Section 1 - Introduction to Heat Transfer

61 downloads 118950 Views 2MB Size Report
Course Materials. • Course Text: Fundamentals of Heat and Mass Transfer. – Bergman, Levine, Incropera and DeWif, 7th Edi(on. – 6th Edi(on is also OK, but ...
1  

Heat  Transfer  I   ENGR  6901   Fall,  2014   Dr.  Y.S.  Muzychka   ER  4021  

Course  Materials  

•  Course  Text:      Fundamentals  of  Heat  and  Mass  Transfer   –  –  –  –  – 

•  •  •  • 

Bergman,  Levine,  Incropera  and  DeWiQ,  7th  EdiSon   6th  EdiSon  is  also  OK,  but  some  new  problems  added.     Text  went  through  a  major  revision  for  the  6th.   Text  went  through  a  minor  revision  for  the  7th.     Most    content  is  covered  the  same  in  earlier  ediSons.  

Course  Notes  and  Handouts   Most  Course  Material  to  be  posted  on  Webpage     Power  Point  will  posted  every  week  or  two   Office  Hours:  Wednesday’s  @  2-­‐4  PM   –  Outside  of  this  Sme,  by  appointment  only.  

•  Email:  [email protected]   •  TA’s:  To  be  announced.     •  Thermodynamics  and  Fluids  texts  are  also  helpful  for   addiSonal  material  on  fundamentals  related  to  this   course    

2  

Important  Dates   •  •  •  •  •  •  • 

Classes  Begin:  September,  3rd,  2014   Midterm  Break:  October  13/14,  2014   October  16th,  2014  (Tuesday  Schedule)   Quizzes:  October  17th  /  November  12th  ,  2014   Last  Day  of  Classes:  December  3rd,  2014   Exams  Begin:  December  8th,  2014   Tuesday’s:  Tutorial  is  a  must!   –  There  is  slightly  more  material  to  cover  in  this  one   core  course  offering  of  Heat  Transfer,  therefore   we  must  rely  on  tutorials  for  extra  problems.    

 

3  

Course  Grading   •  Quizzes  (2):  40%   •  Final  Exam:  60%   •  Grade  will  be  based  on  this  scheme  or  a   redistribuSon  of  my  choosing  provided    that:   –   40%/60%  <  Final  Grade  <  30%/70%  

4  

Text  SecSons  for  this  Course   •  •  •  •  •  •  •  •  •  •  • 

Chapter  1  –  IntroducSon:  1.1-­‐1.5   Chapter  2  –  ConducSon:  2.1-­‐2.4   Chapter  3  –  1-­‐D  Steady  ConducSon:  3.1-­‐3.6   Chapter  4  –  2-­‐D  Steady  ConducSon:  4.3   Chapter  5  –  Transient  ConducSon:  5.1-­‐5.7   Chapter  6  –  ConvecSon:  6.1-­‐6.7   Chapter  7  –  External  Flow:  7.1-­‐7.5   Chapter  8  –  Internal  Flow:  8.1-­‐8.5   Chapter  9  –  Natural  ConvecSon:  9.1-­‐9.6   Chapter  12  –  RadiaSon:  12.1-­‐12.8   Chapter  13  –  RadiaSon  Exchange:  13.1-­‐13.3     –  10  of  14  chapters,  approximately  55%  of  text  by  secSon  topics,   and  by  pages  to  read  (?).  

 

5  

6  

Heat  Transfer  I   IntroducSon  

What  is  Heat  Transfer?  

7  

•  Heat   Transfer   is   the   study   of   how   energy   is   transferred  through  a  temperature  difference.   •  Heat   transfer   is   classified   according   to   three   fundamental   modes:   Conduc6on,   Convec6on,   and  Radia6on.   •  In   Thermodynamics   we   always   worked   with                 a   heat   transfer   Q  ˙   given,   but   in   this   course   we   learn  how  to  calculate  it.   •  In   Thermodynamics   we   worked   with   macro-­‐   energy   balances.   In   this   course   we   will   uSlize   € micro-­‐   (differen6al)   energy   balances,   to   obtain   relaSonships  to  obtain    Q˙      .  

Three  Modes  of  Heat  Transfer   ConducSon  

ConvecSon  

T2  

T1  

RadiaSon  

8  

Three  Modes  of  Heat  Transfer   Systems  with  ConducSon,  ConvecSon,  and  RadiaSon  

•  We  will  examine  individual  mode  problems   and  mulS-­‐mode  problems.  

9  

Three  Modes  of  Heat  Transfer   Fourier’s  Law  

Newton’s  Law  

#T − T & q'' = −k% 2 1 ( $ L '

q'' = h (Ts − T∞ )

Stefan-­‐Boltzmann  Eqn.   q''1 = σT14 , q''2 = σT24

q''12 = σ(T14 − T24 )









10  

11  

ConducSon  Heat  Transfer   •  Fourier’s  Law   q'' = −k



$T − T ' dT ≈ −k& 2 1 ) % L ( dx

#T − T & #T − T & q = −kA% 2 1 ( = kA% 1 2 ( $ L ' $ €L '

"W % 2 #$ m &'

[W ]

•  k  is  the  thermal  conducSvity  and   € depends   o n   t he   t ype   of  material   € separaSng  the  two  surfaces:   –  Metals  ~  10  –  400  W/mK   –  Non-­‐Metals  ~  0.1  –  500  W/mK   –  Liquids  ~  0.1  –  10  W/mK   –  Gases  ~  0.01  –  0.1  W/mK    

ConducSon  Heat  Transfer  

12  

13  

ConvecSon  Heat  Transfer   •  Newton’s  Law  of  Cooling    

q'' = h (Ts − T∞ )

"W % $# m 2 '&

q = hA(Ts − T∞ )

[W ]



•  h  is  the  convecSon  heat   transfer   coefficient   and   € € depends  on  many  things:   €

–  Process   –  Fluid  ProperSes   –  Geometry   –  LocaSon  

ConvecSon  Heat  Transfer   •  Convec6on  Heat  Transfer  is  controlled  by  a  thin   hydrodynamic  fluid  layer  at  the  heat  transfer  surface.   •  A  thermal  boundary  layer  is  also  present  and  can  be   smaller,  larger  or  equal  in    thickness  to  the   hydrodynamic  boundary  layer.   •  ConvecSon  Heat  Transfer  coefficients  are  someSmes   called  “film  coefficients”  as  a  result.     •  ConvecSon  Heat  Transfer  is  classified  according  to:   –  Single  Phase  versus  Two  Phase  (boiling/condensaSon)   –  External  Flow  versus  Internal  Flow   –  Forced  Flow  (pressure  driven  flow)  versus  Natural  Flow   (density  driven  flow)  

14  



•  •  •    • 

15  

RadiaSon  Heat  Transfer  

Stefan-­‐Boltzmann  EquaSon   q''rad = σ(Ts4 − Tsur4 ) "$#W m %'&  σ    =      5.67            ×    10      −8      [  W        /m      2  K      4  ]      is  the  Stefan-­‐Boltzmann  constant   More  generally,  we  write:   q''rad = σε (Ts4 − Tsur4 ) "$#W m %'& 2





4 qrad = σεA(Ts4 − Tsur )

2

[W ]

ε  is  the  surface  emissivity  (a  property).  We  will  examine   € € When  ε = 1 we this  later  in  more  detail.   have  a  “black   body”   € € •  T  must  be  in  Kelvin  [K]  

 

RadiaSon  Heat  Transfer   •  A  “black  body”  emits  thermal  radiaSon  according  to:   E b = σTs4

or  

E = εE b = εσTs4

•  A  body  also  receives  or  absorbs  thermal  radiaSon   according  to  (α  is  the  absorpSvity):   4 € = αG = ασTsur Gabs



•  For  a  simple  engineering  surface  where  (ε = α)  or  a   “grey  surface”  as  it  is  called,  we  have:   €

q''rad = εE b − αG

or  

4 q''rad = εσ(Ts4 − Tsur )

•  Radiant  exchange  is  generally  more  complex  as  we   α ≠      ε      .     shall   s ee   l ater.     T here   a re   s urfaces   w here             € €

16  

RadiaSon  Heat  Transfer   •  Radia6on  Heat  Transfer  is  the  most  complex  mode  of   heat  transfer.   •  Thermal  radiaSon  can  be  absorbed,  reflected,  and   transmiQed  by  a  body.   •  Thermal  radiaSon  is  an  electromagneSc  wave   phenomena  similar  to  light.     •  Surface  properSes  depend  on  spectral  (wave  length)   and  direcSonality  (specular  or  diffuse)  characterisScs.   •  Radiant  exchange  between  surfaces  can  be  quite   complicated.   •  Thermal  radiaSon  is  a  “line  of  sight”  transfer  process   and  requires  “view  factors”.      

17  

RadiaSon  Heat  Transfer  

18  

RadiaSon  Heat  Transfer  

19  

ConservaSon  of  Energy   •  Since  we  are  dealing  with  the  transfer  of  energy,  we   will  be  uSlizing  the  First  Law  of  Thermodynamics   extensively.    

 

Closed  System  

Open  System  

20  

ConservaSon  of  Energy   •  Rate  Balance    

" net rateof energy % "time rateof change % " net rateof energy % $ ' transfer int o the $ ' $ ' "net rateof energy % $ ' $of energy contained ' = $ transferred in ' − $transferred out ' + $control volume ' ' $within thecontrol ' $ as heat transfer ' $ $ ' $ ' $ ' $#as work at time t '&W˙ $ accompanying mass ' #volume at time t &CV # at time t &Q˙ $# flow through ports '&

  •  ConservaSon  of  energy  is  also  frequently  used  in  the   € following  form  using  enthalpy  h:     dECV = Q˙ − W˙ + ∑ m˙ $& h + Vi2 + gz ') − ∑ m˙ $& h + Ve2 + gz ') CV CV i i i e e e dt 2 2 % ( % ( inlets exits   •  Closed  System   €

 

dE CV = Q˙ CV − W˙ CV dt

or    

E = KE + PE + U €



ΔE CV = QCV − WCV

21  

Surface  Balances   •  We  frequently  rely  on  surface  balances  in  calculaSons:  

 

E˙ in = E˙ out q''cond = q''conv + q''rad

22  

Units  and  NotaSon  

•  Review  the  secSon  on  units  carefully.  We  will  use  SI   units  in  this  course.  Also  be  familiar  with  the  various   prefixes:  micro,  milli,  nano,  pico,  etc.     •  Finally,  the  text  has  adopted  the  following  notaSon  for   heat  transfer  rates:   –     q        [W]  is  heat  transfer  rate  [W  =  J/s].   –     q'        [W/m]  is  heat  transfer  per  unit  length.   –   q''          [W/m2]  is  heat  flux.   € –     q˙        [W/m3]  is  heat  transfer  per  unit  volume.   €   I  someSmes  (occasionally  or  frequently)  use  Q  [W]  and  q  [W/m2]  along  with   Note:  





 

Q/L  [W/m].  Its  old  school  and  I’m  older  (than  you)!    Just  check  the  equaSons  for   the  presence  of  the  area  A  or  lack  thereof.                          

23  

Example  -­‐  1   •  Consider   the   three   modes   of   heat   transfer:   conducSon,   convecSon,   and   radiaSon,   from   the   perspecSve   of   the   basic   laws.   Let’s   examine:     –  i)   convecSon/conducSon   balance   for   a   boundary   layer,  and     –  Ii)   the   concept   of   an   equivalent   radia6on   heat   transfer  coefficient,  and     –  iii)   how   the   radiaSon   heat   transfer   coefficient   varies  under  ideal  condiSons.    

24