Reduced Stroop interference with Avoidance Responses Nathalie ...

4 downloads 0 Views 148KB Size Report
interference or conflict arises from competition between the relevant colour and the irrelevant word ..... In daily life, these colours are typically associated with go ...
1  

 

Conflict:  Run!   Reduced  Stroop  interference  with  Avoidance  Responses     Nathalie  Schouppe1,  Jan  De  Houwer2,  K.  Richard  Ridderinkhof3,4,  and  Wim   Notebaert1     1   2  

Department  of  Experimental  Psychology,  Ghent  University  

Department  of  Experimental  Clinical  and  Health  Psychology,  Ghent  University     3  

Department  of  Developmental  Psychology,  University  of  Amsterdam   4

 Cognitive  Science  Center  Amsterdam,  University  of  Amsterdam  

    Running  Head:  Avoidance  reduces  Stroop  interference   Word  count:  2573       Corresponding  author:   Nathalie  Schouppe   Department  of  Experimental  Psychology   Henri  Dunantlaan  2   B  –  9000  Ghent   [email protected]   Phone:  +32  9  264  64  31     Fax:  +32  9  264  64  98  

 

2  

 

Abstract     Conflict  has  been  hypothesized  to  be  aversive,  triggering  avoidance  behaviour   (Botvinick,  2007).  To  test  this  hypothesis,  a  standard  Stroop  task  was  modified  such   that  avoiding  was  part  of  the  response  set.  More  precisely,  participants  were  asked   to  move  a  manikin  towards  or  away  from  Stroop  stimuli,  depending  on  the  colour  of   the  words.  Results  showed  that  the  type  of  response  (approach  versus  avoidance)   modulated  the  Stroop  congruency  effect.  Specifically,  the  reaction  time  analysis   revealed  that  the  stimulus  congruency  effect  disappeared  with  avoidance  responses,   contrary  to  approach  responses  where  a  stimulus  congruency  effect  was  present.   Moreover,  the  error  data  showed  a  reduction  of  the  general  congruency  effect  when   avoiding.  These  results  suggest  that  in  the  face  of  conflict,  avoidance  is  the   predominant  response.       Key  words:  approach-­‐avoidance;  conflict;  stimulus  interference;  response   interference;  Stroop  task  

 

3  

 

Introduction     Conflict  tasks  have  been  extremely  useful  as  a  means  to  understand  how  we   deal  with  conflicting  response  tendencies.  One  task  widely  used  to  study  conflict   processing  is  the  Stroop  task,  in  which  participants  have  to  name  the  ink  colour  of  a   colour  word,  while  ignoring  the  irrelevant  word  information  (Stroop,  1935).  In   general,  participants  are  slower  and  less  accurate  on  incongruent  (the  word  RED   written  in  green)  than  on  congruent  stimuli  (the  word  RED  written  in  red).  This   interference  or  conflict  arises  from  competition  between  the  relevant  colour  and  the   irrelevant  word  meaning  at  both  stimulus  encoding  and  response  selection  (De   Houwer,  2003;  van  Veen  &  Carter,  2005).       Recently,  it  has  been  hypothesized  that  the  occurrence  of  conflict  is  aversive,   generating  a  negative  value  (Botvinick,  2007).  Using  an  affective  priming  paradigm,   Dreisbach  and  Fischer  (2012)  clearly  demonstrated  this  affective,  negative  nature  of   conflict.  More  specifically,  participants  were  faster  to  evaluate  the  valence  of   negative  targets,  when  these  stimuli  were  preceded  by  incongruent  Stroop  primes,   than  when  they  were  preceded  by  congruent  trials.   Furthermore,  other  recent  studies  confirm  the  aversiveness  of  conflict,   showing  a  bias  away  from  high-­‐conflict  situations  (Kool,  McGuire,  Rosen,  &   Botvinick,  2010;  Schouppe,  Ridderinkhof,  Verguts,  &  Notebaert,  2012).  For  instance,   in  our  lab,  we  constructed  a  conflict  selection  task,  in  which  participants  had  to   choose  between  two  alternatives  associated  with  a  different  degree  of  Stroop   conflict.  As  shown  in  the  choice  rates,  participants  systematically  avoided  the  high-­‐ conflict  alternative  (Schouppe  et  al.,  2012).  Additionally,  Lynn,  Riddle,  and  Morsella  

 

4  

 

(in  press)  found  a  higher  urge  to  quit  after  incongruent  trials,  again  supporting  the   hypothesis  that  conflict,  with  its  negative  quality,  triggers  avoidance  behaviour.     Interestingly,  in  a  standard  Stroop  task  naming  the  ink  colour  or  pressing  a   response  button  associated  with  the  ink  colour  could  actually  be  qualified  as  an   approach  response.  Yet,  in  the  face  of  an  aversive  stimulus  (i.e.  incongruent  conflict   trial),  avoidance  is  the  more  likely  response.  It  is  therefore  plausible  that  the   slowdown  on  incongruent  trials  reflects  an  incompatibility  between  the  elicited   avoidance  tendency  and  the  required  approach  response.  This  idea  is  in  line  with  a   recent  study  of  Chajut,  Mama,  Levy,  and  Algom  (2010),  showing  that  the  emotional   Stroop  effect  reversed  under  avoidance  behaviour.  More  specifically,  participants   were  instructed  to  step  forward  or  backward  (Experiment  1)  or  push  a  joystick   towards  or  away  (Experiment  2)  from  emotional  and  neutral  stimuli  depending  on   the  colour  of  the  stimuli.  When  making  an  approach  response,  Chajut  and  colleagues   found  a  normal  emotional  Stroop  effect,  however,  when  avoiding  the  stimuli,  this   emotional  Stroop  effect  reversed,  indicating  that  participants  were  faster  in  avoiding   negative  than  neutral  stimuli.  The  standard  slowdown  on  negative  stimuli  thus   completely  vanished  when  avoidance  was  a  permissible  response.   In  the  present  study,  we  wanted  to  investigate  whether  a  similar  modulation   by  response  type  can  be  observed  in  a  standard  Stroop  task.  We  used  the  Manikin   task  (De  Houwer,  Crombez,  Baeyens,  &  Hermans,  2001)  as  approach-­‐avoidance   paradigm,  since  it  has  been  proven  to  be  a  sensitive  measure  of  approach-­‐avoidance   reactions  (Krieglmeyer  &  Deutsch,  2010).  In  this  task,  participants  are  instructed  to   imagine  being  a  manikin  that  has  to  step  towards  or  away  from  Stroop  stimuli.  If  

 

5  

 

conflict  trials  are  truly  aversive,  we  would  predict  a  modulation  of  the  Stroop  effect   by  the  type  of  response  (avoidance  or  approach).     Given  the  dissociable  effects  of  stimulus  and  response  conflict  (e.g.   Notebaert  &  Verguts,  2006;  Verbruggen,  Notebaert,  Liefooghe,  &  Vandierendonck,   2006),  a  second,  more  exploratory  aim  of  this  study  was  to  investigate  whether   these  two  types  of  conflict  would  be  differentially  influenced  by  an  approach  versus   avoidance  response.  By  assigning  two  colours  (of  the  four  colours  used)  to  the  same   response  (approach  vs.  avoidance),  we  could  distinguish  between  three  trial  types:   (1)  congruent  (CO)  trials  in  which  the  colour  of  the  word  was  identical  to  the  word   meaning;  (2)  stimulus  incongruent  (SI)  trials,  in  which  the  colour  of  the  word  was   different  from  its  meaning,  but  resulted  in  the  same  response;  and  (3)  response   incongruent  (RI)  trials  for  which  colour  and  meaning  differed  and  also  mapped  onto   a  different  response.  Typically,  reaction  times  tend  to  increase  from  CO  trials  to  SI   trials  to  RI  trials,  thus  showing  a  contribution  of  both  stimulus  and  response  conflict   to  the  general  interference  effect  (De  Houwer,  2003).       Method     Participants     Forty  students  at  Ghent  University  (range:  18-­‐25  years  of  age;  33  right-­‐ handed;  34  female)  participated  in  the  study.  They  provided  written  informed   consent  and  were  paid  6  euro  for  their  participation.  The  study  procedures  were  

 

6  

 

approved  by  a  local  ethics  committee  and  complied  with  relevant  laws  and   institutional  guidelines.     Materials  and  Procedure     The  Stroop  stimuli  consisted  of  four  colour  words  (‘BLUE’,  ‘PURPLE’,  ‘YELLOW’,   AND  ‘BROWN’),  presented  on  a  black  background  in  blue,  purple,  yellow  or  brown  ink  

colour1.  The  manikin  was  a  picture  of  a  stick  figure,  approximately  2.5  cm  in  length.   Participants  were  instructed  to  move  this  manikin  as  fast  and  accurately  as  possible   towards  or  away  from  a  centrally  presented  word,  depending  on  its  colour.  Two   colours  were  mapped  onto  the  same  response  (e.g.  “if  the  colour  of  the  word  is  blue   or  purple,  move  the  manikin  towards  the  word;  if  the  colour  of  the  word  is  yellow  or   brown,  move  the  manikin  away  from  the  word”).  The  different  colour-­‐to-­‐response   combinations  were  counterbalanced  across  participants.     Following  the  procedure  of  Krieglmeyer,  Deutsch,  De  Houwer,  and  De  Raedt   (2010),  a  trial  started  with  the  picture  of  the  manikin,  presented  at  the  upper  or   lower  part  of  the  computer  screen.  After  750  ms,  the  Stroop  stimulus  was  displayed   in  the  centre  of  the  screen.  The  stimulus  and  the  manikin  remained  on  the  screen   until  a  response  was  given.  Participants  had  to  press  the  ‘8’  or  ‘2’  key  on  the  numeric   keyboard  three  times  to  move  the  manikin  three  steps  upwards  or  downwards   respectively.  Consequently,  the  manikin  would  either  stop  near  the  centrally   presented  word  or  at  the  edge  of  the  screen.  Reaction  times  were  measured  as  the   time  between  the  onset  of  the  Stroop  stimulus  and  the  first  key  press.  After  an   incorrect  response,  error  feedback  was  given  (the  Dutch  word  ‘FOUT!’,  meaning  

 

7  

 

‘WRONG!’  was  displayed  in  the  middle  of  the  screen  for  500  ms).  The  inter-­‐trial-­‐ interval  was  1000  ms.     Participants  performed  ten  blocks  of  64  trials.  Trials  were  randomly   presented,  with  50%  CO  trials,  25%  SI  trials  and  the  remaining  25%  RI  trials.  In  half  of   the  trials,  the  picture  of  the  manikin  appeared  above  the  word,  in  the  other  half  the   manikin  appeared  below  the  word.     Results     The  data  of  one  participant  were  excluded  from  the  analyses  because   performance  was  at  chance  level  (error  rate  of  47%).  Mean  reaction  times  and  mean   error  rates  were  submitted  to  a  repeated-­‐measures  ANOVA  with  response  type   (approach;  avoidance)  and  congruency  (CO;  SI;  RI)  as  within-­‐subjects  factors.  Errors   and  outliers  (3  standard  deviations  above  and  below  the  mean,  calculated  for  each   participant  and  condition)  were  excluded  from  the  reaction  time  analysis.  Note  that   Greenhouse-­‐Geisser  corrections  to  the  degrees  of  freedom  and  p-­‐values  are  used   when  the  sphericity  assumption  was  violated,  but  uncorrected  degrees  of  freedom   are  reported  for  ease  of  reading.     To  interpret  the  interaction  between  response  type  and  congruency,  post-­‐ hoc  paired  sample  t-­‐tests  were  carried  out,  testing  each  level  of  the  two  factors   against  each  other.  Also,  to  disentangle  the  effect  of  response  type  on  stimulus   conflict  and  response  conflict  separately,  three  additional  t-­‐tests  were  computed   comparing  the  overall  congruency  effect  (RI-­‐CO),  the  stimulus  congruency  effect  (SI-­‐ CO)  and  the  response  congruency  effect  (RI-­‐SI)  between  response  types.  The  

 

8  

 

multiple  comparison  p-­‐values  were  corrected  following  Benjamini  and  Hochberg   (1995).     Mean  Response  Times       Results  showed  main  effects  of  response  type,  F(1,  38)  =  63.4,  p  <  .001,  and   congruency,  F(2,  76)  =  25.0,  p  <  .001.  Most  important,  the  interaction  between   response  type  and  congruency  was  significant,  F(2,  76)  =  3.5,  p  <  0.05.     As  is  depicted  in  Table  1,  the  overall  congruency  effect  (RI-­‐CO:  t(38)  =  5.3,  p  <   .001),  just  as  the  stimulus  congruency  effect  (SI-­‐CO:  t(38)  =  4.1,  p  <  .001)  and  the   response  congruency  effect  (RI-­‐SI:  t(38)  =  2.3,  p  <  .05)  were  significant  for  approach   responses.  For  avoidance  responses,  the  overall  congruency  effect  was  significant   (RI-­‐CO:  t(38)  =  4.5,  p  <  .001),  as  was  the  response  congruency  effect  (RI-­‐SI:  t(38)  =   3.6,  p  <  .01).  However,  the  stimulus  congruency  effect  was  not  significant  (SI-­‐CO:   t(38)  =  0.8,  p  >  .1).  The  remaining  comparisons  of  Table  1  all  indicate  slower   avoidance  responses  than  approach  responses,  thus  reflecting  the  significant  main   effect  of  response  type.   As  illustrated  by  Figure  1  and  supported  by  the  above-­‐mentioned  statistics,  a   stimulus  interference  effect  (SI-­‐CO)  was  evident  for  approach  responses  (M  =  26  ms;   SD  =  39  ms),  but  not  for  avoidance  responses  (M  =  2.9  ms;  SD  =  21  ms).  This   difference  in  stimulus  interference  between  approach  and  avoidance  responses  was   significant,  t(38)  =  3.0,  p  <  .01.  Response  type  had  no  effect  on  the  difference   between  CO  and  RI  trials,  t(38)  =  1.2,  p  >  .1,  and  SI  and  RI  trials,  t(38)  =  1.3,  p  >  .1.    

 

9  

 

(Figure  1  and  Table  1  about  here)     Error  Rates     Concerning  error  rates,  the  results  showed  no  effect  of  response  type,  F(1,   38)  <  1.  However,  the  effect  of  congruency,  F(2,  76)  =  15.9,  p  <  .001,  and  the   interaction  between  congruency  and  response  type  were  significant,  F(2,  76)  =  4.4,  p   <  .05.     As  depicted  in  Table  2,  for  approach  responses,  the  overall  congruency  effect   and  the  response  congruency  effect  were  significant  (RI-­‐CO:  t(38)  =  5.5,  p  <  .001,  RI-­‐ SI:  t(38)  =  3.9,  p  <  .001),  however,  the  stimulus  congruency  effect  was  not  (SI-­‐CO:   t(38)  =  0.79,  p  >  .1).  For  avoidance  responses,  neither  the  overall  congruency  effect   (RI-­‐CO:  t(38)  =  1.3,  p  >  .1),  nor  the  stimulus  congruency  effect  were  significant  (SI-­‐CO:   t(38)  =  1.4,  p  >  .1),  but  there  was  a  small  response  congruency  effect  (RI-­‐SI:  t(38)  =   2.5,  p  <  .05).  Results  from  the  remaining  comparisons  (see  Table  2)  showed  that   significantly  more  errors  were  made  on  RI  approach  trials,  than  on  CO,  SI  and  RI   avoidance  trials.  Also,  more  errors  were  made  on  RI  avoidance  trials  than  on  CO   approach  trials.   Importantly,  only  the  overall  congruency  effect  (RI-­‐CO)  differed  between   approach  and  avoidance  responses,  t(38)  =  3.1,  p  <  .05.  Thus,  participants  made   more  errors  on  RI  trials  than  on  CO  trials,  but  only  when  an  approach  response  had   to  be  carried  out  (see  Figure  1).  Response  type  had  no  effect  on  the  stimulus   congruency  effect,  t(38)  =  1.5,  p  >  .1,  and  on  the  response  congruency  effect,  t(38)  =   1.5,  p  >  .1.  

 

10  

 

(Table  2  about  here)     Discussion     This  study  is  the  first  to  report  a  modulation  of  the  Stroop  congruency  effect   by  response  type.  We  observed  both  in  the  reaction  time  and  error  rate  data  a   reduction  of  the  Stroop  effect  when  participants  gave  an  avoidance  response  instead   of  a  more  typical  approach  response.     More  specifically,  the  reaction  time  analysis  revealed  the  typical  pattern  of   increasing  reaction  times  from  CO  to  SI  to  RI  trials  when  participants  approached  the   stimuli.  However,  under  avoidance  responses  the  difference  between  CO  and  SI   trials  (i.e.  stimulus  congruency  effect)  was  abolished.  Furthermore,  the  accuracy  data   on  approach  responses  showed  more  performance  errors  on  RI  trials  than  on  CO  and   SI  trials,  with  no  difference  between  the  latter  two  (see  De  Houwer,  2003;  van  Veen   &  Carter,  2005  for  comparable  results).  It  is  not  surprising  that  stimulus  conflict  is   not  evident  in  error  rates  since  on  SI  trials  the  relevant  and  irrelevant  features  of  the   stimulus  indicate  the  same  response.  More  interestingly,  when  investigating  the   avoidance  responses,  we  found  that  the  accuracy  difference  between  RI  and  CO   trials  was  reduced,  thus  clearly  indicating  a  modulation  of  the  general  congruency   effect  by  response  type.     The  reaction  time  pattern  indicates  that  stimulus  conflict  disappears  with   avoidance  responses  while  response  conflict  is  unaffected.  In  the  original  conflict   monitoring  model  (Botvinick,  Braver,  Barch,  Carter,  &  Cohen,  2001),  conflict  has   been  conceptualized  as  the  competition  between  two  simultaneously  active  

 

11  

 

responses,  implying  a  major  role  for  response  conflict  in  conflict  detection  and   thereby  suggesting  that  our  interaction  with  response  type  should  have  been   primarily  driven  by  this  type  of  conflict.  However,  previous  studies  (Notebaert  &   Verguts,  2006;  Verbruggen  et  al.,  2006)  report  adaptation  effects  after  stimulus   conflict  and  response  conflict,  suggesting  that  stimulus  conflict  triggers  conflict   adaptation  (as  stimulus  conflict  is  also  present  in  response  incongruent  trials).   Notebaert  and  Verguts  (2006)  argued  that  response  conflict  mainly  affects  reaction   times,  while  conflict  adaptation  is  triggered  by  stimulus  conflict.  Given  the   theoretical  formulation  that  the  negative  quality  of  conflict  triggers  behavioural   adjustments  (Botvinick,  2007;  see  also  van  Steenbergen,  Band,  &  Hommel,  2009),   this  would  suggest  that  stimulus  conflict  is  an  aversive  signal.  Also,  in  the  affective   priming  study  of  Dreisbach  and  Fischer  (2012),  participants  did  not  have  to  respond   to  the  Stroop  stimuli,  indicating  that  mere  stimulus  conflict  can  already  lead  to   negative  affect,  consistent  with  our  findings.  Thus,  there  is  some  support  for  the  idea   that  stimulus  conflict  is  aversive,  and  perhaps  more  aversive  than  response  conflict.   Quite  speculative,  one  could  argue  that  correctly  responding  to  response   incongruent  stimuli  means  that  the  conflict  was  successfully  resolved,  resulting  in   positive  affect.  However,  we  should  not  forget  that  the  error  rates  show  that  the   overall  congruency  effect  (RI-­‐CO)  is  reduced  with  avoidance  responses.   The  reaction  time  results  also  showed  a  main  effect  of  response  type,   indicating  that  approach  responses  were  generally  faster  than  avoidance  responses.   It  could  well  be  that  a  natural  propensity  to  orient  towards  the  source  of  stimulation   (i.e.  Stroop  stimulus)  drives  this  effect.  This  is  particularly  applicable  to  this  type  of   task  as  participants  saw  the  picture  of  the  manikin  walk  towards  or  away  from  the  

 

12  

 

stimulus.  Alternatively,  the  main  effect  of  response  type  can  be  explained  by   assuming  that  response  type  represents  polar  oppositions  (i.e.  positive/negative  –   approach/avoidance).  It  has  been  shown  that  participants  process  +polar  targets   faster  than  –polar  targets  (Proctor  &  Cho,  2006).  Accordingly  and  as  predicted,  a   compatibility  benefit  should  thus  appear  when  processing  polar  equivalents  (i.e.   incongruent  avoidance  trials).     In  conclusion,  our  results  show  that  the  congruency  level  of  the  stimulus   interacts  with  response  type,  thereby  clearly  supporting  the  conflict  avoidance   hypothesis  (Botvinick,  2007).  These  findings  suggest  that  conflict  is  negative   (Dreisbach  &  Fischer,  2012)  and  therefore  more  likely  to  be  avoided  than   approached.  Moreover,  this  argument  is  in  line  with  several  studies  on  automatic   stimulus  evaluation,  showing  that  perceiving  positive  or  negative  stimuli  evokes   approach  or  withdrawal  tendencies  respectively  (e.g.  Chen  &  Bargh,  1999;   Krieglmeyer  et  al.,  2010).  Our  results  thus  suggest  that,  when  confronted  with   conflict,  avoiding  is  the  predominant  response.         References     Benjamini,  Y.,  &  Hochberg,  Y.  (1995).  Controlling  the  False  Discovery  Rate:  A  practical   and  powerful  approach  to  multiple  testing.  Journal  of  the  Royal  Statistical   Society,  Series  B,  57,  289-­‐300.  

 

13  

 

Botvinick,  M.  M.  (2007).  Conflict  monitoring  and  decision  making:  Reconciling  two   perspectives  on  anterior  cingulate  function.  Cognitive,  Affective,  &  Behavioral   Neuroscience,  7(4),  356-­‐366.     Botvinick,  M.  M.,  Braver,  T.  S.,  Barch,  D.  M.,  Carter,  C.  S.,  &  Cohen,  J.  D.  (2001).   Conflict  monitoring  and  cognitive  control.  Psychological  Review,  108(3),  624-­‐ 652.     Chajut,  E.,  Mama,  Y.,  Levy,  L.,  &  Algom,  D.  (2010).  Avoiding  the  approach  trap:  A   response  bias  theory  of  the  emotional  Stroop  effect.  Journal  of  Experimental   Psychology:  Learning,  Memory,  and  Cognition,  36(6),  1567-­‐1572.       Chen,  M.,  &  Bargh,  J.  A.  (1999).  Consequences  of  automatic  evaluation:  Immediate   behavioral  predispositions  to  approach  or  avoid  the  stimulus.  Personality  and   Social  Psychology  Bulletin,  25,  215-­‐224.     De  Houwer,  J.  (2003).  On  the  role  of  stimulus-­‐response  and  stimulus-­‐stimulus   compatibility  in  the  Stroop  effect.  Memory  &  Cognition,  31(3),  353-­‐359.       De  Houwer,  J.,  Crombez,  G.,  Baeyens,  F.,  &  Hermans,  D.  (2001).  On  the  generality  of   the  affective  Simon  effect.  Cognition  and  Emotion,  15(2),  189-­‐206.     Dreisbach,  G.,  &  Fischer,  R.  (2012).  Conflicts  as  aversive  signals.  Brain  and  Cognition.   doi:10.1016/j.bandc.2011.12.003  

 

14  

 

  Elliot,  A.  J.,  Maier,  M.  A.,  Moller,  A.  C.,  Friedman,  R.,  &  Meinhardt,  J.  (2007).  Color   and  psychological  functioning:  The  effect  of  red  on  performance  attainment.   Journal  of  Experimental  Psychology:  General,  136(1),  154-­‐168.       Kool,  W.,  McGuire,  J.  T.,  Rosen,  Z.  B.,  &  Botvinick,  M.  M.  (2010).  Decision  making  and   the  avoidance  of  cognitive  demand.  Journal  of  Experimental  Psychology:   General,  139,  665-­‐682.     Krieglmeyer,  R.,  &  Deutsch,  R.  (2010).  Comparing  measures  of  approach  avoidance   behaviour:  The  manikin  task  vs.  two  versions  of  the  joystick  task.  Cognition  and   Emotion,  24(5),  810-­‐828.       Krieglmeyer,  R.,  Deutsch,  R.,  De  Houwer,  J.,  &  De  Raedt,  R.  (2010).  Being  moved:   Valence  activates  approach-­‐avoidance  behavior  independently  of  evaluation   and  approach-­‐avoidance  intentions.  Psychological  Science,  21(4),  607-­‐613.       Lynn,  M.  T.,  Riddle,  T.  A.,  &  Morsella,  E.  (in  press).  The  phenomenology  of  quitting:   Effects  from  repetition  and  cognitive  effort.  Journal  of  Cognitive  Science.     Notebaert,  W.,  &  Verguts,  T.  (2006).  Stimulus  conflict  predicts  conflict  adaptation  in   a  numerical  flanker  task.  Psychonomic  Bulletin  &  Review,  13(6),  1078-­‐1084.      

 

15  

 

Proctor,  R.  W.,  &  Cho,  Y.  S.  (2006).  Polarity  correspondence:  A  general  principle  for   performance  of  speeded  binary  classification  tasks.  Psychological  Bulletin,   132(3),  416-­‐442.       Schouppe,  N.,  Ridderinkhof,  K.  R.,  Verguts,  T.,  Notebaert,  W.  (2012).  The  aversive   nature  of  conflict  revealed  in  choice  and  switch  rates.  Manuscript  submitted   for  publication.     Stroop,  J.  R.  (1935).  Studies  of  interference  in  serial  verbal  reactions.  Journal  of   Experimental  Psychology,  18,  643-­‐662.     van  Steenbergen,  H.,  Band,  G.  P.  H.,  &  Hommel,  B.  (2009).  Reward  counteracts   conflict  adaptation:  evidence  for  a  role  of  affect  in  executive  control.   Psychological  Science,  20(12),  1473-­‐1477.       van  Veen,  V.,  &  Carter,  C.  S.  (2005).  Separating  semantic  conflict  and  response   conflict  in  the  Stroop  task:  A  functional  MRI  study.  NeuroImage,  27,  497-­‐504.     Verbruggen,  F.,  Notebaert,  W.,  Liefooghe,  B.,  &  Vandierendonck,  A.  (2006).  Stimulus-­‐   and  response-­‐conflict-­‐induced  cognitive  control  in  the  flanker  task.   Psychonomic  Bulletin  &  Review,  13(2),  328-­‐333.          

 

16  

 

Footnote     1

Note  that  we  did  not  use  the  colours  green  or  red.  In  daily  life,  these  colours  are  

typically  associated  with  go  and  no-­‐go  responses  respectively  (cfr.  traffic  lights). Recent  findings  indeed  confirm  that  the  colour  red  induces  an  avoidance  tendency   (Elliot,  Maier,  Moller,  Friedman,  &  Meinhardt,  2007).                        

 

17  

 

Author  Note     The  research  reported  in  this  article  was  supported  by  grant  no.  3F011209  of   Research  Foundation  -­‐  Flanders.  Jan  De  Houwer  is  supported  by  grants   BOF/GOA2006/001  and  BOF/01M00209  from  Ghent  University.    

 

18  

 

Figure  1.  Mean  reaction  times  (left  panel)  and  error  rates  (right  panel)  for   congruency  and  response  type.  Vertical  bars  represent  ±  1  standard  error  of  the   mean.   6  

approach   avoidance  

700  

Error  rate  (in  %)  

ReacCon  Cme  (in  ms)  

740  

660   620   580   540  

   

 

 

2  

approach   avoidance  

0  

CO  

 

4  

SI  

RI  

 

CO  

SI  

RI  

 

19  

 

Table  1.  Reaction  time  differences  (in  ms)  between  the  different  levels  of  congruency   and  response  type.  Difference  scores  were  calculated  by  subtracting  values  of  the   row  conditions  from  values  of  the  column  conditions.  Grey  cells  indicate  a  significant   result  for  the  comparison  of  the  difference  scores  between  approach  and  avoidance   responses.        

CO   approach  

SI   approach  

RI   approach  

CO   avoidance  

SI   avoidance  

RI   avoidance  

CO   approach  

x  

26  **    

43.2  **    

62.9  **    

65.8  **  

94.3  **  

SI   approach  

 

x  

17.1  *  

36.9  **  

39.7  **  

68.3  **  

RI   approach  

 

 

x  

19.7  *  

22.6  *  

51.2  **  

CO   avoidance  

 

 

 

x  

2.9    

31.4  **  

SI   avoidance  

 

 

 

 

x  

28.5  **  

RI             avoidance   **  p  <  .01  *  p  <  .05,  multiple  comparisons  p-­‐values  were  corrected  following   Benjamini  and  Hochberg  (1995)                                        

 

x  

20  

 

Table  2.  Error  rate  differences  (in  %)  between  the  different  levels  of  congruency  and   response  type.  Difference  scores  were  calculated  by  subtracting  values  of  the  row   conditions  from  values  of  the  column  conditions.  Grey  cells  indicate  a  significant   result  for  the  comparison  of  the  difference  scores  between  approach  and  avoidance   responses.      

CO   approach  

SI   approach  

RI   approach  

CO   avoidance  

SI   avoidance  

RI   avoidance  

CO   approach  

x  

0.3    

2.6  **  

0.7    

0.1    

1.4  *  

SI   approach  

 

X  

2.3  **  

0.4    

-­‐0.2    

1.0    

RI   approach  

 

 

x  

-­‐1.9  **  

-­‐2.5  **  

-­‐1.3  *  

CO   avoidance  

 

 

 

x  

-­‐0.6    

0.6    

SI   avoidance  

 

 

 

 

x  

1.2  *  

RI             avoidance   **  p  <  .01  *  p  <  .05,  multiple  comparisons  p-­‐values  were  corrected  following   Benjamini  and  Hochberg  (1995)  

 

x