PreCalculus Chapter 2 Practice Test Name - MathGuy.US

17 downloads 21 Views 718KB Size Report
1 | Page. A note on terminology: Zeros and roots are the same thing. If they are real, as opposed to complex, they are also. -intercepts of your graph. Next, note ...

PreCalculus Chapter 2 Practice Test

Name:____________________________

  A note on terminology:  Zeros and roots are the same thing.  If they are real, as opposed to complex, they are also  ‐intercepts of your graph. 

        Use the roots of the equation and the direction that    the curve opens determine the equation.  It looks like    the roots are around  2, but a quick look at the  answers tells us that there are no 2’s.  So the    numbers around  2 must be  √3  (i.e.  ~ 1.732 .     Let’s try that:   

√3

√3



  Next, note that the curve is an inverted‐U, so that the lead coefficient must be negative.  Then,  3

Answer C 

   

 

  

0, the  ‐coordinate of the vertex occurs at 

For a quadratic equation in the form 

.  How can you remember this?  Recall that the x‐coordinate  of the vertex occurs at the average of the two roots of the quadratic  function.      There it is:  

4 2

So, the vertex is at  1 | P a g e    

 

.   

For this problem, we have:   2



1 ,

 

2

4



1

2 1

4 1

1



PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  It looks like this function can be factored, which is the fastest way to  find x‐intercepts, which are also called roots or zeros.  Starting Equation:  Factor out 

1 : 

 

 

 

 

13

42

13

Break into separate equations: 

 

Identify x‐intercepts:   

 

 

42

6

Factor the remaining trinomial:  6

 

    This one is ugly.  Let’s use the quadratic formula:  7,

10, 4

√ 2

2.  Then,  10

10 √44 14

10

2√11 14

10 2 7

4 7 2 √

 

 

   

  The  ‐intercept is  0 . 

0

 

2 | P a g e    

1



0

1



1

5

 

0  7

 

Note that:  



7

0 ,





PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  , where   ,

This equation is in vertex form:   Therefore, the vertex of this function is  

  is the vertex. 

3, 1 . 

To get the intercepts, you can expand the function.  1

3  

Starting Equation: 

 

Add 1: 

 

3



Expand the square term:  

6

9

 

 

1,

Use the quadratic formula:    4

√ 2

6

6,

1

6

10 

10 

6 4 1 10 2 1

6

√ 4 2

6

2i 2

 

Conclusion:  There are no real  ‐intercepts.  While it is possible to use a function’s complex roots  to develop a graph, the method to do this is not usually taught in high school math.  To see how  this is done, check out the Algebra App on www.mathguy.us.  Let’s use a couple of points to help  us finish the graph.  3



1

1

3

1

4

1

       So a point is  

1, 5 . 

5

5

3

1

4

1

       So a point is  

5, 5 . 

Plot the vertex and these two points and run a smooth curve through them.  Notice a couple of  things:                 

3 | P a g e    

Moving one unit left or  right from the vertex  yields a point  1   unit(s) away from the  vertex in the vertical  direction. 

Moving two units left or  right from the vertex  yields a point 4 4   units away from the  vertex in the vertical  direction. 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  This equation is easy enough to factor and find the x‐intercepts.  Starting Equation: 

 

6

Factor the trinomial 

 

5

1  

0

1

5

Break into separate equations:    Identify x‐intercepts: 

 



5, 1  

  

.   

The vertex occurs at 

1

For this problem, we have:   6 3   2 1 3



3

6

3

6

5





3, 4 .  Plot the vertex and the two  ‐intercepts, and run a smooth curve 

So, the vertex is at  through them.        

.   

The vertex occurs at 

3

For this problem, we have:   12 2   2 3 2

3 2

12 2

12

15

15 



So, the vertex is at  2, 3   Instead of using the full quadratic formula this time, let’s check  whether there are any real  ‐intercepts using the discriminant:   3,

12, 4



15 

12

4 3 15

36 

A negative discriminant implies that there are no real roots and, therefore, no real  ‐intercepts.  So, let’s use a couple of points to help us finish the graph.  3

12

15 

1

3 1

12 1

15

       So a point is   1, 6 . 

3

3 3

12 3

15

       So a point is   3, 6 . 

Plot the vertex and these two points, and run a smooth curve through them.    4 | P a g e    

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

    Mathematically, we can find the answer in the following manner:  Let the two numbers be     and   32



Their product forms a parabola, of which we want to  find the maximum.  So,  32

32

 

We find the maximum value of  1

32 32 2 1

2

 at the vertex.  0 

16 

So, the solution is the pair of numbers 16 and  32

16

16.  i.e.,  

and

 

Note this is a common problem that takes a number of forms in high school mathematics.  Unless  there is a twist to the problem, the maximum is always obtained by two numbers that are each  half of the original sum.  In this case, 32 2 16, so both numbers are 16.   

  Easy peezy.  Look at the factors to find the zeros (roots):  4  occurs with an exponent of one, so the zero  

4  has multiplicity 1.  3  has multiplicity 2. 

3  occurs with an exponent of two, so the zero       Let’s factor it, then the answer is easy peezy.  30

30

6

5  

 occurs with an exponent of one, so the zero   6  occurs with an exponent of one, so the zero   5  occurs with an exponent of one, so the zero     5 | P a g e    

0  has multiplicity 1.  6  has multiplicity 1.  5  has multiplicity 1. 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  Let’s factor it, then the answer is easy peezy.  8

8 8

8

1

1

8         Be careful with your signs on this step! 

8  

8

1

1

8  

1  occurs with an exponent of one, so the zero  

1  has multiplicity 1. 

1  occurs with an exponent of one, so the zero  

1  has multiplicity 1. 

8  occurs with an exponent of one, so the zero  

8  has multiplicity 1. 

    5

13) 



Let’s factor it to find the roots.  5

5 5

5

1

1

5         Be careful with your signs on this step!  

5  

5

1

The  ‐intercepts then are:  

1

5  

1, 1, 5  

We also know that for a cubic function with a positive lead  coefficient:    



As   → ∞, As   → ∞,



→ ∞.  → ∞. 

Finally, we know the graph has a y‐intercept of  0

5. 

So, our graph starts at   ∞, crosses the  ‐axis three times, at  1, 1, 5 , and then shoots off to   ∞.  It also contains the  point  0, 5 .  It looks something like the graph at right.  Shameless self‐promotion: the Algebra App, available at  www.mathguy.us will graph any polynomial with 13 or fewer  terms, identify the zeros, and much more.  Check it out.    6 | P a g e    

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

      2

2 3

2 9

3

0

2

1 6

0

6

2

16 9 3

1

 

Yes, we hate long division of a  polynomial, favoring the much  more concise and probably more  accurate (for most of us)  synthetic division.  However, we  must follow the instructions.  



2

0

2

2

2 3



 



  16 9

   

  3 2 3 3

0

1



6



5

2

2

7

4

7

4





5

2

5



10

2

3



2





3         7 | P a g e    



3 2

 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

 



2





7

3



1

6

3





2



1

6



2



2

1

6



1

1  

1









4 1

 

 

7



7



4   

  In synthetic division, use the root of the divisor as your multiplier.  



2 1



4



 

9 1

1 21 

2 12

6 10

1

5 9 3 





6 3



Result:               8 | P a g e    

18 

 

 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  In synthetic division, use the root as your multiplier.  



3 1

 

2

3 3 1 1



2  



2

Result:  , ,

When the remainder is zero, the multiplier  used  3  is a solution of the equation (and  is a zero, or root, of the polynomial). 

5 6 

 

2

1   so,   2  and  1  are zeros, as is  3  from above. 

 

    We need to find the zeros of this polynomial.  What can we use to be smart about this?  

Since its degree is odd, there must be at least one real zero. 



Any rational zeros must take the form   / where   is a factor of the constant term  8 ,  and   is a factor of the lead coefficient  3 .  So possible rational zeros are: 

            







8

4

2

1. 



If 1 is a zero, the sum of the coefficients is zero; this is not the case for this problem. 



Descartes’ Rule of Signs is not much help since there are multiple sign changes. 

Next step: one or more synthetic divisions.  You could try either 2 or 4 (you don’t need both). 



2 3

    

17 18 8   

6 3

11

8   

5

2

  

, ,

 

3

  

1



 

 

4 3

 

 

OR

4 0   bingo!    



Result:  3

9 | P a g e    

22



 

 

2    so,  

17 18 8 

  12

3  

 



5

20



2 0   bingo!    



 

 and  2  are zeros, as is  4  from above. 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  We need to find the zeros of this polynomial.  What can we use to be smart about this?  

Since its degree is odd, there must be at least one real zero. 



Any rational zeros must take the form   / where   is a factor of the constant term  13 ,  and   is a factor of the lead coefficient  1 .  So possible rational zeros are:               1, 13. 



If 1 is a zero, the sum of the coefficients is zero; this is not the case for this problem. 



If  1 is a zero, sums of alternating coefficients are equal.  This is the case here, since  1 17 5 13. Therefore,   1 is a zero of this polynomial. 



Descartes’ Rule of Signs tells us there are no positive roots (there are no sign changes in  the polynomial). 

Next step: synthetic division by  1.  



  

 

1 1 5 17 13    1

4

13   

   

1 4 13 0   bingo!       



4

Result: 

√ 2 4 So,   2            10 | P a g e    

 

13     Yuk!   Let’s use the quadratic formula:  1,

Note that:  

   

4, 4

13.  Then,  4

√ 36 2

4

6i 2

4 4 1 13   2 1  

3   are zeros, as is   1  from above.  ,

 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  We are asked to graph this function using  transformation.  That means we need to start  with the parent function and translate the  function to its new position.    The parent function, shown in the illustration at  right in orange is:  



The general form of a simple rational function is:   

,  where   ,

  is the point at 

the intersection of its asymptotes.  The general  form also indicates the nature of the translation,  which is   units to the left and   units up. 

 

For the function given in this problem, we translate the curve 4 units left  4  and 2 units  up  2 .  This can be accomplished by translating the asymptotes for the parent function, as  shown in the illustration by a green arrow.  The resulting graph is shown in magenta.  The  intersection of its asymptotes occurs at the point   , 4, 2 .     Note:  An asymptote is a line that a function approaches, but never reaches.  For a simple      , the asymptotes occur at     and   .  rational function of the form     

11 | P a g e    

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  This function has:   Vertical asymptotes where the denominator,  

A horizontal asymptote at  y

lim



A point at   0, 0 , since  0

0. 

9

0, i.e., at  

3. 







First draw the guides (asymptotes and the identified point).    So far, so good, but it looks like we would benefit  from finding a point on the left and right sides of  the vertical asymptotes.  2 4 4 9

4 4

2

32 7

4 4

9

4 4   7 32 7

So two points are:   4, 4   and  

4 4   7 4, 4 . 

  Plot these points and then draw in the function.        Note: if you need more points to visualize what the  function looks like, select some  ‐values and  calculate the corresponding  ‐values wherever you  think you need them.                  12 | P a g e    

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  This function has a vertical asymptote where the denominator,   

It also has a slant asymptote at:  

8

0, i.e., at  

8. 

, excluding the remainder, so let’s divide and find 

the slant asymptote. 

    

8 1 4

9   

The remainder  87  is ignored in  developing the equation of the slant  asymptote, which is   12. 

8 96     1 12

87      



  

 

Finally, let’s calculate a couple of points to help nail down the curve.  0 10 20

0

4 0 0 8

9

4 10 10 8

9

131 2

1 1 65 ⇒ 10, 65   2 2

20

4 20 20 8

9

471 12

1 1 39 ⇒ 20, 39   4 4

Then, plot the asymptotes, the  points, and finally, the curve. 

            13 | P a g e    

1 1 1 ⇒ 0, 1   8 8

10

 

 

9 8

You may not need to  calculate all three  points to generate a  curve acceptable to  your teacher.  I did it  here so you could see  how it works. 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

  The slant asymptote is found by dividing the rational function and discarding the remainder.  7

7 2



 

    

2 1 7

7   

The remainder  11  is ignored in  developing the equation of the slant  asymptote, which is:   . 

2 18     1 9 11      

  

 

                 

  The slant asymptote is found by dividing the rational function and discarding the remainder.  3

2 5



 

    

5 1

3 2   

5 40     1

8 42      



14 | P a g e    

  

The remainder  42  is ignored in  developing the equation of the slant  asymptote, which is:   . 

PreCalculus Chapter 2 Practice Test

Name:____________________________

 

A Learning Extension for the Curious.  Much more than the slant asymptote.  The slant asymptote is the simplest in a class of asymptotes that are not vertical or horizontal.   Rational functions may have 2nd, 3rd, 4th and higher degree curves as asymptotes.  In general, the  degree of the asymptote is equal to the degree of the numerator minus the degree of the  denominator.  Consider the following rational function, inspired by Problem 15 above:  3

2

7

4

2

  √2  and  

This curve has vertical asymptotes at  

√2  because of the denominator. 

To obtain the asymptotic curve, divide the rational function and discard the remainder.  3

2

7 2

4



3

5

2



3 2

from Problem 15  

The result of the division provides the asymptotic curve, which in this case is the cubic function:  3

5



Let’s look at this graphically.  Notice how the magenta curve closes in on the green curve on the  left and right sides of the graph.  Very cool stuff!  Now, you are smarter!     

15 | P a g e