polymer brush - Journal de Physique II

0 downloads 0 Views 777KB Size Report
Self-Consistent. Field(SCF) theory for grafted polymer layers are compared in detail with the recent. Monte. Carlo simulations using the bond- fluctuation model.
Phys.

J.

II

France

2

(1992)

547-560

1992,

MARCH

PAGE

547

Classification

Physics

Abstracts

36.20

61A0K

Carlo Monte of a polymer Pik-Yin

and E. B.

Physik,

fir

self-consi§tent

theory

field

brush

Lai

Institut

of the

test

Zhul1~la

Universit£t-Mainz,

Johannes-Gutenberg

Postfach

3980,

Mainz,

D-6500

Germany

(RecHved

August 1991, accepted

29

in

final

form 8

1991)

November

Field(SCF) theory for grafted analytic predictions from the Self-Consistent detail with Monte Carlo compared in the simulations using the bondrecent are Quantities describing the equilibrium fluctuation model. of the brush derived structure are Carlo data with no free In most from the SCF theory and compared with the Monte parameter. predictions. Causes for discrepancies the results in agreement with the SCF also cases are are The

Abstract

polymer layers

discussed.

Introduction.

1

understandBecause of their wide applications in polymer technology and their importance in ing the fundamental problems of polymeric materials, grafted polymer layers 11, 2] have been subject of recent interest both theoretically [3 24] and experirnentauy [25 33]. Theoretia cally, analytic Field (SCF) theory [7,10 11,14] gives a very detailed solution Self-Consistent properties of the polymer brush while experiments usually can of the equilibrium structural only provide more global information like the thickness, concentration profile and the force profile between two interacting brushes. On the other hand, detailed information like the polybe chain fluctuations conveniently obtained in simulation trajectory, etc. computer can a mer and compared with the SCF theory. Furthermore, in a simulation the system is precisely chartheories

simulation

results

analytic SCF predictions

the

chains be

used in the

Carlo(MC)

Monte

recent

with

approximations

and

acterised

the

[35

38]

was

used

in the

in

simulations.

by the MC simulations are listed stretching and binary interactions

tested

chain

detail.

(*) Academy

Alexander of

von

Science,

Humboldt

Fellow.

Leningrad

199004,

or

In

this

paper,

In the derived

shall

we

[34] of the polymer brush in bond-fluctuation The model of

between

Permanent U-S-S-R-

avoided.

are

a

address:

The Institute

excluded

volume

ofmacromolecular

solvent

macromolecular

next section, all the predictions using analytic SCF theory with monomers.

compare

good

that

will

Gaussian

parameter Compounds,

JOURNAL

548

the

for

MC

the

observed

idea

The

results

deviations

Analytic

2.

model

bond-fluctuation

Then

ies.

calculated

using

with

SCF

the

N°3

results

independent studpossible causes for the

other

from

predictions

and

SCF.

from

interactions

monomer

are

theory

SCF

of

then

II

discussed.

are

results

is

compared

PHYSIQUE

DE

polymer brushes represented by

for

be

can

the assumption that dependent potential U(z)

based

is a

monomer-

on

position potential

where

z

win volume determine the grafting surface. This monomer fraction #(z) which in turn gives rise to U(z). The equations determining #(z) thus have to stretched observation [12] that grafted chains are be solved self-consistently- One exploits the reduced which partition in the and the number of polymer chain configurations is greatly case minimizes the total free energy. Flucfunction is dominated by the chain configuration that and the is reduced chain be neglected problem path can tuations about this minimal to a one ill- The mechanics problem and U(z) is found to be parabolic [7,10 classical dimensional summarized below, the details of this theory can be analytic results of the SCF theory are

the

is

distance

found

in

from

references

the

[7] and

ill].

Monodispersed polymer chains surface with grafting density I/S of the free per

unit

volume),

then

has

one

are

in

(R()

where

is

the

average

binary

coefficient

of

interaction

square

2

end-to

hence

monomer,

coverage

concentration

the then a

=

the

a~/S,

volume

is

flat

impenetrable the density of

monomer

distance

iii]

of =

~~~

unperturbed,

an

vi~

where

v

is

Gaussian the

chain.

second

virial

obtains

one

profile

2

=

)U(z)

(2)

parabolic [7,10 polymer units, #(z)

also

is

of

=

ii]. If a~ is the volume of a a~$(z). Introducing surface

obtain

we

(R() /(Na~)

a

~ 8iiiN

~°~~~~~~

monomers,

fraction

~(~) where p = dimensional

"

end

I(z) and

to

f[$(z)] is per chain). If $(z) (number concentration

layer with

~~~~

"

between

interactions,

monomer

a

grafted

end

one

(S-area

ill]

~fjj( )j &I(( Assuming

with

monomers

considered

interactions

volume

energy

of N

is the

bond-fluctuation

stiffness model

~

~~~

~2/3(~~~~) 8pv 2 parameter

of

calculated

are

((~ chain.

a

in the

(~ )2j

(~)

h

The

of p and v for the three h is the brush height and

values

appendix,

given by h

The

chain,

"trajectory" is given by

of

the

=

grafted chain,

(~)l"ii'3N

which

is

position

the

(4) of

the

ith

monomer

along

the

[7] ~~

'

~~

~~

2N

~~~

N°3

TEST

MC

probability

The

OF

distribution

SCF

THE

of the free

THEORY

These the

major SCF SCF

above

Using (3), thickness,

predictions

results trivial

it is

will

obtain

to

first ~

j~j z-component

of the

of the

square

iRizi Using (5), (6) and

I,

N »

The

orientation

of the

ith

where

(£~)Q~ I, after

is the

bond

bond

is

some

+i

probability

Finally, the

Z

"

~

,2

between

j

relative

mean

~ ~

ith

one

constant

chains

of the

brush

is

defined

as

181

~~~

square

)j~P~~)2/3p/2

jgj

,2

by (cos R;) which

~~)i/~llz;I

defined

is

as

lz;-i)1

=

along

monomers

p;(z)

monomer,

(1°1

Using (5)

chain.

a

)

also be

can

32

@)PN(ZN)dZ~ displacement of

(h the

ith

sin

jj3 monomer

izii =

and

obtained

(h

can

sin

be

~~

)2

~~

measured

by

j~~j

_~

iz;i~

(11)

gets

)($)~ =

a

,2

~

CDS

)l'~~ is

5

=

iz;i~

which

~

successive

iAzii Using (5) and (6),

of the

~j~

ix ~~ z

use

(~)

~j(jij~l«~vp«)~'~

°;I

~

~"

measure

a

now

simulations.

obtains

of the

distribution

gyration

of

ljl'B l'~jjl

one

ICOS

The

is

We

MC

x2

8

characterised

length

algebra,

which

data.

in the

ij fiz; ( L z;i~i

+

~

ICOS R;)

N »

simulation measured

~(~l~v~jl/3p/

~

radius

j~2N jj~

gz

MC are

gets,

one

jj~2

iii (6)

#(z)

of

moment

8

The

549

$@~

other

the

BRUSH

"

compared with our quantities that

be

the

derive

to

POLYMER

given by [7,10

end is

PN(~)

OF A

independent

of

I, N and

a.

i

=

o.1528

1i4l

JOURNAL

550

3.

Monte

The

MC

model

data

from

in

N

taken

Here

data.

and

monomers

two

no

and

is

there

of

0.02.

2.71~

ci

allow

To

volume

excluded

the

coverage

N°3

take

a

2.

=

a

precise

parameter

v

details from

Thus

when

other

ranges For the

stiffness

a

than

a

@

that

SCF

the the

a

relevant

cubic results

good

in

lattice with solvent

bond length characterised by the in the simulations,

concentration p for

work can chain length

is

MC in

fluctuation

The

and is

to

and

simple

avoidance.

comparison parameter

in

comparing the polymer brush

of

range

0.2

model

sites

self-

from 2 to

bond simulation

to

of the

lattice

consider

[34]. The of the 0.025

features of 8

quantitative and

reference

some

cube

We

interaction

in The

ranged

a

site.

common

a

along a chain monomers the bond length, (£~)~/~

of

root-mean-square

studies

simulations.

briefly mention occupies a monomer

monomer-monomer

no

successive

between

(£~)~/~

one

MC

surface

share should

can

simulation

the these

will

we

Each

predictions,

SCF

in

[34]. The

reference

analysing the the

from

used

was

10 to 80.

=

II

results.

were

38]

[35

found

be

Carlo

PHYSIQUE

DE

theory, the 3-dimensional

values bond-

independently using the results from are can v 3-dimensional bond-fluctuation model as given in the appendix. other studies [37, 38] of the We get v ci 11.55 and p ci 2.7 ~ 0.2 and these values will be used in the subsequent analysis from the results of the present study by a of the data. The product up can also be obtained linear least fit of (z) as a function of Na~/~ as implied in equation (7). As shown in square figure I (upper part), the data do lie nicely on a straight line as predicted in (7). Linear least with the independent fit (dashed line) gives up ci 33 ~ 2 which is in good agreement square Appendix). estimate, ci 31.2 (see model

fluctuation

essential.

be

and p

obtained

50

~4

-

40

,'

,' ,'

30 ,,'

~, ,, 20

~

Q

~ ~

~gA~'

10

f, ~q~

~4

,

0

Fig.

First

I.

dashed

line is

Symbols:

The

Na~/~

a

=

brush in

set of data) (z) data. The solid line is the least square fit for a 0.025(o), o.05(n), o.075(6), o.lo(o), o.15(V)> o.20(*).

moment

of the

density profile (z) (upper the

thickness

figure

I

can

be

(lower part).

characterised The

data

SCF

by (R(z)Q~ whose MC fall

nicely

on

a

(R(z)~'~

and

straight

result

results line

Na~/~. vs.

from

The

equation (8).

plotted against verifying the scaling are

MC

N°3

behavior. line is

Smau calculated

TEST

systematic from

the

2

1. o

B m ,

cq

~

6

h4

~ 2

0.

0

~

OF

THE

deviations

SCF

results

SCF

THEORY

for low in

(9)

OF A

values which

of

show

POLYMER

Na~'~ almost

occur

BRUSH

as

perfect

expected. agreement.

551

The

solid

JOURNAL

552

be

can

h

estimated

from

(2.8~ 0.2)Na~/~

ci

theoretically

[2] to

decay

#(z) This is

#(h)

from

decay

a

#(h)

0 in

=

which is

figure

c
(40, o,05) (*), (30,o.1) (+), (30,o.05) (~). Fig. in

=

1. 5

f

I-D

>.

~

b

fi Q3

$ °

5

0. 0

2

.6

4

il(N

B

1.0

1.2

1)

projection (cos 9;) of the local orientation of bond connecting vector normalized position of the ith bond along the chain. Solid is the curve SCF result from equation (11). Symbols: (N, a) (80, 0.1) (o), (60, 0.2) (n), (60, o-1) (/£), (40,o.1) (o), (40,0,05) (V)> (30,0.2) (*), (30,0.1) (+), (30, 0.075) (~), (30, 0.05) (~). Fig.

7.

monomer

Scaring plot

I

-1

and I

of

vs,

the

the

=

556

JOURNAL

PHYSIQUE II

DE

N°3

25

»

20 cq

fi

~

~

h4 ~ -

*

~

V

~

O

15

-

~

c~pw

~

V

i

~

a

~

a

6

-

°

a

lo

o

a

~

o

o

05 0

2

4

.6

B

1.0

1.2

ilN

a)

25

o

20 m

~

~

f

-

~

o

~

~

15

Q

~__

'4

»

~

j

~

~

~

g

j

6

©

~

~

$

10

05 2

0

Fig. 8. a) Plot (14). Symbols: a chain

length

at

4.

Discussions

The

plausible

a

of =

=

.6

4

ilN

B

0

((bz;)~)/(z;)~ os, ilN with N 30. Solid curve is the 0.2(o), 0.15(n), o.10(/£), 0.075(o), o.05(V), 0.025(*). b) 20(o), 30(a), 40(/£), 60(o), 80(T7). Symbols: N o,05. =

1.2

b) SCF Same

result as

a)

from but

for

equation various

=

conclusion.

and

discrepancies

between the SCF theory and the MC results are (I) (it) correction to the Gaussian elastic flee energy due to the finite of the cllain and higher order terms in the equation of state [10,16,17]. (iii) fluctuations of a chain about the minimal path are important and (iv) corrections to the mean-field description due to strong spatial fluctuations in concentration. Since of our data showed the predicted scaling quite well and in many most the cases finite

chain

causes

length in extensibility

for

the

the

simulations

MC

N°3

TEST

discrepancies do discrepancies found smoothening of the

observed these be the

for

behavior

N

THE

here

of the

too

used

N

profiles).

Our

coverage

considered

of

range

to

length,

chain

short

BRUSH

POLYMER

OF A

increasing

with due

not

are

cutoff

THEORY

SCF

decrease

not

the

20 for

ci

OF

already

data

show

of

most

simulation(except

This

here.

that

believe

we

the

in

557

may

predicted scaling rapid approach to the the

previously in noted model has also been bond-fluctuation scaling regime for the other studies [37, 38]. Gaussian elastic free corrections references [10] and [16], As has been pointed out in to the a~/~ observable deviations h/(Na) Indeed there important is small. when not are energy ci are pN(z) much sharper, #(z) flatter and (cos 9;) shows chains for the a > 0,I (a~/~ > 0.46) data uniformly stretched) from the SCF theory. This correction to Gaussian stretching more are asymptotic

be

can

the

examined

in

nth-moments

#

using

detail

more

of

that

to

MC

our

Dn,

of pN,

data.

defined

It

been

has

shown

the

that

[10]

as

iz"i ~

depends only SCF

which

the

on

form

assumed

of the

elastic

elastic

Gaussian

free free

ji~j

izii

= "

but

energy

equation

the

not

gives Di

energy

of

ratio

"

2/x

of

state

and D2

0.6366

=

used. "

Analytic

1/2.

The

for Di and D2 are shown in figure 9 as a function as a a. increases, Di and D2 decrease slowly and deviations from the Gaussian stretching assumption become significant when a > 0.I as expected. The decrease of Dn with increasing a is expected I/(n + I) from a simple calculation. since at a I, one gets Dn interactions At larger the brush at the time is denser and higher order are coverage, same concentration important. The self-consistent potential is no longer proportional to the local that and the full form of the equation of state should be used [10,16,17]. However note we though the shape of the distribution functions differ appreciably from the SCF theory at higher coverage, their peak values are still quite close to the SCF predictions. As a result, first like (z) and the average trajectory (z;) are well described by the SCF results even moments

data

MC

of

=

to

up

a

mizes

indeed

is

very

in

most

that

=

analytic

the

is

indicate

data

0.2.

=

the

In

The

SCF

'action'.

the low

case.

and

cases

treatment, is

The

exception

valid

the

when

is of

one

chains

deviation

from

the

dominating stretched.

are

at

course

conformations

chain

numerous

strongest

the

assumes

one

This

the

end

to

prediction

where

the

partition

the is

that

mini-

part of the brush,

most

brush

of the

contributes SCF

configuration

chain For

observed

And

sum. near

this

concentration the

indeed

brush

end.

where discrepancies arising from this should disappear in the numerical SCF calculations considered. all possible chain configurations are Finally there is a correction to the mean-field picture which the interacassumes monomer mean-field tions can be represented by a background potential U(z). It is known [39] that such dilute where spatial density are model would fail for the very fluctuations of case monomer in most part of the brush is quite high and the interactions large. The concentration monomer represented slow-varying background is near be safely by potential. Again the exception can a The

the

brush

end

where

surprising

that

the

brush

end

since

concentration

agreement

(iii)

both

and

is low

and

analytic

with

the

(iv)

contribute

fluctuation

SCF

effects

prediction

corrections.

strong.

are

is

However

least we

Thus

satisfactory should point

it is near

out

not

the that

major picture of the SCF predictions. In view of the fact that no free parameter is used in fitting the results to the theory, and all the MC results be can described quite well by the theory (not only the scaling dependences but also the prefactors), find the analytic SCF theory gives a good description of the system. we found that the SCF theory gives an prediction for the detailed To conclude, we accurate of the polymer brush. The prediction is particular good over the entire structure coverage

all

these

deviations

do

not

alter

the

JOURNAL

558

PHYSIQUE

DE

II

N°3

a

4 Q

2

0.

0

cr

Fig.

Di (upper data) and D2 (lower data)

9.

dashed

fines

range

considered

observed

the

are

SCF

higher

for N

a

20(o), 30(n), 40(/£), 60(o), 80(T7).

=

free

elastic

The

energy.

deviations More prominent thickness and the average chain trajectory. fluctuations about end are probably due to strong chain configuration behavior. Other observable discrepancies and correction to the mean-field correction due to higher order in the equation of state and to terms are extension of the chain. free energy for the finite

coverages elastic

Gaussian

the

os,

Gaussian

brush

the most-likely path at

the

for the

the

near

using

results

Appendix. In this appendix, independent studies

lations

of

where

lI is the

neighbor The

hard

coefficients

50(

v(2)

=

well

by

model

and

B;'s

core

(good

and

pressure

data).

MC

the

calculate

are

I

solvent

exclusion,

Thus

using ci

the

11.55.

case)

fraction

is the

the

virial

parameters

of the

and p

v

using the model

values

their

value

82

=

13.504

"

of

occupied

the

MC

from simu-

3-dimensional

up

to

I

simple 7

=

can

3)l~131~ [40],

we

dual

cubic be

[38] for N shown that it it is 3, >

reference

lattice (a~i = 8i = # lattice gas with thirdreference [40]. obtained in

sites in the

of the

enumerated

~13) + IN

from

for

results

and

is [38]_

coefficients

v(N) have been exactly v(3)=73.9229. And for N ~lN)

to be

value

the

Bond-fluctuation equation of state [38] of the bulk polymer system [37]. The equation of state

concentrated

bond-fluctuation

in

we

of the

=

1,2,3 can

be

27, to give v(1) approximated quite =

lA2)

~12)1

obtain

the

second

virial

coefficient

v

N°3

TEST

MC

The

(with

estimation N up

THE

parameter

stiffness

of

THEORY

SCF

in

POLYMER

BRUSH

simulation results MC data for the most dense system taken. concentrated For such a

The

expect

data,

MC

these

estimated

we

p

ci

lRil

#

559

extensive

the

on

solution.

reference

lR~l From

based

p is

polymer

concentrated

OF A

[3'7] (corresponding to # = 0.5) were that the square of the end-to-end distances of chains, can one close to those in melt state in which Gaussian behavior is expected, I-e-

investigated system, very

of the

200) [37]

to

OF

(R~),

already

are

PNa~

=

lA3)

2.7 + 0.2.

Acknowledgements. This

grant

research no.

reading

the

One of

Foundation.

boldt

Bundesministerium fur Forschung und Technolgie (BMFT) (E.B.Z.) acknowledges Alexander Humsupport from the us von grateful to A. Halperin for discussions and K. Binder for a critical

supported by

is

03M4040.

We

are

manuscript.

of the

References

[1] Halperin A., [2] Miner S. T., [3] Alexander S., [4] de Gennes P. is] Cosgrove T.,

Tirrell

M.

Science

J. Phvs. G., C. R. Heath T.,

Lodge

and

(1991)

251

T.

(1977)

France

38

Hew.

Seances

Lent

van

P., Adv.

Polym.

Sci.

loo

(1991)

31.

905.

B.,

983.

Sci.

(1985) 839;

300

Leermakers

F.

Macromolecules13

Scheutjens J.,

and

(1980)

Macromolecules

lo69. 20

(1987)

5

(1988)

1692.

[6] Marques C., [7]

Miner

S.,

Joanny J. F. and Witten

T,

and

Leibler

Cates

M.,

L.,

21, (1988) 1051. 21, (1988) 2610; Europhys.

Macromolecules

Macromolecules

Lett.

413.

[8] Miner S., Europhvs. Lett. 7 (1988) 695. Macromolecules [9] Munch M. R. and Gast A. P.,

[10]

M., V. A., Polvm.

Skvortsov

[11] Zhulina

A.

E.

Polym. Birshtein

B., Sci.

T. M,

Gorbunov

U.S.S.R.

Sci. Borisov

O. V.

U.S.S.R. and

Al,

A.

31

Zhulina

30

and

Pavlushkov

(1988)

21

I.

1366.

Zhulina

E.

B.,

Borisov

O. V,

and

Priamitsyn

1706.

Prianutsyn

(1989) 205; Polvm. E.

(1988)

V.,

B., Polym. Sci.

V.

A., J. Sci.

U.S.S.R.

Interface

Colloid

U.S.S.R. 25

Sci.

137

(1990) 495;

(1984) 885; (1983) 2165. 26

[12] Semenov A. N., Soy. Phys. JEPT 61 (1985) 733. Macromolecules M, and Ho S. 22 (1989) 965. [13] Muthukumar Macromolecules 22 (1989) 853; [14] Miner S., Witten T. and Cates M., Macromolecules Miner S., Wang Z.-G. and Witten T., 22 (1989) 489. [15] Birshtein T. M., Liatskaya Yu V, and Zhufina E. B.,Polymer 31 (1990) 2185. [16] Shim D. F. K. and Cates M. E., J. Phvs. France 50 (1989) 3535. [17] Lai P.-Y, and Halperin A. Macromolecules, in press. submitted. [18] Marko J. F. and Witten T. A., Phvs. Rev. Lett. 66 (1991) 1541; Macromolecules, Macromolecules Alexander S., Europhvs. Lett. 6 (1988) 329; 22 (1989) 2403 [19] Halperin A. and 23 (1991). [20] Klushin L. I. and Skvortscv A. M., Macromolecules Macromolecules 22 (1989) 4054. [21] Murat M. and Grest G. S., [22] Murat M. and Grest G. S., Phvs. Rev. Lett., 63 (1989) 1074. Macromolecules A. and Toral R., 23 (1990) 2016. [23] Chakrabarti

JOURNAL

560

DE

PHYSIQUE

II

N°3

[24] Dickman R, and Hong D. C., preprint. [25] Cosgrove T., Crowly T. and Vincent B., in Adsorption &om Solutions, R. Otterwifl, C. and

A.

Smith

(Academic Press,

Eds.

J., tenon S., Toussaint Stability, ACS Symposium Ser.

[26] Edwards

A. 240

New York, and Vincent Americal

1982) B.

in

Chem.

Polymer Adsorption and Dispersion Sac., Washing, D-C. (1984).

G., Panel S., Granick S. and Tirrell M., J. Am. Chem. Sac. [27] Hadzioannou [28] Luckham .P. F, and Klein J., J. Colloid Interface Sci. 117 (1987) 149. [29] Ansarifar A. and Luckharn P. F., Polymer 29 (1988) 329. [30] Taunton H. J., Toprakcioglu C., Fetters L. J, and Klein J., Nature 332 molecules

23

(1990)

108

(1986)

(Adam Hilger, Bristol) to be published. Macromolecules I, and Kremer K., 21 (1988) 2819; J. Phvs. H.-P, and Binder K., J. Chem. Phvs. 94 (1991) 2294.

Polymer-Solid

[35] Carmesin [36] Deutsch [37] Paul W.,

Phvs.,

K.,

Binder

in

(1988) 712;

Heermann

D.

W,

and

Kremer

K.,

J.

Phys.

II

France

France1

Conference

51

(1990)

(1991) 37;

915.

J.

Chem.

press.

1979). W.

Macro-

Interfaces

[38] Deutsch H.-P. and Dickman R., J. Chem. Phvs. 93 (1990) 8983. [39] de Gennes P. G., Scaling Concept in Polymer Physics (Cornell University [40] Hoover

2869.

571.

Macromolecules 21 (1988) 3333. [31] Taunton H. J., Toprakcioglu C, and Klein J., [32] Auroy P., Auvray L, and Leger L., Phvs. Rev. Lett. 66 (1991) 719. [33] Klein J., Perahia D, and Warburg S., Nature, in press. International [34] Lai P.-Y. and Binder K. J. Chem. Phvs. accepted in Proceeding of the on

Rochester

287.

p.

G.,

Alder

B. J,

and

Ree F.

H., J.

Chem.

Phvs.

41

(1954)

3528.

Press,

Ithaca,

NY

Revue

livres

de

physique

Hydrodynamique GUYON,

E.

HULIN,

J.-P.

Collection

Savoirs

L.

PETIT

(InterEditions,

actuels

Editions

1991).

CNRS,

du

et

Fluides J.

dcoulement,

en

mdthodes

modkles

et

PADET

Enseignement

Collection Les

programmes

Commenqons (es

auteurs

par le affichent

de

Physique

la

propos£s par premier (GHP volont6

une

suite).

la

s'adresser

de

livres

deux

ces

dans

1990) 368 p.,

(Masson,

h des

prime

de

sont

Tout

en

abord

r£cusant

ne

physiciens,

180 F.

pas

plutbt

compl£mentaires.

l'influence

des

explicitement

faisant

m6caniciens,

r£f£rence

h

I'£cole

anglaise et h P. G. de Gennes qui, h ma l'honneur connaissance, mis h France le terme a en «Hydrodynamique Physique» dans collage de France milieu des ann£es70. II son cours au au logiquement par un chapitre sur la physique des fluides, d£crivant de faqon simple leurs commence propridt£s fondamentales, des propri£t6s macroscopiques, diffusion effets de surface, h et transport, leur microscopique. GHP abordent ensuite notion viscosit£, origine microscopique la de structure son (gaz et liquides), et les diff£rents r£gimes d'£coulement derri~re cylindre, prdtexte h la pr£sentation un du modble de Landau d'une bifurcation dl£mentaire puis, dans un trop bref paragraphe, de la transition h

turbulence.

la

A

part

une

allusion

autre

et

courte

une

annexe

sur

le

chaos,

ce

sera

tout

sur

la

large pan de l'hydrodynamique, bien pour lequel il faut avouer que les physiciens pourraient apporter plus dans le futur, aurait sans doute m£rit£ mieux. De toute faqon, dbs le chapitre 3, GHL rejoignent le g£n£rat des hydrodynamiciens, d£crivant le des fluides, courant mouvement cin£matique (C3), dynamique (C4), lois de conservation (C5), £coulements potentiels (C6), vorticit£ (C7). Les £coulements (foible nombre de Reynolds) et les couches limites laminaires font rampants « ensuite l'objet chacun d'un chapitre, le livre se terminant Etude sommaire des instabilit£s sur une hydrodynamiques et une Evocation des propri£t£s de l'h£lium superfluide. Le plan adopt£ dans le second livre (JP dans la suite) est int£ressant. d£matte classiquement Le livre l'hydrodynamique et leur les Equations de ddrivation (Cl), mais passe tout de suite h la notion de sur similitude (C2) et situe d'emblde le problbme majeur pos£ par la turbulence (C3) avant d'examiner les diff£rents d'£coulement int£ressent qui l'ing£nieur (typiquement, au voisinage d'une types extemes plaque), laminaires (C4) puis turbulents (C5), intemes (typiquement, dans conduite) niveau une au th£orique (C6) puis pratique (C7). A l'intersection des deux naturellement les Equations de l'hydrodynamique, trouve programmes, on turbulence.

Ce

»

mais sous

aussi un

les

dimensions

sans

situations

GHP II

est

comme

plus

de

Press, ici.

sun

la

A

de

une

dans

le

les

traitement deux

de la

livres

couche

limite

laminaire.

La

similitude

est

vue

GHP

l'inverse

(cf. le

Physical

Dynamics

(2nde ddition, » franqais » du livre de l'auteur anglais, les auteurs calcul analytique par ont du mat h remplacer un Naturellement, appr6cie explications (dynamique qh et16 les semi-qualitatives on solitaires...) mais mdme, l'argument rejoint trop vite l'approche de tout chapitre sur les £coulements potentiels). Enfin, si je me r£fbre h mes du notes

comparer

physique. suspensions, ondes

conventionnelle

et

pr£sente simplement (es diff£rents nombres d'application h des rapports de flux, tandis que JP donne plus de d6tails en vue L'analyse math£matique de la couche limite suit des lignes trds paralldles mais signification physique des approximations permettant de comprendre la structure

1988). On

analyse

des

similitude

vitesse.

tentant

Clarendon examin£

de

industrielles.

insiste

profil

du

notions

angle plutbt physique

GHP

constate

au

livre

alors

de

Tritton,

rapidement

le

«

caractdre

Fluid

finalement

trds

«

JOURNAL

562

de

de

cours

dean

Tout

h

Palais

de

r£f£rences illustrant

la

livre

de

dans

s6rie

Tritton,

de

films,

D£couverte

h

diff£rentes

certains

et

«

de

An

Par

leur

diverses de

contre, livre

elles

National of

plus

en

Committee

les

encore

auteurs

restent

JP, si

dans l'on

»

Fluid £dit6

Enfln «

Pour

de

tr~s

en

M.

Van

appr£ciera

de

nombreuses

Experiments in comp16ment d'une

Illustrated

«

Mechanics

par

on

excepte

explicafives,

figures

des

notamment

for

Motion

sources.

Walker pour

lh

que

tirdes

sont

Fluid

autres

J.

trouve

N° 3

II

ouvrage.

comporte,

Ici,

Album

rubriques

passages.

de

GHP

pddagogique. produit par le

»

1n6dit), je

rest£

titre

le

vocation

Mechanics

remarquable

inscrite

le

comme

illustrations Fluid

(malheureusement

Gennes

l'ambition

de

PHYSIQUE

DE

en

Dyke,

aussi

que

des GHP

documents

du

donnent

les

d£crivant exp6riences des humoristiques particulibrechapitres, les symboles « trdfle, carreau, sous-paragraphes, les signaux «virage la

les

Science

»

citations

(Achille Talon !) et des du en exergue pique», soit certaines Equations soit des marquant stationnement dangereux » pour les points ddlicats ou « interdit » pour les sauter passages que l'on peut premidre lecture, l'ouvrage m'a laiss£ impression d'aust£rit£ art£nu6 n'a la pr£sence, h la en une que pas r£sum£ forme d'encadr£ off sont regroup£es les formules fin de chaque chapitre, d'un essentielles. sous (On notera que, bien qu'ils soient issus de cours donn6s h dirt£rents niveaux, livres ne des deux aucun d'approfondir les sujets abordds.) comporte de s£ries de probldmes permettant deux diff£rentes, et malgr£ les r£serves Pour conclure, m'apparaissent, raisons ces ouvrages pour des contributions exprimdes, des majeures, en langue franqaise, au domaine de l'hydrodynamique. Its sont susceptibles d'aider bien dvidemment l'enseignant et I'£tudiant de cette matidre, mais aussi d'un point chercheur l'ing6nieur de vue plus g£n£rat, le qui a besoin de comprendre la physique des dcoulements ou auxquels il peut dtre confront£. ment

cceur,

bienvenues

P.

MANNEV~LE

(Saclay).