Rapid Synthesis of Carbon Dots by Hydrothermal

0 downloads 0 Views 3MB Size Report
Mar 9, 2016 - Keywords: carbon dots; lignin; H2O2; hydrothermal synthesis; bioimaging .... excitation and the CdTe quantum dots (QDs) were preserving 25%.
materials Article

Rapid Synthesis of Carbon Dots by Hydrothermal Treatment of Lignin Wenxin Chen 1 , Chaofan Hu 2 , Yunhua Yang 3 , Jianghu Cui 4 and Yingliang Liu 4, * 1 2 3

4

*

Department of Chemistry, Jinan University, Guangzhou 510632, China; [email protected] College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, China; [email protected] Department of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou 510642, China; [email protected] Correspondence: [email protected]; Tel.: +86-20-3733-8319

Academic Editor: Lioz Etgar Received: 24 November 2015; Accepted: 23 February 2016; Published: 9 March 2016

Abstract: A rapid approach has been developed for the fluorescent carbon dots (CDs) by the hydrothermal treatment of lignin in the presence of H2 O2 . The as-synthesized CDs were found to emit blue photoluminescence with excellent photostability. Moreover, the CDs displayed biocompatibility, low cytotoxicity, and high water solubility properties. Finally, the as-resulted CDs were demonstrated to be excellent probes for bioimaging and biosensing applications. Keywords: carbon dots; lignin; H2 O2 ; hydrothermal synthesis; bioimaging

1. Introduction Carbon dots (CDs) are an interesting class of carbon nanoparticles, which are being investigated for various applications due to their favorable optical stability, low toxicity, biocompatibility, and ease of functionalization [1–3]. Many researchers have studied the synthesis methods and photoluminescence properties of CDs. A variety of synthesis approaches such as laser ablation, electrochemical exfoliation, pyrolysis, incomplete combustion oxidation, acidic oxidation, hydrothermal treatments and microwave synthesis have been developed to prepare CDs [4–11]. Various raw material including graphite oxide, citric acid, glycerol, coffee grounds, soy milk, grass and egg have been used in the synthesis of CDs [12–16]. However, it is still desirable to rapidly synthesize high-quality CDs by an easy and environmentally benign method with low-cost and readily available starting materials. One such suitable raw material is lignin, which is an abundant natural organic polymer, and an excellent source of carbon. There is an increasing interest in using lignin to prepare new carbon-based materials [17–19]. However, it is quite difficult to degrade lignin and its derivatives due to strong carbon to carbon linkages in their molecular structure. Amongst various techniques, the hydrothermal carbonization process is a promising approach for the synthesis of novel carbon-based materials, especially CDs [20]. Herein, we report a rapid route to synthesize highly luminescent CDs by the hydrothermal treatment of lignin with the assistance of H2 O2 . It is well-known that H2 O2 can be dissociated into hydroxyl radicals (¨ OH) under the photoassisted catalysis Fe3+ /Fe2+ in water, and the resulting OH radical is an extremely powerful oxidizing species [21]. The synthesis approach was simple and environmentally friendly. It was demonstrated that the as-prepared CDs exhibit good luminescence property, good water solubility, narrow particle size distribution and low cytotoxicity. The CDs also showed excellent bioimaging capabilities in Hela cells. This work provides a new approach for the preparation of CDs from natural materials, and also demonstrates the potential of CDs in bio-imaging applications. Materials 2016, 9, 184; doi:10.3390/ma9030184

www.mdpi.com/journal/materials

Materials 2016, 9, 184 

2 of 7 

Materials 2016, 9, 184  Materials 2016, 9,of  184 CDs  preparation 

2 of 7 

2 ofin  8   from  natural  materials,  and  also  demonstrates  the  potential  of  CDs  bio‐imaging applications.  preparation  of  CDs  from  natural  materials,  and  also  demonstrates  the  potential  of  CDs  in    bio‐imaging applications.  2. Results and Discussion 2. Results and Discussion  2. Results and Discussion  Figure 1a indicates the pyrolysis products of lignin at 10, 20, 30, 40, 50 and 60 min, respectively. Figure 1a indicates the pyrolysis products of lignin at 10, 20, 30, 40, 50 and 60 min, respectively.  It could be seen that the color of the initial product solution became pale as the time increased. It could be seen that the color of the initial product solution became pale as the time increased. The  Figure 1a indicates the pyrolysis products of lignin at 10, 20, 30, 40, 50 and 60 min, respectively.  The residual lignin was retained on the filter paper (Figure 1b). The synthesis yields of the CDs were residual  lignin  was  retained  on  the  filter  paper  (Figure  1b).  The  synthesis yields  of  the  CDs  were  It could be seen that the color of the initial product solution became pale as the time increased. The  12.06%, 10.2%, 6.67%, 2.3%, 1.05%, 0.8% corresponding to 10, 20, 30, 40, 50 and 60 min, respectively. 12.06%, 10.2%, 6.67%, 2.3%, 1.05%, 0.8% corresponding to 10, 20, 30, 40, 50 and 60 min, respectively.  residual  lignin  was  retained  on  the  filter  paper  (Figure  1b).  The  synthesis yields  of  the  CDs  were  The optical images of the CDs solution exhibited blue luminescence under UV light excitation The  optical  images  of  the  CDs  solution  exhibited  blue  luminescence  under  UV  light  excitation    12.06%, 10.2%, 6.67%, 2.3%, 1.05%, 0.8% corresponding to 10, 20, 30, 40, 50 and 60 min, respectively.  (Figure 1c) and the pyrolysis time of 40 min exhibited the maximum brightness. The CDs solution (Figure 1c) and the pyrolysis time of 40 min exhibited the maximum brightness. The CDs solution  The  optical  images  of  the  CDs  solution  exhibited  blue  luminescence  under  UV  light  excitation    remains transparent for half a year without precipitation. remains transparent for half a year without precipitation.  (Figure 1c) and the pyrolysis time of 40 min exhibited the maximum brightness. The CDs solution  remains transparent for half a year without precipitation. 

    Figure 1. Pyrolysis results for (a) the initial product solution; and (b) the residual lignin after 10, 20, 

Figure 1. Pyrolysis results for (a) the initial product solution; and (b) the residual lignin after 10, 20, 30, 30, 40, 50 and 60 min hydrothermal reaction; and (c) the corresponding filtrate image under 365 nm  Figure 1. Pyrolysis results for (a) the initial product solution; and (b) the residual lignin after 10, 20,  40, 50 and 60 min hydrothermal reaction; and (c) the corresponding filtrate image under 365 nm UV UV lamp irradiation.  30, 40, 50 and 60 min hydrothermal reaction; and (c) the corresponding filtrate image under 365 nm  lamp irradiation. UV lamp irradiation. 

Transmission  electron  microscopy  (TEM)  and  high‐resolution  TEM  (HRTEM)  performed  on  Transmission and high-resolution TEM (HRTEM) performed on the the CDs, and the results are shown in Figure 2. The size of the CDs ranged from 2 to 10 nm. The  Transmission electron electron microscopy microscopy (TEM) (TEM)  and  high‐resolution  TEM  (HRTEM)  performed  on  CDs, and the results are shown in Figure 2. The size of the CDs ranged from 2 to 10 nm. The HRTEM HRTEM  images  indicated  that  the  carbon  dots  have  crystalline  structure  and  the  lattice  spacing  the CDs, and the results are shown in Figure 2. The size of the CDs ranged from 2 to 10 nm. The  images indicated that the carbon dots have crystalline and the lattice spacing distance was distance was about 0.21 nm, close to that of the graphite (100) plane [22].  HRTEM  images  indicated  that  the  carbon  dots  have structure crystalline  structure  and  the  lattice  spacing  about 0.21 nm, close to that of the graphite (100) plane [22]. distance was about 0.21 nm, close to that of the graphite (100) plane [22]. 

    Figure  2.  (a)  Transmission  electron  microscopy  (TEM);  and  (b)  high‐resolution  TEM  (HRTEM)  images of the carbon dots (CDs) prepared by hydrothermal treatment of lignin.  Figure  2. (a) (a) Transmission Transmission  electron  microscopy  (TEM);  and high-resolution (b)  high‐resolution  TEM  (HRTEM)  Figure 2. electron microscopy (TEM); and (b) TEM (HRTEM) images images of the carbon dots (CDs) prepared by hydrothermal treatment of lignin.  of the carbon dots (CDs) prepared by hydrothermal treatment of lignin.

Materials 2016, 9, 184

3 of 8

Materials 2016, 9, 184 

3 of 7 

From the wide-scan X-ray photo-electron spectroscopy (XPS) spectrum depicted in Figure 3, From  the  wide‐scan  X‐ray  photo‐electron  spectroscopy  (XPS)  spectrum  depicted  in  Figure  3,  two strong peaks at 285.5 and 532.0 eV were attributed to oxygen and carbon, respectively. two  strong  peaks  at  285.5  and  532.0  eV  were  attributed  to  oxygen  and  carbon,  respectively.  The  The elemental components of the as-prepared CDs were C (82.58%) and O (17.42%). The deconvoluted elemental components of the as‐prepared CDs were C (82.58%) and O (17.42%). The deconvoluted  2 ) carbon C1s spectrum (Figure 3b) showed threethree  components, which could be assigned as graphite (sp(sp 2)  C1s  spectrum  (Figure  3b)  showed  components,  which  could  be  assigned  as  graphite  3 carbon at 3~286.1 eV, and carboxyl carbon at 288.6 eV. The O spectrum (Figure 3c) at ~283.2 eV, sp 1s The  O1s  spectrum  carbon  at  ~283.2  eV,  sp   carbon  at  ~286.1  eV,  and  carboxyl  carbon  at  288.6  eV.  exhibited three at 530.6, 533.2532.1  eV, which wereeV,  attributed to the C=O, C-OH C-O-C (Figure  3c) peaks exhibited  three 532.1 peaks and at  530.6,  and  533.2  which  were  attributed  to  the and C=O,  C‐OH and C‐O‐C groups, respectively [23,24].    groups, respectively [23,24].

  Figure 3. (a) X‐ray photo‐electron spectroscopy (XPS); (b) C 1s spectra of the as‐prepared CDs.  Figure 3. (a) X-ray photo-electron spectroscopy (XPS); (b) C1s1s; and (c) O ; and (c) O 1s spectra of the as-prepared CDs.

The CDs obtained after 40 min pyrolysis were characterized by Raman spectroscopy, as shown 

The CDs obtained after 40 min pyrolysis were characterized by Raman spectroscopy, as shown −1, which corresponds to the  in Figure 4a. Their Raman spectrum showed a strong D band at 1382 cm ´1 , which corresponds to −1, 1382 in Figure 4a. Their Raman spectrum showed a strongat D1578  band cmmatched  sp3  defects  in  CDs.  Also,  a  G  band  was  observed  cmat which  well  with  the  3 defects in CDs. Also, a G ´ 1 , which matched well with the 2 the sp band was observed at 1578 cm disordered carbon and  the  sp  clusters,  indicating  that  there  were  aromatic  groups  inside  CDs. It  was observed that the CDs have an I /IG ration of 0.91, which might be due to oxygen‐rich edges of  disordered carbon and the sp2 clusters,Dindicating that there were aromatic groups inside CDs. It was the  CDs.  spectra  solution  of  CDs might showed  at  282  and  348  nm,  observed thatThe  the UV‐Vis  CDs have an IDof /Iaqueous  ration of 0.91, which betwo  duepeaks  to oxygen-rich edges of the G indicating  that  there  were  different  surface  states  present  in  the  CDs  solution.  The  fluorescence  CDs. The UV-Vis spectra of aqueous solution of CDs showed two peaks at 282 and 348 nm, indicating spectra of the CDs40min were measured with an F‐4500 fluorescence spectrometer (HITACHI, Tokyo,  that there were different surface states present in the CDs solution. The fluorescence spectra of the Japan), with a slit width of 10 nm for both excitation and emission beams. The excitation wavelength  CDs40min were measured with an F-4500 fluorescence spectrometer (HITACHI, Tokyo, Japan), with a was varied from 280 to 500 nm, in 20 nm increments. The corresponding spectra are given in Figure  slit width of 10 and  nm for both photoluminescence  excitation and emission beams. The was varied 4b.  Bright  colorful  (PL)  emissions  were excitation observed  wavelength from  the  CDs.  The  from emission  280 to 500 nm, in 20 nm increments. The corresponding spectra are given in Figure 4b. Bright maxima  shifted  as  the  excitation  wavelength  increased  and  exhibited  a  maximum  PL  and colorful photoluminescence (PL) emissions were observed from the CDs. The emission maxima intensity  at  an  excitation  wavelength  of  320  nm  and  emission  wavelength  of  430  nm.  The  CDs  shifted as the excitation wavelength increased and exhibited a maximum PL intensity at an excitation showed excellent photostability as the fluorescence intensity did not change, even after continuous  excitation  150  W  Xenon  lamp.  As  shown  in  Figure  5,  the  of  the  fluorescein  wavelength of under  320 nma  and emission wavelength of 430 nm. The CDsfluorescence  showed excellent photostability isothiocyanate  (FITC)  was  quickly  quenched  within  several  minutes  excitation  and  the  as the fluorescence intensity did not change, even after continuous excitation under a 150 CdTe  W Xenon lamp.quantum dots (QDs) were preserving 25% of the original PL intensity after 20 min excitation. The PL  As shown in Figure 5, the fluorescence of the fluorescein isothiocyanate (FITC) was quickly intensity  of  the  CDs  that  we  synthesized  retaining  95%  of  the  initial  intensity  under  ca.  100  min  quenched within several minutes excitation and the CdTe quantum dots (QDs) were preserving 25% excitation. The result indicated that the PL of the CDs was much more stable than of the fluorescent  of the original PL intensity after 20 min excitation. The PL intensity of the CDs that we synthesized FITC and the CdTe QDs. We considered that the formation of CDs and their surface functionalization  retaining 95% of the initial intensity under ca. 100 min excitation. The result indicated that the PL of the CDs was much more stable than of the fluorescent FITC and the CdTe QDs. We considered that the formation of CDs and their surface functionalization take place simultaneously during the

Materials 2016, 9, 184

4 of 8

Materials 2016, 9, 184 

4 of 7 

hydrothermal carbonizationduring  process. presence ofcarbonization  large number process.  of carboxylic acids introduces take  place  simultaneously  the The hydrothermal  The  presence  of  large  several different surface defects. These defects behave as excitation energy traps, and are responsible number  of  carboxylic  acids  introduces  several  different  surface  defects.  These  defects  behave  as  Materials 2016, 9, 184  4 of 7  for the different photoluminescence behaviors. In fact, several mechanisms have been proposed excitation energy traps, and are responsible for the different photoluminescence behaviors. In fact,  to explain thesesimultaneously  unique PLbeen  properties, the size distribution ofproperties,  the CDs, asuch  distribution of take  place  during  the  such hydrothermal  carbonization  process.  The  presence  of as  large  several  mechanisms  have  proposed  to as explain  these  unique  PL  the  size  different emissive trap sites and the formation of several different polyaromatic fluorophores within number  of  carboxylic  acids  introduces  several  different  surface  defects.  These  defects  behave  as  distribution of the CDs, a distribution of different emissive trap sites and the formation of several  the carbogenic core. However, the exact mechanism of the CDs’ PL behavior is still unclear and further excitation energy traps, and are responsible for the different photoluminescence behaviors. In fact,  different polyaromatic fluorophores within the carbogenic core. However, the exact mechanism of the  several  mechanisms  have  been  proposed  to  explain  these  unique  PL  properties,  such  as  the  size  studies are required to understand this property in depth. CDs’ PL behavior is still unclear and further studies are required to understand this property in depth.    distribution of the CDs, a distribution of different emissive trap sites and the formation of several  different polyaromatic fluorophores within the carbogenic core. However, the exact mechanism of the  CDs’ PL behavior is still unclear and further studies are required to understand this property in depth.   

  Figure 4. 4.  (a)  Raman absorbance  and  the is background  given  the  dashed    line;    Figure (a) Raman absorbance and the background given by the is  dashed line;by  (b) photoluminescence

Figure  4.  (a)  Raman absorbance  and  the background  is  given  by  the  dashed  line;    (b) photoluminescence (PL) spectra of the CDs at different excitation wavelengths.  (PL) spectra of the CDs at different excitation wavelengths. (b) photoluminescence (PL) spectra of the CDs at different excitation wavelengths. 

  Figure 5. Photostability comparison of the fluorescent CDs, CdTe QDs and fluorescein isothiocyanate    Figure 5. Photostability comparison of the fluorescent CDs, CdTe QDs and fluorescein isothiocyanate (FITC) in a fluorescence spectrophotometer with a 150 W Xe lamp under 360 nm excitation.  (FITC) in a fluorescence spectrophotometer with a 150 W Xe lamp under 360 nm excitation. Figure 5. Photostability comparison of the fluorescent CDs, CdTe QDs and fluorescein isothiocyanate 

(FITC) in a fluorescence spectrophotometer with a 150 W Xe lamp under 360 nm excitation.  To investigate the feasibility of using CDs for bio‐imaging, A549 human lung adenocarcinoma  To investigate the of using CDs for bio-imaging, A549 lung adenocarcinoma cells  were  used  to feasibility evaluate  the  cytocompatibility  of  the  CDs.  The human cell  viability  of  the  CDs  was cells were To investigate the feasibility of using CDs for bio‐imaging, A549 human lung adenocarcinoma  used to evaluate the cytocompatibility of the CDs. The cell viability of the CDs was determined determined by a methylthiazoleterazolium (MTT) assay. As can be seen in Figure 6, the MTT assays  cells  were  used  to  evaluate  the  cytocompatibility  the inCDs.  The  cell MTT viability  was  of cell viability reports indicate that the CDs have very low cytotoxicity. This result confirms that  by a methylthiazoleterazolium (MTT) assay. As can beof  seen Figure 6, the assaysof ofthe  cellCDs  viability determined by a methylthiazoleterazolium (MTT) assay. As can be seen in Figure 6, the MTT assays  CDs can be used for imaging or other biomedical applications.  reports indicate that the CDs have very low cytotoxicity. This result confirms that CDs can be used for

of cell viability reports indicate that the CDs have very low cytotoxicity. This result confirms that  imaging or other biomedical applications. CDs can be used for imaging or other biomedical applications. 

Materials 2016, 9, 184 Materials 2016, 9, 184  Materials 2016, 9, 184 

5 of 8 5 of 7  5 of 7 

  Figure 6. Cytotoxicity evaluations test of A549 cells with different concentrations of CDs40min 40min after 24,   after 24,  Figure 6. Cytotoxicity evaluations test of A549 cells with different concentrations of CDs Figure 6. Cytotoxicity evaluations test of A549 cells with different concentrations of CDs40min after 24, 48 and 72 h incubation.  48 and 72 h incubation.  48 and 72 h incubation.

The obtained CDs from 40 min hydrothermal carbonization were introduced into the Hela cells,  The obtained CDs from 40 min hydrothermal carbonization were introduced into the Hela cells,  The obtained CDs from 40 min hydrothermal carbonization wereconfocal  introduced into the Hela and  their  bio‐imaging  capabilities  were  evaluated  evaluated  using  in  in  vitro  vitro  microscopy  test. cells, The  and  their  bio‐imaging  capabilities  were  using  confocal  microscopy  test.  The  and their bio-imaging capabilities were evaluated using in vitro confocal microscopy test. The results results  showed  that  the  photoluminescent  spots  were  observed  only  in  the  cell  membrane  and  results  showed  that  the  photoluminescent  spots  were  observed  only  in  the  cell  membrane  and  showed that the photoluminescent spots were observed only in the cell membrane and cytoplasmic area cytoplasmic area of the cell, indicating that the CDs were able to easily penetrate into the cell (Figure 7).  cytoplasmic area of the cell, indicating that the CDs were able to easily penetrate into the cell (Figure 7).  of theobservation  cell, indicating that theagreement with  CDs were able toprevious  easily penetrate the cell (Figure 7). This observation This  was is in  studies into on  the  the  interaction  of  living  living  cells  with  with  This  observation  was is in  agreement with  previous  studies  on  interaction  of  cells  was is in agreement with previous studies on the interaction of living cells with nanomaterials nanomaterials  [25].  [25].  The  The  results  results  illustrate  illustrate  that  that  CDs  CDs  can  can  be  be  used  used  as  as  fluorescence  fluorescence  probe  probe [25]. for     nanomaterials  for  The results illustrate that CDs can be used as fluorescence probe for bio-imaging applications. bio‐imaging applications.  bio‐imaging applications.    

  Figure  7.  7.  (a)  (a)  A  A  confocal  confocal  fluorescence  fluorescence  microphotograph  microphotograph  of  of  Hela  Hela  cells  cells  labeled  labeled  with  with  the  the  CDs  CDs     Figure  Figure 7. (a) A confocal fluorescence microphotograph of Hela cells labeled with the CDs (λex: 405 nm); (λex: 405 nm); (b) A bright field microphotograph of the cells; (c) An overlay image of (a) and (b).  (λex: 405 nm); (b) A bright field microphotograph of the cells; (c) An overlay image of (a) and (b).  (b) A bright field microphotograph of the cells; (c) An overlay image of (a) and (b).

3. Materials and Methods     3. Materials and Methods  3. Materials and Methods 3.1. Preparation of the Fluorescent CDs  3.1. Preparation of the Fluorescent CDs  3.1. Preparation of the Fluorescent CDs In  a  typical  typical  procedure,  procedure,  fluorescent  fluorescent  CDs  CDs  were  synthesized  synthesized  as  as  follows:  follows:  100  100  mg  lignin  lignin  was  was  In  In aa typical procedure, fluorescent CDs werewere  synthesized as follows: 100 mg ligninmg  was dispersed dispersed in 30 mL purified water and ultrasonicated for 10 min, then 2 mL H 2 O 2  was added, and  dispersed in 30 mL purified water and ultrasonicated for 10 min, then 2 mL H 2O2 was added, and  in 30 mL purified water and ultrasonicated for 10 min, then 2 mL H2 O2 was added, and the mixture the mixture was sealed into a 50 mL Teflon lined stainless steel autoclave, which was then placed in  the mixture was sealed into a 50 mL Teflon lined stainless steel autoclave, which was then placed in  was sealed into a 50 mL Teflon lined stainless steel autoclave, which was then placed in a muffle a muffle furnace followed by hydrothermal treatment at 180 °C for 10, 20, 30, 40, 50 and 60 min. After  a muffle furnace followed by hydrothermal treatment at 180 °C for 10, 20, 30, 40, 50 and 60 min. After  furnace followed by hydrothermal treatment at 180 ˝ C for 10, 20, 30, 40, 50 and 60 min. After the the  reaction,  reaction,  the  the  autoclave  autoclave  was  was  cooled  cooled  down  down  naturally,  and  and  the  the  obtained  obtained  yellow  yellow  solution  solution  was  was  the  reaction, the autoclave was cooled down naturally,naturally,  and the obtained yellow solution was filtered with a filtered  with  a  a  0.22  0.22  μm  μm  membrane  membrane  filter  filter  (Millipore,  Boston,  Boston,  MA,  USA)  USA)  to  to  remove  remove  the  the  unreacted  unreacted  filtered  0.22 µm with  membrane filter (Millipore, Boston,(Millipore,  MA, USA) to removeMA,  the unreacted lignin. The filtrate was lignin.  The  The  filtrate  filtrate  was  was  subjected  subjected  to  dialysis  dialysis  for  for  2  2  days  days  using  using  a  a  3500  3500  Da  Da  dialysis  dialysis  membrane  membrane  lignin.  subjected to dialysis for 2 days using ato  3500 Da dialysis membrane (Spectrumlabs, Rancho Dominguez, (Spectrumlabs,  Rancho  Rancho  Dominguez,  Dominguez,  CA,  USA)  USA)  to  to  remove  remove  the  the  excess  excess  H H2O O22. .  The  The  resulting  resulting  yellow  yellow  (Spectrumlabs,  CA, USA) to remove the excess H2 O2CA,  . The resulting yellow solution was 2freeze-dried to obtain the solution was freeze‐dried to obtain the final CDs.  solution was freeze‐dried to obtain the final CDs.  final CDs. 3.2. Characterization Methods  3.2. Characterization Methods  Morphological  features  features  of  of  the  the  CDs  CDs  were  were  using  using  a  a  transmission  transmission  electron  electron  microscopy  microscopy  (TEM,  (TEM,  Morphological  Philips TECNAI 10, Amsterdam, Holland) and field emission electron microscope (JEOL JEM‐2100F,  Philips TECNAI 10, Amsterdam, Holland) and field emission electron microscope (JEOL JEM‐2100F, 

Materials 2016, 9, 184

6 of 8

3.2. Characterization Methods Morphological features of the CDs were using a transmission electron microscopy (TEM, Philips TECNAI 10, Amsterdam, Holland) and field emission electron microscope (JEOL JEM-2100F, JEOL, Tokyo, Japan). X-ray photo-electron spectroscopy (XPS, AXIS ULTRA DLD, Kratos, Manchester, British) was used to investigate the functional groups present on the surface of the CDs. The fluorescence spectra of the CDs were measured with a fluorescence spectrometer (F-4500, HITACHI, Tokyo, Japan), with a slit width of 10 nm and 10 nm for excitation and emission, respectively. The excitation wavelength increased by a 20 nm increment starting from 280 to 500 nm. 3.3. Fluorescence Imaging Experiments Hela cells were seeded in each well of a confocal dish (a coverglass-bottom dish) and cultured at 37 ˝ C for 24 h. An aqueous solution of the CDs (0.1 mg/mL) was passed through a 0.2 µm sterile membrane filter. The filtered fluorescent suspension (40, 50, and 60 µL) was mixed with the culture medium (200 µL) and then added to three wells of the confocal dish (the fourth used as a control) in which the Hela cells were grown. After an incubation period of 2 h, the medium was removed and the cells were washed thoroughly three times with phosphate buffered saline (PBS) and kept in PBS for the optical imaging. Cellular uptake of CDs by Hela cells was monitored by confocal microscopy under the excitation wavelength of 405 nm. 4. Conclusions In conclusion, we have demonstrated that a fast, efficient and green method to synthesize fluorescent carbon dots by the hydrothermal treatment of lignin under the action of H2 O2 . The resulting CDs were thoroughly characterized and showed excellent potential for applications in biological labeling and biosensors fields. Acknowledgments: This work was financially supported by the National Science Foundation of China (21401028, 21031001, 21571067 and 51372091), the higher school science and technology innovation project of Guangdong Province (cxzd1014), the youth fund of Guangdong Provincial Academy of Sciences (qnjj201406), and the Microbial Talents Cultivation Fund of Guangdong Institute of Microbiology. Author Contributions: Chen Wenxin contributed to the concept, supervised the entire research work and wrote the manuscript. Hu Chaofan and Yang Yunhua performed the core experimental works. Cui Jianghu measured the cell imaging experiment. Liu Yingliang contributed to the discussion of the results and conclusions and revised the paper. Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations The following abbreviations are used in this manuscript: CDs PL TEM XPS PBS

carbon dots photoluminescence transmission electron microscopy X-ray photo-electron spectroscopy phosphate buffered saline

References 1.

2.

Cao, L.; Wang, X.; Meziani, M.J.; Lu, F.S.; Wang, H.F.; Luo, P.G.J.; Lin, Y.; Harruff, B.A.; Veca, L.M.; Murray, D.; et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319. [CrossRef] [PubMed] Sun, Y.P.; Wang, X.; Lu, F.S.; Cao, L.; Meziani, M.J.; Luo, P.G.J.; Gu, L.R.; Veca, M. Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C 2008, 112, 18295–18298. [CrossRef] [PubMed]

Materials 2016, 9, 184

3.

4.

5. 6. 7. 8. 9.

10.

11.

12. 13. 14. 15. 16. 17. 18. 19.

20. 21.

22.

23.

7 of 8

Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.F.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [CrossRef] [PubMed] Cai, X.; Tan, S.Z.; Lin, M.S.; Xie, A.G.; Mai, W.J.; Zhang, X.J.; Lin, Z.D.; Wu, T.; Liu, Y.L. Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir 2011, 27, 7828–7835. [CrossRef] [PubMed] Jia, X.F.; Li, J.; Wang, E.K. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4, 5572–5575. [CrossRef] [PubMed] Rahim, R.A.; Kurahashi, H.; Uesugi, K.; Fukuda, H. Carbon nano dots scale by focused ion beam system for MIS diode nano devices. Surf. Sci. 2007, 601, 5112–5115. [CrossRef] Wang, F.; Pang, S.P.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C.Y. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 2010, 22, 4528–4530. [CrossRef] Yang, S.T.; Cao, L.; Luo, P.G.J.; Lu, F.S.; Wang, X.; Wang, H.F.; Meziani, M.; Liu, Y.F.; Qi, G.; Sun, Y.P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309. [CrossRef] [PubMed] Zhang, P.; Li, W.C.; Zhai, X.Y.; Liu, C.J.; Dai, L.M.; Liu, W.G. A facile and versatile approach to biocompatible “fluorescent polymers” from polymerizable carbon nanodots. Chem. Commun. 2012, 48, 10431–10433. [CrossRef] [PubMed] Zhang, X.Y.; Wang, S.Q.; Zhu, C.Y.; Liu, M.Y.; Ji, Y.; Feng, L.; Tao, L.; Wei, Y.J. Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. J. Colloid Interface Sci. 2013, 397, 39–44. [CrossRef] [PubMed] Zhao, A.D.; Zhao, C.Q.; Li, M.; Ren, J.S.; Qu, X.G. Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+ /Fe3+ and cell imaging. Anal. Chim. Acta 2014, 809, 128–133. [CrossRef] [PubMed] De, B.; Karak, N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. Rsc. Adv. 2013, 3, 8286–8290. [CrossRef] Prasannan, A.; Imae, T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind. Eng. Chem. Res. 2013, 52, 15673–15678. [CrossRef] Yan, X.L.; Li, X.J.; Yan, Z.F.; Komarneni, S. Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl. Surf. Sci. 2014, 308, 306–310. [CrossRef] Zhang, Z.; Hao, J.H.; Zhang, J.; Zhang, B.L.; Tang, J.L. Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. Rsc. Adv. 2012, 2, 8599–8601. [CrossRef] Zhou, J.J.; Sheng, Z.H.; Han, H.Y.; Zou, M.Q.; Li, C.X. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett. 2012, 66, 222–224. [CrossRef] Fu, K.F.; Yue, Q.Y.; Gao, B.Y.; Sun, Y.Y.; Zhu, L.J. Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem. Eng. J. 2013, 228, 1074–1082. [CrossRef] Ragan, S.; Megonnell, N. Activated carbon from renewable resources-Lignin. Cellul. Chem. Technol. 2011, 45, 527–531. Ruiz-Rosas, R.; Bedia, J.; Lallave, M.; Loscertales, I.G.; Barrero, A.; Rodríguez-Mirasol, J.; Cordero, T. The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 2010, 48, 696–705. [CrossRef] Titirici, M.-M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [CrossRef] Zhou, X.; Zhang, Y.; Wang, C.; Wu, X.; Yang, Y.; Zheng, B.; Wu, H.; Guo, S.; Zhang, J. Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 2012, 6, 6592–6599. [CrossRef] [PubMed] Pan, D.Y.; Guo, L.; Zhang, J.C.; Xi, C.; Xue, Q.; Huang, H.; Li, J.H.; Zhang, Z.W.; Yu, W.J.; Chen, Z.W.; et al. Cutting sp(2) clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012, 22, 3314–3318. [CrossRef] Bhunia, S.K.; Saha, A.; Maity, A.R.; Ray, S.C.; Jana, N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3. [CrossRef] [PubMed]

Materials 2016, 9, 184

24.

25.

8 of 8

Yuan, M.; Zhong, R.B.; Gao, H.Y.; Li, W.R.; Yun, X.L.; Liu, J.R.; Zhao, X.M.; Zhao, G.F.; Zhang, F. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Appl. Surf. Sci. 2015, 355, 1136–1144. [CrossRef] Yang, Y.H.; Cui, J.H.; Zheng, M.T.; Hu, C.F.; Tan, S.Z.; Xiao, Y.; Yang, Q.; Liu, Y.L. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun. 2012, 48, 380–382. [CrossRef] [PubMed] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).