Retinal processing article Jan 14A

2 downloads 0 Views 11MB Size Report
copyright ERA 2014 ... In contrast intuitive record (art work such as paintings) can establish ... http://plato.stanford.edu/entries/qm-‐decoherence/ ... 11 The primary work on dark light and dark noise was carried out by in the latter part of the 20C.
   

©  copyright  ERA  2014  

 

(ISBN 978-0-9551535-3-2)  

A  theoretical  proposition  for  retinal  detection  of  a  field  potential  unfolding   from  the  light  array  to  form  the  basis  of  spatial  and  orientation  awareness   within  the  phenomenon  of  vision.    Propagated  through  the  colliculacortical   pathway,  the  proposed  perceptual  structure  (tectal  vision)  would  form  the  basis   of  multi-­‐sense  spatial  awareness  and  orientation  through  the  integration  of  field   potentials.     Abstract:   If,  as  we  attempt  to  envisage  here  and  Vision-­‐Space  (VS)  media  illustrates,  there  are  two   independent  raw  data  potentials,  an  implicit  field  potential  together  with  an  explicit   detail  potential,  are  being  collected  and  segmented  at  the  retina  where  conventional   theory  considers  there  to  be  just  one,  we  can  assume  that  much  of  what  is  currently   being  attributed  in  terms  of  receptor  function,  retinal  circuitry  and  the  visual  pathways   would  be  in  need  of  fundamental  review.       Our  task  here  is:   • to  suggest  the  possible  nature  of  the  oversight   • look  at  what  has  been  established  to-­‐date  with  respect  to  the  neural  circuitry     • to  see  if  we  can  make  better  sense  of  observations  by  adopting  the  new   hypothesis     • to  see  if  this  model  matches  with  the  experiential  reality  of  phenomenal  field.     Given  the  scope  of  this  remit  can  only  attempt  to  outline  a  proposition  here  but  the   argument  should  identify  directions  for  research  to  either  confirm  or  deny.     Our  top  down  assumption  driven  from  experiential  encounter  suggests  that   decoherence  is  taking  place  at  receptor  level  and  that  both  resulting  phase  and  particle   potentials  are  segmented  for  independent  propagation  through  the  visual  pathways.   Ultimately  the  question  is;  do  we  understand  what’s  actually  involved  in  an  act  of   observation?     Approach:  If  we  are  attempting  to  explore  the  subjective  realm  of  consciousness  and   visual  awareness  in  particular,  it  is  essential  to  gather  a  reliable  body  of  intuitive   insights  from  those  that  work  in  the  experiential  realm  to  set  along  side,  guide  and  even   inform  scientific  experimentation  that  is  essentially  indirect.1  Vision  as  we  experience  it,   is  prior  to  science.  In  contrast  intuitive  record  (art  work  such  as  paintings)  can  establish   a  direct  connection  to  our  relationship  with  the  real.  From  direct  intuitive  exploration  of   phenomenal  field  it  is  apparent  that  its  function  and  capabilities  are  dependent  on  two   independently  computed  and  composed  data-­‐sets  each  presenting  different  ‘takes’  on   the  actual  setting  under  observation  (real  setting).  These  data  structures  together  with   their  dynamic  of  information  exchange  have  been  artificially  modelled  in  a  unique   system  of  visual  presentation  known  as  Vision-­‐Space2  (as  opposed  to  picture  space  –  

                                                                                                               

1  Merleau-­‐Ponty,  The  Primacy  of  Perception  that;  “Science  manipulates  things  and  gives  up  living  

in  them.  It  makes  its  own  limited  models  of  things;  operating  upon  these  indices  or  variables  to   effect  whatever  transformations  are  permitted  by  their  definition,  it  comes  face  to  face  with  the   real  world  only  at  rare  intervals.”   2  The  Perceptual  Awareness  Centre  –  Perceptual  Technologies   http://www.pacentre.org/pt/index.php  

 

1  

   

©  copyright  ERA  2014  

reliant  on  the  fundamentals  of  optical  projection).  As  such  we  maintain  that  VS  models   key  aspects  pertinent  to  visual  awareness.      

Fig  1.  Intro  to  decoherence  

 

  Intuitive  assessments3  of  phenomenal  field  imply  that  there  are  two  independent   structures  operational  each  dependent  on  individual  data  potentials  derived  from  the   light  array  incident  upon  the  retina.  This  duality  apears  underpins  perceptual  structure   containing  specialisms  that  can  be  associated  with  the  dual  characteristics  of  the  particle   and  phase  potentials  of  light.  This  in  turn  implies  that  the  retina  functions  as  a   ‘converting  membrane’  decohering4  the  light  array  thus  mediating  transference  from  a   micro  scale  of  operation  through  to  macro  (classical)  level  mechanisms,  a  process   entailing  the  preservation  of  both  data  potentials  within  neural  circuitry.  While   decoherence  may  indicate  that  quantum  processes  are  not  directly  involved  in  signal   cascade  and  cue  development  to  visual  awareness5,  the  consequences  of  decoherence   with  respect  to  brain  function  and  the  emergence  of  mind  may  ‘live’  within  us   facilitating  their  mediation  within  phenomenal  field6.  The  phenomenon  of  vision  and   hence  the  processes  of  VS  appear  to  be  watermarked  with  the  reality  issues  associated   with  particle  physics  but  by  proxy.7  The  suggestion  is  that  our  intuitive  understanding  of   the  data  structures  and  the  dynamic  of  information  exchange  occurring  within  the   phenomenon  of  vision,  are  highly  pertinent  to  the  understanding  of  visual  process.   While  these  concerns  are  not  the  only  ones  involved  in  visual  awareness,  these  factors   play  out  back  from  the  percept  through  the  visual  system  to  the  retinal  receptors  to  our   understanding  of  light.8  Understanding  these  processes  are  also  likely  to  inform  and  

                                                                                                                3  Paintings  –  the  intuitive  record  of  key  visual  artists  such  as  Chardin,  Turner,  Degas,  Cezanne,   Bonnard  and  the  authors  work  (http://www.pacentre.org/era/artworks.php)   4  Stanford  Encyclopedia  of  Philosophy,  The  Role  of  Decoherence  in  QM.   http://plato.stanford.edu/entries/qm-­‐decoherence/   5  We  would  expect  a  continuous  analogue  signal  to  be  in  operation  along  side  the  digital  (binary)   with  a  unique  neural  computational  process  involving  synthesis  and  convergence.     6  We  would  suggest  that  the  ‘field’  data-­‐set  underpins  multi  senses  integration  (including   audition).  This  in  turn  suggests  that  decoherence  is  key  to  play  a  key  role  in  biological  function.     7  Penrose  &  Hameroff,  Hameroff  &  Watt  1992  suggest  quantum  coherence  processes  do  play  an   active  role  in  consciousness  through  microtubules.  Some  others  have  also  sought  to  link  the   semi-­‐entangled  state  of  indeterminacy  with  vision,  consciousness  and  art-­‐work,  an  approach   with  which  we  do  not  ascribe.   8  Dark  light  and  dark  noise  are  known  to  mediate  receptor  firing  in  both  rods  and  cones.  

 

2  

   

©  copyright  ERA  2014  

involve  our  understanding  of  biological  systems,  concerns  that  lie  outside  the  scope  of   this  paper.    

Fig  2.  Proposed  duality  associated  with  the  visual  pathways    

 

It  is  understood  that  the  dorsal  and  ventral  streams  that  can  be  used  to  characterise  our   understanding  of  the  visual  pathways  can  be  traced  back  to  the  retina  and  both  are   contained  within  optic  flow  serving  the  cortical  and  sub  cortical  pathways.  Retinal   processes  from  receptor  level  are  involved  in  the  development  of  these  pathways  and   segment  data  through  them.  The  main  areas  of  the  brain  influence  the  setting  up  and   calibration  of  retinal  cell  structures  ensuring  that  vision  is  clearly  not  a  one-­‐way  process   at  both  the  phenomenological  level  and  neural  level.  It  is  also  apparent  from  intuitive   examination  of  phenomenal  field  that  even  the  experiential  ‘object’  in  ‘space’   delineations  between  central  and  peripheral  vision  broadly  align  with  the  ‘what  &   ‘where’  characterizations  understood  to  underpin  the  two  visual  pathways.       As  a  visual  artist  by  training  I  think  that  it  is  not  just  pertinent  to  overlay  first  hand   experiential  explorations  into  the  phenomenon  of  vision  with  what  has  be  learned  by   vision  science  but  that  it  is  essential  to  do  so.    

Fig.  3  Painting  with  screen  by  the  author    

 

 

3  

   

©  copyright  ERA  2014  

Overview:  Indicators  from  the  experiential  suggest  that  retinal  processing  structures   contain  a  specialised  function  capable  of  ‘segmenting’  the  light  array,  of  decohering  light   input  and  preserving  both  functions  for  subsequent  propagation  and  analysis  within  the   visual  pathways.  Where  the  current  theoretical  model  typifies  the  sampling  of  a  ‘retinal   picture’  (retinotopical  mapping)  based  data-­‐set  (one  for  each  eye)  together  with   supporting  processes  to  enhance  and  clean  the  signal  of  contaminating  ‘noise’  9,  the   intuitively  observed  structure  of  phenomenal  field  would  suggest  that  this  ‘noise’   element  contains  a  second  order  data  potential  requiring  synthesis  as  opposed  to   differentiation.      

Fig  4.  Spikes  and  thresholds  (source  Wikipedia)  

 

  The  suggestion  is  that  this  data  potential  would  pass  through  the  subcortical  pathway   via  the  superior  colliculus  (SC)  and  brain  stem  structures  as  the  basis  of  retinotectal   vision  in  support  of  the  dorsal  pathway  to  ultimately  provision  spatial  awareness  and   orientation  within  peripheral  vision10.  The  characteristic  of  phenomenal  spatial   awareness  being  established  via  a  field  structure  generating  proximity  cues  unrelated  to   ‘pictorial  depth’  and  ‘depth  of  field’  that  accord  with  the  fundamentals  of  optical   projection.  The  noisy  field  structure  having  characteristics  more  closely  aligned  with   those  of  phase  space  with  fixation  being  in  part  akin  to  the  operations  of  an  attractor  as   opposed  to  optical  focus.     Retinal  processing:  Dark  light  and  dark  noise  are  encountered  in  receptor  firing  at   scoptic  levels  mediating  firing  in  both  rods  and  cones.11  The  cross  correlation  functions   observed  in  ganglion  cells  are  known  to  be  linked  to  quantal  noise  events  taking  place  in   the  rod  and  cone  receptors.  If  this  noise,  paired  away  from  the  photon  dependent  data-­‐ potential  for  optimal  absorption,  were  just  a  waste  product  then  why  is  it  preserved   through  retinal  processing  to  be  observed  playing  a  role  in  ganglion  cell  output?  A   question  raised  by  Greschner  et  al  2011.  

                                                                                                                9  Noise  deriving  both  from  within  the  raw  signal  and  from  the  noise  produced  by  neural  firing  

through  a  process  of  redundancy   10  It  is  understood  that  linkage  is  also  made  from  the  LGN  to  the  SC  resulting  in  a  convergence   potential.   11  The  primary  work  on  dark  light  and  dark  noise  was  carried  out  by  in  the  latter  part  of  the  20C.   Leading  investigators  being  Baylor,  Barlow,  Donner  1970-­‐90  

 

4  

     

©  copyright  ERA  2014  

In general, correlated activity between retinal ganglion cells (RGCs) can be produced by a combination of two factors: shared noise arising in common circuitry such as shared photoreceptors, and shared signal arising from stimuli with spatial correlations. It is unclear whether these two sources of correlations combine independently in natural vision, or alternatively, whether the noise depends on the signal.

Debates  naturally  arise  as  to  the  origins  of  the  noise  element  under  investigation  and   whether  or  not  it  contributes  in  some  way  to  the  shaping  of  differentiated  spikes  or   some  type  of  independent  data  potential.  The  argument  for  there  being  a  dual  data   potential  within  the  light  array  put  forward  here  and  provoked  from  deductions  made   from  the  intuitive  records  of  artists  would  require  a  fundamental  shift  in  our   interpretation  of  retinal  processes.  Processes  the  include  the  function  of  receptor  cells,   the  nature  of  the  segmentation  taking  place  within  retinal  layers  involving  the  various   types  of  cell  receptive  field  (especially  ganglion  cells)  together  with  the  function  of   retinal  circuitry  involving  the  mediating  roles  of  gap  junctions,  horizontal  and  amacrine   cells.  When  considering  the  functional  requirements  of  the  potential  phase  based  data   potential  leading  to  the  proposed  spatial  field  structure  we  will  need  to  reconsider  the   operational  range  of  receptor  types  in  differing  lighting  conditions.  We  will  need  to  look   afresh  at  the  role  that  dark  light  and  dark  noise  may  play  in  mediating  receptor  firing   and  its  derivation.  Consideration  will  also  need  to  be  given  to  the  functional  significance   of  the  impulse  and  passive  processes  of  light  absorption  in  receptor  cells.  For  reasons   that  need  not  concern  us  at  this  point,  the  supposition  is  that  the  passive  phase  related   process  characteristically  builds  towards  a  processing  system  driven  by  synthesis  and   will  be  largely  associated  with  the  dorsal,  ‘where,  spatial’  pathway.  The  measured  and   differentiated  impulse  driven  process  (spikes)  will  be  more  closely  associated  with  the   development  of  the  ventral  stream  and  the  detailed  registration  of  ‘what  and  objective   form’  experienced  within  macular  vision.  As  ever,  these  delineations  are  but   characteristics  associated  with  the  pathways  that  interrelate  and  interweave  like   entangled  webs  throughout  visual  process.  Nevertheless,  we  will  be  making  an  outline   theoretical  case  for  the  retina’s  separation  and  propagation  of  these  two  independent   data  potentials  enfolded  within  the  incident  light  array  that  would  subsequently   discharge  from  ganglion  cells  the  through  geniculatecortical  and  colliculacortical   pathways.    

Fig  5.  Visual  pathways  (source  Wikipedia)  

 

 

5  

   

©  copyright  ERA  2014  

Experimental  considerations:  Before  we  embark  on  this  theoretical  exercise  involving   reflection  upon  related  scientific  papers  we  should  seriously  consider  the  base  line   assumption  under  which  that  experimentation  was  designed.  Experimentation  is  by   default  organised  and  calibrated  to  observe  processes  in  support  ‘differentiation’  and   not  ‘synthesis’.  For  example,  it  will  be  necessary  to  consider  the  spherical  geometry  of   the  retina  and  the  degree  to  which  laying  out  flat,  small  sections  of  retinal  tissue  are   likely  to  adversely  affect  the  outcome  of  experimentation?  I  have  yet  to  find   experimentation  involving  the  retina  that  seeks  to  present  it  with  a  natural  stimulus,  a   real  setting  under  photopic  daylight  conditions.  It  is  after  all,  in  response  to  these   conditions  that  the  eye  evolved  enabling  us  as  the  sentient  being  to  engage  and  operate   within  the  environment.  The  assumption  is  that  a  photon  is  a  photon  is  a  photon  and  the   retinal  and  visual  system  processes  these  stand  alone  standardized  units.  Anything  lying   outside  this  base  assumption  would  constitute  an  anomaly,  something  to  be  seen  in   relation  to  the  base  assumption.  We  are  all  broadly  familiar  with  the  idea  of  photons   arriving  over  time  and  being  considered  responsible  for  an  impulse  based  data  potential   (spikes)  from  receptor  through  to  ganglion  cell  output  streamed  through  the  optic   chasm.12  We  can  watch  photographic  film  develop  in  the  chemical  tray.     There  is,  in  fact  at  least  one  clear  place  where  action  at  the  single  quantum  level   can  have  importance  for  neural  activity,  and  this  is  at  the  retina.     Roger  Penrose:  The  Road  to  Reality  P.516     If,  as  VS  theory  suggests,  we  develop  our  primary  from  of  spatial  awareness  direct  from   the  light  array  under  photopic  conditions,  stimuli  (including  photographic  media)  that   don't  supply  the  proposed  specific  environmentally  charged  data  formation  carried   within  the  light  array  to  the  retina  will,  as  an  atypical  input,  adversely  affect  receptor   firing  and  limit  vital  aspects  of  signal  segmentation.  Results  taken  from  experimentation   based  on  the  current  approach  are  likely  to  be  incomplete  and/or  difficult  to  interpret.   The  experimental  set  up  would  to  some  extent  dictate  the  results  obtained  and  the   confusion  that  follows.  We  suggest  that  a  full  data  collection  signature  will  only  become   apparent  in  the  assessment  of  responses  generated  from  across  the  entire  spherical   geometry  of  the  retina  and  therefore  across  multiple  receptive  field  populations.   Studying  the  individual  firing  of  receptors  or  even  small  groups  of  receptive  fields  in   isolation  is  likely  to  inhibit  the  detection,  propagation  and  hence  comprehension  of  the   phase  related  data-­‐set  potential.  The  second  important  point  is  that  this  specialist   potential  is  contained  within  the  light  array  coming  directly  from  a  real  setting,  the  real   setting  being  the  spatial  arrangement  of  object  forming  the  scene  illuminated  under   photopic  (daylight)  lighting  conditions.  The  data  structure  will  either  not  be  contained,   or  incompletely  referenced  in  other  forms  of  stimuli  presented  to  the  retina,  (eg.   photograph  and  film  media  or  photons  fired  from  an  artificial  light  source  including  a   diffuse  light  field).  This  prevailing  situation  suggests  that  in  evaluating  scientific  results   we  must  adopt  a  ‘floating’  position  with  respect  to  both  its  intensions  and  findings.  We   don’t  see  ‘pictures’  in  either  eye!  Vision  is  not  a  matter  of  deconstructing  rectilinear   optical  projection  in  order  to  transport  it  to  some  perceptual  screen.  Vision  is  closer  to  a   controlled  hallucination  a  process  that  involves  the  sentient  being  set  within  the   environment.  We  must  endeavour  not  to  make  assumptions  with  respect  to  the  nature   of  the  stimuli  presented  to  the  retina  without  first  envisaging  the  potential  implications   such  restrictions  may  impose  upon  the  system  under  investigation.  The  visual  artist  

                                                                                                                12  This  pathway  would  be  more  closely  associated  with  X  cells  dealing  with  high  definition  data   fed  through  the  Geniculocortical  pathway.  

 

6  

   

©  copyright  ERA  2014  

chooses  ‘still  life’  set-­‐ups  as  the  primary  means  of  investigation  into  phenomenal  field   for  a  reason.      

 

Fig.  6  Still  life  with  Aloe  Vera  by  author    

Disorder  and  the  field  structure:  In  addition  to  the  environmental  factors  we  also   need  to  consider  the  probable  data  formations  incident  on  the  retina  together  with  the   probable  receptor  cell  function  required  for  their  detection.  These  considerations   should  enable  us  to  optimise  experimental  setups  in  order  to  verify  assumptions  and  to   assist  in  our  penetration  of  research  conducted  without  taking  this  position  of  oversight.   This  is  an  entirely  valid  undertaking  if  we  accept  and  adopt  the  experiential  ontology.   We  can  refer  with  good  reason,  to  our  intuitive  investigations  into  phenomenal  field13  as   being  representative  of  the  output  from  the  system  under  investigation.14    

 

                       

           

"Blur"  is  technically  a  convolution  with  a   non-­‐negative,  localised  kernel  (like   defocussing  a  camera  or  projector).  In  the   limit  o f  infinite  blur  you  end  up  with  the   average  over  the  image,  a  uniform  field.   Fig  7.  Examples  of  blur  and  disorder  

 

!

!

"Disorder''  implies  spatial  shuffling.  It  destroys   spatial  resolution  but  leaves  the  histogram   invariant.  In  the  limit  o f  infinite  disorder  you   obtain  a  texture  w ith  the  same  histogram  as  the   image.  Prof.  Jan  Koenderink  

 

                                                                                                                  13  Visual  art  of  the  author  and  others  such  as  Turner,  Cezanne,  Van  Gogh,  Degas,  Bonnard,  Monnet   14  Psychophysics,  Neuropsychology,  Neurophenomenology,  Visual  Art  etc  

 

7  

   

©  copyright  ERA  2014  

We  are  now  also  assisted  by  the  artificial  imaging  output  (perceptually  structured   stimuli)  from  the  VS  imaging  software.  The  stimuli  it  produces  are  in  the  process  of   being  psychophysically  verified.  The  information  structure  ‘blur’  does  not  appear  within   phenomenal  field,  neither  does  motion  blur  or  depth  of  field,  these  occur  within  the   optical  records  produced  by  camera  technology  based  on  optical  projection.  The   phenomenon  of  vision  is  entirely  non-­‐photographically  rendered.  The  data  structure   ‘blur’  is  rarely  used  by  visual  artists  as  they  explore  and  develop  strategies  to  portray   the  nature  of  experiential  reality.  Research  undertaken  by  Prof  Jan  Koenderink  and   Andrea  Van  Doorn  identify15  that  the  structure  of  data  within  peripheral  vision  should   be  thought  of  as  disordered.  This  implies  that  we  should  be  looking  for  receptors  and   receptive  fields  capable  of  realising  and  working  with  a  spatial  organised  texture.  Artist   have  to  varying  degrees  applied  the  texture  producing  tools  at  their  disposal  in  pursuit   of  this  dark  data  potential;  canvas  and  paint  applied  by  brushes.     “We  argue  that  locally  orderless  images  are  ubiquitous  in  perception  and  the  visual  arts”  

   

 

 

Fig  8.  Still  life  with  cup  and  saucer  by  the  author          

                                                                                                               

15  Koenderink.  J.  &  van  Doorn  A  2000  Blur  and  Disorder  Journal  of  Visual  Communication  and  

Image  Representation  vol  11  pages  237-­‐244.  Koenderink.  J.  &  van  Doorn  A  1999  The  Structure  of   Locally  Orderless  Images.  International  Journal  of  Computer  Vision  vol  31  pages  159-­‐163  

   

8  

   

©  copyright  ERA  2014  

  Fig  9.    Pine  tree  near  Aix  en  Provence,  1995-­‐97,  Paul  Cézanne,  Oil  on  canvas,  the  Hermitage,  St  Petersburg,  Russia  

 

 

Fig  10.  Self  portrait,  1889  Van  Gogh,  Oil  on  canvas,  Musée  d'Orsay,  Paris  

 

 

9  

   

©  copyright  ERA  2014  

Fig11.  E.  Degas  Mademoiselle  Malo,  Pastel  on  paper,  Barber  Inst  of  Fine  Art,  Birmingham,  UK,    

 

 

 

Fig  12.  JMW  Turner  Boat  in  a  Storm,  Oil  on  canvas,  Tate  Gallery,  London,  UK    

 

VS  software  algorithms  undertake  the  disordering  of  a  photographically  rendered  data-­‐ set  by  randomising  pixels  within  a  proscribed  area.  When  applied  systematically  within   a  radial  geometry  utilising  depth-­‐map  data  and  centred  on  a  given  fixation  point  it   generates  a  field  structure  with  incrementally  increasing  spatial  texture  outwards  in   space  from  the  fixation  point  (Fig  6.).  It  establishes  an  implicit  spatially  salient  medium   with  the  proximal  spatial  arrangements  between  objects  and  surfaces  directly   evidenced.  We  instantaneously  comprehend  theses  spatial  arrangements  once  we  alight   on  the  fixation  point  within  the  depicted  scene.  This  awareness  is  not  the  result  of   conceptual  analysis  compiled  through  multiple  fixations  accruing  second  order  spatial  

 

10  

   

©  copyright  ERA  2014  

cues  such  occlusion  or  perspective.  Field  derived  spatial  awareness  is  ‘implicit’  and   distinct  from  the  notion  of  ‘pictorial  depth’  and  the  optical  formation  of  ‘depth  of  field’.  

 

 

 

 

Fig  13.  Self-­‐similar  sunflower  pattern  and  its  possible  articulation  as  a  field  potential  set  out  from  fixation.    

  We  believe  that  the  implicit  proximity  cues  play  a  significant  role  within  visual   awareness  identifying  that  ninety  percent  of  phenomenal  field  is  not  an  optically   degraded  form  of  macular  vision  where  motion  is  ‘tracked’.  It  forms  a  simultaneously   understood  spatial  field  where  movement  is  understood  in  ‘flow’  from  within  the   structure  into  which  we  (the  perceiving  organism)  are  spatially  factored.  This  ‘take’  on   reality  comes  with  its  own  unique  form  of  attention.  

 

Fig  14.  Picture  space,  photograph  (optical  projection)  

 

   

11  

   

©  copyright  ERA  2014  

 

Fig  15.  Vision-­‐Space,  monocular  phenomenal  field  (perceptual  structure).     There  other  perceptually  significant  transforms  involved  in  VS  media  relating  to  perceptual  structure  but   these  are  not  dealt  with  in  this  paper.  For  moving  image  examples  of  VS  media  using  post  process  software   and  access  to  relevant  supporting  information  see  www.pacentre.org  

  The  articulation  of  “spatial  disorder”  from  a  phase  derived  data  potential  is  likely  to   involve  what  has  been  considered  to  date  as  merely  non-­‐contributory  noise  and  involve   mediation,  summation,  simultaneous  firing  over  a  short  time  interval  within  a  restricted   area  together  with  stochastic  processing  leading  to  synthesis  and  data  convergence.  In   essence  we  are  looking  for  the  origins  of  a  dark  data-­‐potential  feeding  what  remains  a   largely  covert  processing  stream.     Retinal  cell  function:  With  these  factors  in  mind  we  can  return  to  the  physiology  of  the   eye,  its  biological  processes  and  the  known  properties  of  retinal  firing  to  trace  the   hypothetical  dual  data  potential,  from  detection  through  development  to  their   respective  streaming  from  ganglion  cells  to  specialised  areas  of  the  brain  for  visual  cue   development.  While  I  am  not  an  expert  in  this  field,  if  we  look  at  the  various  component   cells  that  make  up  the  retina  it  is  clear  that  most  of  these  structures  could  equally  serve   both  proposed  process  functions  through  photopic,  mesopic  and  scoptic  luminance   levels.  The  delineation  of  data-­‐sets  can’t  be  clearly  assigned  to  independent  regions  of   the  retina  or  cell  types  or  even  to  how  they  fire  or  are  connected  to  one  another.  As   stated  above,  these  processes  form  entangled  webs,  however  through  intuitive   experiential  encounter  I  think  it  is  possible  to  become  sensitised  to  the  different  nature   of  each  and  thus  start  to  render  visible  aspects  of  their  signatures  and  general   characteristics  as  we  assess  the  detailed  scientific  investigations  that  have  taken  place.          

 

12  

   

©  copyright  ERA  2014  

Fig  16:  Cross  section  of  the  retina  (source  Wikipedia)  

 

  As  we  have  intimated,  the  current  model  approaches,  considers  and  traces  retinal   process  largely  in  terms  of  differentiation  and  thresholds.  A  process  whereby  light   detection  is  defined  by  spikes,  its  segmentation  from  noise  and  initial  aspects  of  scene   analysis  are  undertaken  prior  to  latter  stage  assembly  type  processing  in  the  main  brain   via  the  geniculocortical  pathway.  One  critical  aspect  of  the  associated  retinal  process   being  how  to  segment  the  photon  related  spike  event  from  associated  but  unwanted   noise  contained  in  the  both  the  light  signal  and  generated  from  internal  neural   processes.     However,  scientists  are  increasing  aware  that  this  unproductive  noise  is  counter   intuitively  not  ‘filtered  from’  of  the  system  once  segmented.  It’s  retained  and   appreciated  to  influence  data  processing  throughout  retinal  layers  in  multiple  ways.   Noise  becomes  a  functioning  component  of  the  system.  At  receptor  level  ‘dark  light’  and   ‘dark  noise’  are  encountered  with  rod  and  cone  firing  at  scoptic  luminance  levels   mediating  receptor  firing.  Largely  due  the  difficulty  in  making  measurements,  debate  is   still  playing  out  between  whether  or  not  it’s  source  derives  entirely  from  internal  retinal   processes  or  a  mixture  including  the  external  incoming  signal.  To  this  we  have  to  add   the  unresolved  functionality  of  gap  junctions  between  receptors  and  horizontal  cells   linking  receptors  and  receptor  types  located  in  the  outer  plexiform  layer  together  with   amacrine  cells  performing  a  similar  function  in  the  inner  plexiform  layer.  These  cells   develop  extensive  lateral  connections  and  feed  back  loops  that  further  mediate  output   to  higher  layers.  It  is  generally  understood  that  a  parallel  processing  system  is  in  play   from  the  receptors  themselves  with  the  cones  not  simply  conforming  to  a  binary  mode   of  operation  from  their  two  types  of  synaps  with  bipolar  cells.  Large  scale  correlated   firing  of  cell  groups  is  also  observed  and  this  is  associated  with  phase  like  information   being  streamed  from  retinal  ganglion  cells  to  main  visual  processing  areas  of  the  brain.     Horizontal  cells:  Are  under  the  influence  of  neuromodulatory  factors  from  within  the   retina  and  even  from  the  other  direction  involving  input  from  the  main  visual  areas  of   the  brain.  They  introduce  a  form  of  lateral  inhibition  giving  rise  to  a  center-­‐surround  

 

13  

   

©  copyright  ERA  2014  

structure  to  retinal  receptive  fields.    Most  species  have  two16  or  more  kinds  of  horizontal   cell  and  through  type  dependent  gap  junctions  with  neighboring  cells  make  multiple   long  and  short-­‐range  interconnections  involving  feedback  potentials  forming  networks   across  the  entire  outer  plexiform  layer.17  Detecting  a  coherence-­‐based  signal  from  the   light  array  would  require  significant  temporal  coordination  in  addition  to  a  unique   processing  capability.    Horizontal  cells  have  an  array  of  morphologies  that  can  be   specific  to  species.  The  A  type  horizontal  cell  has  been  associated  with  colour   discrimination  in  fish  but  the  B  type  connect  to  rods  and  have  associations  with   perception  of  brightness.  In  mammalian  species  the  B  type  also  connects  to  cones  but   their  physiology  serves  to  electrically  isolate  one  area  of  the  cell  from  the  other,  thereby   separating  a  cone-­‐photoreceptor  relationship  within  the  cell  from  its  rod-­‐photoreceptor   relationship.  The  S  potential  horizontal  cell  recordings  (linking  cones  and  rods)  identify   that  cone  receptors  first  spike  and  then  show  a  ‘rod  influenced  after  effect’.18  A   combination  of  data-­‐sets  in  one  packet,  one  data  potential  carried  or  piggybacking  on   the  other?19       Bipolar  cells:  They  receive  the  synaptic  input  from  either  rods  or  cones,  but  not  both,   and  are  designated  rod  bipolar  or  cone  bipolar  cells  respectively.  However,  as  we  have   seen  the  inputs  from  either  rods  or  cones  contain  influences  from  either  the  other  cell   type  or  contain  a  dual  data  potential  capability.  Again,  they  act,  directly  and  indirectly   with  input  from  horizontal  cells  that  even  have  the  ability  to  influence  their  receptive   fields,20  to  then  transmit  data  potentials  to  the  ganglion  cells.         Amacrine  cells:  There  are  many  types  of  amacrine  cells  that  are  thought  to  integrate,   modulate  and  interpose  a  temporal  domain  to  the  visual  message  presented  to  the   ganglion  cell.  Both  amacrine  and  horizontal  cells  are  also  thought  to  segregate  motion   and  colour  potentials  and  these  can  be  broadly  aligned  to  specialisms  within  dorsal,   peripheral  (implicit)  and  ventral,  central  vision  (explicit)  respectively  and  hence  have   associations  with  the  two  principle  visual  pathways.  It  would  seem  plausible  that  the   various  types  of  each  kind  of  cell  would  be  broadly  assigned  to  pathway  specialisms.     Ganglion  cells:  In  total  there  are  thought  to  be  11  types  of  ganglion  cells21  with  very   different  receptive  fields  (dendrite  arboration)  in  terms  of  their  circumference  and  their   penetration  within  the  inner  plexiform  layer.22  Much  work  has  been  conducted  to   confirm  that  these  types  perform  specific  physiological  functions.23  Ganglion  cells   release  directly  to  the  optic  tract  and  are  largely  of  two  types;  midget  (small  receptive   fields  and  linked  to  small  groupings  of  cones  and  rods),  forming  part  of  the  P-­‐pathway  

                                                                                                                16  A  type  cells  are  axonless,  B  type  cells  have  axons.  Dendrites  of  A  and  B  types  connect  to  cones   but  only  B  type  cells  connect  to  rods.   17  Yamada  and  Ishikawa  1965,  gap  junctions  were  identified  as  “fused  membrane  structures”   specialized  for  electrical  transmission   18  Steinberg  1969  distinguished  rod  and  cone  signal  separation  in  S-­‐potentials  cells  in   mammalian  retina.   19  Given  that  the  evolution  of  the  eye  saw  the  lens  structure  coming  after  the  chamber  and  the   potential  ‘implicit’  field  capability  we  should  in  fact  think  about  the  spike  element  to  be  piggy-­‐ backing  on  the  wave  function?   20  Influences  including  spatial  opponency.   21  This  number  could  be  stretched  to  13  on  a  technicality.  18  types  of  morphological  types  in  the   human  retina.   22  Levick  et  al  1964-­‐1983.   23  Perry  et  al,  1984;  Amthor  et  al,  1989b;  Watanabe  and  Rodieck,  1989;  Bloomfield,  1994;  Dacey   and  Lee,  1994;  Yang  and  Masland,  1994;  He  and  Masland,  1998;  Rodieck,  1998.  

 

14  

   

©  copyright  ERA  2014  

(parvocelluar)  sensitive  to  colour  and  shape,  and  parasol  (larger  overlapping  receptive   field  linking  to  relatively  more  rods  and  cones),  forming  part  of  the  M-­‐pathway   (magnocelluar)  sensitive  to  depth  but  not  colour.  In  the  fovea  a  single  ganglion  cell  will   communicate  with  as  few  as  five  photoreceptors  whereas  in  the  extreme  periphery,  a   single  ganglion  cell  will  receive  information  from  many  thousands  of  photoreceptors.  It   is  actively  considered  that  the  variety  of  response  experienced  within  the  centre-­‐ surround  receptive  fields  of  ganglion  cells  represent  several  distinct  mechanisms  the   most  significant  probably  being  its  ability  to  perform  spatial  tuning.  We  would  suggest   that  a  potential  exists  for  the  centre  surround  configuration  to  detect  spatial  texture  in   the  form  of  disorder  distributions.    

 

Fig  17.  Suggested  possible  role  for  OFF  centre  receptive  fields  in  determining  a  phase  related    distribution   pattern  associated  with  the  detection  of  a  single  differentiated  impulse  from  an  ON  centre  receptive  field  

  Linear  and  non-­‐linear  receptive  fields  together  with  their  sensitivity  to  light  and  dark   phases  (contrast)  suggest  an  ability  to  tune  optimally  to  phase  based  data-­‐potentials.   Differences  in  a  cell’s  ability  to  perfect  spatial  summation  distinguish  X  (associated  with   detail/what)  from  Y  cells  (associated  with  space/where).  The  SC  is  fed  with  ganglion   cells  types  X,  Y  and  W.  Y  and  W 24  cell  types  have  been  associated  with  spatio-­‐temporal   low  frequency  response  profiles  and  extreme  sensitivity  to  moving  stimuli  W.   Waleszczyk  et  al  200425.  This  makes  the  W  cells  projecting  to  the  SC  a  prime  candidate   for  the  transmission  of  a  phase  based  data  potential.  It  is  understood  that  collicular  cells   receiving  cortical  stimulation  from  W  cells  do  so  at  latencies  consistent  with   convergence  of  afferents  both  direct  from  the  retina  and  indirectly  from  Y  cells  from  the   LGN.       With  respect  to  the  central  hypothesis,  it  would  appear  that  we  are  required  to   challenge  every  aspect  of  what  is  thought  to  be  occurring  within  the  membrane  even  in  

                                                                                                                24  In  the  primate  the  W  pathway  (cat)  is  analogous  to  the  K  (Koniocellular)  pathway  also  

associated  with  modulation  between  layers  in  the  LGN.     25  W.  Waleszczyk  et  al  (2004)  Motion  sensitivity  in  cat’s  SC.  W  cells  with  heterogeneous  receptive   fields  could  be  associated  with  ambient  vision  and  perceptual  space  -­‐  local  movement  in  the   environment  (Rowe  and  Palmer  1995).    

 

15  

   

©  copyright  ERA  2014  

relation  to  receptor  function.  For  example  it’s  generally  accepted  that  rods  are  saturated   in  daylight  photopic  levels  rendering  them  inoperable  or  incapable  of  contribution  to   visual  awareness  processing.  Rods  are  thought  to  be  productive  at  only  at  scoptic  (dark)   or  working  alongside  cones  at,  mesopic  (semi  dark)  levels  of  luminance.  As  far  as  I  can   determine  from  this  theoretical  exercise  of  overlay,  two  outline  possible  scenarios   suggest  themselves.       The  first  option  accepts  the  duplicity  between  rods  and  cones  relating  to  their   performance  at  different  luminance  levels  with  the  second  being  more  radical  than  the   first,  namely  that  rods  are  actually  ‘optimised’  in  photopic  conditions.  What  we  have   thought  of  as  ‘saturation’  in  terms  of  a  cell’s  ability  to  differentiate  individual  photon   detection  events  being  not  representative  of  its  principle  function  in  photopic   conditions,  that  being  the  passive  transmission  of  noise.  Noisy  photopic  level  rod  output   would  require  subsequent  synthesis  among  groups  if  not  entire  networks  of  receptive   fields  making  use  of  the  specialist  array  of  amacrine  and  ganglion  cells.  

  Theoretical  scenario  1.   • We  accept  that  rods  are  indeed  ‘saturated’  at  photopic  lighting  levels  and  that   saturation  ensures  that  in  these  specific  conditions  they  play  no  effective  role.     • We  assume  that  decoherence  is  taking  place  at  the  retina  and  that  the  phase  data   potential  is  passively  absorbed  and  ‘embedded’  within  a  noise  function.     • We  consider  the  possibility  that  this  noise  function  carries  with  it  information   relating  to  spatial  arrangements  within  the  immediate  environment.   • We  acknowledge  that  both  rods  and  cones  mediate  their  firing  indicating  the   presence  of  what  is  termed  dark  light  or  dark  noise.  However  we  must  assume   that  only  cones  are  involved  with  the  segmentation  of  second  data  potential.           Visual environment Starlight Moonlight Indoor Light Sunlight     Photopic Luminance   -­‐6                                -­‐4                                                                              -­‐2                            0                                2                            4                            6             Luminance category Scoptic Mesopic Photopic     Receptor type Rods only? Rods and Cones Cones only? Rod threshold Cone threshold Rod saturation   Visual function Little or poor colour definition Good colour definition       Fig  18.  Current  understanding  of  luminance  levels  with  respect  to  receptor  functions    



• •

 

While  we  are  able  to  detect  the  said  functional  operation  involving  dark  light  at   scoptic  levels  as  we  are  dealing  with  individual  light  quanta,  we  would  presume   that  this  ‘process’  is  also  operational  in  cones  at  photopic  and  mesopic  levels  of   illumination  but  impossible  to  individualise  or  isolate.     Given  that  decoherence  would  take  place  within  the  receptor  we  would  expect   that  a  debate  would  result  with  respect  to  the  origins  of  the  mediating  noise.   The  segmentation  of  the  noise  reliant  data-­‐set  from  the  photon  event  data-­‐set   would  occur  via  the  dual  ‘on’  &  ‘off’  structure  of  cone  synapses  with  bipolar  cells   working  in  conjunction  with  the  feed  back  capability  provided  by  the  first  stage   circuitry  of  horizontal  cells  in  the  outer  plexiform  layer.    

16  

   

©  copyright  ERA  2014   •



This  first  scenario  would  require  that  under  photopic  conditions  we  are  reliant   on  the  cones  in  peripheral  vision  to  provide  the  sparse  spatial  awareness   function  apparent  in  peripheral  vision.     That  a  second  data  potential  is  integral  to  the  ‘where’  processing  stream   providing  us  with  a  specialist  form  of  spatial  awareness  derived  directly  from   the  light  array,  ie,  it’s  not  reliant  on  conceptualisation  of  the  scene  from  other   cues,  eg  occlusion.  

  While  this  scenario  has  to  be  considered  as  a  potential  hypothesis  there  are  obvious   issues  with  its  capability  to  fulfil  the  brief.       • At  a  common  sense  level,  I  think  the  distribution  of  cones  in  peripheral  areas   may  be  too  space  to  generate  this  hypothetical  second  data  potential  without   support.     • The  shear  amount  of  horizontal  connections  between  rods  is  suggestive  of  their   primary  function  being  closer  to  synthesis  than  differentiation  and  so  potentially   implicated  in  the  proposed  process.   • The  rods  are  clearly  involved  in  the  dark  light  mechanism  at  scoptic  levels  which   suggests  that  they  are  involved  in  the  production  of  the  filed  data  potential   operational  at  photopic  levels.     • Rod  population  levels  also  intuitively  suggest  to  me  some  functional  operation  at   photopic  levels.   • With  their  small  receptive  field  I  would  see  the  role  of  cone  receptors  as  being   supportive  to  a  principle  mechanism.  The  cone  output  deriving  the  noise   potential  via  its  OFF  centre  synapse  providing  an  element  of  further  grain   resolution  within  the  field  potential.      

Fig  19.  Population  distribution  of  retinal  receptor  cells  (source  Wikipedia)  

 

  We  are  left  with  either  a  potentially  significant  numbers  problem  with  respect  to  noise   sensitive  receptor  cell  population  in  peripheral  areas  or  a  very  significant  total  oversight   with  respect  to  rod  function?  If  VS  theory  is  correct,  we  must  assume  to  have  simply   missed  an  entire  data  structure  vital  to  visual  awareness  so  I  am  drawn  to  seriously   consider  this  more  extreme  second  scenario.  When  I  structure  this  argument  it  actually   make  better  sense  of  retinal  circuitry  but  also  total  sense  in  terms  of  the  experiential   reality  of  phenomenal  field.  As  a  non-­‐expert,  I  consider  there  to  be  an  intuitive  fit?  

 

17  

   

©  copyright  ERA  2014  

  While  we  have  observed  that  noise  processing  within  the  retina  is  making  a  contribution   to  visual  awareness  we  are  struggling  to  understand  what  this  contribution  looks  like,   how  it  manifests.  I  understand  from  experts  that  the  same  consideration  is  true  of  the   role  that  decoherence  plays  in  visual  awareness.  I  would  suggest  that  these  two  factors   are  directly  linked  and  that  we  have  failed  to  make  the  connections  as  there’s  a   fundamental  misunderstanding  enshrined  in  the  scientific  approach.  This  situation  has   gone  unnoticed  largely  because  vital  cross-­‐referencing  with  intuitive  records  made  of   phenomenal  field  articulated  by  visual  artists  has  not  taken  place?    

 

Fig  20.  Large  Pine  Tree  and  Red  Earth,  1880-­‐97,  Cezanne,  Oil  on  Canvas,  The  Hermitage  Museum,  St   Petersburg  

  1. We  have  not  understood  the  nature  of  spatial  awareness  or  what’s  actually   involved  in  an  act  of  observation  in  phenomenological  terms   2. We  have  failed  to  seriously  theorise  about  to  the  role  that  decoherence  might   play  in  retinal  processing,  brain  function  and  visual  awareness   3. The  scientific  ontology  has  limited  our  analysis  methodology  to  differentiation   overseen  almost  exclusively  by  a  reductionist  outlook   4. Partially  in  response  to  the  above,  we  have  failed  to  presents  the  visual  system   with  appropriate  stimuli     These  factors  may  have  ‘blinded’  us  to  a  fundamental  truth  that  runs  right  through  our   understanding  with  respect  to  the  nature  of  reality  and  our  place  within  it.  We  are   partners  in  the  development  of  visual  awareness.  The  noise  from  light  array  is  used  and   there’s  actually  a  case  for  suggestion  that  biological  noise  generated  internally  may  also   play  a  part  in  the  formation  of  perceptual  structure  being  the  mechanism  through  which   the  spatial  signals  are  realised?  We  generate  vision.  Vision  is  a  relationship  we  form   with  the  real.  Are  we  are  currently  living  in  a  hall  of  mirrors  a  situation  that  persists  due   to  the  dominance  of  the  ‘remote  observer’  position  adopted  by  science?     Theoretical  scenario  2.     We  therefor  theorise     • We  assume  that  decoherence  is  taking  place  at  the  retina  and  that  the  phase  data   potential  is  passively  absorbed  and  ‘embedded’  within  a  noise  function.    

 

18  

   

©  copyright  ERA  2014   • • •

• • • •





• • •

We  consider  the  possibility  that  this  noise  function  carries  with  it  information   relating  to  spatial  arrangements  within  the  immediate  environment.   That  ‘measurement’  of  discrete  events  (photon  events  delineated  by  individual   spikes)  is  not  made  within  this  data  processing  stream.   Realising  the  spatial  data  potential  embedded  in  the  noise  signal  is  not  a  matter   requiring  differentiation,  it  will  be  reliant  on  convergence  and  synthesis   requiring  considerable  amounts  of  horizontal  connections,  summations,   correlations  and  ultimately  convergence.   That  BOTH  rods  and  cones  are  specialised  in  segmenting  that  data  potential   from  the  light  array.   We  should  be  looking  at  the  function  of  linear  and  non-­‐linear  ganglion  cell   receptive  fields  in  this  respect?   That  this  ‘data  potential’  from  rods  and  via  cones  is  available  to  us  at  photopic   luminance  levels.   That  a  second  data  potential  providing  us  with  a  specialist  form  of  spatial   awareness  is  derived  directly  from  the  light  array,  ie,  it’s  form  of  spatial   awareness  is  not  reliant  on  our  conceptualisation  of  the  scene  from  other  cues,   eg  occlusion.   Realisation  of  this  data  potential  will  be  made  via  a  perceptual  structure   generated  by  the  sentient  being  and  probably  making  use  of  internal  biological   noise  factors  (eg  from  receptors  and  synapses).     There  will  be  little  point  in  analysing  individual  rod  events  beyond  observing  the   skeletal  processes  involved  in  segmenting  the  data  potential  for  streaming  to  the   main  brain  areas.   The  retina  is  unlikely  to  be  the  location  where  the  realisation  or  unfolding  of  this   spatial  data  potential  takes  place.     Related  ganglion  cell  output  will  simply  possess  phase  like  characteristics.   The  retina  will  only  be  functioning  optimally  with  respect  to  the  ‘collection’  of   this  noise  orientated  data-­‐set  when  exposed  to  a  naturally  illuminated  real   setting.      

  Given  this  set  of  criteria  we  should  not  be  expecting  to  observe  rods  detecting  from   inappropriate  stimuli  presented  to  it  at  photopic  levels,  elements  requiring  processes   involving  differentiation.  Differentiated  responses  with  respect  to  exposure  to  flat   coloured  or  tonal  stimuli  would  not  be  compatible  with  the  tasks  rods  are  designed  to   perform  at  photopic  luminance  levels.  They  would  be  required  to  passively  absorb   noise,  all  of  it,  without  differentiation  or  measurement  as  phase  receptors.  If  this  were   indeed  the  case  then  circumstances  aligning  with  ‘saturation’  would  represent  the   ‘optimisation  of  function’  and  not  its  cessation  or  suspension.       Connection  circuitry  between  cones  and  bipolar  cells  to  individual  ganglion  cells  would   suggest  that  they  carry  the  differentiated  explicit  data-­‐set  familiar  to  central  vision.   Noise  segmentation  through  the  OFF  centre  synapses  of  cones  would  suggest  that   horizontal  cells  (outer  plexiform  layer)  share  considerable  characteristics  with   amacrine  cells  (inner  plexiform  layer).  Horizontal  cells  and  gap  junctions  would  then   connect  cones  and  their  OFF  centre  signal  to  adjacent  rods  facilitating  the  transmission   of  the  segmented  noise  component  to  the  main  noise  processing  stream.  Cone  output   (fast  track)  via  the  ON  centre  synapses  with  bipolar  cells  also  carries  a  segmented  slow   rod  like  component  along  with  the  differentiated  spike,  the  noise  like  slow  element   almost  piggybacking  on  the  main  signal.  If  we  consider  the  slow  wave  form  of  rods  as   being  easily  distinguishable  from  the  fast  wave  forms  of  cones,  the  observed  mixing  of  

 

19  

   

©  copyright  ERA  2014  

these  responses  would  appear  to  be  counter  productive  and  counter  intuitive.    Perhaps   we  can  suggest  that  This  slow  wave  form  ends  up  being  streamed  along  with  the  spike   component  to  the  Lateral  Gesticulate  Nucleus  (LGN)  and  from  there  posted  to  the   Superior  Colliculous  to  converge  with  the  main  implicit  data-­‐set?  One  consideration  has   been  that  the  rods  need  to  utilise  the  faster  cone  pathway  to  transmit  spatiotemporal   data  in  advance  of  its  regular  pathways?     All  of  this  reinforces  the  notional  possibility  that  by  limiting  our  approach  methodology   to  the  evaluation  of  differentiated  data  potentials,  science  has  managed  to  entirely  avoid   a  data-­‐set  essential  to  the  formation  of  visual  awareness?  By  understanding  that  rod   saturation  at  photopic  luminance  levels  effectively  rules  out  differentiation  tasks,  rod   function  has  been  only  partially  illuminated  featuring  contributions  restricted  to   mesopic  and  scoptic  luminance  levels.  If  so,  then  could  this  omission  in  our   understanding  be  aligned  with  so  called  covert  processing,  blind  sight  and  tectal  vision   delivered  through  the  retinocollicular  pathway?     The  functional  transition  of  rods  through  luminance  levels?   Rod  noise  and  its  proposed  associated  function  at  photopic  levels  would  start  to  fail   when  environmental  illumination  levels  were  unable  to  deliver  a  robust  enough  data   potential  for  streaming.  When  this  condition  was  reached  we  would  assume  that  a  reflex   kicks  in  initiating  the  well-­‐understood  light  adaption  period.  We  would  suggest  that  this   adaption  period  is  also  a  transformation  process  affecting  the  function  of  the  rod   receptors  where  they  start  to  align  their  innate  functional  sensitivity  to  differentiation   tasks  mimicking  aspects  of  cone  function  that  struggle  at  these  lower  luminance  levels.   This  would  identify  that  while  cones  support  rods  in  photopic  conditions  via  their  OFF   centre  synaps  with  bipolar  and  horizontal  cells,  they  also  play  a  supporting  role  for  rods   in  scoptic  conditions  through  their  ON  centre  synapses  as  rods  change  their  functions   form  phase  or  noise  detection  to  discrete  detection  enabling  them  to  perform   differentiation  tasks.  This  transformation  may  be  linked  to  the  observed   hyperpolarisation  function  seen  to  take  place  in  the  receptive  fields  of  most  retinal  cell   types?    

Fig  21.  The  adaption  period  (source  Wikipedia)  

 

 

 

20  

   

©  copyright  ERA  2014  

This  transformation  in  rod  function  suggests  that  spatial  vision  at  scoptic  levels  is   impaired  by  a  loss  of  the  implicit  spatial  function  and  not  just  by  an  incremental   deterioration  of  acuity  and  colour  vision.  This  again  squares  with  experience  as  we   regularly  knock  into  objects  or  misjudge  distances  even  though  we  can  identify  objects   within  the  scene.  It  also  explains  the  transition  in  our  experiential  objective  assessments   of  the  moon  through  different  luminance  thresholds.       At  scoptic  levels  the  moon  looks  like  a  flat  shining  dish,  clear  but  entirely  lacking  a  sense   of  its  spherical  form.  In  daylight  it’s  clearly  an  object  with  volume  in  space.  At  dawn  and   dusk  it’s  possible  to  make  out  two  distinct  monocular  images  of  the  object  as  the  brain   struggles  to  modulated  the  available  data-­‐sets  to  generate  a  meaningful  spatial   impression.  Towards  night  and  conditions  of  real  darkness  one  data-­‐set  fails  entirely,  in   daylight  the  brain  becomes  increasingly  able  to  resolve  the  object  via  constructive   modulation  and  the  double  impression  ‘sets’  into  an  appreciation  of  its  spherical  form.   This  set  of  conditions  is  especially  apparent  with  the  moon  in  crescent  phases.      

 

 

21  

   

©  copyright  ERA  2014  

Fig  22&23  Perception  of  the  moon  in  scoptic,  mesopic  and  photopic  conditions  

 

  Implications  for  visual  system  overview:  We  would  suggest  that  the  principle   function  behind  retinal  receptor  cells  is  decoherence  through  which  we  as  sentient   beings  are  able  to  make  sense  of  the  world  of  real  settings  through  the  medium  of  light.   Another,  but  very  different  way  in  which  decoherence  would  play  an  active  role  in  the   appearance  of  the  physical  world!  Interestingly,  if  decoherence  does  occur  at  the   receptor  cell  level  creating  ‘preferred  states’  then  these  would  now  be  ‘robust’  and  less   likely  to  be  further  influenced  by  the  environment,  where  the  environment  would  be  the   perceptual  processes/mechanisms  of  the  sentient  being.  The  resulting  data  potentials   would  remain  ‘segmented’.  

  Dark  light  and  dark  noise  at  the  level  of  light  quanta  have  been  observed  mediating   receptor  firing.  Multiple  variations  in  firing  patterns  of  receptor  cells  have  been   recorded  from  what  was  at  first  considered  to  be  the  simple  centre-­‐surround  binary   process  of  neural  firing.  Within  these  variables  being  increasingly  understood  by   scientists  it  seems  plausible  to  theorise  that  distinct  data-­‐sets  are  being  segmented  from   the  light  array.  For  example,  it  has  also  been  observed  that  adaptation  of  the  light  input   (changing  its  nature)  affects  the  rod-­‐influenced  aftereffect  of  S-­‐potential  horizontal  cells   suggesting  that  if  the  stimuli  fails  to  contain  such  a  variable  that  would  otherwise  have   been  present  in  normal  circumstances,  the  firing  patterns  at  the  retina  reflects  this   deficit.  An  Off  centre  and  On  surround  could  theoretically  perform  measurements  with   characteristics  reliant  on  phase  formations  giving  rise  to  a  texture  value  such  as  the   registration  of  disorder  (distribution  pattern).    These  values  would  first  find  articulation  

 

22  

   

©  copyright  ERA  2014  

within  a  local  field  potential  (LFP)  26  but  then  require  integration  within  a  pan-­‐retinal   response.  This  mediated  and  then  collective  response  could  form  the  basis  for  the   proposed  enfolded  field  potential.     The  use  of,  or  contribution  of  biological  internal  noise  lies  beyond  the  scope  of  this   paper  but  again  I  would  consider  it  to  be  integral  to  the  proposed  field  structure  that  we   generate.  It  is  likely  to  be  a  functioning  component  within  perceptual  structure.  

   

Within  the  ganglion  cells  layer  we  also  see  linear  and  non-­‐linear  receptive  fields,  two   distinctive  forms  of  firing  (correlated  and  uncorrelated)  that  are  starting  to  be   considered  to  provide  distinct  modes  of  visual  signaling  (Meister  et  al.  1995,  Schnitzer  &   Meister,  2003;  Schneidman  et  al.  2006;  Greschner  et  al  2011).  It  is  understood  that  the   correlated  firing  serves  the  purpose  of  networking  interactions  from  ganglion  cells   promoting  a  phase  like  data-­‐set  to  the  visual  system.  The  cause/derivation  of  this   synchronized  activity  is  thought  to  be  a  combination  of  shared  ‘noise’  from   photoreceptors  and  the  stimuli.  While  ganglion  cells  are  largely  considered  to  be   ‘feature  detectors’  requiring  differentiation  functionality,  this  form  of  approach  may   well  apply  to  just  one  segmented  ‘take’  from  the  light  array,  to  the  formation  of  just  one   aspect  of  a  duality.    

  Preparing  the  second  ‘take’  developing  from  the  segmented  noise  potential  into  the   proximity  and  orientation  cues  apparent  in  spatial  awareness  would  be  reliant  on  an   aspect  of  correlated  firing  only  coming  together  under  convergence  processes  as  an   integral  and  holistic  data-­‐formation  further  down  the  visual  pathway  in  specialized   visual  processing  areas  of  the  main  brain.  At  that  point  all  the  relevant  inputs  from   across  the  retina  that  collectively  form  the  integrated  implicit  data-­‐set  would  then  be   ‘realised’  within  a  neutrally  generated  field  data  formation  (unrelated  to  optical   projection)27.  This  is  suggestive  of  a  form  of  phase  space  coalescing  around  an  attractor   delineating  fixation.  This  field  potential  would  then  be  experienced  largely   subconsciously  as  tectal  vision  but  also  deployed  to  underpin  and  support  a  multi-­‐sense   integration.28  

  The  suggestion  being  that  the  holistic  field  structure  ‘unfolds’  through  the   magnocelluar/dorsal  associated  pathway  within  the  subcortical  mid-­‐brain  structures.   This  would  entail  the  SC  receiving  not  a  2D  topographic  and  retinotopic  map  along  side   its  gaze  direction/  eye  movement  data,  but  a  distinct  mode  of  signaling  from  ipsilateral   views  generating  a  unique  form  of  spatial  field  awareness.       These  data-­‐potentials  break  out  in  terms  of  perception  pathways  broadly  as  follows;  

                                                                                                               

26  LFP  are  a  type  of  electrophysiological  signal.  A  ‘summation’  given  off  by  a  volume  of  dendritic   synaptic  tissue.   27  Neural  adaptation  (modification  of  the  raw  data  received)  occurs  at  all  levels  of  the  visual   systems  (including  receptors)  confirming  a  considerable  degree  of  neural  plasticity  (a  basic   biological  function).  Much  of  this  activity  is  thought  to  be  confined  to  just  improving  the  ‘quality’   of  the  traditional  optical  picture  and  the  efficiency  of  retinal  signal  or  delivering  ‘constancy’  in   perception  (eg.  light  and  dark  adaptation.  eg.  constancy  of  colour  perception  despite  the  effects  of   aging.)  Adaptation  mechanisms  are  appreciated  to  paly  a  role  is  removing  spatially  temporally   redundant  signal  components  (background  signal).   28  An  example  of  aggregation  from  multiple  traces  from  ganglion  being  required  further  along  the   visual  system  in  order  to  determine  spatial  awareness  might  be  illustrated  by  the  output  from   directionally  selective  ganglion  cells?  

 

23  

   

©  copyright  ERA  2014  

Firstly  a  holistic  and  implicit  form  of  spatial  awareness  generating  proximity   cues,  with  motion  comprehended  in  flow   • Then  a,  form,  colour  and  detail  explicit  take  on  reality,  with  space  through  depth   perception  and  motion  comprehension  via  tracking   This  would  entail  the  retinal  membrane  segmenting  both  data  potentials  from  the   incoming  light  array  via  receptor  specialisms  and  supporting  the  subsequent  circuitry   for  their  development  to  a  point  where  they  are  independently  streamed  to  individual   areas  of  the  brain.       This  data-­‐potential  now  manifest  as  a  neutrally  generated  field  would  not  be  on  the   familiar  1,2,3D  curve  prevalent  in  current  visual  media  imaging  techniques.  If  we  have   to  ‘visualise’  this  data-­‐set  it  may  not  be  unlike  the  vector  field  (required  to  produce  VS   images)  illustrated  in  the  lower  left  portion  of  Fig  10.     •

 

 

 

Fig  24.  Left  to  right:  a)  Optical  space,  b)  Radial  depth-­‐map,  c)  Radial  vector  formation  (representative  of   tecturn  vision?),  d)  Radial  disorder  

  This  sort  of  structure  would  then  account  for  the  retinotectal  vision  identified  by   Sherman  1977(?)  and  possibly  associated  with  the  well  known  accounts  of  so  called   blind  sight.  The  spatially  configured  field  potential  would  then  be  aligned  with  the   ecology  of  audio  spatial  field  in  the  lower  layers  of  the  SC.  The  resulting  neurologically   generated  structure  would  then  be  capable  of  supporting  other  facets  of  multi-­‐sense   integration29  in  the  form  of  a  perceptual  structure  coming  together  within  thalamic   related  structures.  The  thalamus  has  been  linked  (Engle  1999)  to  consciousness  via   synchronized  sweeping  gamma  waves.30    

 

Within  such  a  ‘neurally  generated  field’,  eye  movements  could  be  coordinated  efficiently   providing  vital  spatial  data  for  the  predetermining  of  the  physical  shape  of  the  lens  

                                                                                                               

29  Multisense  integration  in  the  SC  has  been  well  documented  and  shown  to  be  lead  by  visual  

input  and  subject  to  environmental  influences.  MA  Merideth  &  BE  Stein  1986;  DK  Sarko  &  D   Ghose  1212;  L  Yu,  BA  Rowlans  &  BE  Stein  2010;  MT  Wallace  et  all  2004;  A  King  2008;  JC  Alvarado   et  al  2009;  J  Xu  et  al  2012.   30  Andreas  K.  Engel  et  al.  in  the  journal  Consciousness  and  Cognition  (1999).  This  is  disputed  by   some  and  the  debate  is  ongoing.  

 

24  

   

©  copyright  ERA  2014  

required  prior-­‐to  saccadic  eye  movements.  The  process  of  fixation  would  then  involve  a   combination  of  drawing  focus  (optical  lens)  through  cortically  controlled  functions  and   its  alignment  with  the  attractor  function  determining  the  setting  out  of  the  neurally   generated  spatial  field.  This  implies  independent  systems  of  awareness  (conscious  and   subconscious).31  While  each  form  of  awareness  would  support  an  independent  form  of   attention,  it  would  be  the  sub-­‐conscious  neural  field  structure  that  would  form  the  base   spatially  integrated  contextualized  holistic  world  view  within  which  local  but  detailed   formation  could  take  shape.  Certain  aspects  of  attention  operational  within  the  field   structure  would  be  in  temporal  advance  those  forming  within  macular  vision.  This   phenomenon  of  certain  aspects  of  decision-­‐making  taking  place  prior  to  conscious   awareness  of  incident  is  well  documented  leading  to  debates  on  ‘free  will’.  Awareness   would  involve  considerations  made  ‘in’  time  and  ‘over’  time.  

  As  indicated  above,  the  development  of  the  notional  neural  field  associated  with  an   implicit  and  holistic  form  of  awareness  is  likely  to  be  associated  with  the  early  evolution   of  the  brain  and  eye  and  therefor  controlled  by  older  brain  structures.    In  addition,  the   degree  to  which  the  ‘perceiver’  controls  these  generative  processes  through  active   participation  in  the  setting  out  of  the  data-­‐set  dependent  on  ‘perceiver’s  intent’  in  the   environment  suggests  that  in  early  development  the  eye’s  receptors  and  retinal   structures  and  circuitry  will  be  dependent  on  instruction  from  the  brain.  Indeed,  even   before  birth  and  the  onset  of  sensory  experience,  neural  activity  plays  an  important  role  in   shaping  the  vertebrate  nervous  system,  (R.  Wong  et  al  1998).  The  observed  retinal  wave   phenomenon  through  early  development  is  likely  to  be  associated  with  this  process  of   neural  calibration.32  There  is  evidence  for  both  an  instructive  role  assisting  with  retinal   development  (the  refinement  of  transient  retinotopic  maps  and  their  elimination)   driven  by  the  brain  and  delivering  the  basic  neural  wiring  and  also  for  a  permissive   function  extending  beyond  the  set-­‐up  stage.  The  ‘collection’  of  the  proposed  phase   related  data-­‐potential  would  require  neural  ‘calibration’33  instructed  from  within   (genetically  sequenced)  as  well  as  from  a  supply  function  as  part  of  the  generation  of   vision  from  environmental  light  input.  The  potential  for  retinal  waves  to  help  define   ganglion  cell  function  and  arrangement  together  with  their  respective  dendritic  layering   in  the  inner  plexiform  layer  has  been  examined  with  positive  outcomes  by  Rachel  Wong   and  her  lab,  1990’s  -­‐2005.  It  would  seem  logical  that  retinal  waves  were  pre-­‐calibrating   dendritic  growth  prior  to  the  onset  of  visually  driven  input  in  order  to  prepare  circuitry   to  receive  an  incoming  phase  orientated  data  potential  from  the  light  array.  This  initial   circuitry  would  be  extensively  horizontal  in  nature  involving  gap  junctions  between   cells  and  cell  types  across  the  spherical  retina  and  the  resulting  circuitry  would  lead  to   the  SC  and  well  as  to  the  LGN.34  In  addition  we  should  expect  to  see  the  subcortical  areas   affecting  performance  of  ganglion  cells  and  even  further  forwards  within  the  retinal   processing  mechanisms  to  amacrine  and  horizontal  cells.  Following  the  set-­‐up  process   spontaneously  driven  retinal  waves  would  be  expected  to  fall  away  allowing  the  pre-­‐ wired  circuitry  to  respond  to  the  environmental  light  array.  Research  in  this  area  is  

                                                                                                                31  We  broadly  associate  these  ‘takes’  on  reality  with  left  and  right  hemisphere  realities  –  I.  

McGilchrist  2010.   32  The  creation  of  VS  media  involves  processes  that  imperceptibly  modulate  data-­‐sets  over  time.   (including  binocular  stereo  views).  The  processes  are  very  similar  in  appearance  to  retinal   waves.     33  The  calibration  of  multisensory  integration  processes  has  been  observed  to  develop  from   stimuli  even  in  anesthetized  cats.  J.  Xu  et  al  (2012)   34  There  is  some  ongoing  debate  with  respect  to  retinal  waves  afferent  signaling  to  lamina-­‐ specific  projections  in  the  tectum.  (Wong  et  al  1998)  

 

25  

   

©  copyright  ERA  2014  

ongoing  but  restricted  by  the  difficulties  of  experimental  set-­‐up.  

  Application  implications:  The  implications  with  respect  to  there  being  two  distinct   and  independent  data  potentials  relating  to  the  physical  world  encoded  within  the  light   array  are  significant.  VS  would  need  to  be  investigated  as  the  setting  out  point  for  a  new   form  of  illusionary  space  based  on  perceptual  structure  in  the  same  way  picture  space   was  paired  with  central  perspective  and  optical  projection.  VS  software  applications   would  generate  the  stimuli  that  would  pair  with  the  developing  theory  of  visual   perception  driven  by  an  ‘experiential  ontology’  determining  aspects  of  our  perceptual   structure.     The  implicit  implication  is  that  VS  would  urgently  need  to  replace  picture  space  as  over   exposure  to  our  current  virtual  environments  would  actively  encourage  the   development  of  atypical  perceptual  structures.    Over  exposure  to  non-­‐perceptually   structured  virtual  environments  (optically  structured)  especially  at  key  phases  such  as   early  childhood  and  in  old  age  could  be  detrimental  to  health.35  There  are  potential  but   as  yet  unresolved  links  of  such  visual  deprivation  to  ASD  related  conditions.36  As  vision   is  essentially  a  biological  process,  under  certain  conditions  we  would  consider  that  over   exposure  to  deficient  stimuli  could  lead  to  irreversible  neural  redundancy.  Large-­‐scale   neural  redundancy  within  the  visual  system  could  well  trigger  an  unbalance  in  our   biological  control  mechanisms  and  be  a  factor  in  other  mid-­‐brain  related  conditions   such  as  Alzheimer’s.37    

Fig  25.  Current  instrumentation,  painting  by  the  author  

 

                                                                                                                35  Hyperactivity and deficits in problem Solving Following Superior Colliculus Lesions in the Rat. Smith C. & Weldon D. Physiology and Behavior 1976 Vol. 16 381-385. Multiple  Sensitive  Periods  in   Human  Visual  Development:  Evidence  from  Visually  Deprived  Children  Terri  L.  Lewis  2005  Wiley   InterScience  Periodicals.     Sparing  of  sensitivity  to  biological  motion  but  not  of  global  motion  after  early  visual  deprivation   Bat-­‐Sheva  Hadad  et  al,    2012,  Developmental  Science  15:4  pp  474-­‐481.   36  Does  Television  Cause  Autism.  Waldman  M.  et  al,  2006,  Working  paper  12632  National  Bureau   of  Economoc  Research.   37  Synaptic  plasticity  defect  following  visual  deprivation  in  Alzheimer  disease  model  transgenic   mice.  Christopher M. William et al J Neurosci . 2012 June 6; 32(23): 8004–8011. doi:10.1523/JNEUROSCI.5369-11.2012.

 

 

26  

   

©  copyright  ERA  2014  

 

Ultimately  VS  systems  should  allow  us  to  determine  what’s  actually  involved  in  us  being   objective.  It  holds  out  the  potential  to  be  a  meaningful  tool  in  processes  capable  of   breaking  into  perceptual  structure,  the  nature  of  consciousness  and  the  development  of   advanced  perceptual  technologies.  We  would  need  to  consider  ‘the  meaning’  or   ‘relevance  of’  all  photographic  media  and  data  collection  devises  standing  in  for   experiential  encounter  at  all  scales,  including  those  of  astronomical  telescopes  and   particle  accelerators.       If  VS  did  indeed  constitute  a  new  form  of  illusionary  space  based  on  perceptual   structure  as  opposed  to  optical  projection  then  we  would  need  to  consider  it  as   representing  something  of  a  renaissance  moment  with  all  that  would  entail.      

Fig  26.  Portishead  beach  by  the  author  

 

 

John  Jupe:  Visual  Artist  and  researcher  2013:  ©  copyright  ERA  2013   Contact:  [email protected]    

 

27  

   

©  copyright  ERA  2014  

 

  Bibliography  –  in  addition  to  footnotes  

H.B.  Barlow  (1977)  Retinal  and  central  factors  in  human  vision  limited  by  noise.  From:Photo   reception  in  vertebrates   D.A.Baylor,  T.D.Lanb,  K.-­‐W  Yau  1979.  Responses  to  retinal  rods  to  single  photons,  J.Phyaiol  288,   pp.  613-­‐634   D.A.Baylor,  G.  Matthews,  K.-­‐W  Yau  1980.  Two  components  of  electrical  dark  noise  in  toad  retinal   rod  outer  segments   J.Phyaiol  309,  pp.  591-­‐  621  591     Kristian  Donner  1991,  Noise  and  the  absolute  thresholds  of  cone  and  rod  vision,  Vision  Res.  Vol   32.  No  5,  pp.  853-­‐866   M.  Tegmark  (1999)  The  Importance  of  Quantum  Decoherence  in  Brain  Processes   D.  Copenhagen*,  K.  Donner  and  T.  Reutert  (1987),  Ganglion  cell  performance  at  absolute   threshold  in  toad  retina:  effects  of  dark  events  in  rods   T.  Reuter,  K.  Donner,  D.  Copenhagen  (1986),  Does  the  Random  Distribution  of  Descrete   Photoreceptor  Events  Limit  the  Sensitivity  of  the  Retina  Receptive  Field   J.  Demb,  L.  Haarsma,  M.  Freed,  P  Sterling  (1999),  Functional  Circuitry  of  the  retinal  Ganglion  Cells   Non-­‐linear  Receptive  Field   Web  vision-­‐  The  Organization  of  the  Retina  and  Visual  System,  http://webvision.med.utah.edu      

   

   

 

28