Selective Hydrogenation of Cinnamaldehyde

6 downloads 0 Views 3MB Size Report
Feb 3, 2018 - selective hydrogenation catalytic activity of ZnO-Fe2O3 mixed oxide ... Although gold was regarded as a poor catalyst for a long time, gold ...
catalysts Article

Selective Hydrogenation of Cinnamaldehyde Catalyzed by ZnO-Fe2O3 Mixed Oxide Supported Gold Nanocatalysts Wei Wang 1,2 , Yan Xie 1, *, Shaohua Zhang 1 , Xing Liu 1 , Masatake Haruta 1,3 and Jiahui Huang 1, * 1

2 3

*

Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; [email protected] (W.W.); [email protected] (S.Z.); [email protected] (X.L.); [email protected] (M.H.) University of Chinese Academy of Sciences, Beijing 100049, China Research Center for Gold Chemistry, Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0379, Japan Correspondence: [email protected] (Y.X.); [email protected] (J.H.); Tel.: +86-0411-8246-3017 (Y.X.); +86-0411-8246-3012 (J.H.)

Received: 18 December 2017; Accepted: 31 January 2018; Published: 3 February 2018

Abstract: ZnO-Fe2 O3 mixed oxides and supported gold nanocatalysts were prepared by using coprecipitation and deposition–precipitation methods, respectively. Cinnamaldehyde hydrogenation over various ZnO-Fe2 O3 mixed oxides supported gold nanocatalysts have been investigated at 140 ◦ C and a hydrogen pressure of 1.0 MPa. The molar ratio of Fe to Zn was found to greatly affect the selective hydrogenation catalytic activity of ZnO-Fe2 O3 mixed oxide supported gold nanocatalysts. Among these supported gold nanocatalysts in this work, Au/Zn0.7 Fe0.3 Ox (Au loading of 1.74 wt %) exhibited the highest conversion of cinnamaldehyde and high selectivity to cinnamal alcohol. The excellent catalytic activity of Au/Zn0.7 Fe0.3 Ox was tightly associated with a large surface area, small gold nanoparticles, and good H2 dissociation ability at low temperature. Keywords: gold catalysis; zinc-iron mixed oxides; selective hydrogenation; cinnamaldehyde; cinnamyl alcohol

1. Introduction Unsaturated alcohols are valuable chemical intermediates and widely used in pharmaceuticals, perfumes, and flavors [1,2]. Selective hydrogenation of α,β-unsaturated aldehydes to the corresponding unsaturated alcohols is a scientific challenge in heterogeneous catalysis because hydrogenation of the conjugated C=C bond is thermodynamic and kinetically favored, in comparison to that of the C=O group [3,4]. For the selective hydrogenation of cinnamaldehyde, a typical α,β-unsaturated aldehyde, the realization of efficient hydrogenation of the C=O group without hydrogenation of the conjugated C=C bond is of great research interest and industrial importance [5,6]. Although gold was regarded as a poor catalyst for a long time, gold nanoparticles (NPs) highly dispersed on metal oxides were very active for many reactions, such as CO oxidation [7] and propylene epoxidation [8]. Most research work on noble metal nanocatalysts, especially for gold nanocatalyst, has been focused on oxidation reactions [9,10], and more extensive studies on highly efficient hydrogenations are required [11–15]. In the selective hydrogenation of unsaturated α,β-aldehydes, gold nanocatalysts have shown high selectivity toward the C=O group hydrogenation to the unsaturated alcohol, while other noble metals like Pd and Pt often present intrinsic selectivity toward C=C bond hydrogenation to saturated aldehyde [16]. For example, Hutchings et al. found that Catalysts 2018, 8, 60; doi:10.3390/catal8020060

www.mdpi.com/journal/catalysts

Catalysts 2018, 8, 60

2 of 13

Au/ZnO catalyzed selective hydrogenation of but-2-enal to but-2-en-1-ol with the selectivity of 80% [17]. Jin et al. observed that atomically precise Au25 (SR)18 clusters supported on Fe2 O3 and TiO2 catalyzed the selective hydrogenation of α,β-unsaturated carbonyl compounds to unsaturated alcohols through the coordination of C=O group to the “hole” site of Au clusters [18]. Cao et al. reported that gold NPs supported on mesostructured CeO2 efficiently catalyzed selective hydrogenation of a range of α,β-unsaturated carbonyl compounds to unsaturated alcohols in neat water [19]. Claus et al. identified the edges of gold NPs supported on ZnO as the active sites of the Au/ZnO catalyst for the preferential hydrogenation of C=O group of acrolein to allyl alcohol [20]. Li et al. reported that Au/TiO2 catalyzed the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with a selectivity of 83% and the doping of Au/TiO2 by Ir improved the conversion of cinnamaldehyde without the loss of selectivity to cinnamyl alcohol [21]. Concerning the selective hydrogenation of cinnamaldehyde over Au/ZnO nanocatalyst, Larese and co-researchers have investigated three different Au/ZnO nanocatalysts—including Au/rod-tetrapod ZnO, Au/porous ZnO, and Au/ZnO-CP—and found that Au/ZnO-CP prepared by a method of coprecipitation (CP) exhibited excellent activity with cinnamaldehyde conversion of 94.9% and cinnamal alcohol selectivity of 100% [13]. Our group previously investigated the catalytic properties of Au NPs supported on various metal oxides for the selective hydrogenation of cinnamaldehyde, and found that Au/ZnO nanocatalyst exhibited the highest selectivity to cinnamyl alcohol of 86% [22]. However, the catalytic performance of Au/ZnO was relatively low, especially at low reaction temperature.After reaction at 150 ◦ C for 18 h, Au/ZnO gave a low conversion of cinnamaldehyde (23%). The different activity of Au/ZnO nanocatalyst in the above literature and in our work might be caused by some factors such as different reaction conditions and different preparation method of gold nanocatalysts. To further improve the catalytic performance of Au/ZnO, we herein utilized ZnO-Fe2 O3 mixed oxides instead of ZnO to support Au NPs for the selective hydrogenation of cinnamaldehyde. The results showed that Au/Zn0.7 Fe0.3 Ox with a Au loading of 1.74 wt %, markedly enhanced the conversion of cinnamaldehyde, exhibiting the highest conversion of cinnamaldhyde of 75.4% after reaction at 140 ◦ C for 10 h, and at same time achieving high selectivity of cinnamyl alcohol (88.5%). 2. Results and Discussion Figure 1a shows the X-ray powder diffraction (XRD) patterns of ZnO, ZnO-Fe2 O3 mixed oxides, and Fe2 O3 supports. The diffraction peaks at 2θ = 31.7◦ , 34.4◦ , 36.2◦ , 47.4◦ , 56.6◦ , 62.8◦ , and 68◦ were assigned to ZnO (JCPDS PDF# 79-2205). The diffraction at 2θ = 24.1◦ , 33.1◦ , 35.6◦ , 40.9◦ , 49.4◦ , 54.0◦ , 62.4◦ , and 64.0◦ were attributed to α-Fe2 O3 (JCPDS PDF# 86-2368). With the increase of the content of iron, the intensity of diffraction peaks of ZnO were gradually decreased in XRD pattern of ZnO-Fe2 O3 mixed oxide. For the Zn0.9 Fe0.1 Ox and Zn0.7 Fe0.3 Ox mixed oxides, there was not any diffraction of iron oxides, but only peaks due to ZnO were observed. For the Zn0.5 Fe0.5 Ox and Zn0.3 Fe0.7 Ox mixed oxides, diffraction peaks at 2θ = 29.9◦ , 35.1◦ , and 42.7◦ appeared, which could be assigned to ZnFe2 O4 (JCPDS PDF# 74-2397), indicating that phase separation occurred. For Zn0.1 Fe0.9 Ox mixed oxide, only small diffraction signals of Fe2 O3 were observed, suggesting the crystal particles of iron oxide were very small. Figure 1b shows the XRD patterns of the supported gold nanocatalysts. The loading of gold did not result in an obvious change in the crystal structure of the corresponding support. No diffraction signals of gold were detected, due to the low gold loading and good dispersion of Au NPs [23].

Catalysts 2018, 8, 60 Catalysts 2018, 7, x FOR PEER REVIEW   

33 of 13  of 13

  Figure 1. XRD pattern of (a) supports and (b) supported gold nanocatalysts.  Figure 1. XRD pattern of (a) supports and (b) supported gold nanocatalysts.

The  reduction  behavior  of  the  as‐prepared  supports  and  supported  gold  nanocatalysts  was  The reduction behavior of the as-prepared supports and 2‐TPR). As shown in Figure 2A, ZnO  supported gold nanocatalysts was examined by hydrogen temperature programmed reduction (H examined by hydrogen temperature programmed reduction (H -TPR). shown in Figure 2A, ZnO and  did 2 did  not  present  reduction  peaks,  which  was  probably  the  result  of As complete  dihydroxylation  not present reduction peaks, which was probably the result of complete2O dihydroxylation and high high thermal stability [24,25]. There were three reduction peaks for the Fe 3: the first reduction peak  thermal stability [24,25]. There were three reduction peaks for the Fe O : the first reduction peak 2 broad  3 below  400  °C  was  due  to  the  reduction  of  Fe2O3  to  Fe3O4,  while  the  peaks  above  400  °C  ◦ ◦C below 400 C was due to the reduction of Fe O to Fe O , while the broad peaks above 400 2 3 3 4 represented  the  further  reduction  of  Fe3O4  to  metallic  iron,  perhaps  through  FeO  [26,27].  All  the  represented theshowed  further reduction Fe3 O4 to behavior.  metallic iron, perhaps throughthe  FeO All the mixed mixed  oxides  different of reduction  Figure  2B  shows  H2[26,27]. ‐TPR  profiles  of  the  oxides showed different reduction behavior. Figure 2B shows the H -TPR profiles of the supported 2 supported  gold  nanocatalyst.  With  the  loading  of  Au  NPs,  the  reduction  peaks  shifted  to  lower  gold nanocatalyst. the loading of Au NPs, the reduction peaks shifted to lower temperatures. temperatures.  For With Au/Zn 0.7Fe0.3Ox,  Au/Zn0.3Fe0.7Ox,  and  Au/Fe2O3,  there  were  low  temperature  For Au/Zn Fe O , Au/Zn Fe0.7 Ox , and Au/Fe were low temperature reduction peaks x 0.7 0.3 2 O3 , there reduction  peaks  around  120 0.3 °C,  which  were  attributed  to  the  reduction  of  gold  species  [28].  For  ◦ C, which were attributed to the reduction of gold species [28]. For Au/Zn Fe O , around 120 0.1 0.9 x Au/Zn0.1Fe0.9Ox, there was a relatively stronger reduction peak around 120 °C, which could be due to  ◦ C, which could be due to reduction of there was aof  relatively stronger reduction around reduction  gold  species  and  partial  peak reduction  of 120 Fe2O 3  to  Fe3O4.  For  Au/Zn0.9Fe0.1Ox  and  gold species and partial reduction of Fe2 O3 to Fe3 O4 . For Au/Zn0.9 Fe0.1 Ox and Au/Zn0.5 Fe0.5 Ox , Au/Zn 0.5Fe0.5Ox, there were almost no reduction peaks at low temperature around 120 °C in the inset  there were almost no reduction peaks at low temperature around 120 ◦ C in the inset of Figure 2B. of Figure 2B.  For  Au/Zn 0.9Fe0.1Ox,  the  reduction  peak  center  at  640  °C  shifted  to  490  °C,  indicating  ◦ C, indicating there also exist For Au/Zn Fe0.1interaction  Ox , the reduction peak center at iron  640 ◦ C shifted 490support.  there  also 0.9 exist  between  gold  and  oxide  in to the  The  absence  of  low  interaction between goldpeak  and around  iron oxide thefor  support. The of low temperature reduction temperature  reduction  120 in°C  Au/Zn0.9 Fe0.1absence Ox  is  due  to  low  iron  content  in  the  ◦ peak around 120 C for Au/Zn Fe O is due to low iron content in the support. There was x 0.9 0.1 support.  There  was  a  small  change  on  reduction  peaks  between  Zn0.5Fe0.5Ox  and  Au/Zn0.5Fe0.5Oax,  small change reduction peaksbetween  betweengold  Zn0.5and  Fe0.5support.  Ox and Au/Zn Ox , indicating weak 0.5 Fe indicating  the on weak  interaction  The  shift  of 0.5reduction  peaks the to  lower  interaction between gold and support. The shift of reduction peaks to lower temperature could be due temperature  could  be  due  to  many  factors,  such  as  reduction  of  gold  species,  a  gold‐catalyzed  to many factors, such as reduction of gold species, a gold-catalyzed hydrogenation reaction, and other hydrogenation reaction, and other combined effects [29,30]. The hydrogen dissociation ability of gold  combined effects [29,30]. The hydrogen dissociation ability of gold catalyst is one of factors resulting in catalyst is one of factors resulting in peak shifts. Based on the data from XRD pattern, it exhibited that  peak shifts. Based on the data from XRD pattern, it exhibited that Zn In  Fethis  possessed phases 0.5 Oxwork,  Zn0.5Fe 0.5Ox  possessed  two  phases  including  ZnO  and  ZnFe2O4. 0.5 we  two found  that  including ZnO and ZnFe O . In this work, we found that Au/Zn Fe O , containing Au/ZnO x 2 4 0.5 0.5 Au/Zn0.5Fe0.5Ox,  containing  Au/ZnO  and  Au/ZnFe2O4,  displayed  lower  cinnamaldehyde  (CAL)  and Au/ZnFe , displayed loweralcohol  cinnamaldehyde (CAL) conversion and and  higher cinnamyl alcohol 2 O4higher  conversion  and  cinnamyl  (COL)  selectivity  than  Au/ZnO  Au/Fe 2O3  (Table  4).  (COL) selectivity than Au/ZnO and2Au/Fe Sakurai et al. used Au/ZnO, Au/Fe2 O3 , and 2 O3 (Table 24). Sakurai et al. used Au/ZnO, Au/Fe O3, and Au/ZnFe O4 to catalyzed CO 2 hydrogenation and found  Au/ZnFe O to catalyzed CO hydrogenation and found that Au/ZnFe O 2 4 2O4 showed much lower CO 2 2 4 showed much lower CO2 that Au/ZnFe 2 conversion and higher methanol selectivity than Au/ZnO  conversion and higher methanol selectivity than Au/ZnO and Au/Fe O temperature 2 3 at the reaction and Au/Fe2O3 at the reaction temperature of 250 °C [31]. In other words, Au/ZnFe 2O4 possessed lower  ◦ of 250 C [31]. In other words, Au/ZnFe2 O4 possessed lower hydrogen dissociation ability than hydrogen dissociation ability than Au/ZnO and Au/Fe 2O3. The results in this work are consistent with  Au/ZnO and Au/Fe O . The results in this work are consistent withhydrogen  the work reported by Sakurai 3 Sakurai  and  co‐workers.  The  poor  the  work  reported 2 by  dissociation  ability and of  co-workers. poor hydrogen dissociation ability of Au/Zn0.5 Fe0.5 Ox may be the reason why there Au/Zn0.5Fe0.5The Ox may be the reason why there was no reduction peak around 120 °C. The Fe/Zn molar  was noof reduction around 120 ◦ C. Thethere  Fe/Znwere  molar ratiocrystal  of Zn0.3phases  Fe0.7 Ox(ZnO,  was 7/3, indicating there ratio  Zn0.3Fe0.7peak Ox  was  7/3,  indicating  three  ZnFe 2O4,  Fe2O3)  in  were three crystal phases (ZnO, ZnFe O , Fe O ) in Zn Fe O . However, the Fe O phase was not 2 4 2 3 0.3 0.7 x 2 3 Zn0.3Fe0.7Ox. However, the Fe2O3 phase was not detected by XRD diffraction owing to the small crystal  detected by XRD diffraction owing to the small crystal particles. The presence of low temperature particles. The presence of low temperature reduction peak around 120 °C for Au/Zn 0.3Fe0.7Ox is due  ◦ C for Au/Zn Fe O is due to the formation of Fe O phase. The H reduction peak around 120 x 0.3 0.7 2 3 2 to the formation of Fe2O3 phase. The H2 consumption amount in TPR was summarized in Table 1. It  consumption amount in TPR was summarized in Table 1. It was noted that the H2 consumption amount was noted that the H 2 consumption amount almost monotonously increased with the increasing of  almost monotonously increased with the increasing of the theoretical addition of Fe in the supports. the theoretical addition of Fe in the supports. 

Catalysts 2018, 8, 60

4 of 13

Catalysts 2018, 7, x FOR PEER REVIEW   

4 of 13 

  Figure 2. (A) H2 -TPR profiles of (a) ZnO, (b) Zn0.9 Fe0.1 Ox , (c) Zn0.7 Fe0.3 Ox , (d) Zn0.5 Fe0.5 Ox , Figure 2. (A) H2‐TPR profiles of (a) ZnO, (b) Zn0.9Fe0.1Ox, (c) Zn0.7Fe0.3Ox, (d) Zn0.5Fe0.5Ox, (e) Zn0.3Fe0.7Ox,  (e) Zn OOxx,, and (g) Fe (f) Zn0.1 Fe0.9 Ox2,‐TPR profiles of (a) Au/ZnO, (b) Au/Zn and (g) Fe2 O3 ; (B) H2 -TPR0.9Fe profiles of (a) Au/ZnO, 0.3 Fe 0.70.9 0.1Fe 2O3; (B) H 0.1Ox, (c) Au/Zn0.7Fe0.3Ox,  (f) Zn (b) (d)  Au/Zn Fe O , (c) Au/Zn Fe O , (d) Au/Zn Fe O , (e) Au/Zn Fe0.7 Ox , x x x 0.9 0.1 0.7 0.3 0.5 0.5 H0.3 2‐TPR  Au/Zn0.5Fe0.5Ox,  (e)  Au/Zn0.3Fe0.7Ox,  (f)  Au/Zn0.1Fe0.9Ox,  and  (g)  Au/Fe2O3.  The  enlarged  (f) Au/Zn . FeThe enlarged 0.5 HFe profiles of (b) Au/Zn0.9 Fe0.1 Ox , 0.1 Fe0.9 Ox , and 2 O30.7 2 -TPR 0.9Fe(g) 0.1OxAu/Fe , (c) Au/Zn 0.3Ox, (d) Au/Zn 0.5Ox from 50 to 250 °C subtracted the  profiles of (b) Au/Zn ◦ (c) Au/Zn baseline in the inset of Figure 2B.  0.7 Fe0.3 Ox , (d) Au/Zn0.5 Fe0.5 Ox from 50 to 250 C subtracted the baseline in the inset of Figure 2B. Table 1. H2 consumption amount in TPR experiments from 50 to 800 °C 

Table 1. H2 H consumption amount in TPR experiments from 50 to 800 ◦ C. Support  2 Consumption (μmol/g) Catalyst  H2 Consumption (μmol/g)  Support

ZnO 



H2 Consumption (µmol/g)

Zn0.9Fe0.1Ox

ZnO Zn0.9 Fe0.1Zn Ox0.7Fe0.3Ox Zn0.7 Fe0.3Zn Ox0.5Fe0.5Ox Zn0.5 Fe0.5 Ox Zn0.3Fe0.7Ox Zn0.3 Fe0.7 Ox Zn0.1 Fe0.9Zn Ox0.1Fe0.9Ox Fe2 O3 Fe2O3 

790 

0 3041  790 3041 4913  4913 7095  7095 6623  6623 9327 9327 

Au/ZnO 

Catalyst

Au/Zn0.9Fe0.1Ox

Au/ZnO



H2 Consumption (µmol/g) 719 

Au/Zn 0.7Fe0.3Ox Au/Zn Fe

0.1 Ox

2750 

Au/Zn Fe Au/Zn 0.5Fe0.7 0.5O x 0.3 Ox

4901 

Au/Zn Fe0.5 Ox Au/Zn0.3Fe0.5 0.7Ox

6413 

Au/Zn 0.1Fe0.9O x Au/Zn Fe

5444 

0.9

Au/Zn0.3 Fe0.7 Ox 0.1 0.9 Ox Au/Fe Au/Fe 2 O 3   2 O3

7839 

0 719 2750 4901 6413 5444 7839

Table  2  summarizes  Brunner−Emmet−Teller  (BET)  surface  areas,  pore  volumes,  and  average 

Table 2 summarizes Brunner−Emmet−Teller (BET) surface areas, pore volumes, and average pore diameters of supported gold nanocatalysts. It can be seen that the surface areas of the Au/ZnO  pore diameters of supported gold nanocatalysts. It can be seen that the surface areas of the Au/ZnO (62.6 m2/g) and Au/Fe2O3 (82 m2/g) are smaller than those of Au/mixed oxides (122–148 m2/g) except  2 (62.6 for Au/Zn m /g) and Au/Fe2 O3 (82 m2 /g) are smaller than those of Au/mixed oxides (122–148 m2 /g) 0.9Fe0.1Ox. It is worth noting that the doping of iron into ZnO affects the physical properties  except for Au/Zn0.9 Fe0.1 Ox . It is worth noting that the doping of iron into ZnO affects the physical of the oxides. With the increase of iron content in the mixed oxide, BET surface areas increase, but  properties of the oxides. With the increase of iron content in the mixed oxide, BET surface areas increase, pore volumes and average pore diameters decrease. As also shown in Table 2, the actual gold loading  of the five types of nanocatalysts (1.60–1.74 wt%), determined by inductively coupled plasma optical  but pore volumes and average pore diameters decrease. As also shown in Table 2, the actual gold emission spectrometry (ICP‐OES) measurement, were close to the target value of 2 wt%, suggesting  loading of the five types of nanocatalysts (1.60–1.74 wt %), determined by inductively coupled plasma that  there  was  no  substantial  escape  of measurement, gold  during  deposition–precipitation.  The value actual ofgold  optical emission spectrometry (ICP-OES) were close to the target 2 wt %, loadings of Au/mixed oxides are slightly higher than those of Au/ZnO and Au/Fe 2O3.    suggesting that there was no substantial escape of gold during deposition–precipitation. The actual gold loadings of Au/mixed oxides are slightly higher than those of Au/ZnO and Au/Fe2 O3 . Table  2.  BET  surface  area,  pore  volume,  average  pore  diameter,  and  actual  gold  loading  of  the  supported gold nanocatalysts 

Table 2. BET surface area, pore volume, average pore diameter, and actual gold loading of the Sample  Surface Area (m2/g)  Pore Volume (cm3/g) Average Pore Diameter (nm)  Au Loading a (wt%) supported gold nanocatalysts.

Au/ZnO  62.6  Au/Zn0.9Fe0.1Ox  72.3  Sample Area136.5  (m2 /g) Ox  Au/Zn0.7Fe0.3Surface 0.5Fe0.5Ox  122.6  Au/Zn Au/ZnO 62.6 0.3Fe0.7Ox  Au/ZnAu/Zn 72.3141.4  0.9 Fe0.1 Ox 0.1Fe0.9Ox  Au/ZnAu/Zn 136.5148.2  0.7 Fe0.3 Ox Au/Zn0.5Au/Fe Fe0.5 O2O 122.682.0  x 3 

Au/Zn0.3 Fe0.7 Ox Au/Zn0.1 Fe0.9 Ox Au/Fe2 O3

0.47  0.38  3 Pore Volume 0.36  (cm /g) 0.22  0.47 0.17  0.38 0.19  0.36 0.17  0.22

30.2  20.8  Average Pore 10.5 Diameter (nm) 7.1  30.2 4.7  20.8 5.0  10.5 8.5  7.1

a 141.4

0.17 4.7  Data determined by ICP‐OES technology.  ‐Data was not determined.  148.2 0.19 5.0 82.0 0.17 8.5

a

Data determined by ICP-OES technology. - Data was not determined.

1.65  ‐  a (wt %) Au Loading 1.74  1.70 1.65 1.74  ‐  1.74 1.60 1.70

1.74 1.60

Catalysts 2018, 7, x FOR PEER REVIEW    Catalysts 2018, 8, 60

55 of 13  of 13

Figure  3  shows  high‐angle  annular  dark‐field  scanning  transmission  electron  microscopy  Figure 3 shows high-angle annular dark-field scanning prepared  transmission electron microscopy (HAADF–STEM)  images  of  the  supported  gold  nanocatalysts  by  DP  method.  It  can  be  (HAADF–STEM) images of the supported gold nanocatalysts prepared by DP method. It can be clearly seen that the gold NPs were homogeneously dispersed on the surface of Zn0.7Fe0.3Ox, while the  clearly seen that the gold NPs were homogeneously dispersed on the surface ofx, Zn Zn0.7 Ox, x and Fe , while 2the gold NPs were less uniformly dispersed on the surface of ZnO, Zn 0.5Fe0.5O 0.3Fe0.3 0.7O O3.  gold NPs were less uniformly dispersed on the surface of ZnO, Zn0.5 Fe0.5 Ox , Zn0.3 Fe0.7 Ox, and Fe2 O3 . On Au/Zn 0.7Fe0.3 Ox, many small Au clusters (