Reaction of arenediazonium tetrafluoroborates with 3 ... - Springer Link

0 downloads 0 Views 46KB Size Report
ol, again, fails to react; at the same time, increased yield of isocyanatoarenes formed by the competing. Sandmeyer reaction is observed. Along with these by- ...

Russian Journal of General Chemistry, Vol. 74, No. 12, 2004, pp. 1907!1910. Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 12, 2004, pp. 2019!2022. Original Russian Text Copyright + 2004 by Grishchuk, Baranovskii, Koval’skii, Gorbovoi.

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

Reaction of Arenediazonium Tetrafluoroborates with 3-(Allyloxy)propane-1,2-diol and 2,2-Bis(allyloxymethyl)butan-1-ol in the Presence of Thiocyanates B. D. Grishchuk, V. S. Baranovskii, Ya. P. Koval’skii, and P. M. Gorbovoi Gnatyuk Ternopol State Pedagogical University, Ternopol, Ukraine Lvovskaya Polytechnica National University, Lvov, Ukraine Received February 4, 2003

-

Abstract The reactions of arenediazonium tetrafluoroborates with 3-(allyloxy)propane-1,2-diol and 2,2bis(allyloxymethyl)butan-1-ol in the presence of the thiocyanate nucleophile were used to obtain 3-(3-aryl-2thiocyanatopropoxy)propane-1,2-diols and 2-[(allyloxy)methyl]-2-[(3-aryl-2-thiocyanatopropoxy)methyl]butan-1-ols. Irrespective of reagent ratio, the second allyl fragment of 2,2-bis(allyloxymethyl)butan-1-ol fails to enter thiocyanatarylation. The presence of hydroxy groups in the unsaturated compounds studied render the latter less reactive than allyl derivatives containing no such groups. At present anionarylation reactions of monoallyl derivatives, such as allyl halides [133], allyl ethers [2, 4, 5], and certain diallyl derivatives, such as diallyl dioxide [6], diallyl disulfide, and diallyl phthalate and isophthalate [7], have been studied. Allyl derivatives are generally less reactive in anionarylation than vinyl derivatives whose double bonds are activated by electron-acceptor groups. Of particular interest in this context are allyl derivatives containing functional groups able to enter addition or substitution reactions. Thus it has been shown that thiocyanatoarylation of allyl glycidyl ether [5] and allyl iodide [3] occurs with preservation of the glycidyl fragment and iodine atom, respectively, whereas certain unsaturated substrates with readily leaving groups react to give 3-arylpropenes [8, 9]. Allyl alcohol is the only hydroxyl-containing allyl derivative whose chloro- and thiocyanatoarylation reactions have been studied [2]. To assess the effect of hydroxy groups on the capacity of allyl derivatives for thiocyanatoarylation, we chose as objects for study 3-(allyloxy)propane-1,2-diol and 2,2-bis(allyloxymethyl)butan-1-ol. It was found that arenediazonium tetrafluoroborates react with 3-(allyloxy)propane-1,2diol in the presence of ammonium thiocyanate and a copper catalyst. The reaction involves evolution of the diazo nitrogen and gives rise to 3-(3-aryl-2-thiocyanatopropoxy)propane-1,2-diols I V in yields of up 20328%.

3

g 6: _SQSSQSQgSQgQSQSgQ 6: N2BF4

+

OH + NH4SCN

O

OH

R

%%%%$

O SCN

!NH4BF4, !N2

R

OH

OH

I!V

R = H (I), 4-CH3 (II), 4-CH3O (III), 2-CH3 (IV), 3-CH3 (V).

The reaction occurs in aqueous acetone (1 : 3) in the presence copper(II) tetrafluoroborate at 5310oC. The optimal diazo salt : diol : thiocyanate : catalyst ratio is 1.3 : 1 : 1.4 : 0.15. Arenediazonium tetrafluoroborates react with 2,2bis(allyloxymethyl)butan-1-ol under the same conditions. The thiocyanatoarylation reaction involves exclusively one allyl group and provides 2-[(allyloxy)methyl]-2-[(3-aryl-2-thiocyanatoproppropoxy)methyl]butan-1-ols VI X in 28335% yields.

3

With double the above-mentioned quantities of diazonium salt, anionoid reagent, and catalyst, the second allyl group of 2,2-bis(allyloxymethyl)butan-1ol, again, fails to react; at the same time, increased yield of isocyanatoarenes formed by the competing Sandmeyer reaction is observed. Along with these by-

1070-3632/04/7412-1907 C2004 MAIK

[Nauka/Interperiodica]

1908

GRISHCHUK et al.

Table 1. Yields, constants, and elemental analyses of 3-(3-aryl-2-thiocyanatopropoxy)propane-1,2-diols I!V and 2-[(allyloxy)methyl]-2-[(3-aryl-2-thiocyanatopropoxy)methyl]butan-1-ols VI!X

ÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄ ³ ³ MRD ³ Found, % ³ ³ Calculated, % ³ ³ Comp. Yield, ³ ³ n20 ³ d20 ÃÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄ´ Formula ÃÄÄÄÄÄÂÄÄÄÄÄ D 4 no. % ³ ³ ³ ³ found ³ calculated ³ N ³ S ³ ³ N ³ S ÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄ I ³ 28 ³ 1.5619 ³ 1.2143 ³ 71.39 ³ 71.61 ³ 5.07 ³ 11.73 ³ C13H17NO3S ³ 5.24 ³ 11.99 II ³ 24 ³ 1.5703 ³ 1.2119 ³ 76.21 ³ 76.41 ³ 4.74 ³ 11.14 ³ C14H19NO3S ³ 4.98 ³ 11.40 III ³ 26 ³ 1.5711 ³ 1.2482 ³ 78.29 ³ 78.34 ³ 4.60 ³ 10.52 ³ C14H19NO4S ³ 4.71 ³ 10.78 IV ³ 24 ³ 1.5742 ³ 1.2196 ³ 76.15 ³ 76.41 ³ 4.71 ³ 11.08 ³ C14H19NO3S ³ 4.98 ³ 11.40 V ³ 20 ³ 1.5756 ³ 1.2189 ³ 76.34 ³ 76.41 ³ 4.59 ³ 11.36 ³ C14H19NO3S ³ 4.98 ³ 11.40 VI ³ 31 ³ 1.5324 ³ 1.0925 ³ 99.19 ³ 99.34 ³ 3.85 ³ 9.01 ³ C19H27NO3S ³ 4.01 ³ 9.18 VII ³ 35 ³ 1.5287 ³ 1.0803 ³ 103.73 ³ 103.99 ³ 3.58 ³ 8.79 ³ C20H29NO3S ³ 3.85 ³ 8.82 VIII ³ 35 ³ 1.5308 ³ 1.1093 ³ 105.81 ³ 105.92 ³ 3.46 ³ 8.39 ³ C20H29NO4S ³ 3.69 ³ 8.45 IX ³ 29 ³ 1.5275 ³ 1.0761 ³ 103.94 ³ 103.99 ³ 3.74 ³ 8.57 ³ C20H29NO3S ³ 3.85 ³ 8.82 X ³ 28 ³ 1.5293 ³ 1.0825 ³ 103.61 ³ 103.99 ³ 3.90 ³ 8.68 ³ C20H29NO3S ³ 3.85 ³ 8.82 ÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄ

g T Q^ Q Q R S S S 6: =9SS^QQSQSQSRTQ 6: g=9S^Q N2BF4

OH

+ NH4SCN

O

+

O

R

%%%%$

HO

O SCN

!NH4BF4, !N2

R

O

VI!X

R = H (VI), 4-CH3 (VII), 4-CH3O (VIII), 2-CH3 (IX), 3-CH3 (X).

products, phenols and unidentified tarry products are formed. Thus we showed that, irrespective of the structure of the fragment intervening two allyl groups, the thiocyanatoarylation selectively provides monoadducts. The lower yields of the reactions with 3-(allyloxy)propane-1,2-diol and 2,2-bis(allyloxymethyl)butan1-ol than with monoallyl [135] and diallyl derivatives [6, 7] are probably explained by the presence in the former unsaturated derivatives of hydroxy groups capable of binding copper(II) ions in complexes and thus deactivate the catalytic process. This suggestion is consistent with the fact that with allyl alcohol the yield of thiocyanatoarylation is 4 times lower than with allyl chloride [2].

hydroxy groups (336033374 cm!1). The absorption bands at 163631648 and 8083816 cm!1 are characteristic of stretching and bending vibrations of the double bond of a free allyl fragment are observed in the spectra of compounds VI X only.

3

3

1

The H NMR spectra of compounds I III show aromatic proton signals (multiplet at 7.4236.96 ppm), CH2 groups attached to the aromatic fragment (doublet of doublets at 3.2633.24 and 3.0633.04 ppm), and CH groups attached to the thiocyanato group (multiplet at 3.8533.75 ppm).

3

The 1H NMR spectra of compounds VI VIII contain, along with aromatic proton signals at 7.393 7.01 ppm (multiplets), allyl proton signals at 5.983 5.81 ppm: two doublets of doublets at 5.2735.25 and 5.1835.16 ppm (JHH 17 and 10 Hz). Protons of the CH2 groups attached to the aromatic fragments form two doublets of doublets at 3.2633.25 and 3.153 3.13 ppm (JHH 7 and 8 Hz), and protons of the CH groups attached to the thiocyanate group, together with protons of the CH2OH groups, form a broad multiplet at 3.9533.37 ppm.

EXPERIMENTAL

3

The yields, constants, elemental analyses, and 1H NMR spectra of compounds I X are listed in Tables 1 and 2.

The IR spectra of compounds I X were recorded on a Specord M-80 instrument in thin films. The 1H NMR spectra were obtained on a Varian VXR-300 spectrometer (300 MHz) in DMSO-d6, external reference HMDS. The purity of the synthesized compounds was established by TLC on Silufol UV-254 plates (eluent heptane3chloroform, 7 : 4).

The IR spectra of compounds I X contain absorption bands of the thiocyanato (215232160 cm!1) and

3-(3-Phenyl-2-thiocyanatopropoxy)propane-1,2diol (I). Phenyldiazonium tetrafluoroborate, 0.15 mol,

3

3

RUSSIAN JOURNAL OF GENERAL CHEMISTRY

Vol. 74

No. 12

2004

REACTION OF ARENEDIAZONIUM TETRAFLUOROBORATES

1909

Table 2. 1H NMR spectra of 3-(3-aryl-2-thiocyanatopropoxy)propane-1,2-diols I!III and 2-[(allyloxy)methyl]-2-[(3-aryl2-thiocyanatopropoxy)methyl]butan-1-ols VI!VIII

ÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Comp. ³ , ppm (J, Hz) no. ³ ÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ I ³7.42 7.23 m (5H, C6H5), 4.03 d [2H, OCH2CH(SCN), JHH 5], 3.93 3.86 m [1H, CH(OH)], 3.84 3.76 m [1H, ³CH(SCN)], 3.70 d.d, 3.60 d.d (2H, CH2OH, JHH 4, JHH 6), 3.55 3.46 m [2H, OCH2CH(OH)], 3.43 br.s (1H, OH), ³3.26 d.d, 3.06 d.d (2H, CH2C6H5, JHH 6, JHH 8) II ³7.23 6.96 m (4H, C6H4), 4.02 d [2H, OCH2CH(SCN), JHH 5], 3.94 3.87 m [1H, CH(OH)], 3.85 3.77 m [1H, ³CH(SCN)], 3.69 d.d, 3.58 d.d (2H, CH2OH, JHH 4, JHH 6), 3.56 3.48 m [2H, OCH2CH(OH)], 3.41 br.s (1H, OH), ³3.25 d.d, 3.05 d.d (2H, CH2C6H4, JHH 6, JHH 8), 2.24 s (3H, CH3) III ³7.29 7.10 m (4H, C6H4), 4.03 d [2H, OCH2CH(SCN), JHH 5], 3.94 3.85 m [1H, CH(OH)], 3.84 3.75 m [1H, ³CH(SCN), 3H, 4-CH3O], 3.71 d.d, 3.59 d.d (2H, CH2OH, JHH 4, JHH 6), 3.56 3.46 m [2H, OCH2CH(OH)], ³3.40 br.s (1H, OH), 3.24 d.d, 3.04 d.d (2H, CH2C6H4, JHH 6, JHH 8) VI ³7.39 7.14 m (5H, C6H5), 5.96 5.83 m (1H, CH=), 5.27 d.d (trans-H, CH2=, JHH 17), 5.18 d.d (cis-H, CH2=, JHH ³10), 3.99 3.95 m (4H, OCH2), 3.80 3.68 m [1H, CH(SCN)], 3.62 t (2H, CH2OH), 3.51 3.39 m (4H, CH2O), ³3.26 d.d, 3.15 d.d (2H, CH2C6H5, JHH 7, JHH 8), 2.80 br.s (1H, OH), 1.49 1.31 m (2H, CH2), 0.86 t (3H, CH3) VII ³7.29 7.01 m (4H, C6H4), 5.97 5.82 m (1H, CH=), 5.25 d.d (trans-H, CH2=, JHH 16), 5.16 d.d (cis-H, CH2=, JHH ³10), 3.98 3.93 m (4H, OCH2), 3.82 3.71 m [1H, CH(SCN)], 3.60 t (2H, CH2OH), 3.50 3.37 m (4H, CH2O), ³3.25 d.d, 3.13 d.d (2H, CH2C6H4, JHH 7, JHH 8), 2.83 br.s (1H, OH), 2.22 s (3H, 4-CH3), 1.48 1.29 m (2H, CH2), ³0.85 t (3H, CH3) VIII ³7.33 7.16 m (4H, C6H4), 5.98 5.81 m (1H, CH=), 5.27 d.d (trans-H, CH2=, JHH 16), 5.17 d.d (cis-H, CH2=, JHH ³11), 4.00 3.94 m (4H, OCH2), 3.82 3.67 m [1H, CH(SCN), 3H, 4-CH3O], 3.60 t (2H, CH2OH), 3.52 3.39 m (4H, ³CH2O), 3.26 d.d, 3.14 d.d (2H, CH2C6H4, JHH 7, JHH 8), 2.81 br.s (1H, OH), 1.48 1.30 m (2H, CH2), 0.86 t (3H, ³CH3) ÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

@

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

was added over the course of 2 h to a solution of 0.10 mol of 3-(allyloxy)propane-1,2-diol, 0.015 mol of copper(II) tetrafluoroborate, and 0.15 mol of ammonium thiocyanate in 250 ml of aqueous acetone (1 : 3). Nitrogen evolution was observed at 5310oC for 1.5 h. When nitrogen no longer evolved, the reaction mixture was treated with 200 ml of diethyl ether, washed with water, and dried with magnesium sulfate. The ether was removed, and the residue was subjected to chromatography on a column of Al2O3 (eluent hexane3chloroform3methanol, 5 : 4 : 2). The eluent was evaporated, and the resulting fractions were analyzed by IR spectroscopy. Yield 5.3 g (28%), yellow oily substance.

the residue was subjected to chromatography on a column of Al2O3 (eluent hexane3chloroform, 7 : 4). The eluent was evaporated, and the resulting fractions were analyzed by IR spectroscopy. Yield 12.3 g (31%), viscous dark yellow oil.

Compounds II V were obtained in a similar way.

1. Grishchuk, B.D., Gorbovoi, P.M., Ganushchak, N.I., Kudrik, E.Ya., and Brush, D.M., Zh. Obshch. Khim., 1993, vol. 63, no. 7, p. 1655. 2. Obushak, N.D., Ganushchak, N.I., Karpyak, V.V., and Rogovik, M.P., Zh. Obshch. Khim., 1993, vol. 63, no. 8, p. 1823. 3. Grishchuk, B.D., Zagrichuk, G.Ya., Baranovskii, V.S., and Gorbovoi, P.M., Zh. Obshch. Khim., 1999, vol. 69, no. 6, p. 995. 4. Gorbovoi, P.M., Kudrik, E.Ya., and Grishchuk, B.D., Zh. Obshch. Khim., 1998, vol. 68, no. 7, p. 1186. 5. Grishchuk, B.D., Zagrichuk, G.Ya., and Gorbovoi, P.M.,

3

2-[(Allyloxy)methyl]-2-[(3-phenyl-2-thiocyanatopropoxy)methyl]butan-1-ol (VI). Phenyldiazonium tetrafluoroborate, 0.16 mol, was added over the course of 2.5 h to a solution of 0.05 mol of 2,2-bis(allyloxymethyl)butan-1-ol, 0.006 mol of copper(II) tetrafluoroborate, and 0.15 mol of ammonium thiocyanate in 200 ml of aqueous acetone (1 : 2). Nitrogen evolution was observed at 10315oC for 2.5 h. When nitrogen no longer evolved, the reaction mixture was treated with 150 ml of diethyl ether, washed with water, and dried with magnesium sulfate. The ether was removed, and RUSSIAN JOURNAL OF GENERAL CHEMISTRY

Vol. 74

3

Compounds VII X were obtained in a similar way.

ACKNOWLEDGMENTS The work was financially supported by the Ministry of Science and Education of Ukraine.

REFERENCES

No. 12

2004

1910

GRISHCHUK et al.

Zh. Obshch. Khim., 1999, vol. 69, no. 6, p. 999. 6. Grishchuk, B.D., Zagrichuk, G.Ya, and Gorbovoi, P.M., Zh. Obshch. Khim., 2000, vol. 70, no. 5, p. 809. 7. Grishchuk, B.D., Baranovs’kii, V.S., and Gorbovii, P.M., Abstracts of Papers, XIX Ukrains’ka konferentsiya z organichnoi khimii (XIX Ukrainian Conf. on

Organic Chemistry), Lvov, 2001, p. 206. 8. Obushak, N.D., Karpyak, V.V., and Ganushchak, N.I., Vestn. L’vov. Univ., Ser. Khim., 1987, no. 28, p. 71. 9. Karpyak, V.V., Obushak, N.D., Tikhonov, V.P., and Ganushchak, N.I., Vestn. L’vov. Univ., Ser. Khim., 1989, no. 30, p. 89.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY

Vol. 74

No. 12

2004

Suggest Documents