Research on Operation Principle and Control of Novel Hybrid ... - MDPI

4 downloads 2563 Views 5MB Size Report
Aug 24, 2016 - Abstract: Under the condition of load changing, the magnetic field of traditional ... of the finite element analysis software-ANSYS Maxwell, the corresponding ... the problems of unstable suspension force and generating voltage ...
energies Article

Research on Operation Principle and Control of Novel Hybrid Excitation Bearingless Permanent Magnet Generator Huangqiu Zhu and Yamin Hu * School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] * Correspondence: [email protected]; Tel.: +86-511-8878-0088 Academic Editor: David Wood Received: 24 May 2016; Accepted: 8 August 2016; Published: 24 August 2016

Abstract: Under the condition of load changing, the magnetic field of traditional permanent magnet generators (PMG) is hard to be adjusted, and the mechanical bearings are significantly worn. To overcome the drawbacks above, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG) is proposed in this paper, which has integrated the merits of hybrid excitation permanent magnet generators and magnetic bearings. Firstly, the structure and winding configuration of the HEBPMG are introduced, and then the principles of radial suspension and power generation are presented. The suspension principle as well as power generation principle is analyzed in this paper. Then, the flux linkage and induced voltage equations are derived, and the accurate mathematical model of radial suspension force is built based on the Maxwell tensor method. Subsequently, by means of the finite element analysis software-ANSYS Maxwell, the corresponding electromagnetic characteristics are analyzed to verify the correctness of the mentioned models. In addition, a compensation control strategy based on flux-linkage observation is proposed to solve the problems of unstable suspension force and generating voltage under variable load condition in this paper. Meanwhile, the corresponding control system is constructed and its feasibility is validated by simulation results. Finally, an experimental prototype of a 2.2 kW HEBPMG is tested. Experimental researches show that the HEBPMG can operate steadily under variable load condition and possess good suspension performance and power generation quality. Keywords: permanent magnet generator; bearingless motor; hybrid excitation; mathematical model; compensation control

1. Introduction Traditional permanent magnet synchronous generators (PMSGs) have the advantages of simple structure, high efficiency, high power factor, reliable operation and so on. They are widely applied in the wind turbine, gas turbine generator, aviation electric power source, hybrid vehicles, and flywheel energy storage system, with the operation reliability of the PMSG paramount [1]. However, in conventional PMSGs, the mechanical bearing is used to support the shaft, which causes heavy mechanical wear with the increase of rotation speed and limits the load capacity [2]. The bearing represents a bottleneck in achieving high-speed and ultra-high speed operation of the transmission system. Until the 1980s, the emergence of the bearingless motor extended the bearing service life of the generator and reduced the maintenance costs, while weakening the influence of bearing failure. Current researches mainly focus on the electromotion-state of the bearingless permanent magnet synchronous motors (BPMSMs) [3]. Because of their excellent starting and generating performance, the generating state is another working pattern for the BPMSM, namely bearingless permanent magnet generator (BPMSG), which is still in a preliminary exploratory stage and will be a hotspot in the future. Energies 2016, 9, 673; doi:10.3390/en9090673

www.mdpi.com/journal/energies

Energies 2016, 9, 673

2 of 17

Due to the poor field adjustment ability of PMSG, the regulation of magnetic fields has been a hot research topic. It is an effective way to solve the problem by increasing the auxiliary electric excitation to adjust the magnetic field. In [4], a hybrid excitation type synchronous machine is presented by Nobuyuki Naoe et al., which has both permanent magnet and wound fields on the same shaft. Xiaogang Luo and Lipo A [5] proposed a synchronous permanent magnet hybrid AC machine. Juan A. Tapia et al. [6] designed a consequent pole permanent magnet machine with field weakening capability. However, there exists a coupling effect between permanent magnetic field and electric excitation magnetic field caused by the magnetic circuit structure of these motor. In addition, in [7,8], a hybrid excitation claw-pole synchronous generator with series magnetic circuit and a hybrid excitation claw-pole alternator are investigated, respectively. Their rotors are composed of permanent magnetic parts producing electricity and electrical excitation parts regulating voltage, and they are installed coaxially. By adjusting the exciting current, the air gap magnetic flux can be changed to realize the purpose of voltage stabilizing. However, these structures will cause defects in the resultant assembly process and high maintenance costs, aggravating the burden of the rotor, and reducing power density. In this paper, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG), in which the bearingless technology is utilized to realize the radial suspension and a set of excitation windings is added on the stator to compensate the synthesis of the magnetic field, is proposed. The structure of the HEBPMG and the operating principle are analyzed in Section 2. The voltage equations and the accurate mathematic model of suspension force are derived in Section 3. What is more, the correctness of the model is verified by finite element analysis (FEA). In terms of the instability suspension force and power voltage under variable loads, a compensation control strategy based on flux-linkage observation is proposed in Section 4. In Section 5, the corresponding digital control experiment platform is constructed. The simulation and experiment results verify the validity of the theoretical analysis and the effectiveness of the control system. 2. The Operation Principle and Structure of the HEBPMG 2.1. The Motor Structure and Windings Distributions of the HEBPMG The radial profile sketch of the HEBPMG is shown in Figure 1. The HEBPMG adopts 36 stator slots, and there are three sets of windings dividing into two layers in the stator slot. Bottom layer windings are the generation windings, which are the distributed windings with three slots per pole and per phase form adopted. In a counter-clockwise direction, the winding phase sequence arrangement is A1+, B1−, C1+, A1−, B1+, C1−, A2+, B2−, C2+, A2−, B2+, C2−. For this arrangement, when the generation winding current is induced, the 2-pole-pair air gap magnetic field can be generated, which is equal to the pole number of the permanent magnet air gap magnetic field. In the upper layer windings, symbol X1+, Y1−, Z1+, X1−, Y1+, Z1−, X2+, Y2−, Z2+, X2−, Y2+, Z2− and a+, b−, c+, a−, b+, c− represent the exciting windings and the suspension force windings, respectively. Specifically, exciting windings X+ are arranged in the upper layer of the first slot among the three slots where the generation windings A+ are arranged in the bottom layer, and suspension force windings a+ are arranged in the upper layer of the second and the third slots. Generation windings B− are arranged in the bottom layer of the next three slots, in which the exciting windings Y− are arranged in the upper layer of the first slot, and the suspension force windings a+ are placed in the upper layer of other two slots. The exciting windings a+ slot here together with the above two a+ slots form an intact exciting windings a+. Taking three stator slots as an example, one exciting winding and two suspension force windings are arranged alternatively. By means of this winding structure, 1-pole-pair suspension force winding air gap field and 2-pole-pair generation winding air gap field can be generated to satisfy the principle of suspension for the HEBPMG [9]. The pole pairs of exciting winding air gap field is the same as that of the generator winding air gap field to realize the compensation and weakening effect for the resultant magnetic field.

Energies 2016, 9, 673 Energies 2016, 9, 673 

3 of 17 3 of 17 

  Figure 1. 1. The The structure  and windings distributions  of the the hybrid hybrid excitation excitation bearingless bearingless permanent permanent  Figure structure and windings distributions of magnet generator (HEBPMG).  magnet generator (HEBPMG).

2.2. The Suspension Principle of the HEBPMG  2.2. The Suspension Principle of the HEBPMG In the HEBPMG, the given current signal of the suspension force windings is adjusted by real‐ In the HEBPMG, the given current signal of the suspension force windings is adjusted by real-time time detecting the rotor radial displacement signal based on position sensor to realize self‐aligning  detecting the rotor radial displacement signal based on position sensor to realize self-aligning control. control.  The  suspension  principle  of is HEBPMG  shown  in  Figure  2.  Taking  A‐phase  generation  The suspension principle of HEBPMG shown inis  Figure 2. Taking A-phase generation windings and windings and a‐phase suspension force windings as an example, the 2‐pole‐pair generator windings  a-phase suspension force windings as an example, the 2-pole-pair generator windings Nga and the Nga and the 1‐pole‐pair suspension force windings N 1-pole-pair suspension force windings Nsa are woundsa are wound around the stator slots. When the  around the stator slots. When the suspension suspension force windings are not energized, the air gap resultant magnetic field ϕ , consisting of  force windings are not energized, the air gap resultant magnetic field ϕm , consisting mof the induced the induced generation winding magnetic field and permanent magnet magnetic field, are spatially  generation winding magnetic field and permanent magnet magnetic field, are spatially symmetric symmetric distributions. Then, according to Maxwell’s stress tensor, the radial suspension force F m is  distributions. Then, according to Maxwell’s stress tensor, the radial suspension force Fm is zero. zero. The 1‐pole‐pair air gap flux ϕ α is generated when current is injected into the suspension force  The 1-pole-pair air gap flux ϕα is generated when current is injected into the suspension force windings. windings. As a result, the flux density is increased in the left and decreased in the right. Then the  As a result, the flux density is increased in the left and decreased in the right. Then the radial suspension radial suspension force, namely Maxwell resultant force, F m is obtained which points to the negative  force, namely Maxwell resultant force, Fm is obtained which points to the negative direction in the direction in the x‐axis. A radial suspension force toward the positive direction of the x‐axis can be  x-axis. A radial suspension force toward the positive direction of the x-axis can be acquired with aacquired with a reverse current. Similarly, the radial suspension force in the y‐axis can be obtained  reverse current. Similarly, the radial suspension force in the y-axis can be obtained by providing by  providing  corresponding  in  the  other  is aimed  realize  the  corresponding current in thecurrent  other windings. In windings.  summary, In  it summary,  is aimed toit realize theto  rotor stable rotor  stable  suspension  on  radial  displacement  and  the winding suspension  force  winding  control. current  suspension based on radialbased  displacement and the suspension force current closed-loop closed‐loop control. 

 

Energies 2016, 9, 673 Energies 2016, 9, 673  Energies 2016, 9, 673 

4 of 17 4 of 17  4 of 17 

   Figure 2. The suspension principle of HEBPMG. Figure 2. The suspension principle of HEBPMG.  Figure 2. The suspension principle of HEBPMG. 

2.3. The Power Generation Principle of the HEBPMG  2.3. The Power Generation Principle of the HEBPMG 2.3. The Power Generation Principle of the HEBPMG  Compared with the traditional PMSG, HEBPMG has the same principle of power generation.  Compared with the traditional PMSG, HEBPMG has the same principle of power generation. Compared with the traditional PMSG, HEBPMG has the same principle of power generation.  Under driving of the prime motor, three phase induced currents can be generated by cutting magnetic  Under driving of the prime motor, three phase induced currents can be generated by cutting magnetic Under driving of the prime motor, three phase induced currents can be generated by cutting magnetic  induction  lines  permanent  magnet  rotation  3  shows  the  external  circuit  induction ofof  thethe  permanent magnet rotation field. field.  FigureFigure  3 shows external of HEBPMG. induction lines lines  of  the  permanent  magnet  rotation  field.  Figure  3 the shows  the circuit external  circuit  of  of  HEBPMG.  The  current  flows  into  the  load,  generating  voltage  at  both  ends  of  the  load.  Where  The currentThe  flows into the load, generating at both endsat ofboth  the ends  load. of  Where C represents HEBPMG.  current  flows  into  the  load, voltage generating  voltage  the  load.  Where C  C  represents capacitive load, Z represents resistance‐inductance load, V represents breaker.  capacitive load, Z represents resistance-inductance load, V represents breaker. represents capacitive load, Z represents resistance‐inductance load, V represents breaker.  U Udd 22

U Udd 22

U Udd 22

U Udd 22

   Figure 3. The external circuit of HEBPMG.  Figure 3. The external circuit of HEBPMG.  Figure 3. The external circuit of HEBPMG.

Exciting magnetic field ϕ e will be changed by injecting the current in the exciting windings Nex   Exciting magnetic field ϕ Exciting magnetic field ϕee will be changed by injecting the current in the exciting windings N will be changed by injecting the current in the exciting windings Nexex  to realize the magnetic‐field compensation. As shown in Figure 4a, when the load is increased, air  to realize the magnetic‐field compensation. As shown in Figure 4a, when the load is increased, air  to realize the magnetic-field compensation. As shown in Figure 4a, when the load is increased, air gap resultant magnetic field is weakening. To maintain stable operation, a strengthened excitation  gap resultant magnetic field is weakening. To maintain stable operation, a strengthened excitation  gap resultant magnetic field is weakening. To maintain stable operation, a strengthened excitation magnetic field must be provided. At this time, the direction of the exciting winding magnetic field is  magnetic field must be provided. At this time, the direction of the exciting winding magnetic field is  magnetic field must be provided. At this time, the direction of the exciting winding magnetic field is in in  accordance  with  that  of  the  air  gap resultant  magnetic  field. On  the  when  the  load  in  accordance  air  gap resultant  magnetic  field. On  the contrary,  contrary,  load is  is  accordance withwith  that that  of theof  airthe  gap resultant magnetic field. On the contrary, when the when  load isthe  decreased, decreased, an excitation magnetic field in the opposite direction will weaken the resultant magnetic field.  decreased, an excitation magnetic field in the opposite direction will weaken the resultant magnetic field.  an excitation magnetic field in the opposite direction will weaken the resultant magnetic field. Thus, Thus, the quality of the power generation will be improved by adding the excitation magnetic field.  Thus, the quality of the power generation will be improved by adding the excitation magnetic field.  the quality of the power generation will be improved by adding the excitation magnetic field.

  

Energies 2016, 9, 673 Energies 2016, 9, 673 

5 of 17 5 of 17 

  (a) 

(b)

Figure 4. The excitation principle of HEBPMG. (a) The synthesis of magnetic field is compensated by  Figure 4. The excitation principle of HEBPMG. (a) The synthesis of magnetic field is compensated by excitation magnetic field; (b) The synthesis of magnetic field impaired by excitation magnetic field.  excitation magnetic field; (b) The synthesis of magnetic field impaired by excitation magnetic field.

3. Mathematical Model of HEBPMG  3. Mathematical Model of HEBPMG 3.1. Mathematical Model of Inducted Voltage  3.1. Mathematical Model of Inducted Voltage The equations of the flux linkage in the HEBPMG can be expressed as  The equations of the flux linkage in the HEBPMG can be expressed as

   L i  M i  M i  M i  

a b ac c afd fd pma ψa = − Laaaaiaa − Mab ab ib − Mac ic − Mafd ifd + ψpma ifd i +pmbψ bb iibb  bfdbfd ψb=b  −MMbabaiaia− LLbb −MMbcbcicic−MM fd pmb   ψ = − M i − M i − L i − M i + ψ M i M i L i M i         ca cb bb  ca aa cb ccccc c cfdcfd fd fd pmc pmc  c c   ψfd =− M i − M i − M i − L + ψpmfd a c fda fdb b fdc =  M i  M i  M i  L ffd i ifd 

    



fd

fda a

fdb b

fdc c

ffd fd

(1) (1)

pmfd

where Laaaa, L ,L Mab ba=, M Mbc , Mbc = Mcb , cc are self-induction of three phase generation windings.ab = M ba = M where L bbbb , L, ccL are self‐induction of three phase generation windings. M cb, Mca =  Macca are mutual inductance of three phase generation windings. M = Mac are mutual inductance of three phase generation windings. Mfda fdb =  = M Mafdbfd ,M fdb = Mbfd M fda = Mafd, M  are mutual  are mutual inductance between the generation windings and the excitation windings. Furthermore, inductance between the generation windings and the excitation windings. Furthermore, ψpma, ψpmb,  , ψpmb , ψpmc are flux linkage generated by three generation windings and ψpmfd is the excitation pma ψψpmc  are flux linkage generated by three generation windings and ψ pmfd is the excitation winding    winding flux linkage. flux linkage.  The equivalent  equivalent circuit  circuit of  of the  the HEBPMG  HEBPMG is  is shown  shown in  in (Figure  (Figure 5),  5), and  and voltage  voltage equation  equation can  can be  be The  expressed as expressed as  . . . us = dψs /dt + Rs I (2)     u  dψ d t  R I (2) s s s . where us = [ua ub uc ufd ]T is voltage matrix in which ua , ub , uc are the generation windings voltage where  b uc u fd]Tis  is voltage matrix in which u a, ub, uc are the generation windings voltage at  at bothu˙ s = [u endsa u and ufd the excitation windings voltage. I˙ = [ia ib ic ifd ]T is current matrix in both ends and u fd is the excitation windings voltage. İ = [i b ic iifd]T is current matrix in which i a, ib, ic  which ia , ib , ic are the current of the generation windingsa iand fd is the excitation windings current. are the current of the generation windings and i fd  is the excitation windings current. R s  = [−r −r −r −r ]  Rs = [−r −r −r −rfd ] is the resistance matrix in which r is the generation windings resistance and fd rfd T is  the  resistance  matrix  in  which  r  is  the  generation  windings  resistance  and  r fd   is  the  excitation  is the excitation windings resistance. ψs = [ψa ψb ψc ψfd ] is flux linkage matrix in which ψa , ψb , ψc windings  resistance.  ψ ˙ s  =  [ψ a  ψb  ψc  ψand fd]T  is  linkage windings, matrix  in respectively. which  ψa,  ψb,  ψc  and  ψfd  are  the  and ψfd are the generation windings theflux  excitation generation windings and the excitation windings, respectively. 

 

Energies 2016, 9, 673 Energies 2016, 9, 673 

6 of 17 6 of 17 

p a

ifd

p b p c ua ia

ub ib

r uc ic R

ufd

rfd p a

L   (a)

(b)

Figure 5. The equivalent circuit of HEBPMG (a) The equivalent circuit of power generation; (b) The  Figure 5. The equivalent circuit of HEBPMG (a) The equivalent circuit of power generation; (b) The equivalent circuit of excitation.  equivalent circuit of excitation.

3.2. Mathematical Model of Radial Suspension Force  3.2. Mathematical Model of Radial Suspension Force According to the electromagnetic field theory of the HEBSG, the resultant air gap magnetic field  According to the electromagnetic field theory of the HEBSG, the resultant air gap magnetic field is generated by the generation windings, the permanent magnet, the suspension force windings and  is generated by the generation windings, the permanent magnet, the suspension force windings and the  exciting  windings.  The  pole‐pairs  of  the  generation  winding  magnetic  field,  the  permanent  the exciting windings. The pole-pairs of the generation winding magnetic field, the permanent magnet magnet and the exciting windings are identical, which can be represented as pG, and the magnetic  and the exciting windings are identical, which can be represented as pG , and the magnetic field of the field of the suspension force windings is pB‐pole‐pair. Above all, there are only two types of magnetic  suspension force windings is pB -pole-pair. Above all, there are only two types of magnetic motive motive force (MMF) in the air gap for the HEBPMG. The fundamental component of MMF can be  force (MMF) in the air gap for the HEBPMG. The fundamental component of MMF can be expressed as expressed as  f G (ϕ, ft)  φ,= f 1 f(ϕ, t) + f f (ϕ, t) + f 3 (ϕ, t) t  G 1  φ, t   ff  φ, t   f3  φ, t  = F1m cos(ωt − pG ϕ − µ1 ) (3)  F1m cos(ωt  pG φ  μ1 ) + Ffm cos(ωt − pG ϕ − µf )   (3) cos(ωt  p φ  μ ) F + Ffm 3m cos(ωt −G pG ϕ f− θ1 ) F3m cos(ωt  pG φ  θ1 ) f 2 (ϕ, t) = F2m cos(ωt − pB ϕ − λ1 ) (4) f 2  φ, t   F2m cos(ωt  pBφ  λ1 )   (4) where, F1m , Ffm , F2m , F3m are the fundamental component amplitude of the air-gap MMF produced by the generation windings, the permanent magnet, the suspension force windings and the exciting where, F 1m, Ffm, F2m, F3m are the fundamental component amplitude of the air‐gap MMF produced by  windings, respectively. Meanwhile µ1 , µf ,magnet,  λ1 , θ1 arethe  thesuspension  initial phase angles of corresponding MMF the  generation  windings,  the  permanent  force  windings  and  the  exciting  fundamental wave, respectively. ϕ is the space angle. ω is the electric angular frequency of the windings, respectively. Meanwhile μ 1, μf, λ1, θ1 are the initial phase angles of corresponding MMF  generation windings current and the suspension windings current. fundamental  wave,  respectively.  ϕ  is  the  space force angle.  ω  is  the  electric  angular  frequency  of  the  According to the theory of Electrical Machinery, the value of F1m , Ffm , F2m , F3m is generation windings current and the suspension force windings current.   √ √ According to the theory of Electrical Machinery, the value of F 1m, Ffm, F2m, F3m is   F = 3 4 2 N1 I1 kd1 F = 3 4 2 N2 I2 kd2 2m 1m 2 π √2 pG 2 π √2 pB (5)  kd1 3 43 4 2 2NN 23 IN 3 34 4 2 N 3 k2d3I 2 kd2 Gd1  1 I11Ik F = F = 3m fm   F F 2 π 2 p 2 π 2 p  1m 2m G G 2 2 2 2 pG pB  (5)  where, kd1 , kd2 and kd3 correspond wave 3 to 4 the 2 Nfundamental 3 4 windings 2 N 3 I 3 kd3 factors of the generation  1 I G kd1  F3m  windings, the suspension force windings N1 , N2 and N3 are  Ffm 2  2and the pG excitation windings, 2 2 prespectively, G    the turn numbers in series of each phase of the generation windings, the suspension force windings where,  d1,  kd2  and  kd3  correspond  to  the  windings  factors  of  the  generation  and the kexcitation windings respectively. I1 fundamental  is the inducedwave  current in the generation windings, I2 and windings, the suspension force windings and the excitation windings, respectively, N 1 , N 2  and N 3 are  I3 are the current injected respectively into the suspension windings and the excitation windings. the turn numbers in series of each phase of the generation windings, the suspension force windings  and the excitation windings respectively. I1 is the induced current in the generation windings, I2 and  I3 are the current injected respectively into the suspension windings and the excitation windings. IG   

Energies 2016, 9, 673 

7 of 17 

Energies 2016, 9, 673

7 of 17

represents the synthesis of current including the generation windings induced current, the excitation  windings induced current and the equivalent current of permanent magnet.  IG represents the synthesis of current including the generation windings induced current, the excitation Because the relative permeability of the stator core and the rotor core is much larger than that of  windings induced current and the equivalent current of permanent magnet. air, the magnetic resistance of stator core and rotor core can be neglected. The air gap flux density  Because the relative permeability of the stator core and the rotor core is much larger than that of can be obtained as  air, the magnetic resistance of stator core and rotor core can be neglected. The air gap flux density can B φ, t   B φ, t   B φ, t  be obtained as   (6) μFt) + B (ϕ, t) μF B (ϕ, t) = B (ϕ, cos(ωt  pφ  μ)  µFcos(ωt  pφ  λ) (6) µF = δ cos δ (ωt − pϕ − µ) + δ δ cos(ωt − pϕ − λ) δ = δ0 as the rotor is non‐eccentricity. Considering the rotor eccentricity, the distribution of the  δ = δ 0 as the rotor is non-eccentricity. Considering the rotor eccentricity, the distribution of the air gap length is unbalance as shown in Figure 6. The air gap length in any direction0 −  is air gap length is unbalance as shown in Figure 6. The air gap length in any direction is δ(ϕ) = δ δ(ϕ) = δ0 − se). ·cos(ϕ − ϕs ). ecos(ϕ − ϕ

  Figure 6. The definition of rotor eccentricity.  Figure 6. The definition of rotor eccentricity.

According  to  the  Maxwell  tensor  method,  the  radial  suspension  force  per  unit  area  along  an  According to the Maxwell tensor method, the radial suspension force per unit area along an electric angle ϕ on the rotor surface can be expressed as  electric angle ϕ on the rotor surface can be expressed as

B 2 (φ, t ) B 2 (φ, t ) dF (φ)  B2 (ϕ, t) ds B2 (ϕ, t) (lrdφ)   2μ 0 ds = 2μ 0 (lrdϕ) dF (ϕ) =

(7) (7)

2µ0 2µ0 where, l is the effective iron core length of HEBPMG, r is the rotor radius. For the HEBPMG (pG = 2,  where, l is the effective iron core length of HEBPMG, r is the rotor radius. For the HEBPMG pB = 1), it is computed by the integral for Formula (7) with ϕ from 0 to 2π, and can be simplified as  (pG = 2, pB = 1), it is computed by the integral for Formula (7) with ϕ from 0 to 2π, and can be F  km IG I2 cos(μ  λ1 ) simplified as   x  2 F  x = k m IG I2 cos  λy21 )  y √(xµ −    kn 2IG2 [ x  x2 +y2  cos(2ωt  2λ1  arctan y)]   + kn I [ x + 2 · cos(2ωt − 2λ1 − arctanx x )]  (8)  F  k GI I sin(μ2 λ )  F = k I I sin ( µ − λ1 1 ) y m G 2 y m 2 G   √     x22+y2 2 +kn IG2 2[y + x2  y· cos(2ωt − 2λ1 + arctanyyx )]

 

Among them, km =

kn IG [ y 

9 µ0 lrN1 N2 kd1 kd2 , kn 2 πδ20

2

 cos(2ωt  2λ1  arctan )] x

2 2 9 µ0 lrN1 kd1 2 4 πδ0 2 2

= 9 μ 0lrN1 kd1 9 μ 0lrN1 N2 kd1kd2 Among them,  km  ,  kn    2 4 δ02 2 δ0 3.3. FEA Analysis of HEBSG According to the structural model and working principle of the HEBPMG, the finite elements 3.3. FEA Analysis of HEBSG  model is built utilizing ANSYS software for dynamic electromagnetic performance simulation. The According to the structural model and working principle of the HEBPMG, the finite elements  structural parameters of the prototype are optimized through the analysis of parameterized, as shown model is built utilizing ANSYS software for dynamic electromagnetic performance simulation. The  in Table 1. The flux density cloud map and the distribution of magnetic field lines of HEBPMG are structural  parameters  of  the  prototype  are  optimized  through  the  analysis  of  parameterized,  as  shown in Figure 7. shown in Table 1. The flux density cloud map and the distribution of magnetic field lines of HEBPMG  are shown in Figure 7. 

 

Energies 2016, 9, 673

8 of 17

Energies 2016, 9, 673 

8 of 17 

  (a) 

(b)

Figure 7. The finite element model of HEBPMG (a) Flux density cloud map; (b) The distribution of  Figure 7. The finite element model of HEBPMG (a) Flux density cloud map; (b) The distribution of magnetic field lines.  magnetic field lines. Table 1. Structural parameters of the prototype.  Table 1. Structural parameters of the prototype.

Symbol  Quantity Value  Symbol Quantity Value Q  Stator slot counts  36  Stator slot counts 36 DS1 Q Outer diameter of stator  180 mm  Outer diameter of stator 180110 mm  mm DS2D   S1 Inner diameter of stator  DS2 Inner diameter of stator 110 mm Dr1D   Outer diameter of rotor  Outer diameter of rotor 98 98 mm  mm r1 Dr2D   r2 Inner diameter of rotor  Inner diameter of rotor 30 30 mm  mm Radial length of air-gap 1 mm Lg  Lg Radial length of air‐gap  1 mm  l Axial length of rotor 50 mm l  Axial length of rotor  50 mm  P Rated power 2.2 kW P  Rated power  2.2 kW  Stator slot full rate 0.75   I Stator slot full rate  Suspension force winding current 5A0.75  I  Φ Suspension force winding current  5A  Windings wire diameter 0.71 mm Material of stator and rotor D32_50 Ф  Windings wire diameter  0.71 mm  Material of permanent magnet rotor NFeB35   Material of stator and rotor  D32_50  Magnetization of permanent magnet rotor parallel magnetization   h Material of permanent magnet rotor  NFeB35  Auxiliary bearing thickness 0.7 mm a   PM Magnetization of permanent magnet rotor  parallel magnetization  Pole-pair of generation windings 2 Pole-pair of suspension windings 1 ha  PB Auxiliary bearing thickness  0.7 mm  Pole-pair of excitation windings 2 2  PM PE Pole‐pair of generation windings  Turns in series of each phase of generation windings 40 N PB N1 Pole‐pair of suspension windings  1  Turns in series of each phase of suspension windings 60 2 PE N3 Pole‐pair of excitation windings  2  Turns in series of each phase of excitation windings 40 N 1  J Turns in series of each phase of generation windings  40  The rotational inertia 0.00059 kg ·m2 N 2  Turns in series of each phase of suspension windings  60  N 3  Turns in series of each phase of excitation windings  The PWM rectifier circuit shown as Figure 3 is connected to the generation40 windings of the 2  J  The PWM rectifier system The rotational inertia  0.00059 kg∙m HEBPMG. can not only realize the adjustment of DC side voltage, but also enhance the power factor of the generator on the AC side, and reduce the harmonic of the The  PWM  rectifier  circuit  shown  as  Figure  3  is  connected  to  the  generation  windings  of  the  generator current. Moreover, the flux linkage of the generation windings varies with the change of HEBPMG. The PWM rectifier system can not only realize the adjustment of DC side voltage, but also  rotor position angle, which can generate back electromotive force (back-EMF). Then the induction enhance the power factor of the generator on the AC side, and reduce the harmonic of the generator  current is generated and the voltage is formed on the load when the winding forms a return circuit, as current.  Moreover,  the  flux  linkage  of  the  generation  windings  varies  with  the  change  of  rotor  shown in Figure 8. position angle, which can generate back electromotive force (back‐EMF). Then the induction current  is generated and the voltage is formed on the load when the winding forms a return circuit, as shown  in Figure 8. 

 

120 100

10

80 Energies 2016, 9, 673 Energies 2016, 9, 673 

5

60

9 of 17 9 of 17 

40

0

Capacitive load branch current Resistance load branch current

20 -5 0

20

40

Trunk current Load voltage 60

20 160 0 100140

80

 

15

120 Figure 8. The load current and voltage of Pulse Width Modulation (PWM) rectifier circuit.  100

10 The mathematical model derived in the second section can be validated by using the parameters  80 in Table 1. The correctness of the model can be verified without rotor eccentricity in Figure 9. The  radial  suspension force  on  the  permanent  magnet  rotor  increases linearly  with the  increase of  the  5 60 suspension force windings current. However, on the other side, the increased speed of the suspension  40 force value becomes slow and nonlinear due to saturation magnetic fields.  0 According to the results of the simulation, the angle between the vectors of the suspension force  20 and the x‐axis is 128° without rotor eccentricity. The rotor position angle is set to −52° which is the  0 -5 of  the  suspension  force.  Therefore,  the  unilateral  magnetic  opposite  direction  force  and  the  0 60 80 the  suspension  100 controllable  suspension  force 20are  in  the 40opposite  direction.  When  force  current    amplitude is small, the unilateral magnetic force plays the leading role in the radial suspension force.  Figure 8. The load current and voltage of Pulse Width Modulation (PWM) rectifier circuit.  Figure 8. The load current and voltage Pulse Width Modulation (PWM) rectifier circuit. However,  the  controllable  suspension  force ofgradually  increases  with  the  increase  of  current,  and  there will be a point when the controllable suspension force is equal to the unilateral magnetic force.  The mathematical model derived in the second section can be validated by using the parameters  Then, after the balance point, the controllable suspension force continues to increase until it occupies  The mathematical model derived in the second section can be validated by using the parameters in Table 1. The correctness of the model can be verified without rotor eccentricity in Figure 9. The  the main part, the composition radial suspension force tends to be linear growth. Also, when current  in Table 1. The correctness of the model can be verified without rotor eccentricity in Figure 9. The radial  suspension force  on  the  permanent  magnet  rotor  increases linearly  with the  increase of  the  reaches a certain degree, there will be the trend of magnetic saturation. In general, conclusions can  radial suspension force on the permanent magnet rotor increases linearly with the increase of the suspension force windings current. However, on the other side, the increased speed of the suspension  be drawn from the dynamic analysis of the simulation waveform and the established mathematical  suspension force windings current. However, on the other side, the increased speed of the suspension force value becomes slow and nonlinear due to saturation magnetic fields.  model is accurate.  force value becomes slow and nonlinear due to saturation magnetic fields. According to the results of the simulation, the angle between the vectors of the suspension force  and the x‐axis is 128° without rotor eccentricity. The rotor position angle is set to −52° which is the  350 FEA without rotor eccentricity opposite  direction  of  the  suspension  force.  Therefore,  the  unilateral  magnetic  force  and  the  controllable  suspension  force  are  in  the  opposite  direction.  300 Model calculation without rotor eccentricity When  the  suspension  force  current  amplitude is small, the unilateral magnetic force plays the leading role in the radial suspension force.  FEA with rotor eccentricity 250 However,  the  controllable  suspension  force  gradually  increases  with  the  increase  of  current,  and  Model calculation with rotor eccentricity there will be a point when the controllable suspension force is equal to the unilateral magnetic force.  200 Then, after the balance point, the controllable suspension force continues to increase until it occupies  the main part, the composition radial suspension force tends to be linear growth. Also, when current  150 reaches a certain degree, there will be the trend of magnetic saturation. In general, conclusions can  be drawn from the dynamic analysis of the simulation waveform and the established mathematical  100 model is accurate. 

50 350 0 300 0

FEA without rotor eccentricity

1 2 3 without 4 rotor5eccentricity 6 Model calculation

7

8

9

10

 

FEA with rotor eccentricity

 

250 Figure 9. The relationship between radial levitation force and levitation force winding current amplitude.  Figure 9. The relationship between with radial Model calculation rotorlevitation eccentricity force and levitation force winding current amplitude. 200

According to150 the results of the simulation, the angle between the vectors of the suspension force and the x-axis is 128◦ without rotor eccentricity. The rotor position angle is set to −52◦ which is the opposite direction100 of the suspension force. Therefore, the unilateral magnetic force and the controllable suspension force are in the opposite direction. When the suspension force current amplitude is small, 50 the unilateral magnetic force plays the leading role in the radial suspension force. However, the controllable suspension force gradually increases with the increase of current, and there will be a 0 point when the controllable suspension force is4 equal5 to the 0 1 2 3 6 unilateral 7 8magnetic 9 force. 10 Then, after the

  Figure 9. The relationship between radial levitation force and levitation force winding current amplitude.   

Energies 2016, 9, 673

10 of 17

balance point, the controllable suspension force continues to increase until it occupies the main part, the composition radial suspension force tends to be linear growth. Also, when current reaches a certain degree, there will be the trend of magnetic saturation. In general, conclusions can be drawn from the dynamic analysis of the simulation waveform and the established mathematical model is accurate. 4. Control System of the HEBPMG Based on Flux Observation In fact, the generator normally operates under the variable load condition, which causes instability of the suspension force and generating voltage. The air gap magnetic field used to generate power is determined by the permanent magnet, the generation windings and the excitation windings. Therefore, the generating performance can be improved by adjusting the amplitude of the excitation current for compensating the variable air-gap magnetic field. What is more, the stability of suspension force can be obtained by observing and adjusting the magnetic field generated by the suspension force windings. In consequence, flux-linkage observation is the key to controlling the suspension force and the generated voltage [10,11]. The flux-linkage of the generation windings, the excitation windings and the synthesis air gap flux-linkage can be observed with the following equations.  R  ψs1α = (u1α − R1 i1α )dt   R   ψs1β = (u1β − R1 i1β )dt q  ψ = ψs1β 2 + ψs1α 2  s1    µ = arctan(ψ /ψ ) 1

s1β

s1α

 R  ψs3α = (u3α − R3 i3α )dt   R   ψs3β = (u3β − R3 i3β )dt q  ψ = ψs3β 2 + ψs3α 2  s3    θ = arctan(ψ /ψ ) 1

s3β

ς = arctan(ψs1β + ψs3β /ψs1α +ψs3α )   ψm1α = ψs1α + ψs3α − L1l i1α − L3l i3α     ψm1β = ψs1β + ψs3β − L1l i1β − L3l i3β q  ψm1 = ψs1β 2 + ψs1α 2     µ = arctan(ψ m1α /ψm1β )

(9)

s3α

(10)

(11)

where ψs1 , µ1 are the flux-linkage amplitude and phase of generation windings. ψs3 and θ1 are the flux-linkage amplitude and phase of excitation windings. ζ is the resultant flux-linkage phase of the generation windings and the excitation windings. ψm1 , µ are the amplitude and phase of the resultant flux-linkage, L1l and L3l are the leakage inductance of the generation windings and the excitation windings. The flux-linkage observation to the suspension force windings is as follows: ψs2 , λ1 are the flux-linkage amplitude and phase of the suspension force windings.  R  ψs2α = (u2α − Rs i2α )dt   R   ψs2β = (u2β − Rs i2β )dt q  | ψ | = ψs2α 2 + ψs2β 2  s2    λ = arctan(ψ /ψ ) s2β s2α

(12)

When HEBPMG is operating stably, the rotor eccentricity is small enough to be neglected. The simplified equations of suspension force are as follows (

Fα = km IG I2 cos(µ − λ1 ) Fβ = km IG I2 sin(µ − λ1 )

(13)

While substituting ψm1 = IG LM , ψs2 = I2 LB into the equations, the expression of suspension force on the current can be converted into an expression on the flux-linkage. The self-inductance of the excitation windings and the suspension force windings can be expressed as

 α w m1 s2 1    F  k ψ ψ sin(μ  λ  β w m1 s2 1) where  k w 

(15)

72kd1kd2 .  π μ 0 lrN1 N 2 3

Energies 2016, 9, 673

11 of 17

Based on the strategy of the flux‐linkage observation, the performance of suspension force and  the generating voltage can be compensated under the variable load condition. Its control system block  2 2 diagram is shown in Figure 10. Firstly, the induced current i 1a and i1b in the generation windings and  2 1 LB = µ0 πlrN LM = µ0 πlrN , and then 4δ 4δ the excitation current i3a and i3b in excitation windings are acquired by the flux‐linkage observer to  ( 4δ 4δ calculate the resultant flux‐linkage ψ Fα = kms13 ψ and its phase ξ. After comparing the resultant flux‐linkage  m1 ψs2 µ πlrN 2 µ πlrN 2 cos(µ − λ1 ) 2 1 0 0 (14) with  the  given  reference  flux‐linkage  and  by  the  space  vector  pulse  width  4δ modulated  4δ Fβ = km ψm1 ψs2 being  2 2 sin(µ − λ1 ) µ πlrN µ πlrN 2 1 0 0 modulation  (SVM)  module,  the  switching  signals  for  the  voltage  source  inverter  of  the  excitation  windings is obtained. Therefore, the magnetic field can be controlled in closed loop.  Substituting the value of km , the estimation value of suspension force based on flux-linkage Part of the force is controlled by radial displacement and suspension force double closed loop  observation can be derived ( control  system.  Firstly,  the  current  iF2aα  and  2b  of  suspension  force  windings  are  collected.  The  = kwiψ m1 ψs2 cos(µ − λ1 ) (15) suspension force windings flux linkage ψ Fβ s2= and its phase λ kw ψm1 ψs2 sin(1µ is observed by suspension force windings  − λ1 ) flux‐linkage observer. At the same time, the amplitude ψm1 and its phase μ of resultant flux‐linkage  d1 k d2 where kw = π372k . are observed online by the generation and excitation windings flux‐linkage observer. The suspension  µ0 lrN1 N2 Based onβthe strategy of the flux-linkage observation, the performance of suspension force and force F α and F  can be calculated with these two sets of signals by the suspension force estimating  the generating voltage can be compensated under the variable load condition. Its control system block module. Then, the errors between rotor position command values x*, y* and the detection values x, y  diagram is shown in Figure 10. Firstly, the induced current i1a and i1b in the generation windings and which are observed from the displacement sensor are derived. Thus, the suspension force command  the excitation current i3a and i3b in excitation windings are acquired by the flux-linkage s2α observer to values F α* and F β* can be produced by the PID controller. The flux‐linkage increment ∆ψ , ∆ψs2β of  calculate the resultant flux-linkage and its from  phasethe  ξ. After thecalculated  resultant flux-linkage the  suspension  force  windings  can ψ be  errors comparing between  the  values  and  s13derived  with the given reference flux-linkage and being modulated by the space vector pulse width modulation command values of the suspension force. Finally, the switching signals to voltage source inverter of  (SVM) module, switching for thefrom  voltage sourcemodule.  inverterIn  ofconclusion,  the excitation is suspension  force the windings  can signals be  obtained  the  SVM  the windings suspension  obtained. Therefore, the magnetic field can be controlled in closed loop. force can be controlled. 

x



Fα 



x   y y



Fα Fβ

U DC

ψs2α









1

Δψs2β

i2a i2b

ψs2

ψ m1

ψs13

i1a





U DC

U DC

i1b

i3a

I dc

i3b

ψ*s   Figure 10. The compensation control block diagram of the flux‐linkage observation.  Figure 10. The compensation control block diagram of the flux-linkage observation.  

Part of the force is controlled by radial displacement and suspension force double closed loop control system. Firstly, the current i2a and i2b of suspension force windings are collected. The suspension force windings flux linkage ψs2 and its phase λ1 is observed by suspension force windings flux-linkage observer. At the same time, the amplitude ψm1 and its phase µ of resultant flux-linkage are observed online by the generation and excitation windings flux-linkage observer. The suspension force Fα and Fβ can be calculated with these two sets of signals by the suspension force estimating module. Then, the errors between rotor position command values x*, y* and the detection values x, y which are observed from the displacement sensor are derived. Thus, the suspension force command values Fα * and Fβ * can be produced by the PID controller. The flux-linkage increment ∆ψs2α , ∆ψs2β of the suspension force windings can be derived from the errors between the calculated values and command values of the suspension force. Finally, the switching signals to voltage source inverter of

Energies 2016, 9, 673

12 of 17

suspension force windings can be obtained from the SVM module. In conclusion, the suspension force can be controlled. 5. Simulation and Experiment Energies 2016, 9, 673 

12 of 17 

5.1. Simulation and Analysis

5. Simulation and Experiment  According to the flux-linkage observation and compensation system of flux linkage in Figure 10, the simulation module of HEBPMG controller system is built and experimented in the 5.1. Simulation and Analysis  MATLAB/Simulink environment. Parameters of experiment are shown in Table 1, where the time of According to the flux‐linkage observation and compensation system of flux linkage in Figure 10,  simulation is set to 0.2 s and the eccentricity of rotor is (−0.6 mm, 0.8 mm). the  simulation  module  of  HEBPMG  controller  system  is  built  and  experimented  in  the  Simulation of stepping up from zero voltage experiment, which means progress of voltage rising MATLAB/Simulink environment. Parameters of experiment are shown in Table 1, where the time of  from zero voltage to steady state, is shown in Figure 11. As depicted in Figure 11a,b, the original simulation is set to 0.2 s and the eccentricity of rotor is (−0.6 mm, 0.8 mm).  Simulation of stepping up from zero voltage experiment, which means progress of voltage rising  position of rotor is (−0.6 mm, 0.8 mm). When controller of radial suspension force is activated, rotor is from zero voltage to steady state, is shown in Figure 11. As depicted in Figure 11a,b, the original  set to balance location quickly after 8 ms. Maximal displacement in x-axis is 0.12 mm while in y-axis is position of rotor is (−0.6 mm, 0.8 mm). When controller of radial suspension force is activated, rotor  0.2 mm, which is accepted in eccentricity with accuracy control scheme and compensation circuits. is set to balance location quickly after 8 ms. Maximal displacement in x‐axis is 0.12 mm while in y‐ When stepping up from zero voltage of the synchronous generator, the automatic voltage regulator axis  is  0.2  mm,  which  is  accepted  in  eccentricity  with  accuracy  control  scheme  and  compensation  should circuits. When stepping up from zero voltage of the synchronous generator, the automatic voltage  guarantee that the terminal voltage overshoot should not exceed 15% of the rated voltage, the time of regulator should guarantee that the terminal voltage overshoot should not exceed 15% of the rated  adjustment should not more than 10 s, the frequency of voltage fluctuation should not be more voltage, the time of adjustment should not more than 10 s, the frequency of voltage fluctuation should  than three times. The overshoot of voltage is 8.18% and the steady adjustment rate of voltage is 0.45% not be more than three times. The overshoot of voltage is 8.18% and the steady adjustment rate of  in Figure 11c, which satisfy the basic requirements of the control system [12]. After applying load, the voltage is 0.45% in Figure 11c, which satisfy the basic requirements of the control system [12]. After  output voltage returns to a steady state after 15 ms due to the modulation of excitation current. As can applying  load,  the  output  voltage  returns  to  a  steady  state  after  15  ms  due  to  the  modulation  of  be seen excitation current. As can be seen in Figure 11d, the capacitance, inductance and other energy‐storage  in Figure 11d, the capacitance, inductance and other energy-storage elements of the load are in the charging state the beginning ofcharging  load work, three-phase induction currents turn into steady elements  of at the  load  are  in  the  state then at  the  beginning  of  load  work,  then  three‐phase  induction currents turn into steady state after 10 ms. The winding current is obtained by rectifying  state after 10 ms. The winding current is obtained by rectifying action of the external circuit shown in action of the external circuit shown in Figure 3. At 0 ms, closing the breaker V1 and opening V2, the  Figure 3. At 0 ms, closing the breaker V1 and opening V2, the generator operates under normal load generator operates under normal load conditions and the external circuit has a certain filtering effect  conditions and the external circuit has a certain filtering effect at that time. It can be seen in Figure 11e at that time. It can be seen in Figure 11e that five harmonics and seven harmonics are generated by  that fivethe methods of harmonic analysis under the condition of rated load, so it is good sinusoidal and THD harmonics and seven harmonics are generated by the methods of harmonic analysis under 1  the condition of rated load, so it is good sinusoidal and THD1 = 4.59%. = 4.59%. 

(a) 

(b)

(c) 

(d)

Figure 11. Cont.  

Energies 2016, 9, 673

13 of 17

Energies 2016, 9, 673 

13 of 17 

Energies 2016, 9, 673 

13 of 17 

  (e) Figure 11. The performance of generator and harmonic analysis under normal operation. (a) Rotor 

Figure 11. The performance of generator and harmonic analysis under normal operation. (a) Rotor floating waveform in x axis; (b) Rotor floating waveform in y axis; (c) The output voltage effective value;  floating(d) The generation winding induced current; (e) Winding current harmonic under the rated load.  waveform in x axis; (b) Rotor floating waveform in y axis; (c) The output voltage  effective value; (d) The generation winding induced current;(e) (e) Winding current harmonic under the rated load. For  ensuring  good  static  and  dynamic  performance  of  the  HEBPMG  system,  the  operation  Figure 11. The performance of generator and harmonic analysis under normal operation. (a) Rotor  parameters of the motor must follow the command values quickly and accurately in the processes of  floating waveform in x axis; (b) Rotor floating waveform in y axis; (c) The output voltage effective value;  For ensuring good static and dynamic performance of the HEBPMG system, the operation load connection and disconnection. The external circuit is shown in Figure 3. At 0 ms, closing the  (d) The generation winding induced current; (e) Winding current harmonic under the rated load.  parameters of the motor must follow the command values quickly and accurately in the processes breaker V1 and opening V2, the generator operates under normal load conditions. At 70 ms, opening  of load V1  connection and disconnection. The external circuit shown in Figure 3. the  Atand  0 ms, and ensuring  remaining  V2  as  it  was,  generator  operates  under  load  shedding  conditions  the closing For  good  static  and the  dynamic  performance  of isthe  HEBPMG  system,  operation  filtering function of the external circuit is weakened. It can be seen in Figure 12c that many five times  the breaker V1 and opening V2, the generator operates under normal load conditions. At 70 ms, parameters of the motor must follow the command values quickly and accurately in the processes of  harmonic  and  seven  harmonics  are  generated  by  the  methods  of  harmonic  analysis  under  load  opening V1 and remaining V2 as it was, the generator operates under load shedding conditions load connection and disconnection. The external circuit is shown in Figure 3. At 0 ms, closing the  and shedding  conditions,  so  there  is  poor  sinusoidal  and  THD2  =  11%.  At  140  ms,  opening  V2,  the  the filtering function of the external circuit is weakened. It can be seen in Figure 12c that many five breaker V1 and opening V2, the generator operates under normal load conditions. At 70 ms, opening  generator operates under overload conditions. The resistance‐inductance load is added in the initial  and  remaining  V2  as  it  was,  the  generator  operates  load of shedding  conditions  the load timesV1  harmonic and seven harmonics are generated by theunder  methods harmonic analysisand  under external  circuit  in  order  to  enhance  the  filtering  function.  The  winding  current  shows  hardly  any  filtering function of the external circuit is weakened. It can be seen in Figure 12c that many five times  shedding conditions, so there pooroverload  sinusoidal and THD = 11%. Atperformance  140 ms, opening V2, the generator harmonics  in  Figure  12d isunder  conditions,  so 2sinusoidal  is  improved  and  harmonic  and  seven  harmonics  are The generated  by  the  methods  of  harmonic  analysis  operates under overload conditions. resistance-inductance load is added in theunder  initialload  external THD 3 = 1.38%. Figure 12 shows the results of anti‐interference experiment of the HEBPMG control  shedding  conditions,  so  there  is  poor  sinusoidal  and  THDeffective value is shown in Figure 12a,  2  =  11%.  At  140  ms,  opening  V2,  the  system based on flux‐linkage observation. The output voltage circuit in order to enhance the filtering function. The winding current shows hardly any harmonics generator operates under overload conditions. The resistance‐inductance load is added in the initial  and the generation winding induced current is shown in Figure 12b. When the system instantly cuts  in Figure 12d under overload conditions, so sinusoidal performance is improved and THD3 = 1.38%. external  circuit  in  order  to  enhance  the  filtering  function.  The  winding  current  shows  hardly  any  off load, the synthesized magnetic field of the generator is weakened but voltage increases quickly,  Figure 12 shows results of anti-interference experiment of the performance  HEBPMG control system based harmonics  in the Figure  12d  under  overload  conditions,  so  sinusoidal  is  improved  and  three‐phase induction currents decrease immediately and then tend to quickly become steady. The  on flux-linkage observation. The output voltage effective value is shown in Figure 12a, and the THD 3 = 1.38%. Figure 12 shows the results of anti‐interference experiment of the HEBPMG control  maximal  overshoot  of  load  disturbance  is  30  V.  It  can  be  seen  that  the  overshoot  of  the  load  generation winding induced current is shown in Figure 12b. When the system instantly cuts off load, system based on flux‐linkage observation. The output voltage effective value is shown in Figure 12a,  disturbance is about 13.6% of the rating value and the time of adjustment is 0.02 s. These results meet  the synthesized magnetic field of the generator is weakened but voltage increases quickly, three-phase the related theory [12]. When the load is applied instantly, the variation of the parameters is quite the  and the generation winding induced current is shown in Figure 12b. When the system instantly cuts  contrary. Figure 12e indicates the whole variation progress of suspension force in x‐ and y‐axis along  off load, the synthesized magnetic field of the generator is weakened but voltage increases quickly,  induction currents decrease immediately and then tend to quickly become steady. The maximal with the variable load. The compensation strategy of flux‐linkage observation allows the HEBPMG  three‐phase induction currents decrease immediately and then tend to quickly become steady. The  overshoot of load disturbance is 30 V. It can be seen that the overshoot of the load disturbance is about to quickly respond to commands, and the dynamic performance is improved.  maximal  overshoot  of  load  disturbance  is  30  V.  It  can  be  seen  that  the  overshoot  of  the  load 

13.6% of the rating value and the time of adjustment is 0.02 s. These results meet the related theory [12]. disturbance is about 13.6% of the rating value and the time of adjustment is 0.02 s. These results meet  When the load is applied instantly, the variation of the parameters is quite the contrary. Figure 12e the related theory [12]. When the load is applied instantly, the variation of the parameters is quite the  indicates the whole variation progress of suspension force in x- and y-axis along with the variable contrary. Figure 12e indicates the whole variation progress of suspension force in x‐ and y‐axis along  load. with the variable load. The compensation strategy of flux‐linkage observation allows the HEBPMG  The compensation strategy of flux-linkage observation allows the HEBPMG to quickly respond to commands, and the dynamic performance is improved. to quickly respond to commands, and the dynamic performance is improved. 

  (a) 

 

  (a)  Figure 12. Cont.  

Energies 2016, 9, 673

14 of 17

Energies 2016, 9, 673 

14 of 17 

 

  (b) 

  (c) 

  (d) 

(e) 

 

Figure 12. The performance of the generator and harmonic analysis during load disturbance. (a) The 

Figure 12. The performance of the generator and harmonic analysis during load disturbance. (a) The output  voltage  effective  value;  (b)  The  generation  winding  induced  current;  (c)  Winding  current  output voltage effective value; (b) The generation winding induced current; (c) Winding current harmonic under load shedding condition; (d) Winding current harmonic under overload condition;  harmonic under load shedding condition; (d) Winding current harmonic under overload condition; (e) The suspension force in the process of operation.  (e) The suspension force in the process of operation.  

Energies 2016, 9, 673 Energies 2016, 9, 673 

15 of 17 15 of 17 

5.2. Experiment Result and Analysis 5.2. Experiment Result and Analysis  Based on flux-linkage observation, a 2.2 kW HEBPMG prototype is tested in Figure 13, and the Based on flux‐linkage observation, a 2.2 kW HEBPMG prototype is tested in Figure 13, and the  experimental results will be compared with simulation results. Parameters of the HEBPMG are listed experimental results will be compared with simulation results. Parameters of the HEBPMG are listed  in Table 1. According to the control system block diagram in Figure 10, TMS320F2812 DSP is used as in Table 1. According to the control system block diagram in Figure 10, TMS320F2812 DSP is used as  the digital controller of the experimental platform to realize the compensation control of magnetic the digital controller of the experimental platform to realize the compensation control of magnetic  field and suspension force. Intelligent power module (IPM) in the power board adopts Mitsubishi field and suspension force. Intelligent power module (IPM) in the power board adopts Mitsubishi  PS21265 to drive these three circuit boards, which has a bootstrap circuit and protecting function. PS21265 to drive these three circuit boards, which has a bootstrap circuit and protecting function. An  An auxiliary bearing is installed, and length between auxiliary bearing and shaftis isδ1δ 1= =300  300μm.  µm. auxiliary  bearing  is  installed,  and  the the length  between  auxiliary  bearing  and  shaft  Voltage regulators are adopted to supply voltage for suspension force windings, excitation windings Voltage regulators are adopted to supply voltage for suspension force windings, excitation windings  of HEBPMG driving prime motor. VB 6.0 software is utilized for on-line adjustment of parameters of  HEBPMG and and  driving  prime  motor.  VB  6.0  software  is  utilized  for  on‐line  adjustment  of  in the experiment. parameters in the experiment. 

  Figure 13. The experimental results based on compensation control strategy of flux‐linkage observation.  Figure 13. The experimental results based on compensation control strategy of flux-linkage observation.

Due to the function of gravity, the initial position of rotor is (−0.04 mm, −0.9 mm), then the rotor  Due to the function of gravity, the initial position of rotor is (−0.04 mm, −0.9 mm), then the returns to the balance position (0 mm, 0 mm) with the activation of the suspension control system, as  rotor returns to the balance position (0 mm, 0 mm) with the activation of the suspension control shown  in  Figure  14a.  In  the  y‐  direction,  the  rising  time  is  1.5  s  while  the  declining  time  is  system, as shown in Figure 14a. In the y- direction, the rising time is 1.5 s while the declining approximately  1  s,  maximal  eccentricity  is  0.3  mm  and  thus  the  maximum  overshoot  is  less  than  time is approximately 1 s, maximal eccentricity is 0.3 mm and thus the maximum overshoot is less 33.3%, which is much smaller than the air gap at the equilibrium point (Lg = 1 mm). In the x‐ direction,  than 33.3%, which is much smaller than the air gap at the equilibrium point (Lg = 1 mm). In the the vibration peak‐to‐peak value is approximately 0.12 mm. The deviations of radial displacements  x- direction, the vibration peak-to-peak value is approximately 0.12 mm. The deviations of radial are acceptable. The displacement in y‐ direction is larger than that in x‐ direction due to the gravity.  displacements are acceptable. The displacement in y- direction is larger than that in x- direction due to Thus, the eccentric displacement track diagrams are nearly‐circular or elliptical, as depicted in Figure  the gravity. Thus, the eccentric displacement track diagrams are nearly-circular or elliptical, as depicted 14b. In order to verify the feasibility of the designed HEBPMG and the effectiveness of the proposed  in Figure 14b. In order to verify the feasibility of the designed HEBPMG and the effectiveness of the compensation  control  strategy  based  on  flux‐linkage  observation,  the  generating  voltage  and  the  proposed compensation control strategy based on flux-linkage observation, the generating voltage winding current waveform under different load conditions are shown in the following figure. Figure  and the winding current waveform under different load conditions are shown in the following figure. 14c is DC voltage in the process of operation. First of all, the generating voltage gradually increases  Figure 14c is DC voltage in the process of operation. First of all, the generating voltage gradually from start to operating stably. Then, the fluctuation errors of DC voltage are about 4% under load  increases from start to operating stably. Then, the fluctuation errors of DC voltage are about 4% under shedding  and  overload  conditions.  The  generating  voltage  restores  stability  after  overshoot,  load shedding and overload conditions. The generating voltage restores stability after overshoot, respectively. Meanwhile, the AC current in the process of operation is shown in Figure 14d–f. It can  respectively. Meanwhile, the AC current in the process of operation is shown in Figure 14d–f. It can be be  seen  in  in  Figure  14d  that  the  AC  current  will  be  stabilized  about  15  A  after  reaching  stable  seen in in Figure 14d that the AC current will be stabilized about 15 A after reaching stable operation. operation. As shown in Figure 14e, winding current amplitude is reduced in 17 s and then recovered  to  the  rated  value  in  a  short  time  through  the  role  of  compensation  control  under  load  shedding   

Energies 2016, 9, 673

16 of 17

As shown in Figure 14e, winding current amplitude is reduced in 17 s and then recovered 16 of 17  to the rated value in a short time through the role of compensation control under load shedding conditions. Subsequently, it can be seen in Figure 14f that the winding current amplitude is raised in 24 s under conditions. Subsequently, it can be seen in Figure 14f that the winding current amplitude is raised in  overload conditions. Then, the winding current is recovered to the rated value in a short time based on 24 s under overload conditions. Then, the winding current is recovered to the rated value in a short time  flux-linkage observation too. The results above indicate that the proposed compensation and control based on flux‐linkage observation too. The results above indicate that the proposed compensation and  strategy has high accuracy, good dynamic response and satisfactory anti-interference ability. control strategy has high accuracy, good dynamic response and satisfactory anti‐interference ability.  Energies 2016, 9, 673 

(a) 

(b)

(c) 

(d)

(e) 

(f)

Figure  14.  The  experimental  results  based  on  compensation  control  strategy  of  flux‐linkage  Figure 14. The experimental results based on compensation control strategy of flux-linkage observation. observation. (a) Radial displacement waveforms of x‐ and y‐direction when the start of suspension;  (a) Radial displacement waveforms of x- and y-direction when the start of suspension; (b) The (b) The relationships between radical displacement of x‐ and y‐direction for HEBPMG; (c) Generating  relationships between radical displacement of x- and y-direction for HEBPMG; (c) Generating voltage voltage of HEBPMG in the process of operation; (d) The winding current waveform under rated load;  of HEBPMG in the process of operation; (d) The winding current waveform under rated load; (e) The (e)  The  winding  current  waveform  load  shedding  (f) current The  winding  current  winding current waveform under load under  shedding conditions; (f)conditions;  The winding waveform under waveform under overload conditions.  overload conditions.

6. Conclusions  In  this  paper,  the  motor  structure  and  operation  principle  of  a  novel  HEBPMG  system  are  analyzed in detail. Then, the mathematic model of induction voltage and suspension force is deduced  and  tested  by  FEM  software  to  prove  its  feasibility.  A  new  compensation  and  control  strategy  is  presented  according  to  flux‐linkage  observation.  Finally,  both  the  simulation  and  experimental   

Energies 2016, 9, 673

17 of 17

6. Conclusions In this paper, the motor structure and operation principle of a novel HEBPMG system are analyzed in detail. Then, the mathematic model of induction voltage and suspension force is deduced and tested by FEM software to prove its feasibility. A new compensation and control strategy is presented according to flux-linkage observation. Finally, both the simulation and experimental results prove that the proposed compensation and control strategy has satisfactory performance in adjustment of suspension force, generating voltage and winding current. What is more, the effects on suspension force, voltage and current caused by load variation are weakened. Acknowledgments: This work was sponsored by National Natural Science Foundation of China (51675244), Key Research and Development Program of Jiangsu Province (BE2016150), Jiangsu Province University Achievements in Scientific Research Industrial Production Advancement Project (JHB2012-39), Jiangsu Province “333 Project” Research Projects (2014), Jiangsu Province “Qinglan Project” (2014). Author Contributions: Huangqiu Zhu proposed the control method and performed simulation analysis and assisted in control software compilation test, Yamin Hu carried out the modification of the winding configuration and drafted the manuscript. Conflicts of Interest: The authors declare no conflict of interest.

References 1.

2.

3.

4.

5. 6. 7.

8. 9. 10.

11. 12.

Ooshima, M.; Kitazawa, S.; Chiba, A.; Fukao, T. Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems. IEEE Trans. Magn. 2006, 42, 3461–3463. [CrossRef] Ooshima, M.; Kobayashi, S.; Tanaka, H. Magnetic suspension performance of a bearingless motor/generator for flywheel energy storage systems. In Proceedings of the 2010 IEEE Power Engineering Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–4. Xu, Y.; Patterson, D.; Hudgins, J. Permanent magnet generator design and control for large wind turbines. In Proceedings of the 2012 IEEE Power Electronics and Machines in Wind Applications, Denver, CO, USA, 16–18 July 2012; pp. 1–5. Naoe, N.; Fukami, T. Trial Production of a Hybrid Excitation Type Synchronous Machine. In Proceedings of the IEEE International Electric Machines and Drives Conference, Cambridge, MA, USA, 17–20 June 2001; pp. 545–547. Luo, X.G.; Lipo, T.A. A synchronous/permanent magnet hybrid AC machine. IEEE Trans. Energy Convers. 2000, 15, 203–210. Tapia, J.A.; Leonardi, F.; Lipo, T.A. Consequent-pole permanent-magnet machine with extended field-weakening capability. IEEE Trans. Ind. Appl. 2003, 39, 1704–1709. [CrossRef] Zhang, D.; Zhao, C.; Zhu, L. On hybrid excitation claw-pole synchronous generator with magnetic circuit series connection. In Proceedings of the ICEMS 2008 International Conference, Wuhan, China, 17–20 October 2008; pp. 3509–3513. Ni, Y.; Wang, Q.; Bao, X. Optimal design of a hybrid excitation claw-pole alternator based on a 3-D MEC method. Int. Conf. Electr. Mach. Syst. 2005, 1, 27–29. Sun, X.D.; Chen, L.; Yang, Z.B. Overview of bearingless permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 2013, 60, 5528–5538. [CrossRef] Wang, Y.; Deng, Z.Q. A stator flux estimation method for direct torque linear control of electrical excitation flux-switching generator. In Proceedings of the IEEE Conference and Expo of Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 110–116. Wang, Y.; Deng, Z.Q. Improved Stator Flux Estimation Method for Direct Torque Linear Control of Parallel Hybrid Excitation Switched-Flux Generator. IEEE Trans. Energy Convers. 2012, 27, 747–756. [CrossRef] Chen, H. The Power System Steady State Analysis, China; China Electric Power Press: Beijing, China, 2007; pp. 240–243. © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).