Preparation, properties and applications of

11 downloads 0 Views 2MB Size Report
Mar 20, 2012 - Downloaded by Wuhan University on 06 June 2012. Published on 27 March ..... macromolecular initiators induce the monomer free radical.
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224917758

Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review ARTICLE in NANOSCALE · MAY 2012 Impact Factor: 7.39 · DOI: 10.1039/c2nr30260h · Source: PubMed

CITATIONS

READS

140

652

3 AUTHORS: Ning Lin

Jin Huang

Wuhan University of Technology

KTH Royal Institute of Technology

18 PUBLICATIONS 578 CITATIONS

152 PUBLICATIONS 2,219 CITATIONS

SEE PROFILE

SEE PROFILE

Alain Dufresne Grenoble Institute of Technology 312 PUBLICATIONS 14,733 CITATIONS SEE PROFILE

Available from: Alain Dufresne Retrieved on: 10 January 2016

Nanoscale

View Online / Journal Homepage / Table of Contents for this issue

C

Dynamic Article Links
100)

Water DMF DMF THF/water

— TEGDME as plasticizer HPPK as cross-linking agent —

247,248 249 250 251

Sisal (L/D ¼ 43), ramie (L/D ¼ 28), cotton (L/D ¼ 13) Nanochitin (L/D > 400)

Methanol/water



253

—a



252

PVDF-HFP

Downloaded by Wuhan University on 06 June 2012 Published on 27 March 2012 on http://pubs.rsc.org | doi:10.1039/C2NR30260H

a Hot-pressing technique without solvent [TEGDME: tetra(ethylene) glycol dimethyl ether; HPPK: 4-(2-hydroxyethoxy) phenyl-(2-hydroxy-2-propyl) ketone; and PVDF-HFP: poly(vinylidenefluoride-co-hexafluoropropylene)].

Fig. 17 (a) Confocal laser scanning micrograph of droplets stabilized by bacterial cellulose nanocrystals with double staining. (b and c) SEM images of styrene emulsion stabilized by cellulose nanocrystals.254 (Reprinted with permission from ref. 254, Copyrightª The American Chemical Society.)

4  C, at 40  C or up to 2 h at 80  C. The reason for this high droplet stability induced by cellulose nanocrystals can be attributed to the irreversible adsorption of the nanocrystals, associated with steric hindrance of the 2D network formed, at the interface with the oil phase. In another work, chitin nanocrystals were used as the emulsion nano-stabilizer for corn oil in water. Chitin nanocrystals were proved to be quite effective in stabilizing o/w emulsions against coalescence over a period of one month, which can be attributed to the inter-droplet network structure and the formation of a chitin nanocrystal network in the continuous phase from the adsorption of the nanocrystals at the oil–water interface. At the same time, it was shown that the increase in chitin nanocrystal concentration, NaCl concentration, pH and temperature led to smaller droplets, higher stability to creaming and enhancement of the emulsion elastic structure.255 3.2.8. Decontamination of organic pollutants. With the rapid development of the economy and environment pollution, there are growing concerns about the all-round improvement of living quality and environment. Water decontamination and treatment is a permanent subject in the purification of water and wastewater with low-cost adsorbents utilizing agro-industrial and municipal wastes.256 The abundant availability, particular platelet shape and high specific surface area of starch nanocrystals, coupled with their low cost, renewability, wide variability in processing options and nontoxicity, represent strong drivers for their use as water treatment agents. Boufi et al. have attempted to utilize stearic acid chain modified starch nanocrystals in the application of removing dissolved organic pollutants from water.125 After extraction from waxy maize starch granules, starch nanocrystals were surface-modified with a hydrophobic shell consisting of stearic acid chains,124 and the This journal is ª The Royal Society of Chemistry 2012

chemically modified starch nanocrystals were used as adsorbents for the removal of seven different aromatic organic compounds from water. It was proved that the grafted stearate long chains enhanced the adsorption capacity of aromatic organic compounds on the nanometric substrate, which ranged between 150 and 900 mmol g1 and the maximum adsorption amount can reach 100 mg g1. At the same time, the adsorption mechanism of organic pollutants onto the alkyl chain modified starch nanocrystal substrate can be discussed with the calculation using the Langmuir model. The adsorption kinetics of stearate modified starch nanocrystals followed a two-step process with first pure adsorption of the aromatic compounds onto the surface of the nanoparticles followed by a diffusion of the compounds into the layer of surface chains grafted onto the nanoparticles. The driving force for the adsorption process was expected to be largely governed by van der Waals interactions between the grafted chains and the organic solute. In particular, the planar structure of the aromatic organic solutes studied tends to favor the intercalation of molecules inside the domains formed by the grafted chains. It should be pointed out that the values of adsorption capacity and the maximum adsorption amount of modified starch nanocrystals are comparative to nanographite and are half those of the activated carbon,257,258 which presents the potential advantages and promising applications of polysaccharide nanocrystals in the removal of deleterious matter. In another work, cellulose fibers with chemical modification of grafting hydrocarbon chains bearing amino terminal functionality were also used as an adsorbent for the removal of aromatic organic compounds and herbicides from water, which exhibited promising enhancement of the adsorption efficiency.259 3.3. Special chemical modifications for potential functionalization As mentioned above, the terminal OH groups at the surface of glucose-based polysaccharide nanocrystals provide facile surface modification, i.e., cellulose nanocrystals can be easily functionalized or bioconjugated with special functional groups, resulting in a promising potential for new nanomaterials and platforms for diversified functional applications. The first publication on the fluorescent modification of cellulose nanocrystals reports that it was carried out using a three-step reaction to covalently attach fluorescent molecules to the surface of cellulose nanocrystals. The fluorescently labeled cellulose nanocrystals can facilitate the study and use of fluorescence techniques on nanocrystals, such as Nanoscale, 2012, 4, 3274–3294 | 3289

Downloaded by Wuhan University on 06 June 2012 Published on 27 March 2012 on http://pubs.rsc.org | doi:10.1039/C2NR30260H

View Online

spectrofluorometry, fluorescence microscopy, and flow cytometry, for example, the interaction of cellulose nanocrystals with cells and the biodistribution of cellulose nanocrystals in vivo.212 In another work, Thielemans et al. developed two versatile synthetic strategies for dual fluorescent labeling of cellulose nanocrystals (one reaction with the isothiocyanates and the other with the thiol–ene click reaction). The dual fluorescent labeling of cellulose nanocrystals was effectively sensitive to the pH change, which can be possibly used in sensing nanomaterials.260 With the method of grafting amine-terminated monomers onto surface-modified cellulose nanocrystals followed by click chemistry, Argyropoulos et al. synthesized a novel cellulose nanoplatelet gel material.261,262 In another work, with the similar click chemistry reaction, cellulose nanocrystals have been surface-modified with cationic porphyrin groups. This material showed excellent efficiency toward the photodynamic inactivation of Mycobacterium smegmatis and Staphylococcus aureus bacterial models.263 With cellulose nanocrystals as a biodegradable and renewable resource, along with the special porphyrin modified groups on their surface, such cellulose nanocrystal– porphyrin conjugates were anticipated to develop novel, potent, bioactive, photobactericidal nanomaterials that are effective against a range of bacteria. Click chemistry has also been utilized for the grafting of imidazolium salt ([MPIM][Br]) on the surface of cellulose nanocrystals.264 The bromide anion on the modified nanocrystals can be used for ion exchange for bistriflimide and the anionic dye, which provided the opportunity to synthesize a wide variety of ion exchange systems or catalysts using polysaccharide nanocrystals as a support medium. Gray et al. developed the cationic surface functionalization of cellulose nanocrystals through the reaction with epoxypropyltrimethylammonium chloride.265 The cationic functionalization process reversed the surface charge and led to a reduction of the total surface charge density, which induced the cationic cellulose nanocrystal suspension to form thixotropic hydrogels. The

Fig. 18 Special chemical modifications of cellulose nanocrystals (CNs) in potential functional applications.

3290 | Nanoscale, 2012, 4, 3274–3294

chemical structures of these special cellulose nanocrystals with functional modifications mentioned above are shown in Fig. 18.

4. Conclusions and outlook Overall, research and challenges in the future of polysaccharide nanocrystals in functional nanomaterials application include several aspects as follows. First, it is important to develop active and controllable methods for physical or chemical modification of the surface of nanocrystals under milder or ‘‘green’’ reactive conditions keeping the initial morphological integrity and native crystallinity. On the other hand, the issue of how to solve the inferior thermal stability of polysaccharide nanocrystals has attracted increasingly attention. As we know, cellulose nanocrystals undergo decomposition and carbonization at temperatures over 250  C, and starch nanocrystals have a lower thermal decomposition temperature. The improvement of thermal stability could facilitate the processability and application of polysaccharide nanocrystals on a higher level and broader scope, such as high-temperature endurable insulating materials. With the physical interactions of entangling and enwrapping of polymeric chains on the surface of polysaccharide nanocrystals, Dufresne et al. have developed a novel, simple method for the melt extrusion of cellulose nanocrystal reinforced hydrophobic polymers at temperatures over 160  C.266 In addition, as mentioned in Section 1.2, all the applications of polysaccharide nanocrystals in the field of functional nanomaterials are based on their inherent physical or chemical properties, such as chiral nematic property, chemical reactivity, nano-effects, biocompatibility and so on. Therefore, for the development and exploration of polysaccharide nanocrystals in the field of functional nanomaterials, these unique properties should be used to the fullest with the combination of research in multidisciplinary fields, with contributions from chemistry, physics, biology, and materials science. Meanwhile, the investigation of other potential properties of polysaccharide nanocrystals is an interesting topic deserving study, such as the transformation and change of crystalline properties of polysaccharide nanocrystals with physical/chemical modification. It should be noted that the analysis and investigation of inherent properties of polysaccharide nanocrystals can significantly support and promote their application in the field of functional nanomaterials. Specifically, with the electrostatic adsorption and aggregation of particles, there may be possible research on applications of polysaccharide nanocrystals in removal of inorganic and toxic metal components (Hg2+, Pb2+). Derived from the nanoparticle interactions and the formation of a rigid three-dimensional network, polysaccharide nanocrystals or modified nanocrystals can be promising in the application of some special nanomaterials, such as shape-memory materials267 and self-healing materials. For the preparation of biomedical nanomaterials, previous research59 showed that the introduction of polysaccharide nanocrystals in drug delivery exhibited prominent sustained release profiles. The analysis and explanation of this sustained release effect still focused on the physical plane, such as the presence of nanoparticles in drug delivery obstructing the diffusing paths of drug molecules. However, the interactions between active groups (–OH) on the surface of polysaccharide nanocrystals with different structures of drug molecules may be This journal is ª The Royal Society of Chemistry 2012

Downloaded by Wuhan University on 06 June 2012 Published on 27 March 2012 on http://pubs.rsc.org | doi:10.1039/C2NR30260H

View Online

the reasons on chemical plane. Which methods of characterization (such as nuclear magnetic resonance) can be suitable for the investigation of these interactions on the molecular level is an interesting and significant topic. In addition, it should be pointed out that the current research on polysaccharide nanocrystals in the field of functional nanomaterials mainly focuses on the utilization of cellulose nanocrystal, which may be attributed to its higher structural stability and easy chemical modification in comparison with other two polysaccharide nanocrystals. In fact, starch nanocrystals and chitin nanowhiskers also possess their unique properties and characters, which could be potentially used to develop special functional nanomaterials. For instance, Dufresne et al. have reported that the incorporation of plateletlike starch nanocrystals in natural rubber can remarkably promote the barrier performances (water vapor and oxygen) of materials.13 As for chitin nanowhiskers, due to different active groups including hydroxyl groups (–OH) on the surface, there could be more challenges (such as rational modifications with different active groups) and applications (such as additives in the wound medicaments268) in the development of these nanocrystals.

Acknowledgements This work is supported by the China Scholarship Council (CSC) under grant no. 2011695007.

Notes and references 1 Z. Persin, K. Stana-Kleinschek, T. J. Foster, J. E. G. van Dam, C. G. Boeriu and P. Navard, Carbohydr. Polym., 2011, 84, 22–32. 2 P. B. Filson, B. E. Dawson-Andoh and D. Schwegler-Berry, Green Chem., 2009, 11, 1808–1814. € 3 S. Ahola, X. Turon, M. Osterberg, J. Laine and O. J. Rojas, Langmuir, 2008, 24, 11592–11599. 4 J. Kadokawa, A. Takegawa, S. Mine and K. Prasad, Carbohydr. Polym., 2011, 84, 1408–1412. 5 Z. Man, N. Muhammad, A. Sarwono, M. A. Bustam, M. V. Kumar and S. Rafiq, J. Polym. Environ., 2011, 19, 726–731. 6 D. LeCorre, J. Bras and A. Dufresne, Carbohydr. Polym., 2011, 86, 1565–1572. 7 P. B. Filson and B. E. Dawson-Andoh, Bioresour. Technol., 2009, 100, 2259–2264. 8 G. Siqueira, S. Tapin-Lingua, J. Bras, D. da Silva Perez and A. Dufresne, Cellulose, 2010, 17, 1147–1158. 9 D. J. Gallant, B. Bouchet and P. M. Baldwin, Carbohydr. Polym., 1997, 32, 177–191. 10 K. G. Nair and A. Dufresne, Biomacromolecules, 2003, 4, 657–665. 11 K. G. Nair and A. Dufresne, Biomacromolecules, 2003, 4, 666–674. 12 K. G. Nair and A. Dufresne, Biomacromolecules, 2003, 4, 1835– 1842. 13 H. Angellier, S. Molina-Boisseau, L. Lebrun and A. Dufresne, Macromolecules, 2005, 38, 3783–3792. 14 H. Angellier, S. Molina-Boisseau and A. Dufresne, Macromolecules, 2005, 38, 9161–9170. 15 J. O. Zoppe, M. S. Peresin, Y. Habibi, R. A. Venditti and O. J. Rojas, ACS Appl. Mater. Interfaces, 2009, 1, 1996–2004. 16 K. Oksman, A. P. Mathew, D. Bondeson and I. Kvien, Compos. Sci. Technol., 2006, 66, 2776–2784. 17 A. Morin and A. Dufresne, Macromolecules, 2002, 35, 2190–2199. 18 M. S. Peresin, Y. Habibi, J. O. Zoppe, J. J. Pawlak and O. J. Rojas, Biomacromolecules, 2010, 11, 674–681. 19 S. A. Paralikara, J. Simonsen and J. Lombardi, J. Membr. Sci., 2008, 320, 248–258. 20 J. Sriupayo, P. Supaphol, J. Blackwell and R. Rujiravanit, Polymer, 2005, 46, 5637–5644. 21 N. Ljungberg, J.-Y. Cavaille and L. Heux, Polymer, 2006, 47, 6285– 6292.

This journal is ª The Royal Society of Chemistry 2012

22 L. Chazeau, J. Y. Cavaille and J. Perez, J. Polym. Sci., Part B: Polym. Phys., 2000, 38, 383–392. 23 M. Zeng, H. Gao and Y. Wu, J. Macromol. Sci., Part A: Pure Appl. Chem., 2010, 47, 867–876. 24 Y. X. Wang and L. N. Zhang, J. Nanosci. Nanotechnol., 2008, 8, 5831–5838. 25 X. D. Cao, Y. Habibi and L. A. Lucia, J. Mater. Chem., 2009, 19, 7137–7145. 26 X. D. Cao, H. Dong and C. M. Li, Biomacromolecules, 2007, 8, 899– 904. 27 G. Chen, M. Wei, J. Chen, J. Huang, A. Dufresne and P. R. Chang, Polymer, 2008, 49, 1860–1870. 28 L. M. Tang and C. Weder, ACS Appl. Mater. Interfaces, 2010, 2, 1073–1080. 29 H. Angellier, S. Molina-Boisseau, P. Dole and A. Dufresne, Biomacromolecules, 2006, 7, 531–539. 30 J. Viguie, S. Molina-Boisseau and A. Dufresne, Macromol. Biosci., 2007, 7, 1206–1216. 31 Y. S. Lu, L. H. Weng and L. N. Zhang, Biomacromolecules, 2004, 5, 1046–1051. 32 Y. Wang, X. Cao and L. N. Zhang, Macromol. Biosci., 2006, 6, 524– 531. 33 M. A. S. Azizi Samir, F. Alloin and A. Dufresne, Biomacromolecules, 2005, 6, 612–626. 34 A. Dufresne, J. Nanosci. Nanotechnol., 2006, 6, 322–330. 35 A. Dufresne, Can. J. Chem., 2008, 86, 484–494. 36 D. L. Corre, J. Bras and A. Dufresne, Biomacromolecules, 2010, 11, 1139–1153. 37 Y. Habibi, L. A. Lucia and O. J. Rojas, Chem. Rev., 2010, 110, 3479– 3500. 38 A. Dufresne, Molecules, 2010, 15, 4111–4128. 39 D. Klemm, F. Kramer, S. Moritz, T. Lindstr€ om, M. Ankerfors, D. Gray and A. Dorris, Angew. Chem., Int. Ed., 2011, 50, 5438–5466. 40 R. J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 2011, 40, 3941–3994. 41 N. Lin, J. Huang, P. R. Chang, D. P. Anderson and J. Yu, J. Nanomater., 2011, 573687, 13pages. 42 S. J. Eichhorn, Soft Matter, 2011, 7, 303–315. 43 E. C. Ramires and A. Dufresne, Tappi J., 2011, 10, 9–16. 44 S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund and T. Peijs, J. Mater. Chem., 2010, 45, 1–33. 45 P. Tingaut and T. Zimmermann, Functional Polymer Nanocomposite Materials from Microfibrillated Cellulose, in Advances in Nanocomposite Technology, ed. A. Hashim, Intech., Rijeka, Croatia, 2011, ch. 14, pp. 319–334. 46 B. L. Peng, N. Dhar, H. L. Liu and K. C. Tam, Can. J. Chem. Eng., 2011, 89, 1191–1206. 47 A. Dufresne, Preparation of Cellulose Nanocomposite, in Interface Engineering of Natural Fiber Composites for Maximum Performance, ed. N. E. Zaferiropoulos, Woodhead Publishing in Materials, Philadelphia, USA, 2011, ch. 3, pp. 82–116. 48 P. Lu and Y.-L. Hsieh, Carbohydr. Polym., 2010, 82, 329–336. 49 N. Wang, E. Ding and R. Cheng, Langmuir, 2008, 24, 5–8. 50 N. Wang, E. Ding and R. Cheng, Polymer, 2007, 48, 3486–3493. 51 J. D. Goodrich and W. T. Winter, Biomacromolecules, 2007, 8, 252– 257. 52 M. Paillet and A. Dufresne, Macromolecules, 2001, 34, 6527–6530. 53 H. Zheng, F. Ai, P. R. Chang, J. Huang and A. Dufresne, Polym. Compos., 2009, 30, 474–480. 54 Y. Chen, X. Cao, P. R. Chang and M. A. Huneault, Carbohydr. Polym., 2008, 73, 8–17. 55 S. Song, C. Wang, Z. Pan and X. Wang, J. Appl. Polym. Sci., 2008, 107, 418–422. 56 J.-L. Putaux, S. Molina-Boisseau, T. Momaur and A. Dufresne, Biomacromolecules, 2003, 4, 1198–1202. 57 H. Angellier, L. Choisnard, S. Molina-Boisseau, P. Ozil and A. Dufresne, Biomacromolecules, 2004, 5, 1545–1551. 58 S. Elazzouzi-Hafraoui, Y. Nishiyama, J.-L. Putaux, L. Heux, F. Dubreuil and C. Rochas, Biomacromolecules, 2008, 9, 57–65. 59 N. Lin, J. Huang, P. R. Chang, L. Feng and J. Yu, Colloids Surf., B, 2011, 85, 270–279.

Nanoscale, 2012, 4, 3274–3294 | 3291

Downloaded by Wuhan University on 06 June 2012 Published on 27 March 2012 on http://pubs.rsc.org | doi:10.1039/C2NR30260H

View Online 60 R. R. Lahiji, X. Xu, R. Reifenberger, A. Raman, A. Rudie and R. J. Moon, Langmuir, 2010, 26, 4480–4488. 61 M. T. Postek, A. Vladar, J. Dagata, N. Farkas, B. Ming, R. Wagner, A. Raman, R. J. Moon, R. Sabo, T. H. Wegner and J. Beecher, Meas. Sci. Technol., 2011, 22, 10, 024005. 62 A. P. Mathew, M.-P. G. Laborie and K. Oksman, Biomacromolecules, 2009, 10, 1627–1632. 63 D. LeCorre, J. Bras and A. Dufresne, Biomacromolecules, 2011, 12, 3039–3046. 64 B. Braun, J. R. Dorgan and J. P. Chandler, Biomacromolecules, 2008, 9, 1255–1263. 65 P. Terech, L. Chazeau and J. Y. Cavaille, Macromolecules, 1999, 32, 1872–1875. 66 M. M. de Souza Lima, J. T. Wong, M. Paillet, R. Borsali and R. Pecora, Langmuir, 2003, 19, 24–29. 67 K. Tashiro and M. Kobayashi, Polymer, 1991, 32, 1516–1526. 68 S. J. Eichhorn and G. R. Davies, Cellulose, 2006, 13, 291–307. 69 F. Tanaka and T. Iwata, Cellulose, 2006, 13, 509–517. 70 M. Bergenstrahle, L. A. Berglund and K. Mazeau, J. Polym. Sci., Part B: Polym. Phys., 2007, 111, 9138–9145. 71 I. Sakurada, Y. Nukushina and T. Ito, J. Polym. Sci., 1962, 57, 651– 660. 72 M. Matsuo, C. Sawatari, Y. Iwai and F. Ozaki, Macromolecules, 1990, 23, 3266–3275. 73 T. Nishino, K. Takano and K. Nakamae, J. Polym. Sci., Part B: Polym. Phys., 1995, 33, 1647–1651. 74 I. Diddens, B. Murphy, M. Krisch and M. Muller, Macromolecules, 2008, 41, 9755–9759.  75 A. Sturcov a, G. R. Davies and S. J. Eichhorn, Biomacromolecules, 2005, 6, 1055–1061. 76 S. Iwamoto, W. Kai, A. Isogai and T. Iwata, Biomacromolecules, 2009, 10, 2571–2576. 77 R. Rusli and S. J. Eichhorn, Appl. Phys. Lett., 2008, 93, 033111. 78 2nd International Conference on Biodegradable Polymers and Sustainable Composites (BIOPOL 2009), ed. D. LeCorre, J. Bras, A. Dufresne and A. Jimenez, Alicante, Spain, 2009. 79 L. Petersson, I. Kvien and K. Oksman, Compos. Sci. Technol., 2007, 67, 2535–2544. 80 T. Nishino, I. Matsuda and K. Hirao, Macromolecules, 2004, 37, 7683–7687. 81 H. Yano, J. Sugiyama, A. N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita and K. Handa, Adv. Mater., 2005, 7, 153–155. 82 M. Wada and Y. Saito, J. Polym. Sci., Part B: Polym. Phys., 2001, 39, 168–174. 83 D. LeCorre, J. Bras and A. Dufresne, Carbohydr. Polym., 2012, 87, 658–666. 84 M. Roman and W. T. Winter, Biomacromolecules, 2004, 5, 1671– 1677. 85 N. L. Garcıaa, L. Ribba, A. Dufresne, M. Aranguren and S. Goyanes, Carbohydr. Polym., 2011, 84, 203–210. 86 F. Jiang, A. R. Esker and M. Roman, Langmuir, 2010, 26, 17919– 17925. 87 N. Lin, G. Chen, J. Huang, A. Dufresne and P. R. Chang, J. Appl. Polym. Sci., 2009, 113, 3417–3425. 88 P. R. Chang, F. Ai, Y. Chen, A. Dufresne and J. Huang, J. Appl. Polym. Sci., 2009, 111, 619–627. 89 Q. Wu, M. Henriksson, X. Liu and L. A. Berglund, Biomacromolecules, 2007, 8, 3687–3692. 90 O. A. E. Seoud, A. Koschella, L. C. Fidale, S. Dorn and T. Heinze, Biomacromolecules, 2007, 8, 2629–2647. 91 A. Pinkert, K. N. Marsh, S. Pang and M. P. Staiger, Chem. Rev., 2009, 109, 6712–6728. 92 K. Wilpiszewska and T. Spychaj, Carbohydr. Polym., 2011, 86, 424– 428. 93 M. A. S. Azizi Samir, F. Alloin, J. Y. Sanchez, N. El Kissi and A. Dufresne, Macromolecules, 2004, 37, 1386–1393. 94 M. Bercea and P. Navard, Macromolecules, 2000, 33, 6011–6016. 95 D. Liu, X. Chen, Y. Yue, M. Chen and Q. Wu, Carbohydr. Polym., 2011, 84, 316–322. 96 J. Araki, M. Wada, S. Kuga and T. Okano, Colloids Surf., A, 1998, 142, 75–82. 97 Y. Boluka, R. Lahiji, L. Zhao and M. T. McDermott, Colloids Surf., A, 2011, 377, 297–303. 98 E. E. Ure~ na-Benavides, G. Ao, V. A. Davis and C. L. Kitchens, Macromolecules, 2011, 44, 8990–8998.

3292 | Nanoscale, 2012, 4, 3274–3294

99 M. V. Tzoumaki, T. Moschakis and C. G. Biliaderis, Biomacromolecules, 2010, 11, 175–181. 100 M. V. Tzoumaki, T. Moschakis and C. G. Biliaderis, Food Hydrocolloids, 2011, 25, 935–942. 101 K. E. Shopsowitz, H. Qi, W. Y. Hamad and M. J. MacLachlan, Nature, 2010, 468, 422–426. 102 X. M. Dong, T. Kimura, J. F. Revol and D. G. Gray, Langmuir, 1996, 12, 2076–2082. 103 K. Fleming, D. G. Gray and S. Matthews, Chem.–Eur. J., 2001, 7, 1831–1835. 104 H. Angellier, S. Molina-Boisseau, M. N. Belgacem and A. Dufresne, Langmuir, 2005, 21, 2425–2433. € 105 N. S. C ¸ etin, P. Tingaut, N. Ozmen, N. Henry, D. Harper, M. Dadmun and G. Sebe, Macromol. Biosci., 2009, 9, 997–1003. 106 N. Lin, J. Huang, P. R. Chang, J. Feng and J. Yu, Carbohydr. Polym., 2011, 83, 1834–1842. 107 B. Braun and J. R. Dorgan, Biomacromolecules, 2009, 10, 334–341. 108 Y. Habibi, H. Chanzy and M. R. Vignon, Cellulose, 2006, 13, 679– 687. 109 H. Yuan, Y. Nishiyama, M. Wada and S. Kuga, Biomacromolecules, 2006, 7, 696–700. 110 C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand and E. Fleury, Polymer, 2002, 43, 2645–2651. 111 A. Pei, Q. Zhou and L. A. Berglund, Compos. Sci. Technol., 2010, 70, 815–821. 112 Y. Xu, W. Ding, J. Liu, Y. Li, J. F. Kennedy, Q. Gu and S. Shao, Carbohydr. Polym., 2010, 80, 1078–1084. 113 A. J. de Menezes, G. Siqueira, A. A. S. Curvelo and A. Dufresne, Polymer, 2009, 50, 4552–4563. 114 Y. Habibi and A. Dufresne, Biomacromolecules, 2008, 9, 1974– 1980. 115 G. Siqueira, J. Bras and A. Dufresne, Langmuir, 2010, 26, 402–411. 116 G. Siqueira, J. Bras and A. Dufresne, Biomacromolecules, 2009, 10, 425–432. 117 J. Araki, M. Wada and S. Kuga, Langmuir, 2001, 17, 21–27. 118 E. Kloser and D. G. Gray, Langmuir, 2010, 26, 13450–13456. 119 F. Azzam, L. Heux, J.-L. Putaux and B. Jean, Biomacromolecules, 2010, 11, 3652–3659. 120 S. Harrisson, G. L. Drisko, E. Malmstr€ om, A. Hult and K. L. Wooley, Biomacromolecules, 2011, 12, 1214–1223. 121 S. Berlioz, S. Molina-Boisseau, Y. Nishiyama and L. Heux, Biomacromolecules, 2009, 10, 2144–2151. 122 W. Thielemans, M. N. Belgacem and A. Dufresne, Langmuir, 2006, 22, 4804–4810. 123 S. Alila, F. Aloulou, W. Thielemans and S. Boufi, Ind. Crops Prod., 2011, 33, 350–357. 124 M. Labet, W. Thielemans and A. Dufresne, Biomacromolecules, 2007, 8, 2916–2927. 125 H. Namazi and A. Dadkhah, Carbohydr. Polym., 2010, 79, 731–737. 126 Y. Habibi, A.-L. Goffin, N. Schiltz, E. Duquesne, P. Dubois and A. Dufresne, J. Mater. Chem., 2008, 18, 5002–5010. 127 G. Chen, A. Dufresne, J. Huang and P. R. Chang, Macromol. Mater. Eng., 2009, 294, 59–67. 128 A.-L. Goffin, J.-M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne and P. Dubois, Polymer, 2011, 52, 1532–1538. 129 M. Labet and W. Thielemans, Cellulose, 2011, 18, 607–617. 130 A.-L. Goffin, J.-M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne and P. Dubois, Biomacromolecules, 2011, 12, 2456– 2465. 131 J. Yu, F. Ai, A. Dufresne, S. Gao, J. Huang and P. R. Chang, Macromol. Mater. Eng., 2008, 293, 763–770. 132 H. Namazi and A. Dadkhah, J. Appl. Polym. Sci., 2008, 110, 2405– 2412. 133 G. Morandi, L. Heath and W. Thielemans, Langmuir, 2009, 25, 8280–8286. 134 J. Yi, Q. Xu, X. Zhang and H. Zhang, Polymer, 2008, 49, 4406–4412. 135 Q. Xu, J. Yi, X. Zhang and H. Zhang, Eur. Polym. J., 2008, 44, 2830–2837. 136 J. Yi, Q. Xu, X. Zhang and H. Zhang, Cellulose, 2009, 16, 989–997. 137 J. Majoinen, A. Walther, J. R. McKee, E. Kontturi, V. Aseyev, J. M. Malho, J. Ruokolainen and O. Ikkala, Biomacromolecules, 2011, 12, 2997–3006. 138 J. O. Zoppe, Y. Habibi, O. J. Rojas, R. A. Venditti, L.-S. Johansson, € K. Efimenko, M. Osterberg and J. Laine, Biomacromolecules, 2010, 11, 2683–2691.

This journal is ª The Royal Society of Chemistry 2012

Downloaded by Wuhan University on 06 June 2012 Published on 27 March 2012 on http://pubs.rsc.org | doi:10.1039/C2NR30260H

View Online 139 L. Feng, Z. Zhou, A. Dufresne, J. Huang, M. Wei and L. An, J. Appl. Polym. Sci., 2009, 112, 2830–2837. 140 A. Nel, T. Xia, L. M€adler and N. Li, Science, 2006, 311, 622– 627. 141 T. Kovacs, V. Naish, B. O’Connor, C. Blaise, F. Gagne, L. Hall, V. Trudeau and P. Martel, Nanotoxicology, 2010, 4, 255–270. 142 X. Zhang, J. Huang, P. R. Chang, J. Li, Y. Chen, D. Wang, J. Yu and J. Chen, Polymer, 2010, 51, 4398–4407. 143 N. Lewinski, V. Colvin and R. Drezek, Small, 2008, 4, 26–49. 144 R. Brayner, Nano Today, 2008, 3, 48–55. 145 G. Decher, Science, 1997, 277, 1232–1237. 146 P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy and N. A. Kotov, Science, 2007, 318, 80–83. 147 K. Norman, A. Ghanbari-Siahkali and N. B. Larsen, Annu. Rep. Prog. Chem., Sect. C, 2005, 101, 174. 148 Y. Habibi, L. Foulon, V. Aguie-Beghin, M. Molinari and R. Douillard, J. Colloid Interface Sci., 2007, 316, 388–397. 149 Y. Habibi, I. Hoeger, S. S. Kelley and O. J. Rojas, Langmuir, 2010, 26, 990–1001. 150 E. Kontturi, L.-S. Johansson, K. S. Kontturi, P. Ahonen, P. C. Th€ une and J. Laine, Langmuir, 2007, 23, 9674–9680. 151 P. Podsiadlo, S.-Y. Choi, B. Shim, J. Lee, M. Cuddihy and N. A. Kotov, Biomacromolecules, 2005, 6, 2914–2918. 152 E. D. Cranston, D. G. Gray and M. W. Rutland, Langmuir, 2010, 26, 17190–17197. 153 B. Jean, F. Dubreuil, L. Heux and F. Cousin, Langmuir, 2008, 24, 3452–3458. 154 E. D. Cranston and D. G. Gray, Sci. Technol. Adv. Mater., 2006, 7, 319–321. 155 Y. Habibi, T. Heim and R. Douillard, J. Polym. Sci., Part B: Polym. Phys., 2008, 46, 1430–1436. 156 I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev and S. S. Kelley, Soft Matter, 2011, 7, 1957–1967. 157 L. Csoka, I. C. Hoeger, P. Peralta, I. Peszlen and O. J. Rojas, J. Colloid Interface Sci., 2011, 363, 206–212. 158 E. D. Cranston and D. G. Gray, Biomacromolecules, 2006, 7, 2522– 2530. 159 E. D. Cranston and D. G. Gray, Colloids Surf., A, 2008, 325, 44–51. 160 P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann and N. A. Kotov, Langmuir, 2007, 23, 7901–7906. 161 L. Sui, L. Huang, P. Podsiadlo, N. A. Kotov and J. Kieffer, Macromolecules, 2010, 43, 9541–9548. 162 J. P. de Mesquita, C. L. Donnici and F. V. Pereira, Biomacromolecules, 2010, 11, 473–480. 163 J. P. de Mesquita, P. S. Patrıcio, C. L. Donnici, D. F. S. Petri, L. C. A. de Oliveira and F. V. Pereira, Soft Matter, 2011, 7, 4405– 4413. 164 B. Jean, L. Heux, F. Dubreuil, G. Chambat and F. Cousin, Langmuir, 2009, 25, 3920–3923. 165 D. Li and Y. Xia, Adv. Mater., 2004, 16, 1151–1170. 166 E. E. Ure~ na-Benavides, P. J. Brown and C. L. Kitchens, Langmuir, 2010, 26, 14263–14270. 167 E. E. Ure~ na-Benavides and C. L. Kitchens, Macromolecules, 2011, 44, 3478–3484. 168 A. Watthanaphanit, P. Supaphol, H. Tamura, S. Tokura and R. Rujiravanit, J. Appl. Polym. Sci., 2008, 110, 890–899. 169 W. L. E. Magalha˜es, X. Cao and L. A. Lucia, Langmuir, 2009, 25, 13250–13257. 170 C. Zhou, R. Chu, R. Wu and Q. Wu, Biomacromolecules, 2011, 12, 2617–2625. 171 W.-I. Park, M. Kang, H.-S. Kim and H.-J. Jin, Macromol. Symp., 2007, 249–250, 289–294. 172 O. J. Rojas, G. A. Montero and Y. Habibi, J. Appl. Polym. Sci., 2009, 113, 927–935. 173 M. S. Peresin, Y. Habibi, A.-H. Vesterinen, O. J. Rojas, J. J. Pawlak and J. V. Sepp€ al€ a, Biomacromolecules, 2010, 11, 2471–2477. 174 A. J. Uddin, J. Araki and Y. Gotoh, Biomacromolecules, 2011, 12, 617–624. 175 A. J. Uddin, J. Araki and Y. Gotoh, Composites, Part A, 2011, 42, 741–747. 176 P. Lu and Y.-L. Hsieh, Nanotechnology, 2009, 20, 9, 415604. 177 M. Martınez-Sanz, R. T. Olsson, A. Lopez-Rubio and J. M. Lagaron, Cellulose, 2011, 18, 335–347.

This journal is ª The Royal Society of Chemistry 2012

178 J. Junkasem, R. Rujiravanit and P. Supaphol, Nanotechnology, 2006, 17, 4519–4528. 179 J. Junkasem, R. Rujiravanit, B. P. Grady and P. Supaphol, Polym. Int., 2010, 59, 85–91. 180 A. K. A. Silva, C. Richard, M. Bessodes, D. Scherman and O.-W. Merten, Biomacromolecules, 2009, 10, 9–18. 181 C. Chang and L. Zhang, Carbohydr. Polym., 2011, 84, 40–53. 182 C. A. Garcıa-Gonzalez, M. Alnaief and I. Smirnova, Carbohydr. Polym., 2011, 86, 1425–1438. 183 G. Gong, A. P. Mathew and K. Oksman, Tappi J., 2011, 2, 7–14. 184 G. Siqueira, A. P. Mathew and K. Oksman, Compos. Sci. Technol., 2011, 71, 1886–1892. 185 J. R. Capadona, K. Shanmuganathan, S. Triftschuh, S. Seidel, S. J. Rowan and C. Weder, Biomacromolecules, 2009, 10, 712–716. 186 W. Chen, H. Yu, Q. Li, Y. Liu and J. Li, Soft Matter, 2011, 7, 10360– 10368. 187 L. Heath and W. Thielemans, Green Chem., 2010, 12, 1448–1453. 188 J. R. Capadona, O. Van Den Berg, L. A. Capadona, M. Schroeter, S. J. Rowan, D. J. Tyler and C. Weder, Nat. Nanotechnol., 2007, 2, 765–769. 189 T. Abitbol, T. Johnstone, T. M. Quinn and D. G. Gray, Soft Matter, 2011, 7, 2373–2379. 190 C. Zhou, Q. Wu and Q. Zhang, Colloid Polym. Sci., 2011, 289, 247– 255. 191 C. Zhou, Q. Wu, Y. Yue and Q. Zhang, J. Colloid Interface Sci., 2011, 353, 116–123. 192 M. A. Karaaslan, M. A. Tshabalala, D. J. Yelle and G. BuschleDiller, Carbohydr. Polym., 2011, 86, 192–201. 193 Y. Wang and L. Chen, Carbohydr. Polym., 2011, 83, 1937–1946. 194 C. I. D. Bica, R. Borsali, E. Geissler and C. Rochas, Macromolecules, 2001, 34, 5275–5279. 195 C. I. D. Bica, R. Borsali, C. Rochas and E. Geissler, Macromolecules, 2006, 39, 3622–3627. 196 L. Goetz, M. Foston, A. P. Mathew, K. Oksman and A. J. Ragauskas, Biomacromolecules, 2010, 11, 2660–2666. 197 L. Goetz, A. Mathew, K. Oksman, P. Gatenholm and A. J. Ragauskas, Carbohydr. Polym., 2009, 75, 85–89. 198 M. Roman, S. Dong, A. Hirani and Y. W. Lee, in Polysaccharide Materials: Performance by Design, American Chemical Society, Washington, D.C., 2009, pp. 81–91. 199 D. E. Owens and N. A. Pappar, 3rd, Int. J. Pharm., 2006, 307, 93– 102. 200 J. C. O. Villanova, E. Ayres, S. M. Carvalho, P. S. Patrıcio, F. V. Pereira and R. L. Orefice, Eur. J. Pharm. Sci., 2011, 42, 406– 415. 201 J. K. Jackson, K. Letchford, B. Z. Wasserman, L. Ye, W. Y. Hamad and H. M. Burt, Int. J. Nanomed., 2011, 6, 321–330. 202 H. Wang and M. Roman, Biomacromolecules, 2011, 12, 1585– 1593. 203 I. Adekogbe and A. Ghanem, Biomaterials, 2005, 26, 7241–7250. 204 S. Phongying, S. Aiba and S. Chirachanchai, Polymer, 2007, 48, 393– 400. 205 T. Lertwattanaseri, N. Ichikawa, T. Mizoguchi, Y. Tanaka and S. Chirachanchai, Carbohydr. Res., 2009, 344, 331–335. 206 K. Rinki, S. Tripathi, P. K. Dutta, J. Dutta, A. J. Hunt, D. J. Macquarrie and J. H. Clark, J. Mater. Chem., 2009, 19, 8651–8655. 207 J. J. Blaker, K.-Y. Lee, A. Mantalaris and A. Bismarck, Compos. Sci. Technol., 2010, 70, 1879–1888. 208 P. Wongpanit, N. Sanchavanakit, P. Pavasant, T. Bunaprasert, Y. Tabata and R. Rujiravanit, Eur. Polym. J., 2007, 43, 4123–4135. 209 P. Hariraksapitak and P. Supaphol, J. Appl. Polym. Sci., 2010, 117, 3406–3418. 210 Y. Wang, C. Chang and L. Zhang, Macromol. Mater. Eng., 2010, 295, 137–145. 211 K. A. Mahmoud, J. A. Mena, K. B. Male, S. Hrapovic, A. Kamen and J. H. T. Luong, ACS Appl. Mater. Interfaces, 2010, 2, 2924– 2932. 212 S. Dong and M. Roman, J. Am. Chem. Soc., 2007, 129, 13810– 13811. 213 V. Sharma, M. Cme, J. O. Park and M. Srinivasarao, Science, 2009, 325, 449–451. 214 S. Beck, J. Bouchard and R. Berry, Biomacromolecules, 2011, 12, 167–172. 215 R. V. Bellamkonda, Nat. Mater., 2008, 7, 347–348.

Nanoscale, 2012, 4, 3274–3294 | 3293

Downloaded by Wuhan University on 06 June 2012 Published on 27 March 2012 on http://pubs.rsc.org | doi:10.1039/C2NR30260H

View Online 216 J. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan and C. Weder, Science, 2008, 319, 1370–1374. 217 K. Shanmuganathan, J. R. Capadona, S. J. Rowan and C. Weder, J. Mater. Chem., 2010, 20, 180–186. 218 K. Shanmuganathan, J. R. Capadona, S. J. Rowan and C. Weder, ACS Appl. Mater. Interfaces, 2010, 2, 165–174. 219 R. Rusli, K. Shanmuganathan, S. J. Rowan, C. Weder and S. J. Eichhorn, Biomacromolecules, 2010, 11, 762–768. 220 S. L. Craig, Angew. Chem., Int. Ed., 2008, 47, 8776–8777. 221 K. Shanmuganathan, J. R. Capadona, S. J. Rowan and C. Weder, Prog. Polym. Sci., 2010, 35, 212–222. 222 W. Thielemans, C. R. Warbey and D. A. Walsh, Green Chem., 2009, 11, 531–537. 223 M. J. Bonne, K. J. Edler, J. Grant Buchanan, D. Wolverson, E. Psillakis, M. Helton, W. Thielemans and F. Marken, J. Phys. Chem. C, 2008, 112, 2660–2666. 224 C. Zollfrank, P. Cromme, M. Rauch, H. Scheel, M. H. Kostova, K. Gutbrod, S. Gruber and D. V. Opdenbosch, Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 13–25. 225 S. R. Hall, Proc. R. Soc. London, Ser. A, 2009, 465, 335–366. 226 E. Dujardin, M. Blaseby and S. Mann, J. Mater. Chem., 2003, 13, 696–699. 227 S. Gruber, R. N. K. Taylor, H. Scheel, P. Greil and C. Zollfrank, Mater. Chem. Phys., 2011, 129, 19–22. 228 S. Gruber, A. Gottschlich, H. Scheel, C. Aresipathi, I. Bannat, C. Zollfrank and M. Wark, Phys. Status Solidi B, 2010, 247, 2401– 2411. 229 H. Scheel, C. Zollfrank and P. Greil, J. Mater. Res., 2009, 24, 1709– 1715. 230 H. Liu, D. Wang, S. Shang and Z. Song, Cellulose, 2011, 18, 67–74. 231 N. Drogat, R. Granet, V. Sol, A. Memmi, N. Saad, C. K. Koerkamp, P. Bressollier and P. Krausz, J. Nanopart. Res., 2011, 13, 1557–1562. 232 S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto and H. Yano, Biomacromolecules, 2009, 10, 2714–2717. 233 H. Koga, E. Tokunaga, M. Hidaka, Y. Umemura, T. Saito, A. Isogai and T. Kitaoka, Chem. Commun., 2010, 46, 8567–8569. 234 K. A. Mahmoud, K. B. Male, S. Hrapovic and J. H. T. Luong, ACS Appl. Mater. Interfaces, 2009, 1, 1383–1386. 235 Y. Shin, I.-T. Bae, B. W. Arey and G. J. Exarhos, J. Phys. Chem. C, 2008, 112, 4844–4848. 236 H. Liu, D. Wang, S. Shang and Z. Song, Carbohydr. Polym., 2011, 83, 38–43. 237 Y. Shin, I.-T. Bae, B. W. Arey and G. J. Exarhos, Mater. Lett., 2007, 61, 3215–3217. 238 K. Benaissi, L. Johnson, D. A. Walsh and W. Thielemans, Green Chem., 2010, 12, 220–222. 239 L. Johnson, W. Thielemans and D. A. Walsh, Green Chem., 2011, 13, 1686–1693. 240 Y. Shin, J. M. Blackwood, I.-T. Bae, B. W. Arey and G. J. Exarhos, Mater. Lett., 2007, 61, 4297–4300. 241 C. M. Cirtiu, A. F. Dunlop-Briere and A. Moores, Green Chem., 2011, 13, 288–291.

3294 | Nanoscale, 2012, 4, 3274–3294

242 S. Padalkar, J. R. Capadona, S. J. Rowan, C. Weder, R. J. Moon and L. A. Stanciu, J. Mater. Sci., 2011, 46, 5672–5679. 243 Y. Zhou, E.-Y. Ding and W.-D. Li, Mater. Lett., 2007, 61, 5050– 5052. 244 Y. Shin and G. J. Exarhos, Mater. Lett., 2007, 61, 2594–2597. 245 D. Gebauer, V. Oliynyk, M. Salajkova, J. Sort, Q. Zhou, L. Bergstr€ om and G. Salazar-Alvarez, Nanoscale, 2011, 3, 3563– 3566. 246 F. Alloin, M. A. S. Azizi Samir, J.-Y. Cavaille, A. Dufresne, M. Paillet and J.-Y. Sanchez, Fr. Pat., 0 207 746, 2002. 247 M. A. S. Azizi Samir, F. Alloin, W. Gorecki, J.-Y. Sanchez and A. Dufresne, J. Phys. Chem. B, 2004, 108, 10845–10852. 248 M. A. S. Azizi Samir, L. Chazeau, F. Alloin, J.-Y. Cavaille, A. Dufresne and J.-Y. Sanchez, Electrochim. Acta, 2005, 50, 3897– 3903. 249 M. A. S. Azizi Samir, A. M. Mateos, F. Alloin, J.-Y. Sanchez and A. Dufresne, Electrochim. Acta, 2004, 49, 4667–4677. 250 M. A. S. Azizi Samir, F. Alloin, J.-Y. Sanchez and A. Dufresne, Macromolecules, 2004, 37, 4839–4844. 251 M. Schroers, A. Kokil and C. Weder, J. Appl. Polym. Sci., 2004, 93, 2883–2888. 252 N. Angulakshmi, S. Thomas, K. S. Nahm, A. M. Stephan and R. N. Elizabeth, Ionics, 2011, 17, 407–414. 253 F. Alloin, A. D’Aprea, N. E. Kissi, A. Dufresne and F. Bossard, Electrochim. Acta, 2010, 55, 5186–5194. 254 I. Kalashnikova, H. Bizot, B. Cathala and I. Capron, Langmuir, 2011, 27, 7471–7479. 255 M. V. Tzoumaki, T. Moschakis, V. Kiosseoglou and C. G. Biliaderis, Food Hydrocolloids, 2011, 25, 1521–1529. 256 A. Bhatnagar and M. Sillanp€a€a, Chem. Eng. J., 2010, 157, 277–296. 257 K. Kamegawa, K. Nishikubo, M. Kodama, Y. Adachi and H. Yoshida, Colloids Surf., A, 2005, 254, 31–35. 258 P. T. Orr, G. J. Jones and G. R. Hamilton, Water Res., 2004, 38, 4455–4461. 259 S. Alila and S. Boufi, Ind. Crops Prod., 2009, 30, 93–104. 260 L. J. Nielsen, S. Eyley, W. Thielemans and J. W. Aylott, Chem. Commun., 2010, 46, 8929–8931. 261 I. Filpponen and D. S. Argyropoulos, Biomacromolecules, 2010, 11, 1060–1066. 262 H. Sadeghifar, I. Filpponen, S. P. Clarke, D. F. Brougham and D. S. Argyropoulos, J. Mater. Sci., 2011, 46, 7344–7355. 263 E. Feese, H. Sadeghifar, H. S. Gracz, D. S. Argyropoulos and R. A. Ghiladi, Biomacromolecules, 2011, 12, 3528–3539. 264 S. Eyley and W. Thielemans, Chem. Commun., 2011, 47, 4177–4179. 265 M. Hasani, E. D. Cranston, G. Westman and D. G. Gray, Soft Matter, 2008, 4, 2238–2244. 266 K. B. Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi and A. Dufresne, ACS Macro Lett., 2012, 1, 236–240. 267 M. L. Auad, V. S. Contos, S. Nutt, M. I. Aranguren and N. E. Marcovich, Polym. Int., 2008, 57, 651–659. 268 R. A. A. Muzzarelli, P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini, M. M. Belmonte, F. Giantomassi, F. Orlandi and C. Muzzarelli, Carbohydr. Polym., 2007, 70, 274–284.

This journal is ª The Royal Society of Chemistry 2012