Robert J. Boyle NASA Glenn Research Center ...

3 downloads 0 Views 295KB Size Report
ktdY`杜Ywb ï¼°Y Uvwb ï¼£mUxY`ï¼£Yb秦W進YwズiYoYi モwwYAihxU晋iYb秦W努YWiï¼¹Y b }. wC填w`Y|å¡«w Yï¼£b`X qY`frCePYJ U Uvwb ï¼£b秦W ...
EFFECTS OF FREESTREAM TURBULENCE ON TURBINE BLADE HEAT TRANSFER Robert J. Boyle NASA Glenn Research Center Cleveland, OH Paul W. Giel QSS Group Cleveland, OH Forrest E. Ames University of North Dakota Grand Forks, ND

k

N

R

R

?

^

‡

Z

?

E

;

m

=

N

R

R

d

N

x

=

R

R

?

m

8

E

;

q

N

P

8

?



E

x

;

8

;

;

P

N

T

R

q

8

^

;

R

=

;

R

8 ?

N

N

N

^

=

R

?

=

U

^

;

E

E

N

^

d

R

E

T

^

T

N

R

x

=

E

8

8

R

?

=

?

^

=

P

•

N

|

;

;

8

E

x

|

m

;

;

P

?

=

=

T

B

P

P

P

^

8

=

;

Z

;

P

^

^

P

Z

N

N

^

=

|

?

?

T

U

v

8

q

E

;

N

E

P

8

E

8

d

?

E

;

Z

=

o

E

8

;

P

N

;

;

8

?

=

m

T

8

?

R

E

=

;

;

;

P

;

^

=

R

^

N

d

T

8

^

8

?

^

d

|

q

N

i

r

?

d

^

}

8

N

t

=

?

H

V

R

v

Z

;

;

}

R

B

m

U

m

8

P

=

R

=

D

=

;

N

;

E

E

R

^

q

}

Z

U

;

8

;

v

;

?

P

?

t

x

T

N

|

?

;

T

|

N

?

T

R

R



R

R

q

x

?

;

R

U

=

m

d

8

d

?

q

?

8

N

?

=

=

=

8

N

P

?

^

;

Z

;

P

|

Z

P

x

P

x

;

R

P

q

^

R

;

P

;

;

x

x

T

?

U

^

=

;

=

E

=

o

=

Z

:

N

;

Z

R

;

8

D

P

;

;

q

^

P

P

=

T

R

o

;

Z

R

E

^

=

d

T

q

E

P

N

P

?

E

;

^

N

R

R

=

T

=

R

=

d

;

;

^

=

:

R

N

T

d

=

=

|

;

=

Z

?

R

;

Z

?

?

H

;

;

?

d

8

P

x

x

P

B

P

R

N

;

;

^

x

;

?

x

E

P

R

8

N

T

;

m

P

6

R

;

;

o

;

:

U

^

E

Z

U

x

B

:

R

^

P

m

8

;

?

N

?

N

Z

P

x

^

|

x

8

R

N

D

R

?



8

N

:

x

R

=

^

E

E

U

N

;

?

=

N



8

m

o

R

:

8

B

T

?

R

;

;

^

^

N

^

N

?

=

|

N

U

D

^

;

8

x

N

^

;

=

;

?

:

q

^

N

x

=

N

?

P

=

P

=

R

x

N

o

8

^

Z

N

d

P

?

;

R

N

:

N

E

U

?

T

R

8

D

q

;

Z



^

E

8

?

?

=

^

;

;

P

N

?

?

N

?

N

;

P

8

E

?

‹

R

N

R

?

^

6

;

R

=

;

B

^

?

^

;

R

?

N

?

o

B

R

|

;

U

E

;

^

Z

;

T

;

R

P

}

T

‡

N

;

;

?

T

E

?

o

?

N

;

N

;

U

P

P

T

v

;

R

R

N

E

T

=

;

Z

8

=

8

;

P

R

?

8

U

:

|

}

?

?

=

;

E

U

?

8

d

E

P

Z

q

?

x

R

P

8

=

Z

^

=

=

;

T

:

P

Z

x

=

8

R

;

;

?

x

8

^

Z

P

E

d

^

R

q

R

=

N

?

?

E

E

R

^

=

8

;

Z

N

=

;

R

;

R

N

T

P

E

P

^

?

;

v

;

^

R

o

P

N

d

?

R

;

;

=

T

R

=

P

N

m

=

8

;

=

R

;

R

‡

?

;

;

N

;

d

;

;

U

R



N

x

;

;

B

P

8

8

R

T

P

P

N

^

?

N

R

;

?

T

;

=

R

R

U

;

;

;

m

R

E

=

q

?

r

:

^

?

o

T

•

U

R

Z

N

^

U

B

:

8

x

U

=

m

P

=

?

=

^

R

8

;

Z

Z

v

q

E

:

;

N

N

q

?

N

x

E

P

^

^

v

8

N

P

:

N

P

8

8

q

?

^

;

T

R

x

m

^

U

8

N

?

x

=

=

E

R

=

8

x

;

N

E

P

;

8

R

;

m

^

?

?

=

E

;

?

q

;

?

R

N

N

x

x

E

R

D

o

?

T

P

;

;

R

N

P

P

D

;

R

P

;

N

U

T

?

m

^

U

;

6

R

^

B

=

R

q

|

N

P

U

U

;

Z

?

N

8

?

U

^

8

N

8

T

P

R

8

^

N

?

R

R

R

D

^

P

=

^

?

;

D

=

?

^

m

|

^

;

;

R

P

;

;

q

^

:

x

?

N

d

R

^

T

P

=

x

N

N

;

?

;

8

R

;

=

?

m

=

d

N

T

8

?

8

;

:

t

P

R

;

8

E

=

N

}

P

B



R

N

|

=

;

;

^

;

m

P

?

;

8

N

^

?

E

E

v

Z

^

P

?

?

U

=

R

x

?

;

R

?

?

R

U

B

R

?



Z

P

U

NASA/TM—2004-212913

;

^

N

P

|

;

T

R

8

m

N

x

8

^

x

P

;

?

E

8

v

^

U

E

^

E

Z

T

U

P

^

?

=

N

R

T

?

E

;

Z

x

v

134

;

U

P

;

?

=

;

U

;

^

;

m

‡

d

;

=

T

8

?

o

P

;

8

m

q

;

?

N

Z

?

=

P

:

^

Z

N

E

;

?

N

U

T

;

;

m

E

;

8

N

x

|

;

?

U

E

P

^

N

|

T

R

R

E

=

;

;

^

m

N

d

;

;

=

x

8

;

o

x

;

B

P

NASA/TM—2004-212913

Effects of Freestream Turbulence on Turbine Blade Heat Transfer

135

Robert J. Boyle NASA Glenn Research Center Paul W. Giel QSS Group at Glenn Research Center Forrest E. Ames University of North Dakota

NASA/TM—2004-212913

Objectives

136

• Account for Turbulence level and length scale on turbine blade heat transfer • Compare measured and predicted vane & rotor blade heat transfer • Compare predictions with and without models to account for freestream turbulence effects • Identify areas where modeling improvements are needed

NASA/TM—2004-212913

Models Examined

137

1) No Augmentation 2) Smith & Kuethe – No length scale effect 3) Smith & Kuethe + Van Fossen – Length scale modeled using Leading edge data 4) Ames model with Leading edge term 5) Ames model without Leading edge term

NASA/TM—2004-212913 138

Vanes Name

Re2 X10-6

Tu,%

L/C

Description

Ames

0.5 - 0.8

1-20

0.08-0.3

M2=0.17 - 0.27

Ames

0.5 - 2.0

1-20

0.07-0.23

Incompressible

Thole

0.5 & 1.1

1-20

0.08

Incompressible

Arts

0.5 - 2.0

1-6

> 0.05

Transonic

Name

Re2 X10-6

Tu, %

L/C

Description

Giel-1

0.5 - 0.87

13

0.17

M2=0.56 - 0.8

Giel-2

0.4 - 3.8

13

0.17

M2=0.33 - 0.9

Arts

0.6 – 2.3

1-6

> 0.04

Transonic

Rotors

NASA/TM—2004-212913

Calculation procedure

139

• 2D Navier-Stokes (RVCQ3D) – Primarily concerned with leading edge and pressure side • Two layer algebraic turbulence model • Freestream turbulence effects serve to augment laminar viscosity • No augmentation when flow is turbulent • Length scale constant – No variation in length with flow acceleration or deceleration

NASA/TM—2004-212913

Turbulence Augmentation Models

Smith and Kuethe model

νTu / νLam = C SK TuUy 140

CSK = 0.164 Smith & Kuethe + Van Fossen’s Leading edge model 1/3

ν Tu / ν Lam = 0 .3C SK TuUy ( D LE / L )

NASA/TM—2004-212913

Ames – No Leading Edge effect

ν Tu

⎡ ⎛ − 2 .9 y ⎞ ⎤ = 0.135 Tu U L ⎢1 − exp ⎜ ⎟⎥ ⎝ L ⎠⎦ ⎣

43

141

14 ⎛ ⎞ 3 ⎞ ⎛ Lν ⎟ ⎟ ⎜ ⎜ Dν = 1 − exp ⎜ − 0 .15 y 3 ⎜ ⎟ ⎟⎟ ′ ⎜ 1 . 5 u ⎝ ⎠ ⎠ ⎝

Ames – With Leading Edge effect 1 12 * ν Tu / ν Tu = 1 + ((Re D 4 ) − 1) × f amp

f amp

2 ⎧⎪ ⎡ dU ( S ) ds ⎤ ⎫⎪ = 1 − exp ⎨ − 2 . 5 ⎢ ⎥ ⎬ ⎪⎩ ⎣ dU ( S = 0 ) ds ⎦ ⎪⎭



NASA/TM—2004-212913

Variation in viscosity ratio with distance from surface

10 3

L/D=0.1 L/C=0.02 Re=200,000 Tu=10%

10 1

υ------Tu υLam 142

10

Smith & Kuethe Smith & Kuethe + Van Fossen

-1

Ames - No damping effect

10 -3

Ames - With Leading edge model Ames - No Leading edge model

10 -5 -5 10

10 -4

y/C

10 -3

10 -2

10 -1

NASA/TM—2004-212913

Heat transfer coefficient for Ames No. 1 vane Re2(C)=795,000 Tu=8% L=4.3cm Suction surface Pressure surface

400

Ames -With Leading edge term

300 Smith & Kuethe

h 2 W/m K 143

200 Ames - No Leading edge term

100 SK + VF

0 -0.2

No Augmentation

-0.1 0 0.1 Surface distance, m

0.2

NASA/TM—2004-212913

Stanton number for Ames No. 2 vane 5

Re2(C)=500,000 Tu=21% L=4.4cm Pressure surface

4 Ames - No Leading edge term

Suction surface Smith & Kuethe Ames -With Leading edge term

3

144

St X 1000

2

1

No Augmentation

SK + VF

0 -0.6

-0.4

-0.2 0 0.2 Surface distance, m

0.4

0.6

NASA/TM—2004-212913

Heat transfer coefficient for Thole vane 120

Re2(C)=1,070,000 Tu=20% L=5cm Pressure surface

100

Ames -With Leading edge term

Suction surface Smith & Kuethe

80 145

h 2 W/m K 60

SK + VF

40

Ames - No Leading edge term No Augmentation

20 -0.6 -0.4 -0.2 0 0.2 0.4 Surface distance, m

0.6

0.8

NASA/TM—2004-212913

Heat transfer coefficient for Arts vane 1000

800

600

Re2(C)=1.070,000 Tu=6% L=7mm Suction surface Pressure surface

Ames -With Leading edge term

Smith & Kuethe

146

h 2 W/m K

Ames - No Leading edge term

400

200

SK + VF No Augmentation

0 -0.08

-0.04 0 0.04 Surface distance, m

0.08

0.12

NASA/TM—2004-212913

Nusselt Number for Giel rotor 1 Re2(C)=693,000 Tu=13% L=2.6cm

3500

Pressure surface

3000

Suction surface Smith & Kuethe

2500

SK + VF

147

2000 Nu 1500

Ames -With Leading edge term Ames - No Leading edge term

1000 500 0 -0.2

No Augmentation

-0.1 0 0.1 Surface distance, m

0.2

0.3

NASA/TM—2004-212913

Nusselt Number for Giel rotor 2 3000 2500

148

2000 Nu 1500

Re2(C)=718,000 Tu=13% L=2.6cm Suction surface Pressure surface Smith & Kuethe SK + VF

Ames -With Leading edge term Ames - No Leading edge term

1000 500 No Augmentation

0 -0.2

-0.1

0 0.1 Surface distance, m

0.2

0.3

NASA/TM—2004-212913

Heat transfer coefficient for Arts rotor 2000

1600

1200

Re2(C)=1,280,000 Tu=6% L=7mm Suction surface Pressure surface

Ames -With Leading edge term

Smith & Kuethe

149

Ames - No Leading edge term

SK + VF

h 2 W/m K

800

400 No Augmentation

0 -0.12 -0.08 -0.04 0 0.04 Surface distance, m

0.08

0.12

NASA/TM—2004-212913

Preliminary Conclusions

150

•Incorporating a model for turbulence effects improves agreement with data •Ames’s model without leading edge effect showed the most promise •Smith & Kuethe recalibrated using Van Fossen’s data showed similar results

NASA/TM—2004-212913

Issues Identified

151

• Length scale variation with freestream velocity not examined •Variation of start or length of transition with length scale not identified – May be important in favorable pressure gradients.