Presentation Babak Falsafi.pdf - CHIST-ERA Conference 2011

2 downloads 73 Views 22MB Size Report
2011 Babak Falsafi. IT: An Exponenwal Growth. Four decades of digital pla}orm proliferawon. Exponenwal increase in density & decrease in cost. Intel 4004 ...
Compu&ng     (on  Massive  Data)   with  Dark  Silicon   Babak  Falsafi   Director,  EcoCloud   ecocloud.ch   © 2011 Babak Falsafi

IT  is  ever  more  indispensable   Our  life  w/o  digital  data            is  unimaginable  as   •  Enterprises   •  Governments   •  SocieCes   •  Individuals   •  ScienCsts   © 2011 Babak Falsafi

“He  saw  your  laptop  and  wants  to   know  if  he  can  check  his  Hotmail.”  

IT:  An  ExponenCal  Growth   Intel  4004,  1971  

92,000  ops/second  

Intel  Nehalem,  2009  

12,000,000,000  ops/second  

Four  decades  of  digital  plaIorm  proliferaCon   ExponenCal  increase  in  density  &  decrease  in  cost   © 2011 Babak Falsafi

A  Brief  History  of  IT   CommunicaCon  Era   Consumer  Era   1970s-­‐  

1980s  

1990s  

Mainframes  

PC  Era   •  From  scienCfic  instrument  to  commodity   •  From  product  to  service   © 2011 Babak Falsafi

Today+  

IT:  The  Consumer  Era   Phenomenal  change  from  decades  ago:   •  Instant  connecCvity   •  Shopping  now  online   •  Daily  interacCon  >  300  people   •  Augmented  reality   •  Streaming  movies   •  …..   IT  is  at  core  of  everyone’s  life!   © 2011 Babak Falsafi

Change  in  IT’s  Landscape   ➜ Emergence  of  Data-­‐Centric  Universe   –  IT  focus  on  massive  data  

•  End  of  Dennard  Scaling  

–  Higher  density    higher  energy  

•  Data-­‐Centric  Universe  meets  Energy  Wall   What  are  design  implicaCons?   © 2011 Babak Falsafi

Our  Data-­‐Centric  Universe:   Data  Growing  faster  than  Technology   1200  

•  Commerce  enCrely   data-­‐driven   1000   •  Science  handling   800   massive  data   600   •  Companies   spending  $$$  to   collect/analyze  data   400   •  Personalized   200   compuCng  

0  

Terabytes  (=  1012  bytes)  of  Data     Technology  Growth   (Moore’s  law)  

Top  Ten  Data   Warehouse  size  

1998      2000        2002      2004      2006      2008      2010      2012   WinterCorp  Survey,  www.wintercorp.com  

© 2011 Babak Falsafi

Data  Deluge:  1200  Exabytes  in  2010   (Economist,  Feb.  25th  2010)    

•  Only  150  Exabytes  in  2005   •  Supply-­‐chain  management,  10x  increase  in  data  in  a  year   •  US  aerial  surveillance  models  30x  more  data  in  2011   © 2011 Babak Falsafi

•  Era  of  “knowledge  economy”   •  50%  of  economic  value  in  developed  countries   •  Dominant  supply-­‐chain  component  of  products/services   © 2011 Babak Falsafi

Data-­‐Centric  Science:     “The  Fourth  Paradigm”   Mining  data  from:   •  Archives   •  Humans   •  Sensors/instruments   •  SimulaCons   Unifying  theory,  experimentaCon,  simulaCon,   analyCcs  on  massive  data   © 2011 Babak Falsafi

Data  Comes  in  Various  Flavors  

Satellite  

Commerce   © 2011 Babak Falsafi

Entertainment  

Life  

Health  

Search  

Simula&on  

It’s  all  about  Accessing  Data!  

Data Centers  

© 2011 Babak Falsafi

Cloud  Compu&ng   A  compuCng  paradigm  shil  to  enable  ubiquitous  connecCvity  

How  to  design  for  massive  data  

© 2011 Babak Falsafi

?

Change  in  IT’s  Landscape   •  Emergence  of  Digital  Universe   –  IT  focus  on  massive  data  

➜ End  of  “Free  Energy”  

–  Higher  density    higher  energy  

•  Data-­‐centric  Universe  meets  Energy  Wall   What  are  design  implicaCons?   © 2011 Babak Falsafi

IT  Energy  is  ShooCng  Up!   IT  riding  on  technology  that   was  energy-­‐friendly   •  ExponenCally  bener   performance,  density   •  Constant  power  envelope   But,  energy  is  shooCng  up!   © 2011 Babak Falsafi

Household  Energy  in  the  UK   (UK  BERR,  2008)   Cell  phones,   Laptops  

© 2011 Babak Falsafi

Household  Energy  in  the  US     (NY  Times,  2011)  

© 2011 Babak Falsafi

1400   1200   1000   800   600   400   200   0  

400  

Energy  Star's   projecCons   ProjecCons   without  voltage   reducCon  

2001          2005            2009            2013          2017    

Cost  in  Billion  $  

Billion  KilowaP  hour/year  

Data  center  Energy  in  the  US   (extrapolated  from  Energy  Star,  2007)   350   300   250   200  

With  12%  annual  increase   in  Electricity  Cost  

150   100   50   0  

2001          2005            2009            2013          2017    

•  ExponenCal  costs  if  not  miCgated   •  Today,  carbon  footprint  of  airline  industry   © 2011 Babak Falsafi

Energy  >  Capital  Cost  

•  Servers  are  getng  relaCvely  cheaper   •  Power  is  beginning  to  dominate  cost   © 2011 Babak Falsafi

James  Hamilton’s  Blog,   mvdirona.com,  2008  

End  of  “Free”  Energy   1  transistor    =  1x  energy  

2  transistors    =  1x  energy  

2  years  later  

2  years  later  

Before  (1970~2000):  

–  Dennard  scaling   –  Used  to  make  transistors  smaller   –  Smaller  transistors  less  electricity  to  operate  

Now  (2004-­‐):  

–  ConCnue  to  make  transistors  smaller   –  But,  they  use  similar  electricity  to  operate  

© 2011 Babak Falsafi

4  transistors    =  1x  energy  

Four  decades  of  Dennard  Scaling  

Dennard  et.  al.,  1974  

Robert  H.  Dennard,  picture  from  Wikipedia  

•  P  =  C  V2  f     •  Increase  in  device  count   •  Lower  supply  voltages     ➜   Constant  power/chip   © 2011 Babak Falsafi

Leakage  Killed  Dennard  Scaling   Leakage:   •  ExponenCal  in  inverse  of  Vth   •  ExponenCal  in  temperature   •  Linear  in  device  count   To  switch  well   •  must  keep  Vdd/Vth  >  3   ➜ Vdd  can’t  go  down   © 2011 Babak Falsafi

End  of  Dennard  Scaling  (ITRS)  

Power  Supply  Vdd  

1.4   1.2   1  

Today  

0.8  

2001  

0.6  

2005   Slope=-­‐.026  

0.4   0.2  

2008U   2009  

Slope=-­‐.053  

0   2001  

2005  

2009  

2013  

2017  

2021  

Mike  Ferdman,  from  ITRS  pages,  July  2011  

Supply  voltages  going  down  at  much  lower  rate!   23  

© 2011 Babak Falsafi

Dark  Silicon:  End  of  MulCcore  Scaling  

Parallelism  has  limits   even  in  Servers!  

Number of Cores

Can  not  power  up  chip   for  fully  parallel  SW  

Must:   •  specialize   •  selecCvely  power  up   © 2011 Babak Falsafi

1024 512 Dark   256 Silicon   128 64 32 16 Max EMB Cores 8 EMB + 3D mem GPP + 3D mem 4 Ideal-P + 3D mem 2 1 2004 2007 2010 2013 2016 2019 Year of Technology Introduction Hardavellas  et.  al.,  “ Toward  Dark  Silicon   in  Servers”,  IEEE  Micro,  2011  

Massive  Data  meets  Energy  Wall  

? It’s  Cme  for  Europe  to  lead  the  way:   •  ExisCng  Industrial  Ecosystem  (e.g.,  ARM,  ST,  SAP)   •  Long  leadership  in  energy-­‐efficient  design   © 2011 Babak Falsafi

Change  in  IT’s  Landscape   •  Emergence  of  Data-­‐Centric  Universe   –  IT  focus  on  massive  data  

•  End  of  “Free  Energy”  

–  Higher  density    higher  energy  

➜ Data-­‐Centric  Universe  meets  Energy  Wall   What  are  design  implicaCons?   © 2011 Babak Falsafi

What  are  the  design  ImplicaCons?   Short  term:   •  MulCcore  scaling  (parallelism)   •  Lower  energy  +  higher  data  connecCvity   Long  term:   •  Dark  Silicon   •  ProbabilisCc  compuCng   •  HolisCc  IntegraCon   © 2011 Babak Falsafi

Scale-­‐Out  vs.  Scale-­‐Up  Workloads   Shared  Memory  

Shared  Memory  

worker   data  

Sharding  

Sharding  

worker   data  

© 2011 Babak Falsafi

Emerging  workloads  scale  out!  

Emerging  Workloads  are  Scale-­‐Out   Examples:   •  Data  serving  (YCSB)   •  Streaming   •  Search   •  AnalyCcs   •  Web   © 2011 Babak Falsafi

Scale-­‐Out  vs.  Scale-­‐Up  Chips   Server 1

Server

Server 2

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

8x8 Crossbar

8x8 Crossbar

8x8 Crossbar

8x8 Crossbar

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

Server 3

Server 4

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

8x8 Crossbar

8x8 Crossbar

8x8 Crossbar

8x8 Crossbar

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

Scale-­‐Up  Chip:  Conven&onal  Shared  Memory    

Scale-­‐Out  Chip:  Clustered  Memory  

•  Scaling  out  divides  chip  among  disconnected  servers   •  Maximizes  performance  density,  improved  reliability   © 2011 Babak Falsafi

The  EuroCloud  Server:   A  Scale-­‐Out  Chip  for  Massive  Data   (www.eurocloudserver.com)  

3D  SoC/DRAM:   •  1000x  more  connecCvity   •  10x  less  system  energy   •  Runs  off-­‐the-­‐shelf  SW  stack  

© 2011 Babak Falsafi

Your  Future  1-­‐Wan     Datacenter  Chip  

UCyprus  

SpecializaCon  can  buy  1000x  in  Energy   (from  a  sample  of  20  chips)   BePer  

Pen&um  

Microprocessors  

DSP’s  

Custom  

3  orders  of     magnitude!  

Mihai  Budiu,  “On  the  Energy  Efficiency  of  ComputaCon”,  2004   © 2011 Babak Falsafi

Beyond  EuroCloud  Server:   VerCcally-­‐Integrated  Server  Arch.  (VISA)   IdenCfy  energy  hogs:   •  Specialize   •  E.g.,  Intel’s  TCP/IP  CPU   Power  up  (dark  silicon)   services  on  the  fly   •  Others:  Temam  @  INRIA,   MSR,  UCSD   © 2011 Babak Falsafi

Heap  Widget       CPU   I/O  Widget       DB  Widget       Network   Widget      

Machine   Learning   Widget      

VISA  System-­‐On-­‐Chip  

Exact  vs.  ProbabilisCc   Much  computaCon  is  error-­‐resilient:   •  Machine  learning/analyCcs   •  Image  processing/visual  computaCon   •  Audio/speech   •  Search   Similarly,  two  flavors  of  data   •  Exact:  affects  funcConality  (pointer  address)   •  ProbabilisCc:  affects  quality  (pixels  in  image)   © 2011 Babak Falsafi

Perforated  (Skipped)  ComputaCon   bodytrack  benchmark   (PARSEC)   •  Compiler-­‐driven   perforaCon   •  Skip  40%  of   computaCon   •  Maintains  track  on   head,  chest  and  legs     ComputaCon  does  not   have  to  be  exact!   © 2011 Babak Falsafi

Hoffman  et.  al.,  “Using  Loop  PerforaCon  to   Dynamically  Adapt  ApplicaCon  Behavior   to  Meet  Real-­‐Time  Deadlines”,  2010  

DeSyRe:  ProbabilisCc  CompuCng  

Core   Core   Core   Core   NOC   Filter

Filter

Filter

Filter

Video

Video

Video

Video

Audio

Audio

Audio

Audio

ML  

ML  

ML  

ML  

Resilient   Data  

Probabilis&c  

© 2011 Babak Falsafi

Core   Core   Core   Core  

Exact  

Exploit  resilience  in            massive  data   •  ParCCon  according  to   resilience   •  Push  voltages  down  to   “unsafe”  regions   •  Maximize  throughput  with   less  energy  

Control   Data  

HolisCc  IntegraCon  Beyond  IT  

© 2011 Babak Falsafi

Infrastructure  

So_ware  

•  Need  interdisciplinary   (sciences  +  technology)   •  Tighter  integraCon   enables  higher   efficiency   •  From  SW  to  Energy   •  Long-­‐term  vision:   ➔ Energy-­‐neutral  IT  

Research  Center  @  EPFL   ecocloud.ch   Dozen  faculty,  CSEM     &  industrial  affiliates  

–  HP,  Intel,  IBM,  Microsol,  Nokia,  Oracle,              Credit  Suisse,  Swisscom,…   –  A  few  million  CHF  of  annual  funding   –  Datacenter  Observatory  (test  bed)  

Research:   •  Energy-­‐minimal  technologies  for  massive  data   •  Warehouse-­‐scale  data  management   •  Scalable  cloud  applicaCons  &  services  

Making  tomorrow’s  clouds  green  &  sustainable   © 2011 Babak Falsafi

Bringing  it  All  Together   •  IT  is  changing   everything  &  itself   changing   •  IT  systems  are   inefficient  &  too   robust   •  Plow  massive  data   with  minimal  energy  

?

A  new  IT  revolu&on  is  emerging,     we  have  a  great  opportunity  to  lead!   © 2011 Babak Falsafi

Thank  You!   For  more  informaCon  please  visit  us  at     ecocloud.ch  

© 2011 Babak Falsafi