffuse

the formation

Zn/S

nm.from

nm

to the l i t e r a t u r e value

talytic

centration

a t 500

f o r the molar

2

respectively.

Zn

a t room

i n the emission

concentrations

H /h

atoms

case

by

EDAX-analysis

activity.

stitial

ratio

(ZnS-B^),

exhibit

Maxima

between

different

and

bandgap tial

from

decreases

sulfide,

a t 600

i s found

the four

taining

1/30,

and

prepared

zinc

photocatalytic

7,

1/10

indicated

illumination.

oxide,

relation

0,

increases

is precipitated

1

as

photocorrosion.

the surface

( Z n S - B ) and

oxide,

strong

t o ZnS-B,. .

front-face

When

on

photocorrosion

zinc

zinc

o f Zn/S

= 1/5

increases

exhibit

times

the i n the are

longer

with

interstitial action. by

the less atoms

The r a t e

ZnS-B^

active

samples

and s u r f a c e

induced

and i t s

oxide

by Z n S - A ^

catalytic

pointing at t h i s

i s about

activity

to a possible

removal

initial

of ther e -

three

persists

stage

times

much

that

of

obtained

longer.

This

may

be 2

due

to the larger

However,

other

important

properties

and t h e r e

photocatalytic

Homogeneous initial be

specific

rate

of the s u l f i d e s

of the surface

i s no s i m p l e

correlation

solutions when

of p l a t i n i z e d

t h e amount

ZnS/CdS

o f cadmium

decrease

between

evolution

mmol

of catalyst

suspended i n

4 >

2: Z n

Q

2

Cd

Q

induce

( 1 0 0 - 130 m /g)

seem

t o be

surface

also

area

gS/Pt,

120 3:

a decrease

i s increased

as f u n c t i o n

of hydrogen

ZnS-A

porosity

of the reducing

Rate

1:

like

ZnS-A

and

activity.

due t o t h e c o n c o m i t a n t

Fig.l:

surface

(Fig.l).

of i r r a d i a t i o n

2

Q

Cd

Q

g

This

and o x i d i z i n g

ml o f 2,5-DHF/H 0 Zn

of the

S/Pt,

4:

power

time;

= 1/14 CdS/Pt

may

0.3 (v/v);

of

the photogenerated

positions bandgap the

of zinc

energies

and cadmium a t 3.65

reaction occurs

Competition catalyst

Since

THF,

dehydrodimers

when

THF

to

specific

hydrodimer of

zinc

when

2,5-DHF

When

the ratio

DHF/ZnS formed 2,5-DHF action

nor in

i s present

that

zinc

lower

i n case 2,5-DHF

THF

when

a l l 2,5-DHF

substrate

better

to

THF

a slower

sites

o r 1 - 3.

Contrary,

when

b) t h e r e

seems

has r e a c t e d .

continues

These

introduced

by

some

free

proper

t h e de-

(case a ) .

o f 2,5are

a after a l l

rate,

due t o r e by t h e a s -

present

in

excess

f o r adsorption 2,5-DHF

i s present

surface

available

oxidation of

demonstrate

selection

amounts

and 1 - 3

through

experiments

these

predominantly

be r a t i o n a l i z e d when

of

points

of equal

i n case

use these

(case

300/1,

product

sites

that

100/1,

and t h a t

cannot

and t h e r e a c t i o n

c a n be

adsorption

after

with

that

formed

the sulfide

stops

the

that

of the r a t i o

of

catalyst.

dependence

water;

t h e main

a l l adsorption

2,5-DHF

o f THF

chemoselectivity

type

covers

i s about

over

be

The f a c t

i s at least

t o 1000/1

reaction

should

are formed

excess

becomes

b ) . The

CdS/Pt

with

i s ten times

i n the case

1 - 3

b . T h e d i f f e r e n c e may

concentrations

adsorption

product

but continues

and t h a t

adsorbed

for

The

consumed

sulfide,

replace

(case

of

conducted

2,5-DHF.

the ratio

i s increased 4

were

o f 2,5-DHF

THF/2,5-DHF

contrary,

t o 0.3,

in traces

a n d THF

over

in a threefold

T H F / 2 ,5-DHF

o f THF,

excess

When

(pH=7), t h e

In the case

and c r o s s - p r o d u c t s

i s t h e major

and 2,5-DHF;

has been

sumption over

, 4,

i s decreased only

effects.

V

light.

2,5-DHF

i f the ratio

the flatband

a n d -0.7

respectively.

visible

between

respectively;

a r e a t -1.6

the reaction rate

adsorption

sulfide

with

eV,

in a tenfold

only

o f THF

sulfide

of the l a t t e r

i s present appear

and h o l e s ,

a n d 2.4

also

experiments

ZnS-A^.

products

electrons

an

o f 2,5-DHF

of the rate initial

i s further

supported

on t h e c o n c e n t r a t i o n s

linear

increase

a plateau

by t h e

o f 2,5-DHF, o f maximum

LangmuirTHF a n d rate i s

reached plot

at concentrations

of reciprocal

constants THF

of adsorption

and w a t e r ,

From

these

processes

f o r t h e sake

RH

versus

are obtained

+

D

results

2

Z

n

0H ' a

a n d 0.6

^

v

M

equilibrium

_ 1

f o r 2,5-DHF

7

of water

wherein a r e o-

symbolizes

q

an

(1)

g d

+

•>

ZnS(h )

+

+ 1/2

(2) H

g

+ 0H

(3)

a d

OH' »

RH

+

R

RH ' ad



d



ad R

2); D

ZnS(e~,h )

+ ZnS(h )

1/2

i s proposed

equilibrium



d

n;

scheme

(Scheme

RH

+

g d

a mechanistic

S

+ ZnS(e",h )

RH

a s 1 0 , 0.5

of s i m p l i f i c a t i o n

+

g c |

concentrations,

and t h e a d s o r p t i o n

ZnS H 0

reciprocal

r e s p e c t i v e l y . From t h e

respectively.

experimental

photophysical mitted

rates

o f 1.5, 6 a n d 15 M,

/

+ ZnS

a d

+

ad

H

: 1

(4)

H

(5)

6

ad



+

(

2

Rp

7) (8)

ad «

9

m

1/2

R

(9)

ad R

R"

a d

(10)

1/2

Scheme

empty

R

(11)

2

2

adsorption

site,

The

photogenerated

(3)

and t h e r e m a i n i n g

radical

cation.

and s o l v a t e d

electron-hole holes

Deprotonation

species

pair

oxidize should

(step

a r e shown 2) r e d u c e s

the adsorbed be f a s t

without

ether

water

an to

index. hydrogen

(1,5) t o t h e

due t o t h e h i g h

hydration

energy (8,9) fact

of

the

and/or that

amounts (3,5) both

proton fully

the

to

hydrogen

solvated

to

the

be

strongly

and N^O

conduction

band

electrons

nary

concentration.

second

hole,

inhibition

of

or

preventing

occurs

at

(10,11)

the

as

formation

the

This

surface

dimerize the

final

in

induce

site

A

by

the

more

scavenger

may

are

no

in

The equal

transfer

inhibition of

efficient

further

adsorbed

electron

presence

should

the

formed

the

of

electron

removal

of

increase

the

RH *

+

or

R'

possibility

is

that

oxidation

where

in

products.

Interfacial

indicated

dimerization.

a

to

c h l o r i d e . The

by

may

dehydrodimers

coupled

zinc

R"

possibility.

dehydrodimer

like

radical

state

latter

scavengers

hole

The

diastereomers

points

seems

(6,7).

ether

of

species

is

statioby

a the

adsorbed.

References Bucheler

J,

genen Fox

Zeug

(1983)

Sensitized A,

of

zinc

2:

223

Organic by

Cyclic

II

1985:

C-C

N,

Angew.Chem.

/1972)

for

Katalysator

94:

Studies

luminescent

Chemical

Acc.Chem.Res. on

a

der

hetero-

792

Photocatalysis:

Semiconductors.

CV

als

new

16:

method

phosphors.

of

Conversions 314

-

321

preparation

J.Appl.Electrochem.

229 Azuma

T,

1487

on

Midori

Part

Ethers -

Bucheler

Bonds

Zinksulfid

Heterogeneous

useful

Photocatalysis. of

(1982) Wasser.

Irradiated

sulfide

S,

H

von

Suryanarayana

-

Yanagida

Zeug

Kisch

Photoreduktion

MA

Kurian

N,

4.

Pac

Hydrogen

Catalyzed

by

Ch,

Sakurai

Evolution

Zinc

Sulfide.

H

and

(1985)

Semiconductor

Photoredox

Reactions

J . Chem.Soc.Perkin

Trans

1493 J,

Kisch

Illuminated

J.Am.Chem.Soc.

Y,

107:

1459

H

(1985) Zinc -1465

Catalytic

Sulfide

Formation

Generated

from

of

Hydrogen

Zinc

and

Dithiolenes.

INORGANIC PHOTOINITIATORS FOR PHOTOLITHOGRAPHIC

C.Kutal*

APPLICATIONS

a n d C.G.Wi11 s o n * *

* D e p a r t m e n t o f C h e m i s t r y , U n i v e r s i t y o f G e o r g i a , A t h e n s , GA 3 0 6 0 2 , USA **IBM A l m a d e n R e s e a r c h C e n t e r , 650 H a r r y R d . , San J o s e , CA 9 5 1 2 0 , USA

INTRODUCTION Photolithography i s used e x t e n s i v e l y i n t h e m i c r o e l e c t r o n i c s i n d u s t r y to generate three-dimensional patterns i n a solid substrate such as single crystal silicon ( W i l l s o n 1 9 8 3 ; Bowden 1 9 8 4 ) . Figure 1 illustrates t h e sequence of steps that comprise the typical photolithographic process. The s u b s t r a t e initially i s coated with a thin layer of a photosensitive m a t e r i a l , termed a r e s i s t , and then exposed to light t h r o u g h a mask c o n t a i n i n g transparent and opaque a r e a s t h a t d e f i n e t h e d e s i r e d p a t t e r n . The t r a n s p a r e n t areas t r a n s m i t l i g h t which causes a photochemical r e a c t i o n i n t h e r e s i s t , t h e r e b y a f f o r d i n g a means o f d i f f e r e n t i a t i n g t h e e x p o s e d a n d u n e x p o s e d regions. P r e f e r e n t i a l d i s s o l u t i o n o f t h e unexposed resist in a suitable developing s o l v e n t , f o r example, creates a negative tone i m a g e o f t h e mask on t h e s u b s t r a t e s u r f a c e ( a p o s i t i v e tone image results i f t h e exposed resist dissolves preferentially i n the developer). This image, i n turn, c a n be t r a n s f e r r e d into the substrate v i a a chemical and/or p h y s i c a l e t c h i n g process i n which t h e a r e a s n o t p r o t e c t e d by t h e r e s i s t a r e a t t a c k e d by t h e e t c h a n t . The f i n a l s t e p i n v o l v e s s t r i p p i n g a w a y t h e r e s i s t t o y i e l d a n e g a t i v e tone r e l i e f image i n t h e s u b s t r a t e t h a t r e p l i c a t e s t h e p a t t e r n o f t h e mask.

Light

Develop

Expose

Strip

Figure

1. S e q u e n c e o f s t e p s

i n the photolithographic

process.

Resists composed o f a f u n c t i o n a l i z e d p o l y m e r and a photoinitiator have been a m a i n s t a y o f the p h o t o l i t h o g r a p h i c p r o c e s s f o r a number of years. The g e n e r a l i z e d response of t h i s type of system to l i g h t can be s u m m a r i z e d by e q . 1 and 2. Absorption o f a p h o t o n by the P I

Ji!L—

+ polymer

I

[1]

modified

polymer

[2]

photoinitiator P r e s u l t s in i t s conversion t o one o r more r e a c t i v e species I. Subsequent thermal r e a c t i o n of I w i t h the polymer causes the change i n s o l u b i l i t y or other p r o p e r t i e s that form the basis for d i s t i n g u i s h i n g b e t w e e n e x p o s e d and unexposed areas. Since the photoinitiator and the polymer serve different functions, i t is possible to optimize the p r o p e r t i e s of one without affecting the desirable features of the other. This inherent flexibility of a two-component system greatly simplifies the task of designing radiation-sensitive materials. The m a j o r i t y o f c o m m e r c i a l l y - i m p o r t a n t p h o t o i n i t i a t o r s are nonmetallic compounds which generate radicals and/or strong acids upon irradiation. The l a t t e r s p e c i e s p l a y the r o l e of I i n eq. 1 and 2 and react with the f u n c t i o n a l i z e d polymer via well-precedented radical or cationic pathways. Examples of commonly-used nonmetal initiators include benzoin and benzoin ethers, benzyl ketals, benzophenones p l u s h y d r o g e n atom d o n o r s , and "onium" s a l t s belonging to the a r y l d i a z o n i u m , t r i a r y l s u l f o n i u m , and diaryliodonium families (Gatechair 1983; Vesley 1986). In contrast, little information currently e x i s t s concerning the use of t r a n s i t i o n m e t a l complexes as photoinitiators for the reactions of f u n c t i o n a l i z e d polymers. This oversight i s surprising, since several classes of complexes a p p e a r t o be w e l l - s u i t e d f o r t h i s r o l e . Exemplary i n t h i s regard are the c l a s s i c a l acidopentamminecobalt ( I I I ) c o m p l e x e s , CoiNH^) t^X 2 where X i s C I , B r , I or o t h e r u n i n e g a t i v e group. In a d d i t i o n to their ease of s y n t h e s i s , these complexes resist decomposition by a i r , m o i s t u r e , and h e a t (>100°C), a b s o r b s t r o n g l y i n t h e ultraviolet spectral region, and undergo quantum efficient photodecomposition from a l i g a n d - t o - m e t a l (X t o Co) charge t r a n s f e r e x c i t e d s t a t e . As described by e q . 3> this i n t r a m o l e c u l a r redox r e a c t i o n i n aqueous solution generates the aquated cobalt(II) cation (a Lewis acid), +

}

Co(NH ) X 3

5

+ 2

— —

C

o

(

+

a

2

q )

+

5 N H

3

+

X

*

t h e X" r a d i c a l , a n d f i v e m o l e c u l e s o f a m m o n i a ( a L e w i s b a s e ) ( B a l z a n i 1970; Endicott 1975). One or more o f these chemically distinct species could play the r o l e of I i n eq. 2 and initiate useful chemistry i n a f u n c t i o n a l i z e d polymer. To test this possibility, we selected [ C o ( N H 3 ) B r ] ( C I O 4 ) 2 as the p h o t o i n i t i a t o r owing to i t s s t r o n g a b s o r p t i o n i n the d e e p - u l t r a v i o l e t r e g i o n , w h i l e t h e c o m m e r c i a l l y - a v a i l a b l e r e s i n , COP ( F i g . 2), served as t h e f u n c t i o n a l i z e d p o l y m e r . The l a t t e r i s a c o p o l y m e r o f g l y c i d y l methacrylate and e t h y l a c r y l a t e w h i c h has f o u n d use as a negative electron-beam resist (Thompson 1974, 1975). The epoxide group s i t u a t e d on t h e g l y c i d y l s i d e c h a i n i s s u s c e p t i b l e t o r i n g opening b o t h by a c i d i c a n d basic reagents and thus i s a l o g i c a l site for crosslink formation (Lee 1967). As d i s c u s s e d i n the next s e c t i o n , the COP-[Co(NH3) Br](0104)2 system proved to be of considerable i n t e r e s t as a p h o t o r e s i s t . 5

5

r

f ir H

i

-j-CH — C — H C H — C 2

0

cr

o

0

'

N

n/m

»

0.74

o

CH2

CH2

Mn = 0.6x

10

(by

gpc)

H

Figure

2.

S t r u c t u r e and

R E S U L T S AND

properties

o f COP

sample used

in this

study.

DISCUSSION

W h i l e r e s i s t s o f v a r y i n g c o m p o s i t i o n have been i n v e s t i g a t e d (Kutal 1987), t h e r e s u l t s summarized h e r e r e f e r s p e c i f i c a l l y t o a f o r m u l a t i o n c o n t a i n i n g 9 wt % o f COP a n d 1 wt % o f [Co (NH3) B r ] ( C I O 4 ) dissolved in a 1:3 (v:v) solvent mixture of N-methyl-2-pyrrolidinone/ chlorobenzene. F o l l o w i n g f i l t r a t i o n t h r o u g h a 0.2 ym f i l t e r , this solution was s p i n - c o a t e d onto q u a r t z and silicon wafers and the solvent removed by heating at 62° C for minutes. Films of COP-[Co(NH3)5Br](CIO4)2 prepared by this procedure were 0.5 pm t h i c k a n d , when e x a m i n e d u n d e r a m i c r o s c o p e a t 1500x m a g n i f i c a t i o n , showed no e v i d e n c e o f a g g r e g a t i o n o f t h e c o b a l t s a l t . The e l e c t r o n i c a b s o r p t i o n spectrum o f a f i l m a b o v e 250 nm i s e s s e n t i a l l y t h a t o f Co ( N H j ) ^Br" "^ ^ s i n c e COP a b s o r b s v e r y w e a k l y i n t h i s w a v e l e n g t h r e g i o n . E x p o s i n g a f i l m t o 25^ nm r a d i a t i o n c a u s e s a b l e a c h i n g o f t h e i n t e n s e Br-to-Co c h a r g e t r a n s f e r a b s o r p t i o n band ( X a x 58 nm) i n the complex. This behavior i s consistent with the occurrence of a photoredox process which, in analogy to the aqueous solution photochemistry of the complex (eq. 3), generates one or more weakly-absorbing cobalt(II) species. While a detailed characterization of the photoproducts has yet t o be undertaken, we w o u l d e x p e c t t h e r e d u c e d m e t a l t o r e m a i n c o o r d i n a t e d t o a n u m b e r o f ammonia m o l e c u l e s s i n c e s u c h c o m p l e x e s a r e known t o p e r s i s t i n t h e s o l i d s t a t e a t room t e m p e r a t u r e (Wendlandt 1967). Dissociation of a m m o n i a may o c c u r , however, e s p e c i a l l y when t h e p o l y m e r film i s heated. 5

2

1

=

2

m

2

A f i l m e x p o s e d t o >60 m J / c m o f 25^ nm r a d i a t i o n d i s s o l v e s c o m p l e t e l y away f r o m t h e u n d e r l y i n g w a f e r u p o n b e i n g s p r a y e d f o r 15 seconds with a 5:3 mixture of 2-butanone/ethanol. In contrast, heating a comparably irradiated film a t 68°C f o r 6.5 minutes renders i t insoluble in this solution. S i n c e h e a t i n g , by itself, does not cause insolubilization, i t appears that one or more of the photodecomposition products of [Co(NH3) Br](CIO4)2 react(s) with COP in a thermally-activated process which c r o s s l i n k s - the epoxy resin. Experiments designed to elucidate the mechanism of c r o s s l i n k i n g s u g g e s t t h a t one o r p e r h a p s b o t h o f t h e f o l l o w i n g paths ( F i g . 3) p l a y ( s ) a n i m p o r t a n t r o l e : ( i ) r e a c t i o n o f t h e b a s i c ammonia 5

molecule with pendant epoxide groups on adjacent polymer chains, ( i l ) c o o r d i n a t i o n of a c a t i o n i c cobalt species to the oxygen atom of an epoxide r i n g followed by n u c l e o p h i l i c attack of a second epoxide.

Figure 3. Mechanisms f o r the c r o s s l i n k i n g of COP: ( i i ) cation i n i t i a t e d .

( i ) base i n i t i a t e d ,

Dose-response measurements on C0P-[Co(NH3) ^Br ] (CIO4) 2 f i l m s r e v e a l that 20-25 mJ/cm of 254 nm r a d i a t i o n i s sufficient to cause detectable g e l formation, while one-half of the ultimate film thickness can be achieved with 35~40 mJ/cm . Figure 4 d i s p l a y s the l i n e - s p a c e p a t t e r n obtained upon exposing a f i l m i n contact with a chrome mask to a 40 mJ/cm dose, baking a t 68° C f o r 6.5 minutes, and then developing with 2-butanone/ethanol. Despite some s w e l l i n g of the negative tone images by the developer, 1-2 micron r e s o l u t i o n can be obtained. 2

2

2

Films of pure COP are i n s e n s i t i v e to 254 nm r a d i a t i o n s i n c e , as noted earlier, the r e s i n e x h i b i t s n e g l i g i b l e absorption a t t h i s wavelength. Photochemistry does occur upon prolonged irradiation at shorter wavelengths, but quite i n t e r e s t i n g l y , i t results i n degradation of the polymer chains. Consequently, upon development, the exposed areas of the f i l m d i s s o l v e away. Thus, quite apart from extending the e f f e c t i v e p h o t o s e n s i t i v i t y of the system to a convenient wavelength, the i n c o r p o r a t i o n of [ C o ( N H 3 ) ^ B r ] ( C I O 4 ) 2 i n t o a f i l m of COP changes the b a s i c response of the m a t e r i a l from p o s i t i v e tone to negative tone. Moreover, the a b i l i t y to image a COP-[.C6(NH3)5Br](C10i|)2 f i l m with both photons and e l e c t r o n s ( r e c a l l that COP, i t s e l f , i s a s e n s i t i v e e-beam r e s i s t ) o f f e r s the prospect

of "hybrid" lithography (Imamura 1984) whereby relatively large p a t t e r n s a r e f i r s t p r i n t e d w i t h uv l i g h t a n d t h e n v e r y f i n e p a t t e r n s a r e d e l i n e a t e d w i t h a f o c u s e d e l e c t r o n beam. The interesting chemical and lithographic properties of the C0P-[Co(NH3)^Br](CIO4)2 system provide a promising indication that new classes of radiation sensitive materials can r e s u l t from the proper combination of an inorganic initiator and a functionalized polymer. The design of such m a t e r i a l s , t h e i r fundamental chemistry, and t h e i r p o t e n t i a l a p p l i c a t i o n are t o p i c s t h a t we are continuing to pursue.

REFERENCES Balzani V, Carassiti V compounds. Academic P r e s s ,

(1970) Photochemistry L o n d o n New York, p 193

of

coordination

B o w d e n MJ (1984) A p e r s p e c t i v e on resist m a t e r i a l s *for fine-line lithography. In: Thompson LF, Willson CG, Frechet JMJ (eds) Materials for microlithography. American Chemical Society, W a s h i n g t o n , D.C., p 39 Endicott JF (1975) Charge-transfer photochemistry. Fleischauer PD (eds) Concepts of inorganic W i l e y - I n t e r s c i e n c e , New York London, p 8 l

I n : Adamson AW, photochemistry.

Gatechair LR, Wostratzky D (1983) P h o t o i n i t i a t o r s : an mechanisms and a p p l i c a t i o n s . J R a d i a t C u r i n g 10:4-18 I m a m u r a S, T a m a m u r a methacrylate) as 391-400

T, K o g u r e 0 ( 1 9 8 4 ) electron beam and

overview

of

Chloromethylated poly(napthyl photoresist. Polymer J 16:

Kutal C, Willson CG (1987) P h o t o i n i t i a t e d c r o s s l i n k i n g and formation in thin polymer films containing a transition compound. J E l e c t r o c h e m Soc i n p r e s s

image metal

L e e H, York,

Neville Chap 5

K

(1967)

Handbook

o f epoxy

T h o m p s o n L F , F e i t E D , H e i d e n r e i c h RD ( 1 9 7 4 ) chemistry o f epoxy containing negative

resins.

McGraw-Hill,

New

Lithography and r a d i a t i o n electron resists. Polym

E n g S c i 1 4 : 529~533 Thompson LF, Ballantyne JP, Feit ED (1975) Molecular parameters and l i t h o g r a p h i c p e r f o r m a n c e o f p o l y ( g l y c i d y l m e t h a c r y l a t e - c o - e t h y l acrylate): a negative electron resist. J Vac S c i Technol 12:

1280-1283

V e s l e y GF (1986) M e c h a n i s m s J R a d i a t C u r i n g 13:4-10 Wendlandt WW, transition-metal

of the photodecomposition

Smith JP (1967) The ammine c o m p l e x e s . E l s e v i e r ,

thermal New Y o r k ,

of

initiators.

properties Chap 4

of

Willson CG (1983) Organic resist m a t e r i a l s - t h e o r y and chemistry. In: Thompson LF, Willson CG, B o w d e n M J (eds) Introduction to microlithography. American Chemical Society, Washington, D.C., p 88

PHOTOCHEMICAL BEHAVIOUR OF

R.Reisfeld*,

LUMINESCENT DYES IN SOL-GEL AND

M.Eyal*, R.Gvishi*,

and

BORIC ACID GLASSES

C.K.J0rgensen**

* D e p a r t m e n t o f I n o r g a n i c C h e m i s t r y , Hebrew U n i v e r s i t y , J e r u s a l e m , ISRAEL * * S e c t i o n ' de C h i m i e , U n i v e r s i t e de G e n e v e , 1211 Geneva 4, SWITZERLAND

Fluorescence of

the

the

of

organic

surrounding

excited state,and

unsymmetrical

vibrational

the

is

much m o r e e f f e c t i v e

macroscopic

are

dyes

here

like

studying

various

cases,their strong is

and

H

with

pH

*

F

r

o

m

t

1,but

process"

triplet

of

first

the

e

point 4 36

triplet from

nm

excitation

spectroscopic

the

luminescence

energy i s the

absorption

bands at

stationary

concentration

states.

650

category

(Martin

of

xanthene

other

to

CH^)

process"

d i f f e r e n c e 3 0 0 0 cm

of

the

(in strong

and

505

nm

due

of

the

lowest

triplet

by

two

at

"beta

increasing

since

state

to

agreeing

i l l u m i n a t i o n ) of

to

of

exceptionally

energy

transitions

acid

energy.

.Another complication

appearance

close

decay

3 seconds

fluorescence"

activation

by

below,the

at higher

long-lived triplet

1

formed

slow

state,enhanced

"delayed

to

very

t o aqueous

a very

emission

"alpha

Arrhenius

two

their

discussed

a l . (1941) d i s t i n g u i s h

the

of

1975).

r e a c h i n g xy-9-phenyl-fluoron

large

should

i n 7 solvents

tion

plays

shifts

t o 6.9 i n t h e e x c i t e d

t o 4 3 1 nm i n 7.4 m o l a r p e r c h l o r i c a c i d

maximum o c c u r s

t o many

o f h e t e r o c y c l i c compounds s t u d i e d by F o r s t e r ,

p K = 6.7 o n l y

state.The molar

i s p r e v a i l i n g f o r a l l pH a b o v e 8 . C o n t r a r y

singlet states

third

C->"N-*A->D i n w a t e r

1 9 5 8 ; L e o n h a r d t e t a l . 1 9 7 1 ) a r e 2 . 2 , 4.4 a n d 6.7.

Hence,the d i - a n i o n excited

f o r thedeprotonation

£ has

3

life-time

than a percent

i s 4.5 ms i n

of thevalue

f o rboric

a n d H u g 1 9 8 6 ) . C o r r e s p o n d i n g l y , V| = 0.31

(N) a n d 0 . 9 3 f o r t h e d i - a n i o n

(D) ( W e b e r a n d T e a l e

Y j = 0.23 a t pH = 1 ( c a t i o n C) s h o w i n g

4 3 7 nm, Yj = 0.92 a t pH = 6 i n w a t e r

theabsorption

(mixture

f o r 1958).

maximum

o f A a n d D,479

nm)and

Y| = 0.92 a t p H = 13 ( D , 4 9 0 nm) . Heat-sensitive

colorants

c a n be i n c o r p o r a t e d

al.

1983) a n d i n g e l g l a s s e s

for

instance,the

rhodamine

silica

i nVycor glass

(Mack e t

( R e i s f e l d 1984;Levy e t a l . 1984) w h e r e ,

cage m o d i f i e s

6 G and s t r o n g l y enhances

the spectra

of

trapped

i t s p h o t o s t a b i l i t y (Avnir e t a l .

1 984 ).Recently,we have incorporated fluorescein derivatives (in methanolic solution) in a glass prepared by controlled hydrolysis of Si(OCH ) at 60°C for 48 hours.The glasses obtained are of good optical quality,transparent above 340 nm,and of densities 1.15 to 1.2 g/ml (Reisfeld et a l . 1987).Also thin sol-gel glass films prepared by the method of Avnir,Kaufman and Reisfeld (1985) show r] = 0.9 after light absorption in a maximum at 455 nm.If heated to 200°C,the absorption shifts to 490 nm,resembling the effect of deprotonation.Fluorescein substituted by two mercury acetate groups,flu(MA)in the scheme above, shows rapid transformation of the f i r s t excited singlet to the lowest t r i p l e t state,as a typical r e l a t i v i s t i c "heavy-atom" effect.The timeevolution of the emissibn spectrum of flu(MA) in boric acid glass is roughly invariant intensity of the 570 nm emission for a few m i l l i s e conds , followed by a slow decay (at room temperature) with T=2.8 :t0 .5 seconds,the T v a l u e Lewis et al.(1941) found for 570 nm emission of fluorescein in boric acid glass at 60 K,to be compared with about 1 s at 300 K.These measurements are rendered d i f f i c u l t by the photochemical dissociation of the two "HAgroups.Nevertheless,the observed 490 nm emission from flu(MA) has less than a-quarter of the intensity at 570 nm after at least 0.01 s has elapsed since the illumination stopped. 3

4

The luminescence of fluorescein in glasses prepared at moderate temperatures may have several applications.lt seems rather probable that flat-plate luminescent solar concentrators (transporting emitted light by a series of total reflections out to a rim covered with a photovoltaic material) are only a competitive alternative to flat-plate silicon coverage,if combined with some organic materials (Reisfeld and J$6rgensen 1 982 ; Reisfeld et a l . 1 983;Neuroth and Haspel 1 986).Lasers involving 4f and 3d group ions may also be combined with thin films containing organic luminophores (Reisfeld 1983 and 1985).Fluoresceindoped boric acid glass shows non-linear optical properties applicable to phase conjugation devices (Kramer et a l . 1986).

Acknowledgements: This work was supported by the National Council of Research and Development,Israel.

Avnir

D,Levy D , R e i s f e l d

R

(1984) J.Phys.Chem.

A v n i r D,Kaufman V R , R e i s f e l d Carmichael organic

T,Hug G L

R

(1985)

Jablonski

A

(1935)

J

Mfl-l-O-Mn-1 I

I

0

0

+ 2 H

+

The complex ( b p y ) 2 ( H 2 0 ) R u I - 0 - R u ( H 0 ) ( b p y ) 2 II

III

2

4+

was recently studied in detail by

Gilbert et. al. (1985) and found to be a precursor to a water oxidation catalyst, indeed. Unfortunately, this compound has a low turnover number. We found that by using the 2,2-bipyridyl-5,5-dicarboxylic acid ligand ( H 2 U

instead of

2,2 -bipyridine (bpy), a more efficient water oxidation catalyst is obtained.

1 Invited professor, on leave of absence from: a) The Chemical Research and Development Center of the United States Army, Edgewood, Maryland 21010. b) The Department of Chemistry, Oregon Graduate Center, Beaverton, Oregon 97006.

SYNTHESIS AND CHARACTERIZATION Attempts to prepare the (HL)2Ru(H20)2 (HL: monodeprotonated H2L

ligand) directly

from "RUCI33 H2O" and the ligand failed, presumably because the desired product polymerizes via displacement of coordinated water by carboxylate. ( H L ) 2 R u ^ ( H 2 0 ) 2 in x

0.5 M H2SO4 (1 < x ^ 2) was prepared as follows:

"RuCl • 3 H 0 " 3

2

L'ltOH -» RUL2CI2• H2O

(L : 2,2'-bipyridyl-5,5-dicarboxylic acid diethyl ester) 1

NEt

3

RuL 2CI2 • H2O

R u ( H L ) C l 2 • 2,5 H2O 2

2

H 0/Et0H 2

+

Ag R u ( H L ) C l - 2 . 5 H2O -> (H L)2RuII(H 0)2 05MH S0 2

2

2

x

2

2

4

( H L ) 2 R u ( H 2 0 ) 2 forms R ^ ^ L ^ S O ^ 4 H2O on standing in 0.5 M H S 0 n

x

2

4

for a couple

of weeks. The IR spectrum shows that sulfate acts as a bidentate chelating ligand. From this behavior and the CV (exhibiting E j / = 0 7 8 V for the diaqua complex and a small 2

wave at E j / - 0.61 V for the sulfato complex) we conclude that sulfato complexes must 2

also exist in solution. Electrolysis of ( H L ) 2 R u ( H 2 0 ) 2 n

x

at

1.1

V (SCE)

produced the corresponding

Ru

1 1 1

complex which then was dimerized by heating to 40°C and keeping the potential at 1.1 V. The primarily formed dimers are presumably sulfato complexes exhibiting E j / - 0.68 2

and 0.87 V. The sulfato dimers were subsequently reduced at 0.65 V which lead to the diaqua complex ( H L ) ( H 0 ) R u x

the corresponding R u

2

I i r

2

-Ru

I I I

-0-Ru

I I I

(H 0)(H D x

2

which is oxidized reversibly to

2

dimer at 0.98 V. This complex slowly oxidizes water to

I V

molecular oxygen. The sulfato complexes of the R u ' ^ - R u ^ dimer are reformed, if the solution is again electrolyzed at 1.1 V. The thus obtained R u ^ - R u * 1

1

and R u ^ - R u '

UV-vis spectroscopy. The former complex M^cm"

1

whereas the latter has *

m

a

x

v

dimers were further characterized by

exhibits X

m

a

x

at 654

at 500 nm with e -

nm with e -

18000

17000 M ' ^ c m " . These 1

maximas are red-shifted compared to those of the corresponding bpy analogs (Gilbert et. al. 1985). The Raman spectra of the R u ^ - R u * ' * and R u ^ ^ - R u ' ^ dimers show v

s

at 375 and 381

c r n ^ , respectively. These vibrations are resonance enhanced and typical to v ( M - 0 - M ) g

(Plowman et. al 1984, Burke et. al. 1978, San Filippo et. al. 1976 and Campbell et. al. 1980). Further evidence for the proposed structures and oxidation states were obtained

from chemical reductions of ( H L ) 2 ( H 0 ) R u - 0 - R u ( O H ) ( H L ) x

U A

2

i V

x

with ascorbic acid.

2

Addition of one equivalent of reductant to the R u * ^ - R u * dimer lead to the R u ' ^ - R u v

dimer which was converted to two moles of ( H D R u ( H 0 ) x

equivalent.of reductant. At pH * 3 the R u

-Ru

n i

n

2

2

2

1 1 1

upon addition of two

dimer precipitates after addition of

n i

acetone. The solid analyzes as Ba[(HL)(L)(H 0)Ru -0-Ru (H 0)(L)(HL)]-13 H 0 . III

2

The trans isomers of the ( b p y ) R u 2

I I / i n

(H 0) 2

2

2 + /

III

3

2

2

complexes are thermodynamically

+

unstable, but they can be generated by irradiation of the corresponding cis (Durham et. al 1980). Since our preparations have been carried out in the monomers are expected to be present in the cis configuration. Dimerization complex, however, can still lead to two isomers, the racemate and the meso

complexes dark, the of the cis form. The

crystal

is

structure of

[(bpy) (H 0)Ru -0-Ru (H 0)(bpy) KC10 ) -2 2

III

2

III

2

2

4

4

H 0 2

known

(Gilbert et. al. 1985). and this compound is racemic. The solution of ( H D ( H 0 ) R u x

2

2

I I I

-0-Ru

I I I

(H 0)(H L) 2

x

in 0.5 M H S 0

2

2

4

prepared by the

procedure described above exhibits, in addition to the prominent wave at 0.98 V, an additional small wave at * 0.9 V (SCE) in the CV. We assume that the wave at ~ 0.9 V is due to small amounts of another isomer (eventually the meso form). Also, the isomer produced in large amounts is less soluble in acetone/H 0 at pH * 3. 2

PROPOSED WATER OXIDATION MECHANISMS a) Mechanism proposed by Gilbert et. al. (1985): Based on CV using a glassy carbon electrode Gilbert et. al. (1.985) postulate a three electron

oxidation

of

the

(bpy) (H 0)Ru -0-Ru (H 0)(bpy) 2

i n

2

n i

2

2

complex

to

the

corresponding R u ^ - O - R u ^ dimer which restores the R u I H - 0 - R u W dimer by reductive elimination of molecular oxygen. We assume that this mechanism is not established, because we were unable to obtain the three electron wave using In doped S n 0 electrode. 2

(bpy)2RuIH-0-Ru (bpy)2 m

I

I

0H2

OH2

«

» ±e,±H

(bpy) RuIII-0-RuIV(bpy) 2

|

+

OH

(bpy) RuV-0-RuV(bpy) 2

2

| 2

OH

2

b) Alternative Mechanism: Only the ( H L ) 2 ( H 2 0 ) R u - 0 - R u H ( H 2 0 ) ( H L ) 2 complex and the corresponding R u 1II

I

x

x

n i

-0-

R u ^ dimer can be observed by UV-vis spectroscopy and CV. Therefore, we propose that 1

formation of the R u ! V - 0 - R u

dimer is slow and/or thermodynamically unfavorable, but

I V

this presumably very reactive species forms a n-oxo, ^.-peroxo complex which would quickly form molecular oxygen upon oxidation and reform the R u ' ^ - O - R u ^ ' dimer.

(H L) Runi-0-Runi(H L)2 x

2

x

I

I

OH2

OH2

i

> ±e,±H

(H L) Ruin-0-RuIV(H L)2 x

2

+

x

|

|

OH2

OH

-2e ±e, ± H

^2H20

slow and/or

+

unfavorable

-02

m

(H L) Runi-0-Ru (H L)2 x

2

x

(H L) RuIV-0-R IV(H L)2

+•

x

2

U

x

-2H+ OH

0-

OH

2

(O2 -)

REFERENCES Burke J J, Kincaid J R, Spiro T G (1978) J A m Chem Soc 100: 6077. Campbell J R, Clark R J H (1980) J Chem Soc Faraday Trans II 76: 1103. Durham B, Wilson S R, Hodgson D J, Meyer T J (1980) J A m Chem Soc 102: 600. Gilbert J A, Eggleston D S, M u r p h y W R, Geselowitz D A, Gersten S W, Hodgson D J, Meyer T J (1985) J A m Chem Soc 107:3855. Plowman J E, Loehr T M, Schauer C K, Anderson 0 P (1984) Inorg Chem 23: 3553. San Filippo J Jr, Grayson R L, Sniadock H T (1976) Inorg Chem 15: 1103.

THE A P P L I C A T I O N OF D I F F U S E R E F L E C T A N C E L A S E R F L A S H METAL P H T H A L O C Y A N I N E S IN AN OPAQUE ENVIRONMENT

F.Wilkinson

and

Department

PHOTOLYSIS

TO

C.J.Willsher

of Chemistry,

University

o f Technology, Loughborough,

LE11

3TU,

UK

S i n c e i t s i n i t i a l d i s c o v e r y , t h e e l e g a n t t e c h n i q u e o f f l a s h p h o t o l y s i s has been c o n t i n u a l l y r e f i n e d for A

i n response to developments

i n the instrumentation

capturing very f a s t s i g n a l s and i n the shortening of the e x c i t a t i o n pulse. recent

development

has

been our

work

to

extend

flash

opaque and h i g h l y - s c a t t e r i n g s u b s t a n c e s ; f o r such samples

photolysis

to

the t r a n s i e n t

s p e c i e s generated by an e x c i t i n g pulse i s interrogated by means of monitoring light f

which

has been d i f f u s e l y r e f l e c t e d

D i f f u s e Reflectance F l a s h P h o t o l y s i s

from

the t r i p l e t

1

from t h e sample.

We

(DRFP) t o d e t e c t t r a n s i e n t

have used absorption

s t a t e o f a number of chromophores i n a wide v a r i e t y of

d i f f e r e n t opaque environments, such as h y d r o c a r b o n s adsorbed on ^ - a l u m i n a , (Kessler,

W i l k i n s o n , 1981)

ketones i n m i c r o c r y s t a l l i n e form

(Wilkinson,

W i l l s h e r , 1984) and i n t e r c a l a t e d i n t h e c h a n n e l s of t h e s y n t h e t i c 'silicalite'

zeolite

(Wilkinson, W i l l s h e r , Casal, Johnston, Scaiano, 1986), and i n the

d y e s t u f f Rose Bengal c h e m i c a l l y attached t o a polymer

substrate

(Wilkinson,

W i l l s h e r , P r i t c h a r d , 1984). We have a l s o shown t h a t p u l s e r a d i o l y s i s can be c a r r i e d o u t on opaque s u b s t a n c e s by u s i n g t h e d i f f u s e r e f l e c t i o n f r o m t h e sample

to

monitor

transients

formed

by

ionising

radiation

(Wilkinson,

W i l l s h e r , Warwick, Land, Rushton, 1984), and r e c e n t l y we have extended DRFP to f o l l o w p r o c e s s e s i n i t i a t e d by a p i c o s e c o n d e x c i t a t i o n s o u r c e ( W i l k i n s o n , W i l l s h e r , L e i c e s t e r , Barr, Smith, 1986).

Aluminium Sulphonated Phthalocyanine (ALPCS)

o I-H -a