SEYCHELLES KEY BIODIVERSITY AREAS Output 1 ...

144 downloads 0 Views 1MB Size Report
Dec 1, 2011 - Pachypanchax playfairii Gunther, 1866 ...... Caeciliius seychellensis Enderlein, 1931 end. R ... Anopistoscena specularifrons Enderlein, 1912.
GOS- UNDP-GEF Mainstreaming Biodiversity Management into Production Sector Activities

SEYCHELLES KEY BIODIVERSITY AREAS

Output 1: List of species of special concern by Bruno Senterre Elvina Henriette Lindsay Chong-Seng Katy Beaver James Mougal Terence Vel & Justin Gerlach (Draft preliminary report of consultancy)

1st December 2011

CONTENT I

INTRODUCTION .........................................................................................2 I.1 I.2 I.3 I.3.1 I.3.2 I.3.2.1

TERMS OF REFERENCE ......................................................................................2 SELECTION OF THE GAPS OF KNOWLEDGE TO BE ADDRESSED ..............................3 INTRODUCTION TO SOME CONCEPTS AND METHODS ...........................................3 Biodiversity and Conservation value ...............................................................3 Studying patterns of biodiversity......................................................................5 Using indicator taxa as a proxy to overall biodiversity .....................................5

I.3.2.2 Using endemism as a proxy to biodiversity ......................................................7 I.3.2.3 Using diversity indexes rather than species richness ........................................7 I.3.2.4 Using habitat-types as a proxy .........................................................................8 I.3.3 I.4

Assessing conservation values .......................................................................11 OVERALL APPROACH / METHODOLOGY OF THE CONSULTANCY .........................16 MATERIAL AND METHOD FOR THE SPECIES LIST ........................18

II II.1 II.2

CRITERIA USED FOR THE SPECIES EVALUATION ................................................18 CONDITIONS LEADING TO SPECIES SELECTION..................................................23

III

RESULTS ....................................................................................................25

IV

CONCLUSION ............................................................................................27

V

BIBLIOGRAPHY .......................................................................................27

VI

APPENDIX 1: SUBMITED WORK PLAN TIME TABLE (TOR) ..........31

VII

APPENDIX 2: THE LIST OF SPECIES OF SPECIAL CONCERN .......32

VII.1 VII.2 VII.3 VII.4 VII.5

AMPHIBIANS ..................................................................................................32 BIRDS, FRESHWATER FISHES AND CRUSTACEAN ..............................................32 MAMMALS AND REPTILES ...............................................................................34 TERRESTRIAL AND FRESHWATER INVERTEBRATES ...........................................35 VASCULAR PLANTS (BRUNO SENTERRE) .........................................................63

ACKNOWLEDGEMENT We are grateful to the Global Environment Facility (GEF), for funding this study, and to the United Nations Development Programme (UNDP) and the Government of Seychelles for having made it possible. This first output is just the beginning and many contributions will need to be acknowledged in the future reports. Suggested citation: Senterre B., Henriette E., Chong-Seng L., Beaver K., Mougal J., Vel T. & Gerlach J. (2011) Seychelles key biodiversity areas. Output 1: List of species of special concern. Report of consultancy, UNDP-GEF project, Ministry of Environment of Seychelles, Victoria, Seychelles, 67 pp.

Senterre et al. (2011) Seychelles Key Biodiversity Areas- Output 1

I

I INTRODUCTION Terms of reference

I.1

The “Mainstreaming Biodiversity Management into Production Sector Activities” (or “Mainstreaming Biodiversity”) Full sized Project was signed in October 2007 between the Government of Seychelles (GOS) and the United Nations Development Programme (UNDP), and is funded by a Global Environment Facility (GEF) grant of US$3,600,000. The project is part of the UNDP-GEF portfolio in Seychelles and is implemented under a Programme Coordination Unit (PCU). The objective of the project is to integrate biodiversity conservation into key production sectors of the economy. One of the means of achieving this objective is to seek integration of biodiversity conservation in land use planning and management. The Programme Coordination Unit (PCU) has contracted the present group of consultants to undertake the following medium-term (18 months), part-time assignment: “Assessment of areas of high biodiversity for informed decision-making in future land use planning and management”. This study represent a total of 750 days of consultancy (see terms of reference) distributed among the distinct consultants as follows: B.Senterre (248), E.Henriette (183.6), Justin Gerlach (83), Terence Vel (40.4), Victorin Laboudallon (30), Gérard Rocamora (27), Lindsay Chong-Seng (21) James Mougal (20), Perley Constance (15), André Labiche (10), Roland Nolin (10), Katy Beaver (9). In addition, 50 days are available: to be attributed to unspecified contributors.

The overall objective of the consultancy is to identify sites of biodiversity priority (national areas of biodiversity importance for conservation action) on the granitic islands of Seychelles with the aim of conducting new inventories and evaluating the conservation priorities of these areas and to provide recommendations for gap identification for future research.

The expected outputs of this consultancy are :

1. 2. 3. 4. 5. 6. 7.

A detailed work plan describing how the consultancy will be undertaken A stakeholder-endorsed list of species on which the initial collation of spatial data will be based A report summarizing all the collected data on species occurrences Present in a workshop the collected data on the distribution for the selected species and select areas for the implementation of the new inventories A report on the stakeholder-endorsed selection of sites of biodiversity importance in Seychelles as well as a methodology for implementation of the new inventories Completion of new field inventories An approved final report defining the selected sites of biodiversity priority, with recommendations for future research A validation report detailing the deliberations in the workshop and the recommendations made by stakeholders

The present report corresponds to a draft of output 1, the listing of species of special concern. It is submitted for review by stakeholders.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

2

I.2

Selection of the gaps of knowledge to be addressed

In a previous UNDP-GEF study (Senterre et al. 2010a), a metadatabase was compiled on existing references (literature and databases, local and international) on Seychelles “biodiversity” knowledge. This study identified gaps of knowledge, on the one hand, and biodiversity disciplines already well documented, on the other hand. The next step (present consultancy) aims at addressing some of these gaps through compilation of existing data (based on data sources listed in step 1) and implementation of new field inventories, following recommended methodologies (see “best practices” references: Senterre et al. 2010a). Although knowledge on Seychelles biodiversity is quite developed, of course knowledge gaps are countless. Therefore how to choose the gaps to be addressed here? As mentioned by Senterre et al. (2010b: 133), priorities are dependent on the context, i.e. scientific research develops in relation with opportunist factors like project funds, locally available capacities, solicitations from international collaborations, etc. The current context in the Seychelles, related to biodiversity, is mostly related to the “integration of biodiversity conservation in land use planning and management” (UNDP Mainstreaming Biodiversity project). Therefore, the choice of the gap to be addressed in priority has been done, by UNDP Project Coordination Unit (PCU), towards the revision of the National System of Protected Areas through the identification and mapping of Areas of Special Conservation Value. Here after, we briefly introduce the general approach proposed to address this question.

I.3 I.3.1

Introduction to some concepts and methods BIODIVERSITY AND C ONSERVATION VALUE

“Biodiversity" or "Biological diversity" means “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part: this includes diversity within species, between species and of ecosystems” (CBD, Convention on Biological Diversity). This definition emphasizes on the levels of organization of biodiversity (see Figure 1). While biodiversity is simply the amount and pattern of assemblage of the entities mentioned above, conservation value is a more anthropocentric concept, i.e. it includes biodiversity uses. Some species may be more “useful” than others, and the same is true for ecosystems. But on the other hand, more useful species / ecosystems may need the existence of less useful ones for their life cycle, i.e. notion of functioning. In addition, some species thought to be “useless” may well tomorrow reveal to be of important use, as scientific knowledge develops. Therefore, in addition to preserving species and ecosystems that we know are useful, we also want to preserve as many species and ecosystems as possible. The study of conservation values consists in putting all this together, i.e. the descriptive pattern of diversity, their threats and their uses. The need for a System of Protected Areas (SPAs) is directly related to the need for “in situ” conservation (see CBD article 8). Protected Areas should then form a network in which the various components conserve different portions of biological diversity (Vreugdenhil 2003: p.13): The definition of a SPAs is therefore in two steps: first the descriptive study of the patterns of diversity; second the evaluation of the conservation values and constraints.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

3

Figure 1. Levels of organisation of living materials (Duvigneaud 1980).

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

4

I.3.2

STUDYING PATTERNS OF BIODIVERSITY

Defining a SPAs, for in situ conservation of biodiversity, requires, in the very first place, to know where biodiversity is. Ideally, we would like to know the list of all the species present in the Seychelles, and all their geographic occurrences. We also need the same information for the other levels of organization of biodiversity, i.e. ecosystems, genes (e.g. population genetics), etc. Unfortunately such information is not available. Even for the first point, i.e. the basic list of all species, we are still far from having completed the inventory for the Seychelles, see for example fungi (Senterre et al. 2010b). For many groups, we still know very little on the species distribution, e.g. most insects (J.Gerlach, pers.comm.). At ecosystem level, information available in the Seychelles is very scarce. Therefore, how can we address the question on the patterns of biodiversity? Based on literature review and personal reflections, several approaches can be introduced. Using indicator taxa as a proxy to overall biodiversity In many cases, we observe that places with many species in one taxonomic group also hold many species in several other taxonomic groups. For example, tropical rain forests are well known to be much more diverse than temperate forests, and this is true for most taxonomic groups (e.g. Figure 2). It may seem logical indeed that an area with many plant species will be able to include also many species of insects for example; since the factors that created the higher diversity of plants, e.g. long term stability, good ecological conditions, etc., may also apply to insects. I.3.2.1

Based on this observation, it has often been considered that we may analyze the patterns of species diversity not by using all species, which is impossible, but a rather small selection of taxonomic groups, selected based on the amount of knowledge available. Birds, mammals, amphibians and seed plants (excluding ferns and mosses) have been very popular groups for such purpose. Sometimes, only one plant family or part of it is used, e.g. when a complete taxonomic monography has been completed (Figure 3). A great number of studies in tropical rain forests have followed this principle, and resulted in the identification of the most important areas in terms of both species richness and endemism, e.g. see the refuge theories in central Africa In tropical rain forests, when more than one family is used, the selection often focusses only on trees, simply because there are many more data on tree distribution than on non tree species. In this case the selection is not restricted to a given taxonomic group but rather to an “eco-taxonomic group”. Nevertheless, using a selection of species from a given taxonomic or eco-taxonomic group as a proxy to overall biodiversity presents several disadvantages: -The biggest problem is that using species distribution data, irrespective of the selection of species, is much affected by sampling biases and this is true for any country in the world (Vreugdenhil 2003). Indeed, it is well known that biodiversity inventories are strongly biased geographically, i.e. certain areas being more intensively inventoried than others, and many areas remaining unexplored for most groups. Therefore a study of the patterns of biodiversity based on these highly biased data, may just identify highly studied areas rather than highly diverse areas. The study of gaps of exploration is an important prerequisite to biodiversity studies and new field inventories. Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

5

Figure 2. Global distribution of biodiversity based on the species numbers of vascular plants (Barthlott et al. 1999).

Figure 3. Areas of high species diversity in central Africa for two sections of the genus Begonia (Begoniaceae), used as indicators of forest refuge areas during the last glacial eras (Sosef 1996). These supposed refuge areas cumulates both species richness (through conservation effect) and endemism richness (through speciation in isolated refuges), i.e. cumulating widespread species occurrences, paleoendemics and neoendemics.

-The second major problem is that high diversity in one taxonomic group is not always correlated with high diversity in other taxonomic groups. Hill (2002) showed for example, in the Seychelles, that islands with a higher diversity of birds are not those with a higher diversity of plants. This was due to the fact that high bird diversity is highly dependant on the absence of rats. Plants also may be impacted by the presence of rats, but probably to a lower extent and at a different time scale. Another example can be given within plant groups. Montane tropical rain forests are often characterized by lower species richness in vascular plants compared to lowland rain forests, but this relation is not the same if we take non vascular plants, i.e. mosses, which are more abundant and more diverse in the montane forests compared with the lowland. Using endemism as a proxy to biodiversity In the vast areas of lowland rain forests, e.g. in central Africa or Amazonia, regions with relatively similar climate and other environmental factors may show quite different amount of species richness, see glacial refuge theories (Figure 3). Although there is sometimes a correlation between endemism richness and overall biodiversity, the two are not necessarily correlated. For example, montane rain forests generally show a higher level of endemism compared to lowland rain forests, but smaller species diversity (see above). Therefore, endemism is more directly linked to conservation value assessment. Nevertheless, areas of higher endemism may be important in terms of ecosystem functioning, and therefore in terms of functional diversity at the ecosystem scale. Endemism rates should thus not be considered as proxy to biodiversity richness but can still be considered as part of the “biodiversity”. Methods for analysing quantitatively such patterns have been developed for exemple in Africa (Figure 4).

I.3.2.2

Figure 4. Endemism richness of African seed plants (Kier & Barthlott 2001).

Using diversity indexes rather than species richness In order to solve the first problem explained above, namely sampling biases, other methods for analyzing patterns of species diversity still focus on a selection of taxonomic groups supposed to be correlated to total biodiversity, but areas are compared for similar or at least controlled sampling effort, i.e. number of species for a certain number of specimens collected or records, etc. Based on such data, it is then possible to use many distinct statistical treatments in order to take into account differences of sampling effort, and to take into account differences in the evenness of the species, i.e. the distribution of individuals among a certain number of species. For example, two stands sampled with 100 trees each would have

I.3.2.3

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

7

distinct evenness if in one stand 50 species are represented by 2 individuals each, while in the other stand, the same 50 species are represented by only one individual each, except for one species with 51 individuals. Based on the use of such diversity indexes, a selection of sites, that are supposed to be of high biodiversity, may be selected for new field inventories with controlled sampling effort, in order to rank these sites for biological diversity. The other major advantage is that biodiversity indexes calculated in stand plots allow taking into consideration the levels of beta-diversity, i.e. we can compare diversity of sites and habitat-types (Figure 5). The main problems of this method are: -Exactly as for the previous section, no taxon is necessarily a good indicator of the diversity of another -Some habitat types may appear to be relatively species-poor or to have low species diversity, like typically mangroves, high mountain vegetation, and most other highly dynamic or specialized habitat-types. Some of these habitats may even lack any endemic species, e.g. mangroves. But as suggested earlier in this document, biologically less diverse habitats may nevertheless play a fundamental functional role. -The a priori selection of the sites to be assessed is partly subjective. -Seasonality is not captured or would need important funding to allow a team of specialists to visit all the areas more than once Figure 5. Model predictions of Fisher’s alpha values for trees with diameter at breast height ‡ 10 cm in 573 inventory plots in the rain forests of West Africa and Atlantic Central Africa (Parmentier et al. 2011).

Using habitat-types as a proxy In the previous sections, we focused on species diversity, but biodiversity is much more than that. Most experienced field naturalists will have a good idea of the areas of higher conservation value and / or higher diversity simply by looking at a landscape, at maps or at aerial photographs, or by looking at the vegetation structure of a given stand. About the “art of photo-interpretation”, Zonneveld (1989) said: “One recognizes the [land] units on an aerial photograph as one recognizes a person depicted by just the density of silver grains on a piece of paper. This may happen without conscious detailed analysis or reasoning, but in a glance,

I.3.2.4

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

8

based on previously collected knowledge that usually may be unconscious.” An experienced naturalist often knows where he/she is used to finding many species, many rare ones and many interesting discoveries. Most often he/she cannot give a clear argumentation and this is mostly because many distinct parameters are taken into consideration, many of them quite difficult to explain with words, like canopy texture, colours, land forms, or the context, such as difficulty of access, altitude, relative position to inselbergs, ravines, rivers or high mountains, etc. This approach is often combined with some knowledge on rare or endemic species distribution. It has been the main method used in the Seychelles for the definition of areas of high diversity and / or high conservation value: see Jeffrey (1962; further discussed by Swabey , 1970, and Procter , 1973), Carlström (1996) and Senterre (2009). Following Vreugdenhil et al. (2003), the best way to preserve many representative species is by preserving representative ecosystems, i.e. by protecting natural vegetation. The ecosystem, or habitat-types, approach is therefore mostly conservation oriented. Nevertheless, in a context of diversity assessment, this approach is also applicable: if we compare two sites, the one with the higher ecological diversity, or the higher diversity of ecological conditions, or habitat-types, is expected to contain more species than a more ecologically homogeneous site. The diversity of habitat-types in a given area is therefore directly related to beta-diversity, and is sometimes used as a proxy to gamma-diversity, i.e. the total diversity of the area (Figure 6). Consequently, when the species diversity / richness of two sites are compared (gammadiversity), one needs to take into consideration eventual differences in beta-diversity for these two sites. One site may be more species rich than the other simply because it includes more habitat-types, but a given habitat-type may be less diverse compared to the other site. Figure 6. Alpha-, beta- and gamma-diversity defined respectively as the diversity intra-community (i.e. of a given stand ecosystem), the diversity, or species turn over, from one community to the other (inter-communities) and the total diversity of a landscape or geographic area composed by several habitat-types.

In addition to the fact that the habitat-types approach allows taking into consideration more levels of biodiversity, the larger scale of this approach results in another major advantage: it can be studied through remote sensing methods and therefore the problem of sampling bias can be reduced. Aerial photographs and satellite images can be analysed and combined with knowledge on the distribution of determinant environmental factors (i.e. associated with certain habitat-types and thus with their conservation value) using the powerful tools of Geographic Information Systems (GIS). The main difficulties with the ecosystem approach are: -The conception of ecosystem units, and habitat-types, is not as well known as the species concept. We can study the distribution of certain species mostly because taxonomy exists, i.e. because we can put “conventional” names on certain types of organisms, or individuals. If a colleague tells us that he saw Northea hornei (Kapisen) in a given area, we mostly know

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

9

what he is talking about. But if a colleague tells us that he saw a “pristine mist forest” in a given area, this is a piece of information that remains relatively unclear. Saying a “pristine mist forest” is no more than summarising the observed forest stand as a shortlist of its characteristics. If we take again our previous example, and if we imagine that species nomenclature (taxonomy) did not exist, what would be the value of the information brought by a colleague who would tell us that he saw a “tree with dark green leaves, with brownish lower surface, and abundant white latex”? Therefore, it is very important to understand that taxonomy is a practical method, or better said an arbitrary language used to represent conceptualized groups of similar individuals, i.e. species concepts. It is important to remember that species do not exist in nature, only organisms exist. If we accept to classify many unique organisms into species, for practical reasons, why can’t we accept to classify many unique stand ecosystems into habitat-types? Describing species does not necessarily mean that all Homo sapiens individuals have the same genome and lived the same life experiences. Why would we consider that describing habitat-types necessarily means that distinct stands classified into the same habitat-type have the same species composition, the same ecological modifiers, and the same life or evolution history? -The other major problem that impedes the ecosystem approach, compared to the species approach, is that ecosystem stands (i.e. individuals of meso-ecosystem) cannot be put into a press, dried and stored in a museum during several centuries. Taxonomy entirely relies on the collection of reference specimens, or “type” specimens, as a permanent concrete reference more or less accessible to anybody who wants to see it. On the contrary, the ecosystem stand used to describe a given habitat-type will remain on the field, sometimes in hardly accessible areas, and will not stop evolving through the years. Therefore, much more than for species description, the habitat-types description is of paramount importance. If we go on with the analogies between species and ecosystem levels, we can emphasize the fact that glossaries of taxonomic terminology have been the subject of many studies and publications over the last few centuries. It is far from being the case for the description of habitat-types. What are the characters of habitats? The study of the description of habitattypes and the fine-tuning of a glossary of characters is much younger than for species description, i.e. about a century. Such characters include for example floristic composition, vegetation physiognomy (vegetation structure, leaf types and phenology, etc.), climate, land forms, soil types, biogeographic patterns, etc. (see Di Gregorio 2005; Grossman et al. 1998). -As a consequence of the difficulty of naming and especially conceiving habitat-types, the conception of functional links between these entities of biodiversity is also difficult to understand and subject to discussions. As for species, ecosystems have life cycles. A given stand ecosystem once initiates its development, becomes mature and later senescent before being replaced by the next “generation”. Juvenile stages (pioneer) will differ from mature stages (climax), and the ecosystem will evolve from one generation to the next, changing partly its species composition. In analogy, juveniles and mature stages of a species individual look different and species evolve from one generation to the next, changing partly its genetic composition. If we consider a large stand, ecologically homogeneous, the ecosystem occurring on this stand would correspond to a certain type at maturity, e.g. a lowland rain forest. In reality, at a given moment in time, such a large ecologically homogeneous stand would include a mosaic of several units at different stages of development, from pioneer to climax. These units, which Oldeman (1990) called “ecounits”, are functionally closely linked. This overall heterogeneity of the stand given in example would therefore hide the unity of the stand, being a constantly changing mosaic which has in common the same climax (which of course evolves from one generation to the next, with or without the help of anthropic species introductions). These ideas emphasize on the importance of conceiving “potential vegetation types”.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

10

I.3.3 A SSESSING CONSERVATION VALUES In the previous chapter, we introduced some methods for the study of the distribution patterns of biodiversity, and for understanding the factors responsible for such patterns. Since resources available for conservation efforts are limited, we need to define priorities based on these distribution patterns and other factors. Such priorities can be defined for species, habitats or areas. There are six main types of criteria for the establishment of the conservation value: the inner diversity (diversity or richness of the components), the rarity, the irreplaceability (or uniqueness), the vulnerability (trends and threats), the socio-economic value, and the representativeness (complementarity) (Table 1, p.14).

A. Criteria Diversity The diversity criterion is widely used at habitat and site levels. Habitats with a higher species diversity and / or richness will have a higher conservation value (all other criteria being constant). For sites, those combining a higher species and habitat richness or diversity will have higher conservation value. At species level, the criterion diversity is less often used. We can define it in analogy with the other levels, i.e. a species with a higher genes richness and / or diversity. Rarity Rarity mostly applies to species level. Endemic species have a restricted distribution range and therefore a higher conservation value than widespread species. But the global or general geographic range is not the only criteria for rarity. For example some fern species of the Seychelles have a very wide range (up the Pacific Ocean) but are extremely rare throughout their range (suffusively rare species: Mills & Schwartz 2005; Schoener 1987). Finally, the ecological rarity can also be considered: an endemic species occupying a wide range of habitat types would not be treated the same as an endemic species found in only one habitat type. Therefore, rarity can be defined at several geographical scales (global, regional, national, etc.), considering additional criteria such as population size and habitat range (Rabinowitz 1981; Vreugdenhil et al. 2003: p.47). Rarity can be established based on the following set of criteria: -Global geographical range (area of occupation) -Population size -Number of sub-populations (fragmentation / aggregation) -Sub-population size -National geographical range (area of occupation) -National population size -National number of sub-populations -National number of islands where present -National sub-population size -Ecological range (ecological rarity, see chapter 7) At habitat level, the rarity includes the rarity of the habitat itself (based on analogous criteria) and the rarity of its components, i.e. a habitat containing rare species will have a higher conservation value. This is also true at site level, but then rarity of habitats present in the site is also considered.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

11

Irreplaceability (uniqueness) The irreplaceability (or uniqueness) of a site is the degree to which geographic (or spatial) options for conservation will be lost if that particular site is lost (Pressey et al. 1994). Irreplaceability is closely linked to rarity, e.g. a locality containing the only known population of a species (i.e. a local endemic) would be irreplaceable. Sites that hold significant fractions of a species’ entire population during particular periods of the year (e.g., migratory bottlenecks and routes) are also highly irreplaceable (Langhammer et al. 2007). At habitat level, this criterion has not been used although it is relevant. At species level, the irreplaceability criterion is even less evident, or less explicitly mentioned in the literature. Nevertheless, the particular interest in endemic species belonging to endemic monotypic1 genera is an example: if the species becomes extinct, the whole lineage is lost. The higher the rank of the monotypic taxon, the higher its conservation value, e.g. the Medusagynaceae in the Seychelles. Vulnerability (trends and threats) To establish conservation priorities, rarity is not enough. Some rare species may be spreading while others regressing. It is therefore important to consider the trend of the population size, and the determinant factors related to such trends (mostly threats). -Proportion of reproductive population -Generation length -Trends in population size (observed and / or predicted, based on reversibility, trend determinism and the presence or absence of the identified factor of the trend). As previously, the vulnerability can be assessed at habitat and site levels based on their own vulnerability and / or on the vulnerability of some of their constituents. At habitat and site levels, the vulnerability criterion includes the presence, abundance and trends in invasive species populations, or other sources of degradation. For a given habitat, the most important locality to be preserved will be the most pristine one; this is not to be confounded with the criterion representativeness. Socio-economic value The rarity and threat of a species are not all. For two species with similar rarity, we will attribute more importance to the one which is more "useful". For example, the Mapou-d-gran bwa (Pisonia sechellarum), is rarer compared to the Koko-d-mer (Lodoicea maldivica), but if we have to chose which one will be the priority for conservation, it will be the Koko-d-mer, because it has a high economic and cultural value. At habitat level, forests (for example) have higher economic value than glacis due to the ecological services they provide, like water supply, etc. Among forests, cloud forests have a higher value for the same reason (i.e. contribute more to water supply, and other ecological services). In addition, cloud forests have most of the other criteria also in favour of a higher conservation value (mostly rarity). Representativeness (complementarity) Representativeness is a criterion that has only recently become more widely applied for the selection of conservation areas, i.e. site level (Austin & Margules 1986; Grossman et al. 1998). At site level, representativeness explicitly attempts to include the range of natural variation of both biotic and abiotic features (e.g., landforms, soils, elevation zones) of a region 1

A monotypic genus or family contains only one species. When a genus or family contains only few species but more than one, it is called a paucispecific taxon (for more details, see Aubréville 1970 and Senterre 2005). Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

12

within a system of preserves (Austin & Margules 1986). To assess the representativeness of particular conservation areas, coarser-scale descriptions of the regional patterns of environmental and biological variability are required, as well as the environmental relationships of the biota, and the actual biotic distribution patterns. At habitat level, the representativeness of a given "individual" of habitat (i.e. a given stand) will depend on the proportion of the species associated with such habitat that are present. This criterion, at this level, is rarely used and is generally covered by the criteria diversity and vulnerability: a given individual of habitat which is highly invaded will contain less constituents of the native composition, and an individual of habitat with a high diversity value will generally include more native species associated with this habitat. Such considerations are included in the important plant areas concept (see "best sites" in Langhammer et al. 2007, for both the presence of a species and a habitat).

B. Classification systems for conservation value Species conservation value At species level, there is a system widely accepted for assessing the conservation value, i.e. the IUCN categories of threatened species (Figure 7: Iucn 2001, 2006). This system integrates the rarity of the species with trends and previsions on population size. Variants of this system have been proposed that consider more restricted geographical scale (more relevant for isolated small islands) and that include the socio-economic criterion: see Bañares et al. 1998; Burger & Stampfli 2005; Huber & Ismail 2006; Miller et al. 2007; Milner-Gulland et al. 2006. Figure 7. Structure of the IUCN Red List Categories (IUCN 2011).

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

13

Habitats conservation value Analogous systems to IUCN for habitat level are much less common, and should not be confused with the IUCN system of protected areas categories (which are management categories applied to sites and only partly related with conservation value: Boitani et al. 2008). The most widely used and most relevant system was defined in relation with the International Vegetation Classification System (Grossman et al. 1998: p.60). Sites conservation value Site-scale approach integrates species and habitat level approaches, i.e. the prioritization of sites will depend on the prioritization of species and habitats. One of the first system developed was based on Important Bird Areas (IBAs: Osieck & Morzer Bruyns 1981) and has later been applied to other taxonomic groups: Important Plant Areas (IPAs: Anderson 2002), Prime Butterfly Areas, Important Mammal Areas. The concept of Key Biodiversity Areas (KBAs) combines all these systems (Langhammer et al. 2007: p.5). The KBA system is based on four criteria: vulnerability (but only of species: IUCN threat categories), irreplaceability (> 5% of global population at site), rarity (restricted-range species) and representativeness (best sites concept). The main weakness of this system is that it is based on only few criteria and it poorly integrates the ecosystem approach. Another famous system is based on the definition of biodiversity "hotspots" (Myers et al. 2000, Figure 8). This system is based mostly on diversity and vulnerability criteria, and only partly rarity. It is mostly designed for wider scales, i.e. not site-scales but regional scales. Nevertheless, it has sometimes been adapted to small regions, e.g. areas of exceptionally high biodiversity (Gerlach 2008). Figure 8. Biodiversity hotspots for conservation priorities (Myers et al. 2000).

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

14

The most comprehensive and integrated approach (among the documents consulted) has been developed as a result of a World Bank project for the mapping of ecosystems of central America (Meerman & Sabido 2001; Meyrat et al. 2002). The Honduran part of that map was used to evaluate the presence and gaps of ecosystem representation in the protected areas system. A MS-Excel based spreadsheet evaluation programme called “MICOSYS” was used to compare the relative importance of each area and to design alternative models for protected areas system for different scenarios of conservation security and socio-economic benefits (Vreugdenhil 2002; Vreugdenhil et al. 2003). The remarkable strength of this system is that it is based on strong ecological principles. It integrates species distribution data with a coherent system of habitat types and corresponding vegetation maps (based on the UNESCO physiognomic-ecologic system). It includes many more criteria than the KBA approach, and is more powerful, but it needs more input data (vegetation maps). It is enriched with some new considerations on species survival (Minimum Viable Population and Minimum Area requirements). This system is country-size independent and may be applied anywhere in the world. It is very flexible and may be complemented with other methods, particularly KBAs. For a detailed description of this system, see Vreugdenhil et al. (2003). Table 1. Synthesis of the main criteria contributing to the conception of conservation values at the species, ecosystem and regional / site scales. Criterion

Species

diversity (diversity or species with many genes richness of the components)

Ecosystems habitats with many species

rarity

species with few occurrences habitats with few occurrences

irreplaceability (or uniqueness)

e.g. monotypic genera (if the species is lost, the whole lineage is lost)

Regions regions with many habitats and or many species

e.g. regions holding the only known occurrence of a habitat type or a species, or the only reproductive population, etc.

vulnerability (trends a species, rare or not, which a declining habitat type and threats) is threatened (negative trend) (pristine habitats more valuable) socio-economic value a species with cultural and / an ecosystem providing or economic value ecological services (e.g. forests, even secondary, are valuable; cloud forest are the most valuable) representativeness (complementarity)

a stand of habitat type holding regions including a great most of the species associated diversity of landscapes and with that habitat environmental conditions

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

15

I.4 Overall approach / methodology of the consultancy The overall objective is about finding which are the main priority areas for biodiversity conservation, focusing on some of the richest inner islands, i.e. mostly Mahé, Praslin, Silhouette, La Digue and Félicité. And then, make recommendations in order to improve the current National System of Protected Areas and the land use planning. The approach proposed here is based on a hybrid methodology, i.e. not purely species-centred not purely ecosystem-centred, in order to combine the advantages of both approaches (Table 2). Our methodological approach can be described in 8 elements, see hereafter. The elements 1 to 6 correspond to the activities 1 to 8 in the TOR (Appendix 1), and the elements 7 and 8 correspond to the activities 9 to 11 in the TOR. Table 2. Synthesis of the advantages (in bold) and weaknesses of the species-centred vs. ecosystem-centred approaches to analysis of conservation values.

Species-centred

Ecosystem-centred conception of ecosystems or habitat-types conception of species widely understood poorly understood nomenclature of habitat-types still developing nomenclature of species concepts internationally and poorly accepted accepted based partly on remote sensing, i.e. spatially based on spacially highly biased sampling unbiased data little data available, e.g. detailed land cover large amount of data available on identified entities maps too many species to consider and no taxa could sever as diversity of habitat-types high but proxy to overall biodiversity manageable can integrate the species level of poorly integrate the ecosystem level of organization organization needed to integrate quantitative needed to integrate quantitative conservation values conservation values does not directly integrate historical and more easily integrates historical and functional functional factors factors, e.g. endemism does not integrate ecosystem's ecological services integrates ecosystem's ecological services

1. Where do we have rare species ? Knowing where rare species are is quite important, especially at the scale of the Seychelles, because it gives us the list of sites where we should be very careful, i.e. irreplaceable sites. If we lose the site(s), we lose the species. This approach is often associated with the “complementarity methods” (Vreugdenhil et al. 2003). Are these irreplaceable areas distributed throughout Mahé and the other islands, or are they concentrated in specific areas? In the first case, the data would not bring much information for a conservation perspective, but in the second case the data would allow the identification of what we could call “nuclei of conservation areas”. To achieve this, we need to compile all occurrence data for all such rare species, whatever the origin status (endemics or indigenous) and whatever the IUCN threat category. Depending on the diversity of the taxonomic group considered, the quantity of rare species may be high. In this case, the authors will further filter their species list based on any other criterion (see chapter II.2), e.g. IUCN, cultural or economic value, etc. Data deficient taxa should not be considered, except if the author suspects them to be truly rare. 2. Where do we have higher species diversity? The rare species may have the disadvantage of providing somewhat erratic data, i.e. selecting scattered small areas. Rare species distribution does not provide descriptive patterns of overall Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

16

species diversity, and therefore cannot help to analyze the determinant factors responsible for such pattern, which would allow predicting species diversity values in areas poorly inventoried (Parmentier et al. 2011). The data available on Seychelles species distribution will surely not be sufficient to complete a detailed study. But the selection of species of special concern may partly solve the problem of biased sampling of species distribution. These more “interesting” species of special concern are more equally sampled in the areas visited by taxonomists and conservationists, while the other species (including native ones) are inventoried depending on more specific objectives. If possible, all species of special concern should be included in the synthesis of occurrence data. For very large taxonomic groups, only some particularly well studied and well inventoried subgroups could be considered (excluding data deficient groups), e.g. earwigs, crickets, ants, subgroups of beetles, etc. 3. Where do we have higher species conservation value? Species conservation value is a synthetic criterion and is mostly influenced by the IUCN threat categories and origin status. We should therefore include all threatened species, following the IUCN, and list their known occurrences, bearing in mind that some species have not been correctly analysed (according to updated methods) and many are probably data deficient. 4. Where do we have rare habitat-types? This question is analogous to the first one, the methodology also. We will intend to make a list of rare habitat-types and compile known occurrences. 5. Where do we have higher habitat diversity (beta-diversity)? Again by analogy, we will intend to list what we will call “habitats of special concern” and include them in the compilation of known occurrences. Historical maps exist for some islands, based on remote sensing techniques. The idea is to use these historical maps and try to improve them using the concept of potential habitat-types (see chapter I.3.2.4). 6. Where do we have higher habitat conservation value? The conservation value of a given habitat is mostly linked to the threats faced, the ecological services provided, its biogeographic uniqueness and its alpha-diversity (i.e. intra-community species richness). Old maps may be considered, e.g. showing the extent of certain habitats in the past, e.g. mangrove, freshwater marsh, which are threatened habitats. 7. How efficient is the current National System of Protected Areas (NSPAs)? Based on the data compiled, a comparison can be done between protected vs. non-protected areas and some statistics can be calculated to describe the amount of biodiversity represented in the current NSPAs. 8. Which are the priorities to improve the NSPAs? The input data is described above and will allow overlay analyses to combine the criteria listed, i.e. irreplaceable areas, or biologically diverse areas, Key Biodiversity Areas (KBAs) or Areas of Special Conservation Value (ASCoV), both at species and ecosystem scales. We will propose decision rules to integrate areas within the NSPAs and estimate priorities. Some analyses will be proposed and the decision rules (combination of criteria and parameters, or relative weights) will be discussed with stakeholders in order to improve the NSPAs.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

17

II MATERIAL AND METHOD FOR THE SPECIES LIST II.1

Criteria used for the species evaluation

As explained in the previous chapter, we propose not to select taxa based on available recent taxonomic revisions, abundance of data, or supposed indicator value for overall biodiversity. The main criterion for our choice is conservation oriented, i.e. “species of special concern” such as rare, endangered, threatened, endemic, flagship species, keystone species, indicator species, etc. (Vreugdenhil 1992). Here after, we detail the distinct criteria and sub-criteria considered. We try to dissect the criteria into states and to provide definitions in order to facilitate the evaluation of species (by putting names on concepts). But we will not necessarily intend to enter the values for all criteria and all species, although the possibility to do so will be provided. 1.Rarity Rarity is the most important criterion. It should not be confused with origin status (endemism). Rarity is evaluated within the country, i.e. a rare species in the Seychelles, while endemism is about rarity at a global scale. Rarity should also not be confused with population size: a species may be known from only one big population, another one by many localities with a few individuals. The former species will be considered rare, the latter one not necessarily. Finally, rarity should not be confused with habitat specificity (as opposed to generalist species). A highly specialist species may be rare (geographically) if its habitat is rare, or very common if its habitat is common. It could therefore be rare in one region and common in another. Actually rarity is a composite criterion, i.e. a relatively subjective mixture of several criteria: number of known localities, population size and habitat specificity. Nevertheless, such a subjective synthesis of the mentioned criteria is very useful in practice and has been indeed abundantly discussed in the literature. The most commonly used system is the one proposed by Rabinowitz (1981). We here propose simplifying this system to 5 classes of rarity which can be identified, still more or less subjectively, even when not all criteria are known, e.g. unknown ecological range (Tables 3 and 4). It is important to note that threat aspects are not considered here, in contrast to IUCN status. As we define it here, rarity can be identified for all species. 2.Data level This is a partly subjective criterion which aims at pointing species typically data deficient, in order to distinguish between truly rare species and poorly recorded species (whose actual rarity is totally unknown). Two states are available: -Data deficient

-Not data deficient

Table 3. Simplified system of categories of rarity used in the present study. The correspondence with Rabinowitz classes is indicated in the table above.

Rarity R O F C A

Definition rare, e.g. Gastonia lionnetii, Medusagyne oppositifolia, Vateriopsis seychellarum occasional, e.g. Gastonia sechellarum var. sechellarum, Colea seychellarum, Nepenthes pervillei frequent, e.g. Ixora pudica, Agrostophyllum occidentale common, e.g. Ficus lutea, Passiflora edulis abundant, e.g. Phoenicophorium borsigianum, Cinnamomum verum

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

18

Table 4: Rabinowitz’s (1981) original classification scheme for rare species adapted from Pitman et al. (1999). Population sizes and thereby “rarity” varies resulting from the factors geographic distribution, ecosystem specificity and abundance (or rather density). The total population sizes tend to decreases from top left to bottom right. When considering global survival chances of a species, one must consider all factors that lead to population size. Locally small populations may be kept vital by periodical exchange of individuals from other populations. Capital letters correspond to a simplified system proposed for the present study. The definitions corresponding to these capital letters, a five states criterion, are detailed in the table 3 and by their placement in the Rabinowitz table. If we lack one or several data included in the Rabinowitz system, we can still identify the rarity category in our simplified system, see capital letters indicated in the upper part of the Rabinowitz table.

A

C

A

F

C

A

F

C

C

F

O

R

O

R

F

O

R

O

R

R

3.Global range, i.e. chorologic element There are many ways of describing the global range of a species, e.g. per countries, regions, ecoregions, biogeographic entities (e.g. phytochoria), etc. In a conservation / biodiversity perspective, the latter aspect, i.e. grouping species into chorologic elements, is particularly important if we want to integrate a wider context. This criterion is a more detailed, non country-centered, version of the origin status. States for this criterion have been rarely defined in the literature covering the Seychelles (Pascal et al. 2001; Procter 1984; Rakotondrainibe et al. 1996; Renvoize 1971, 1975, 1979; Summerhayes 1931; Wallace 1892; Wickens 1979). These aspects are out of the scope of this consultancy but we included this note for future development of the database. 4.Global range, Origin status This criterion can be extrapolated from the previous one, which is an optional criterion, i.e. may not always be entered, or even rarely. The origin status (in Seychelles) is the simplified country-centered global range. We include uncertainty among the proposed categories because the identification of the origin status is sometimes quite questionable. -end = endemic -end? = doubtful

ind = indigenous ind? = doubtful

-exo = exotic -exo? = doubtful

5.National range This criterion and the following ones provide increasing levels of details on the geographic range. Here we simply distinguish between species with wide vs. restricted distribution, as per the Rabinowitz’ system.

-more than 1 island group (e.g. inner island and Amirantes), = wide, A or C -in one island group, but more than 3 islands, = wide, C or F -restricted to 2-3 islands, = restricted, O -restricted to one island, = restricted, R 6.National range, island groups The Seychelles are made of two major biogeographic entities, i.e. the inner and outer islands. This criterion allows to distinguish between species restricted to any of these two entities, whatever their origin status, or presence in both. -outer islands -inner islands -both inner and outer islands 7.National range, number of islands of occurrence The number of islands of occurrence and the number of localities are two important criteria, more or less intuitively taken into consideration when assessing the geographic range. We therefore decided to enter these synthetic data in the “Species metadata” table, although they should be deduced directly from the recording of the species occurrence (see next step of the consultancy activities). 8.National range, number of localities of occurrence Localities are defined in a gazetteer of localities, to be compiled in the next output. There will be still some subjectivity in the distinction of close localities, which is left to the careful consideration of the authors / contributors. If a species is present from 10 islands, but from only 1 single locality in each of these islands, the database will be able to show this pattern. 9.Habitat specificity Some species are very poorly specialized, i.e. are competitive in many distinct habitat-types. Such generalist species include for example Lantannyen fey (Phoenicophorium borsigianum). Habitat specialists include for example Baton monsennyer (Angiopteris madagascariensis) or Mapou-d-gran bwa (Pisonia sechellarum), both being montane forest ravines specialists, the former being geographically widespread and the latter being geographically rare with a fragmented distribution. Nevertheless, the habitat specificity is a very difficult and subjective criterion to assess, and it should not be considered as an important criterion as the geographical range. For species being not especially generalists nor specialists, habitat specificity can be left empty. -wide: not restricted to one habitat-type -narrow, restricted to one habitat-type 10.Fragmented distribution (disjunct) What exactly is the importance of fragmented distribution, and what exactly do we mean? At a (supra-)regional scale, examples of species with fragmented (or disjunct) distribution are relatively easy to find and have been abundantly documented in biogeographical studies (Cox 2001; Jürgens 1997). Such patterns have commonly been interpreted as the result of fractioning of a previously un-fragmented distribution due to mountain rising, continental drift, rising sea level, climate change (i.e. vicariance), local extinctions within the range, or as the result of exceptional long-distance dispersal events. At an infra-regional scale fragmented distribution may often be linked to habitat destruction due to human activities.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

20

In all the examples given above, the fragmented nature of the species distribution is the result of a major change in the environment, at different time scales. Such fragmentation process, especially at shorter time scales, has often been considered as a factor of extinction, and this is why, for example, systems of protected areas (i.e. protected from certain human activities) are to be designed so that the protected areas form a network of elements of sufficient size. Therefore, the fragmentation of the distribution of a species is not considered for the evaluation of its rarity sensu stricto (see Rabinowitz’s classes), but it is a criterion related to potential threat effects. On the other hand, some species have a naturally and especially stable fragmented pattern of distribution. This is the case for all species specialized in fragmented habitat-types, e.g. mangroves, riverine forests, montane forests, inselbergs, etc. Such species have in common that they generally developed functional adaptation to (relatively) long distance dispersal. Such species may be able to survive with small disjunct populations. Specialist species of such habitat-types, which would not have such adaptations, would soon or later develop into micro-endemic species, e.g. the sections of Begonia mentioned above (see Figure 3), or become extinct. Habitat specialists with poor dispersal capacities are thus very sensitive taxa. Therefore, there is no rule; fragmented distribution patterns may be associated with extinction, stability or even speciation. What is important is that the conservation strategies will surely need to take into account such distribution pattern and its supposed determinism. In conclusion, we propose to use the following states for the criterion fragmentation: -historical fragmentation: species absent from suitable habitat-types (within the preferences of the species) occurring largely between the known populations, i.e. absence can’t be explained by ecological reasons or species rarity, and may result from vicariance or long distance dispersal. -archipelago-like habitat fragmentation: high mountain habitats, mangroves, inselbergs, etc. -island fragmentation: when the distribution is fragmented among several islands, and there is no major gap of unoccupied suitable habitats within the overall range (which would qualify first for historical fragmentation). The fragmentation may be the result of sea level change, and biota may have developed islands syndrome, i.e. have become adapted to archipelagolike distribution (even if its habitat is not originally of fragmented nature, e.g. lowland forest, or wide ecological range). -network-like habitat fragmentation: ravine, riverine, wetlands, lava flows, etc. -irregular fragmentation: linked to human or other disaster factors, e.g. fire. -un-fragmented: rarely, e.g. mostly for very rare species, or widespread generalists or unfragmented habitat specialists, mostly in continental regions, etc. If a species combines more than one of the categories proposed above, only one category is entered which is the one higher up in the list. For example, a species with an archipelago-like habitat fragmentation (e.g. montane belt), occurring on several islands (e.g. Mahé and Silhouette), would be qualified as “archipelago-like habitat fragmentation”. The case of anthropic fragmentation is more complicated. Except for few areas on earth, most of our environment have been deeply impacted / fragmented by humans. Therefore putting that kind of fragmentation on top of the list would not be very useful. Here we should not confuse fragmentation and threat, the latter being developed later in our text. Whatever the type of fragmentation in the distribution of a species, this may be more or less impacted, further fragmented, as a consequence of human impact. Therefore, the state ‘irregular fragmentation” should indeed be placed down in our list, and selected when the other states do not apply.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

21

Fragmentation should not be confused with population size and dominance. For example, rare species with scattered individuals may appear fragmented, but should not be categorized as “historical fragmentation”. In this case the absence of the species from suitable habitats occurring between known stands could be explained by ecosystem functioning and not a historical reduction of an originally more widespread taxon. 11.Population size class (overall) This criterion is derived from the following one, but can be estimated with more or less uncertainty even when exact population estimates do not exist. It corresponds to one of the Rabinowitz’s criteria. -large: if not especially small -small 12.Population size (overall) This criterion (the known or estimated number of individuals) is especially useful for relatively rare species, i.e. species known from a very reduced number of individuals and for which population estimates do exist. 13.Dominance (local population size) This criterion is analogous to geographic distribution fragmentation but at a local scale, or stand scale. Individuals can form close populations and even form mono-dominant stands, often being considered “invasive” when of exotic origin. Other species can occur in nature as isolated individuals, or as small groups of scattered individuals at stand scale. Of course this may be dependent on the habitat-types, i.e. a given species may be dominant in a given habitat-type and dominated in another one. What should be considered here is the species potential (generally observed in the habitat-type corresponding to the species optimum). The categories of dominance proposed here are a simplified version of the Braun-Blanquet coefficients (Braun-Blanquet 1932; Van Der Maarel 1979). -dominant: equivalent of Braun-Blanquet coefficient 4 or 5 -co-dominant equivalent of Braun-Blanquet coefficient 3 or 4 -dominated / widespread at stand scale: equivalent of Braun-Blanquet coefficient 1 or 2 -isolated: equivalent of Braun-Blanquet coefficient r or + 14.Threat type The intension here is not to have a very detailed field, but simply the possibility to enter a brief comment when a species is known to be under a specific threat, e.g. Bwa marmay. If no threat is to be mentioned, or if none is clearly known, the field is left empty. Note also that most species are affected by habitat destruction, but here we would enter this state only when we estimate that this threat concretely threatens a species more than the others. -over collection -habitat destruction -competition / predation from exotic species 15.IUCN threat categories for species We simply enter the most recent IUCN assessment for evaluated species. In rare occasions, if the authors personal knowledge on a given species emphasize a IUCN status which could be updated, such update can be made, ideally then mentioning the change in the “comments” field. Distinction should be made between “Non Evaluated” and “Not Listed”.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

22

16.Evaluation level In many cases, we will not have time or will not have the required information to enter all the criteria listed above. Therefore, we add this current field in order to know the degree of details reached in the assessment of a given species, and therefore to know where information gaps are still present. -full evaluation -fast evaluation -unevaluated

II.2

Conditions leading to species selection

As explained above, the main criterion is rarity. All species assessed as R or O will be included. Previously to that filter, only native species are selected, or exceptionally also species of doubtful origin status. Non terrestrial species are included only if their life cycle depends patly on terrestrial areas, e.g. sea turtles and seabirds. For very diverse groups like insects, rare species that are clearly data deficient will not be included (e.g. about 500 insect species, J.Gerlach, pers.comm.). In other groups, if supposed rare species are data deficient, they may still be included (depending on time and personal views of authors). These species will not be used for the search of species occurrences, for the evaluation of biodiversity and conservation value patterns, but will be useful for providing recommendations on species needing more data collection. Such lists of data deficient species may be used during new inventories, among other things. Species known from only 1 locality, or very few localities, should be included if the author considers that these species are probably truly rare (i.e. not data deficient, or exceptionally also some data deficient species if supposed truly rare for any other reason). For diverse groups, such species may be numerous. For plants, we can include species like Gastonia lionnetii, or forgotten species like Lautembergia neraudiana or Korthalsella opuntia. At the end, if we have many species known from 1 locality only, it is still many data, and we can see whether there is a pattern of distribution of these rare species. Therefore, as many truly rare species as possible will be included, within the limits of the current consultancy (see terms of references, i.e. number of days allocated to that activity). If a species is rare and has been typically poorly collected, but if in addition we know that this species is associated with a rare habitat-type (e.g. montane old growth forest) or a threatened habitat-type (wetlands), the species would still be a good candidate for our list of species of special concern. The other important criterion is the IUCN threat categories because, as for “rarity”, it is a composite criterion mixing a number of other criteria, and because these IUCN threat categories are found in published literature. Our list will include all species listed as EX, EW, CR, EN, VU, and eventually NT (see Figure 7). However, our list may contain species that are LC (Least Concerned) if the species happens to be rare nationally e.g. Ixobrychus sinensis (Yellow bittern) which is a species that is of least concerned worldwide, but considered to be Critically Endangered in the Seychelles and a good indicator species for the health of marsh ecosystems.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

23

Extinct, or supposed extinct, species will be included because most often such species were recorded in areas that are still natural and could still exist, especially in the context of the Seychelles where exploration has been relatively neglected and taxonomic knowledge is mostly orally transmitted locally. For truly extinct species, good quality occurrence data could not be used to identify site conservation values, but could still contribute to analyses of the patterns of species diversity. Extinct taxa should not be confused with dubious taxa, e.g. Justicia gardineri, recorded once at La Passe (Silhouette). Endemism is related to both conservation value and evolution processes, but species should not be retained based on this criterion only. Common endemics like Latannyen fey are not a major argument for the selection of protected areas since they would occur equally inside and outside the SPAs. The listed species of special concern should not be influenced by ease of identification. Cryptic species, or species poorly known may often contribute significantly to biodiversity and conservation values. If a species is rare, it should be included even if we know that it can be identified only by specialists or if we know that it has been under-recorded. For example, many ferns are obviously rare, although we know that they have been under-recorded, e.g. Antrophyum, etc. The analyses of biodiversity patterns and conservation values are not to be confused with the selection of indicator species for field monitoring. Such indicators may include species whose occurrence is correlated with e.g. certain habitat-types, or old growth forests, which have been identified, based on a more complete data set, as having a relatively high biodiversity / conservation value. Dubious taxa are a distinct problem because they may constitute “taxonomic errors”, false species. For example, see the species complex in Psychotria (dupontiae and pervillei: synonyms or both true species?), etc. In this case, the best is to follow the most recent taxonomic use: 1 species of Nepenthes, 1 species of Northea, Psychotria dupontiae not a true species but synonym of P. pervillei, etc. But still, if the author’s personal knowledge includes recent taxonomic findings, he may include these. For example, we have now found 3 species of Marattiaceae, 1 of them new to science but still unpublished, 1 of them forgotten for a century, and the last one more common. In the plant list, the three species are included and, when we will be looking for species occurrences, we will keep in mind that most of the records previously known for Angiopteris madagascariensis may include misidentifications. A species may also be included if it is a good indicator of ecosystem health. For instance Macrobrachium lar (Kanmaron gran lebra) is not rare nor occasional but is a good indicator species for the health of river ecosystem (likes well oxygenated water).

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

24

III RESULTS A total of 1045 species of special concern have been listed here (see Appendix 2). The number of species of special concern selected increases with the native diversity of the main taxonomic groups considered (Figure 9, Table5). But the percentage of all native species included in our list of species of special concern decreases with the diversity of the main taxonomic groups (Figure 10). Most of the species listed are endemics (73 %), while indigeneous represent 24 %. The number of species with a dubious, unknown or unrecorded origin status is 56. Threatened species (EX, CR, EN, VU) listed are 135 (13 %). Species considered as rare represent 59 % (618 species) of all listed species of special concern, and 18 % of the estimated total number of native species among the groups included in this study. If we consider only the rare species (R, 618 species), 488 of them (80 %) are endemics, and 60 (10 %) are highly threatened (IUCN categories EX, CR, EN). 1000

Figure 9. Number of species of special concern selected (Y) in relation with the total number of native species (X) existing in the major taxonomic groups (see data in Table 5).

100

10

1 1

10

100

1000

120

10000 Figure 10. Percentage of species of special concern selected (Y) in relation with the total number of native species (X) existing in the major taxonomic groups (see data in Table 5).

100 80 60 40 20 0 1

10

100

1000

10000

Table 5. Number of species of special concern and estimated total number of native species for the main taxonomic groups included in the present study.

Taxonomic group Amphibians Birds Freshwater fishes Mammals Reptiles Terrestrial and freshwater invertebrates Vascular plants Total

Species of special concern included 13 34 2 2 18 862 114 1045

Estimated number of native species 13 50 2 2 30 3000 330 3427

Percentage included 100 68 100 100 60 29 35 30

Table 6. Main statistics for the list of species of special concern compiled, grouped by main taxonomic groups (see first column, “CLASS”, in the Appendix 2). (a) Number of species of special concern per origin status.

Taxonomic group Amphibians Birds Freshwater fishes Mammals Reptiles Terrestrial and freshwater invertebrates Vascular plants Total

end 12 15 2 2 18 632 66 747

end,?

exo

exo,? 1

1

17 3 20

1 2

ind 4

2 2 5

200 36 240

ind,? (vide) Total 13 14 34 2 2 18 4 6 862 7 114 11 20 1045

(b) Number of species of special concern per IUCN status.

Taxonomic group Amphibians Birds Freshwater fishes Mammals Reptiles Terrestrial and freshwater invertebrates Vascular plants Total

EX

1 4 8 13

CR

EN

VU

NT

LC

1

3

4

1

24

1 2 6 25 35

3 20 11 37

3 14 29 50

1

1 8 1

1 3

C

A

17

1 1

34

(vide) Total 13 13 1 34 2 2 2 18 817 862 40 114 873 1045

(c) Number of species of special concern per class of rarity.

Taxonomic group Amphibians Birds Freshwater fishes Mammals Reptiles Terrestrial and freshwater invertebrates Vascular plants Total

R 7 9 1 1 9 521 70 618

O 3

F 5 3

(vide) 1 1

1 1 248 23 275

33 4 45

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

36

8 1

54

11

23 17 42

Total 13 34 2 2 18 862 114 1045 26

IV CONCLUSION The current list is not a final one. While searching for species occurrence data, this list will be updated and species may be removed or added. In particular, several lists still include species restricted to the outer islands, and will be removed from the final list. The next steps are: -the input from stakeholders on the present preliminary report -the designing of a database for recording species occurences -the entry of species occurrence data (January-February 2012)

V BIBLIOGRAPHY Anderson, S. (2002): Identifying Important Plant Areas. Plantlife International, London, UK. Aubréville, A. (1970): A propos de la spéciation dans les forêts tropicales humides - Les genres mono- ou paucispécifiques. - Adansonia 10 (3, sér. 2): 301-307. Austin, M.P. & Margules, C.R. (1986): Assessing representativeness. - In: M.B. Usher (ed.) Wildlife conservation evaluation. Pp. 45-67. - Chapman and Hall, London, UK. Bañares, A., Marrero, M. & Carqué, E. (1998): The Application of Revised IUCN Red List Categories to the national Parks Flora of the Canary Islands. Planta Europa. Pp. 198-204. Boitani, L., Cowling, R.M., Dublin, H.T., Mace, G.M., Parrish, J., Possingham, H.P., Pressey, R.L., Rondinini, C. & Wilson, K.A. (2008): Change the IUCN Protected Area Categories to Reflect Biodiversity Outcomes. - PLoS Biology 6 (3): 436-438. Braun-Blanquet, J. (1932): Plant sociology: the study of plant communities. McGraw-Hill Book Company, Inc., New York, 407 pp. Burger, M. & Stampfli, N. (2005): Threat Assessment of the very rare plant taxa of the Seychelles. - Thesis, Institute of Integrative Biology Zurich, ETH, Zurich, 157 pp. Carlström, A. (1996): Areas of Special Conservation Value for the Plants of the Granitic Islands of Seychelles. Consultancy Report, Seychelles Government. Ministry of Foreign Affairs, Planning and Environment. Conservation & National Parks Section, Victoria, Seychelles. Cox, C.B. (2001): The biogeographic regions reconsidered. - Journal of Biogeography 28: 511-523. Di Gregorio, A. (2005): Land Cover Classification System (LCCS), version 2: Classification Concepts and User Manual. FAO Environment and Natural Resources Service Series. Vol. 8, FAO, Rome. Gerlach, J. (2008): Setting Conservation Priorities - A Key Biodiversity Areas Analysis for the Seychelles Islands. - The Open Conservation Biology Journal 2: 44-53. Grossman, D.H., Faber-Langendoen, D., Weakley, A.S., Anderson, M., Bourgeron, P., Crawford, R., Goodin, K., Landaal, S., Metzler, K., Patterson, K.D., Pyne, M., Reid, M. & Sneddon, L. (1998): International classification of ecological communities: terrestrial Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

27

vegetation of the United States. Volume I. The National Vegetation Classification System: development, status, and applications., The Nature Conservancy, Arlington, Virginia, USA, 127 pp. Hill, M.J. (2002): Biodiversity surveys and conservation potential of inner Seychelles islands. - Atoll Research Bulletin 495: 1-272. Huber, M. & Ismail, S. (2006): Suggested IUCN Red List Status of the Endemic Woody Plants of the Inner Seychelles. - Master Thesis, Eidgenössische Technische Hochschule Zürich (ETH), Institute if Integrative Biology Zurich (ibz), Zürich, 142 pp. IUCN (2001): IUCN Red List Categories and Criteria, Version 3.1., International Union for Conservation of Nature and Natural Resources, IUCN, Gland, Switzerland and Cambridge, United Kingdom. IUCN (2006): Guidelines for Using the IUCN Red List Categories and Criteria: Version 6.1. Prepared by the Standards and Petitions Working Group for the IUCN SSC Biodiversity Assessments Sub-Committee in July 2006. International Union for Conservation of Nature and Natural Resources, IUCN, Gland, Switzerland and Cambridge, U.K. IUCN (2011): Guidelines for Using the IUCN Red List Categories and Criteria. Version 9.0., Prepared by the Standards and Petitions Subcommittee, 87 pp. Jeffrey, C. (1962): The Botany of the Seychelles (Report by the visiting botanist of the Department of Technical Cooperation Seychelles Botanical Survey, 1961-62). London, 37 pp. Jürgens, N. (1997): Floristic biodiversity and history of African arid regions. - Biodiversity and Conservation 6: 495-514. Kier, G. & Barthlott, W. (2001): Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. - Biodiversity and Conservation 10: 1513-1529. Langhammer, P.F., Bakarr, M.I., Bennun, L.A., Brooks, T.M., Clay, R.P., Darwall, W., De Silva, N., Edgar, G.J., Eken, G., Fishpool, L.D.C., da Fonseca, G.A.B., Foster, M.N., Knox, D.H., Matiku, P., Radford, E.A., Rodriguez, A.S.L., Salaman, P., Sechrest, W. & Tordoff, A.W. (2007): Identification and Gap Analysis of Key Biodiversity Areas: Targets for Comprehensive Protected Area Systems. IUCN, Gland, Switzerland, 116 pp. Meerman, J.C. & Sabido, W. (2001): Central American ecosystems map: Belize. Vol. 1, Programme for Belize, Belize City, Belize, 28 pp. Meyrat, A.K., Vreugdenhil, D., Meerman, J.C., Gómez, L.D. & Graham, D.J. (2002): Central American Ecosystems Map: Ecosystem Descriptions. Vol. 2, The World Bank, Washington, D.C., USA. Miller, R.M., Rodriguez, J., Aniskowicz-Fowler, T., Bambaradeniya, C., Boles, R., Eaton, M.A., Gardenfors, U., Keller, V., Molur, S. & Walker, S. (2007): National threatened species listing based on IUCN criteria and regional guidelines: current status and future perspectives. - Conservation Biology 21 (3): 684-696. Mills, M.H. & Schwartz, M.W. (2005): Rare plants at the extremes of distribution: broadly and narrowly distributed rare species. - Biodiversity and Conservation 14: 1401-1420.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

28

Milner-Gulland, E.J., Kreuzberg-Mukhina, E., Grebot, B., Ling, S., Bykova, E., Abdusalamov, I., Bekenov, A., Gärdenfors, U., Hilton-Taylor, C. & Salnikov, V. (2006): Application of IUCN red listing criteria at the regional and national levels: A case study from central Asia. - Biodiversity and conservation 15 (6): 1873-1886. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000): Biodiversity hotspots for conservation priorities. - Nature 403 (6772): 853-858. Osieck, E. & Morzer Bruyns, M.F. (1981): Important Bird Areas in the European Community. ICBP, Cambridge (UK). Parmentier, I., Harrigan, R.J., Buermann, W., Mitchard, E.T.A., Saatchi, S., Malhi, Y., Bongers, F., Hawthorne, W.D., Leal, M.E., Lewis, S.L., Nusbaumer, L., Sheil, D., Sosef, M.S.M., Affum-Baffoe, K., Bakayoko, A., Chuyong, G.B., Chatelain, C., Comiskey, J.A., Dauby, G., Doucet, J.-L., Fauset, S., Gautier, L., Gillet, J.-F., Kenfack, D., Kouame, F.N., Kouassi, E.K., Kouka, L.A., Parren, M.P.E., Peh, K.S.H., Reitsma, J.M., Senterre, B., Sonke, B., Sunderland, T.C.H., Swaine, M.D., Tchouto, M.G.P., Thomas, D., Van Valkenburg, J.L.C.H. & Hardy, O.J. (2011): Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. - Journal of Biogeography 38 (6): 1164-1176. Pascal, O., Labat, J.-N., Pignal, M. & Soumille, O. (2001): Diversité, affinités phytogéographiques et origines présumées de la flore de Mayotte (Archipel des Comores). Syst. Geogr. Plant 71: 1101-1123. Pressey, R.L., Johnson, I.R. & Wilson, P.D. (1994): Shades of irreplaceability: towards a measure of the contribution of sites to a reservation goal. - Biodiversity and Conservation 3: 242-262. Procter, J. (1973): National parks in the Seychelles. - Biol. Conserv. 5: 153-155. Procter, J. (1984): Floristics of the granitic islands of the Seychelles. - In: D.R. Stoddart (ed.) Biogeography and ecology of the Seychelles islands. Pp. 209-220. - Junk Publishers, The Hague. Rabinowitz, D. (1981): Seven forms of rarity. - In: H. Synge (ed.) The biological aspects of rare plant conservation. Pp. 205-218. - Wiley, New York, USA. Rakotondrainibe, F., Badré, F. & Stefanović, S. (1996): Etude floristique et phytogéographique des Ptéridophytes des îles du sud-ouest de l'ocean Indien. - In: W.R. Lourenço (ed.) Biogéographie de Madagascar. Pp. 109-120. - ORSTOM, Paris. Renvoize, S.A. (1971): The Origin and Distribution of the Flora of Aldabra. A Discussion on the Results of the Royal Society Expedition to Aldabra 1967-68. - Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 260 (836): 227-236. Renvoize, S.A. (1975): A floristic analysis of the western Indian Ocean coral islands. - Kew Bulletin 30 (1): 133-152. Renvoize, S.A. (1979): The origins of lndian Ocean island floras. - In: D. Bramwell (ed.) Plants and islands. Pp. 107-129. - Academic Press, London. Schoener, T.W. (1987): The geographical distribution of rarity. - Oecologia 74: 161-173.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

29

Senterre, B. (2005): Recherches méthodologiques pour la typologie de la végétation et la phytogéographie des forêts denses d'Afrique tropicale. - Ph.D. thesis, Université Libre de Bruxelles, Laboratoire de Botanique systématique et de Phytosociologie, Bruxelles, 456 pp. Senterre, B. (2009): Forest fire risk assessment on Seychelles main granitic islands. Consultancy report, Ministry of Environment-UNDP-GEF project, Mahé, Seychelles, 61 pp. Senterre, B., Rocamora, G., Bijoux, J., Mortimer, J.A. & Gerlach, J. (2010a): Seychelles biodiversity metadatabase. Consultancy Report, Ministry of Environment-UNDP-GEF project. 5 volumes, 1 Access file, 2 Excel files, Victoria, Seychelles. Senterre, B., Rocamora, G., Bijoux, J., Mortimer, J.A. & Gerlach, J. (2010b): Seychelles biodiversity metadatabase. Output 5: Priority Gap Analysis on Seychelles’ Biodiversity knowledge and information. Consultancy Report, Ministry of Environment-UNDP-GEF project, Victoria, Seychelles, 270 pp. Sosef, M.S.M. (1996): Begonias and African rain forest refuges: general aspects and recent progress. - In: L.J.G. van der Maesen (ed.) The Biodiversity of african plants. Pp. 602-611. Kluwer Academic Publishers, The Netherlands. Summerhayes, V.S. (1931): An enumeration of the Angiosperms of the Seychelles Archipelago. - Trans. Linn. Soc. 19: 261-299. Swabey, C. (1970): The endemic flora of the Seychelles islands and its conservation. - Biol. Conserv. 2 (4): 171-177. van der Maarel, E. (1979): Transformation of cover-abundance values in phytosociology and its effects on community similarity. - Vegetatio 39 (2): 97-114. Vreugdenhil, D. (1992): Biodiversity Protection and Investment Needs for the Minimum Conservation System in Costa Rica. Consultancy Report, DHV Consultants, under Contract by the World Bank, Washington D.C., USA. Vreugdenhil, D. (2002): MICOSYS, Application Honduras “National Parks Model”, Evaluation spreadsheet in MS Excel, (version 3, with contributions by P. R. House. Prepared for PPROBAP, Project COHDEFOR/UNDP/World Bank/GEF. URL http://www.birdlist.org/nature_management/national_parks/micosys.zip Vreugdenhil, D., Terborgh, J., Cleef, A.M., Sinitsyn, M., Boere, G.C., Archaga, V.L. & Prins, H.H.T. (2003): Comprehensive Protected Areas System Composition and Monitoring. WICE, USA, Shepherdstown, 106 pp. Wallace, A.R. (1892): Island life or the phenomena and causes of insular faunas and floras, including a revision and attempted solution of the problem of geographical climates. Macmillan and Co., London and New York. Wickens, G.E. (1979): Speculations on seed dispersal and the flora of the Aldabra Archipelago. - Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 286: 85-97.

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

30

VI APPENDIX 1: SUBMITED WORK PLAN TIME TABLE (TOR) Activity Development of workplans/team 1-Select taxa of special concern 2-Compile existing spatial data on the selected species 3-Stakeholders consultation for oral knowledge input 4-Consolidate the spatial data on the selected species into a GIS database 5-Develop suggested methodologies for complete inventories of selected areas of biodiversity priority 6a-Define and discuss criteria for selection of KBAs 6b-Define and discuss a selection of KBAs 6c-Define and discuss inventories methodologies for the KBAs 7-Conduct inventories within selected KBAs candidates 8-Synthesis of historical data and data collected through the new inventories 9-Define and map the assessed KBAs 10-Provide recommendations 11-Validate findings in a workshop Total

Sep11

Oct11

Nov11

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

Dec11

Jan12

Feb12

Mar12

Apr12

MaySep-12

Oct-12

Nov-12

Dec-12

Jan-13

Total 4 40 102 93

35

33 52

280

50 35 3 23 750

31

VII APPENDIX 2: THE LIST OF SPECIES OF SPECIAL CONCERN Species are classified per alphabetical order of CLASS (not necessarily the Class taxonomic level), then FAMILY and SPECIES. Criteria for species selection are detailed in the section II.1, as well as the categories for Origin, IUCN (see also section I.3.3) and Rarity. Names used are not necessarily according to the most recent valid name but often according to the most commonly used name in the Seychelles (except for misapplied names). VII.1 Amphibians

(Lindsay Chong-Seng) : 13 entries

CLASS

FAMILY

SPECIES

Vernacular names

Origin IUCN Rarity

Anura

Hyperoliidae

Tachynenis seychellensis

Krapo

end

Anura

Ranidae

Ptychadaena mascareniensis

Anura

Sooglossidae

Nesomantis thomasseti

Pti grenwir

end

R

Anura

Sooglossidae

Sooglossus gardineri

Pti grenwir

end

F

Anura

Sooglossidae

Sooglossus pipilodryas

end

R

Anura

Sooglossidae

Sooglossus sechellensis

Pti grenwir

end

R

Gymnophiona

Caecilidae

Grandisonia alternans

LEVERTER NWANR

end

F

Gymnophiona

Caecilidae

Grandisonia brevis

LEVERTER NWANR

end

R

Gymnophiona

Caecilidae

Grandisonia diminutiva

LEVERTER NWANR

end

R

Gymnophiona

Caecilidae

Grandisonia larvata

end

F

Gymnophiona

Caecilidae

Grandisonia sechellensis

end

R

Gymnophiona

Caecilidae

Hypogeophis rostratus

end

F

Gymnophiona

Caecilidae

Praslinia cooperi

end

R

VII.2 Birds,

F

exo,?

freshwater fishes and Crustacean (Elvina Henriette): 46 entries

CLASS

FAMILY

SPECIES

Vernacular names

Origin IUCN Rarity

Landbird

Acrocephalidae

Acrocephalus sechellensis Oustalet, 1877

Pti merl de zil

end

VU

Landbird

Apodidae

Aerodramus elaphrus

Zirondel

end

VU

R

Landbird

Ardeidae

Bubulcus ibis seychellarum Salomonsen, 1934

Madanm paton

end

LC

A

Landbird

Ardeidae

Butorides striatus degens

Mannik

end

LC

C

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

32

R

Landbird

Columbidae

Alectroenas pulcherrima Scopoli, 1786

Pizon olande

end

LC

C

Landbird

Columbidae

Streptopelia picturata rostrata

Tourtrel dezil

end

LC

C

Landbird

Columbidae

Streptopelia picturata Temminck, 1813

Tourtrel dezil

exo

LC

C

Landbird

Falconidae

Falco araea Oberholser, 1917

Katiti

end

VU

O

Landbird

Monarchidae

Terpsiphone corvina Newton, 1867

Vev

end

CR

R

Landbird

Muscicapidae

Copsychus sechellarum Newton, 1865

Pisantez

end

EN

R

Landbird

Nectariniidae

Nectarinia dussumieri Hartlaub, 1860

Kolibri

end

LC

C

Landbird

Ploceidae

Foudia sechellarum Newton, 1865

Tok tok

end

NT

O

Landbird

Psittacidae

Coracopsis (nigra) barklyi

Kato nwanr

end

VU

R

Landbird

Pycnonotidae

Hypsipetes crassirostris E.Newton, 1867

Merl

end

LC

C

Landbird

Rallidae

Gallinula chloropus Linnaeus, 1758

Poul do

ind

LC

C

Landbird

Strigidae

Otus insularis Tristram, 1880

Syer

end

EN

R

Landbird

Zosteropidae

Zosterops modestus Newton, 1867

Zwazo linet

end

EN

R

Seabirds

Fregatidae

Fregata ariel

Pti fregat

LC

C

Seabirds

Fregatidae

Fregata minor

Gran fregat

LC

C

Seabirds

Phaethontidae

Phaethon lepturus

Payanke lake blan

LC

F

Seabirds

Phaethontidae

Phaethon rubricauda

Payanke lake rouz

LC

O

Seabirds

Procellariidae

Puffinus lherminieriLesson, 1839

Riga

LC

C

Seabirds

Procellariidae

Puffinus pacificus Gmelin, 1789

Fouke dezil

LC

C

Seabirds

Sternidae

Anous stolidus Linnaeus, 1758

Makwa

LC

C

Seabirds

Sternidae

Anous tenuirostris Temminck, 1823

Kelek

Seabirds

Sternidae

Gygis alba Sparrman, 1786

Golan blan

LC

C

Seabirds

Sternidae

Sterna anaethetus

Fansen

LC

F

Seabirds

Sternidae

Sterna dougallii Montagu, 1813

Dyanman roz

LC

Seabirds

Sternidae

Sterna fuscata Linnaeus, 1766

Golet

LC

C

Seabirds

Sternidae

Thalasseus bengalensis Lesson, 1831

Pti golan sardin

LC

F

Shorebirds

Ardeidae

Ardea cinerea

Floranten sann

ind

LC

C

Shorebirds

Ardeidae

Bubulcus ibis ibis

Madanm paton

ind

LC

C

Shorebirds

Ardeidae

Ixobrychus sinensis Gmelin, 1789

Makak zonn

ind

LC

R

Shorebirds

Ardeidae

Nycticorax nycticorax Linnaeus, 1758

Mannik lannwit

LC

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

33

C

Actinopterygii

Aplocheilidae

Pachypanchax playfairii Gunther, 1866

Gourzon

end

Gobioidei

Ptereleotridae

Parioglossus multiradiatus

Larkansyel

end

R

Crustaceans

Atyidae

Cardina longirostris Milne-Edwards, 1837

Sevret gran labek

ind

C

Crustaceans

Atyidae

Cardina serratirostris De Man, 1892

Sevret tas blan

ind

C

Crustaceans

Atyidae

Cardina typus Milne-Edwards, 1837

Sevret

ind

C

Crustaceans

Atyidae

Caridina similis Bouvier, 1904

Sevret labek kourt

end

C

Crustaceans

Grapsidae

Sesarmops impressum Milne-Edwards, 1837

Krab larivyer

ind

C

Crustaceans

Grapsidae

Varuna litterata Fabricius, 1798

Krab mangliye

ind

C

Crustaceans

Palaemonidae

Macrobrachium equidens Dana, 1852

Kanmaron pitakle

ind

C

Crustaceans

Palaemonidae

Macrobrachium idae Heller, 1862

Kanmaron zonn

ind

C

Crustaceans

Palaemonidae

Macrobrachium lar Fabricius, 1798

Kanmaron gran lebra

ind

C

Crustaceans

Potamonautidae

Seychellum alluaudi A.Milne-Edwards & Bouvier, 1893

Krab montanny

end

VII.3 Mammals

A

LC

A

and reptiles (Terence Vel): 20 entries

CLASS

FAMILY

SPECIES

Vernacular names

Origin IUCN Rarity

Mammalia

Emballonuridae

Coleura seychellensis (Peters, 1868)

Sousouri Bannan

end

CR

R

Mammalia

Pteropodidae

Pteropus seychellensis (Milne-Edwards, 1877)

Sousouri

end

LC

C

Reptilia

Chamaeleonidae

Archaius tigris (Kuhl, 1820)

Kameleon

end

EN

R

Reptilia

Colubridae

Boaedon geometricus (Schlegel, 1837)

Koulev zonn

end

EN

R

Reptilia

Colubridae

Lycognathophis Seychellensis (Schlegel, 1837)

Koulev gri

end

EN

R

Reptilia

Gekkonidae

Ailuronyx seychellensis (Duméril & Bibron, 1834)

Bronze eye Gecko

end

LC

A

Reptilia

Gekkonidae

Ailuronyx tachyscopaeus (Gerlach & Canning, 1996)

Dwarf Bronze Gecko

end

NT

R

Reptilia

Gekkonidae

Ailuronyx trachygaster (Duméril & Bibron, 1851)

Giant Bronze Gecko

end

VU

R

Reptilia

Gekkonidae

Phelsuma abbotti (Stejneger, 1893)

Lezar ver

end

LC

O

Reptilia

Gekkonidae

Phelsuma astriata astriata (Tornier, 1901)

Lezar ver

end

LC

A

Reptilia

Gekkonidae

Phelsuma sundbergi (Rendahl, 1939)

Lezar ver

end

LC

A

Reptilia

Gekkonidae

Phelsuma sundbergi longinsulae (Rendahl, 1939)

Lezar ver

end

VU

A

Reptilia

Gekkonidae

Urocotyledon inexpectata (steiner, 1893)

Lezar Disik

end

LC

A

Reptilia

Pelomedusidae

Pelusios castanoides ssp. Intergularis (Bour, 1983)

Torti Soupap

end

CR

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

34

Reptilia

Pelomedusidae

Pelusios seychellensis (Siebenrock, 1906)

Torti Soupap

end

EX

Reptilia

Pelomedusidae

Pelusios subniger ssp. Parietalis (Bour, 1983)

Torti Soupap

end

CR

R

Reptilia

Scincidae

Mabuya sechellensis (Dumeril & Bibron, 1836)

Mangouya

end

LC

A

Reptilia

Scincidae

Mabuya wrightii (Boulenger 1887)

Teng Teng

end

LC

A

Reptilia

Scincidae

Pamelaesscinus gardineri (Boulenger, 1909)

Borrowing Skink

end

LC

R

Reptilia

Testudinidae

Geochelone gigantea (Schweigger, 1812)

Torti - d - ter / Karoz

end

VU

A

VII.4 Terrestrial

R

and freshwater invertebrates (Justin Gerlach): 852 entries

CLASS

FAMILY

SPECIES

Vernacular names

Origin IUCN Rarity

Acari

HOLOTHYIDAE

Dicrogonatus gardineri Warburton, 1912

end

R

Acari

HOLOTHYIDAE

Dicrogonatus niger (Thon, 1906)

end

O

Acari

HOLOTHYIDAE

Michaelothrus seychellensis (Thon, 1906)

end

R

Acari

HOLOTHYIDAE

Sternothyrus braueri (Thon, 1906)

end

F

Amblypygi

Phrynichidae

Phrynichus scaber (Gervais, 1844)

end

R

Arachnida

ARANEIDAE

Prasonica anarillea Roberts, 1983

end

R

Arachnida

ARANEIDAE

Prasonicella marsa Roberts, 1983

end

R

Arachnida

BARYCHELIDAE

Idioctis intertidalis (Benoit & Legendre, 1968)

ind

R

Arachnida

BARYCHELIDAE

Sason sechellanum Simon, 1898

end

O

Arachnida

CLUBIONIDAE

Clubiona hitchinsi Saaristo, 2002

end

O

Arachnida

CLUBIONIDAE

Clubiona mahensis Simon, 1893

end

O

Arachnida

CORINNIDAE

Paccius quadridentatus Simon, 1898

end

R

Arachnida

CTENIZIDAE

Conothele truncicola Saaristo, 2002

end

R

Arachnida

OCHYROCERATIDAE

Ouette ouette Saaristo, 1998

end

R

Arachnida

OONOPIDAE

Aridella bowleri Saaristo, 2002

end

R

Arachnida

OONOPIDAE

Cousinea keeleyi Saaristo, 2001

end

O

Arachnida

OONOPIDAE

Farqua quadrimaculata Saaristo, 2001

end

R

Arachnida

OONOPIDAE

Ischnothyrella jivani (Benoit, 1979)

end

R

Arachnida

OONOPIDAE

Ischnothyreus serpentinum Saaristo, 2001

end

R

Arachnida

OONOPIDAE

Lionneta gerlachi Saaristo, 2001

end

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

35

Arachnida

OONOPIDAE

Lionneta silhouettei Benoit, 1979

end

O

Arachnida

OONOPIDAE

Opopaea probosciella Saaristo, 2001

end

O

Arachnida

OONOPIDAE

Opopaea suspecta Saaristo, 2002

end

O

Arachnida

OONOPIDAE

Orchestina maureen Saaristo, 2001

end

O

Arachnida

OONOPIDAE

Silhouettella assumptia Saaristo, 2001

end

R

Arachnida

Palpimanidae

Hybosida dauban Platnick, 1979

end

R

Arachnida

Palpimanidae

Hybosida lucida Simon, 1898

end

R

Arachnida

PHOLCIDAE

Cenemus silhouette Saaristo, 2001

end

R

Arachnida

PHOLCIDAE

Spermophorides lascars Saaristo, 2001

end

R

Arachnida

PRODIDOMIDAE

Prodida stella Saaristo, 2002

end

R

Arachnida

SALTICIDAE

Baviola luteosignata Wanless, 1984

end

R

Arachnida

SALTICIDAE

Hasarius mahensis Wanless, 1984

end

R

Arachnida

SALTICIDAE

Microbianor golovatchi Logunov, 2000

end

R

Arachnida

SALTICIDAE

Sadies trifasciata Wanless, 1984

end

R

Arachnida

SALTICIDAE

Salpesia soricina Simon, 1901

end

R

Arachnida

SCYTODIDAE

Scytodes pholcoides Simon, 1898

end

R

Arachnida

SEGESTRIIDAE

Ariadna ustulata Simon, 1898

end

R

Arachnida

SPARASSIDAE

Pleurotus braueri Simon, 1898

end

Arachnida

SPARASSIDAE

Stipax triangulifer Simon, 1898

end

Arachnida

SPARASSIDAE

Thomasettia seychellana Hirst, 1911

end

Arachnida

SYMPHYTOGNATHIDAE Patu silho Saaristo, 1996

end

R

Arachnida

TELEMIDAE

Seychellia lodoiceae Brignoli, 1980

end

R

Arachnida

TELEMIDAE

Theridion nagorum Roberts, 1983

end

R

Arachnida

THERAPHOSIDAE

Nesiergus gardineri (Hirst, 1911)

end

R

Arachnida

THERAPHOSIDAE

Nesiergus halophilus Benoit, 1978

end

R

Arachnida

THERAPHOSIDAE

Nesiergus insulans Simon, 1903

end

R

Arachnida

THERIDIIDAE

Argyrodes chionus Roberts, 1983

end

R

Arachnida

THERIDIIDAE

Dipoena hasra Roberts, 1983

end

R

Arachnida

THERIDIIDAE

Dipoena pristea Roberts, 1983

end

R

Arachnida

THERIDIIDAE

Eyryopis helcra Roberts, 1983

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

36

R

Arachnida

THERIDIIDAE

Moneta coercervus (Roberts, 1978)

end

R

Arachnida

THERIDIIDAE

Theridion cloxum Roberts, 1983

end

R

Arachnida

THERIDIIDAE

Theridion mehlum Roberts, 1983

end

R

Arachnida

THERIDIIDAE

Theridion palanum Roberts 1983

end

R

Arachnida

Theridiosomatidae

Andasta siltte, Saaristo, 1996

end

R

Arachnida

Theridiosomatidae

Zoma zoma Saaristo, 1996

end

R

Arachnida

ZORIDAE

Voraptus tenellus (Simon, 1893)

ind

R

Archaeognatha

Machilidae

Corethromachilis brevipalpis Carpenter, 1916

end

O

Archaeognatha

Machilidae

Corethromachilis gardineri Carpenter, 1916

end

O

Archaeognatha

Machilidae

Corethromachilis gibba (Paclt, 1969)

end

O

Archaeognatha

Machilidae

Pseudomachilanus sechellarum Paclt, 1969

end

O

Blattodea

Blattellidae

Balta crassivenosa (Bolivar, 1924)

end

R

Blattodea

Blattellidae

Delosia ornata Bolivar, 1924

end

Blattodea

Blattellidae

Hololeptoblatta minor Bolivar, 1924

end

R

Blattodea

Blattellidae

Hololeptoblatta pandanicola Bolivar, 1924

end

R

Blattodea

Blattellidae

Margatteoidea amoena (Bolivar, 1924)

end

Blattodea

Blattellidae

Miriamrothschildia aldabrensis (Bolivar, 1924)

end

C

Blattodea

Blattellidae

Miriamrothschildia biplagiata (Bolivar, 1924)

end

R

Blattodea

Blattellidae

Miriamrotshcildia mahensis Roth & Rivalut, 2002

end

R

Blattodea

Blattellidae

Sliferia similis (Bolivar, 1924)

end

R

Blattodea

Blattellidae

Theganopteryx grisea Bolivar, 1924

end

Blattodea

Blattellidae

Theganopteryx liturata Bolivar, 1924

end

Blattodea

Blattellidae

Theganopteryx lunulata Bolivar, 1924

end

Blattodea

Blattellidae

Theganopteryx minuta Bolivar, 1924

end

Blattodea

Blattellidae

Theganopteryx scotti Bolivar, 1924

end

Blattodea

Blattidae

Neostylopyga rhombifolia (Stoll, 1813)

end

R

Blattodea

Nocticolidae

Nocticola gerlachi Roth, 2003

end

R

Blattodea

Polyphagidae

Holocompsa pusilla Bolivar, 1924

end

R

Chilopoda

MECISTOCEPHALIDAE

Mecistocephalus cyclops (Brölemann, 1896)

end

R

Chilopoda

MECISTOCEPHALIDAE

Mecistocephalus megalodon Bonato & Minelli, 2009

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

37

Chilopoda

MECISTOCEPHALIDAE

Mecistocephalus sechellarum Demange, 1981

end

R

Chilopoda

Scutigeridae

Seychellonema gerlachi Butler, Edgecombe, Ball & Giribert, 2010

end

R

Coleoptera

Aderidae

Aderus clavicornis (Champion, 1917)

end

R

Coleoptera

Aderidae

Aderus seychellarum (Champion, 1917)

end

R

Coleoptera

Aderidae

Aderus torticornis (Champion, 1917)

end

R

Coleoptera

Anthicidae

Eurygenius convexicollis Champion, 1917

end

R

Coleoptera

Anthicidae

Eurygenius fragilicornis Champion, 1917

end

R

Coleoptera

Carabidae

end

R

Coleoptera

Carabidae

Argiloborus scotti Jeannel, 1937 Myriochile melancholica (Fabricius, 1798) perplexa (Dejean, 1825)

ind

F

Coleoptera

Cerambycidae

Anomoderus rugosicollis Aurivillius, 1922

end

R

Coleoptera

Cerambycidae

Ceresium albopubens Fairmaire, 1891

end

O

Coleoptera

Cerambycidae

Ceresium flavipes (Fabricius, 1792)

ind

C

Coleoptera

Cerambycidae

Coptops aedificator (Fabricius, 1792)

exo,?

R

Coleoptera

Cerambycidae

Coptops humerosa Fairmaire, 1872

end

O

Coleoptera

Cerambycidae

Discoblax wrighti (Waterhouse, 1880)

Coleoptera

Cerambycidae

Exocentrus subreticulatus Breuning, 1957

ind

R

Coleoptera

Cerambycidae

Hyllisia quadricollis (Fairmaire, 1871)

end

R

Coleoptera

Cerambycidae

Idobrium femoratum Aurivillius, 1922

end

R

Coleoptera

Cerambycidae

Idobrium sechellarum Aurivillius, 1922

end

R

Coleoptera

Cerambycidae

Idobrium voeltzkowi Kolbe, 1902

end

O

Coleoptera

Cerambycidae

Iresiodes aldabrensis (Linell, 1897)

end

R

Coleoptera

Cerambycidae

Mahenes demelti Breuning, 1980

end

R

Coleoptera

Cerambycidae

Mahenes multifasciatus Vives, 2007

end

R

Coleoptera

Cerambycidae

Mahenes semifasciatus Aurivillius,1922

end

O

Coleoptera

Cerambycidae

Micronoemia albosignata Aurivillius, 1922

end

O

Coleoptera

Cerambycidae

Micronoemia bifasciata Aurivillius, 1922

end

R

Coleoptera

Cerambycidae

Micronoemia gerlachi Vives, 2007

R

Coleoptera

Cerambycidae

Micronoemia glauca Aurivillius, 1922

O

Coleoptera

Cerambycidae

Obrium nitidicolle Aurivillius, 1922

end

F

Coleoptera

Cerambycidae

Olenecamptus bilobus (Fabricius, 1801)

exo,?

C

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

R

38

Coleoptera

Cerambycidae

Paradandamis fuscovittatus Aurivillius, 1922

Coleoptera

Cerambycidae

Paralocus semitibialis Fairmaire, 1898

ind

R

Coleoptera

Cerambycidae

Platygnathus seychellarum Aurivillius, 1922

ind

R

Coleoptera

Cerambycidae

Prosoplus dentatus (Olivier, 1792)

ind

O

Coleoptera

Cerambycidae

Pterolophia instabilis Aurivillius, 1922

end

R

Coleoptera

Cerambycidae

Ropica sechellarum Breuning, 1957

end

R

Coleoptera

Cerambycidae

Stromatium barbatum (Fabricius, 1775)

ind

R

Coleoptera

Cerambycidae

Sybra fauveli (Théry, 1897)

end

R

Coleoptera

Cerambycidae

Sybra geminata (Klug, 1832)

exo

R

Coleoptera

Cerambycidae

Tragocephala alluaudi Lameere, 1893

end

R

Coleoptera

Cerambycidae

Xystrocera globosa (Olivier, 1795)

ind

C

Coleoptera

Chrysomelidae

Biaksha minor Maulik, 1931

end

R

Coleoptera

Chrysomelidae

Bikasha fortipunctata Maulik, 1931

end

R

Coleoptera

Chrysomelidae

Chaetocnema sundara Maulik, 1931

end

R

Coleoptera

Chrysomelidae

Diacantha unifasciata (Olivier, 1808)

ind

R

Coleoptera

Chrysomelidae

Pratima costata Maulik, 1931

end

R

Coleoptera

Chrysomelidae

Pratima variabilis Maulik, 1931

end

R

Coleoptera

Chrysomelidae

Rhabdotohispa scotti Maulik, 1913

end

R

Coleoptera

Chrysomelidae

Rhyparida scotti Maulik, 1931

end

R

Coleoptera

Chrysomelidae

Rhyparida seychellensis Maulik, 1931

end

R

Coleoptera

Chrysomelidae

Seychellaltica gardineri Biondi, 2002

end

R

Coleoptera

Chrysomelidae

Seychellaltica krishna (Maulik, 1931)

end

R

Coleoptera

Chrysomelidae

Seychellaltica mahensis (Maulik, 1931)

end

R

Coleoptera

Cleridae

Pallenis laterisignatus Schenkling, 1921

end

R

Coleoptera

Cleridae

Steocylidrus dimidiatus Schenkling, 1921

end

R

Coleoptera

Cleridae

Tarsostenus univittatus Rossi

ind

R

Coleoptera

Coccinellidae

Scymnus cryptogonoides Sicard, 1912

end

R

Coleoptera

Coccinellidae

Scymnus lunulatus Sicard, 1912

end

R

Coleoptera

Coccinellidae

Scymnus voeltzkowi (Weise, 1910)

ind

R

Coleoptera

Curculiondiae

Achoragus tener Jordan, 1914

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

R

39

Coleoptera

Curculiondiae

Araecerus fasciculatus (Degeer, 1775)

ind

R

Coleoptera

Curculiondiae

Baridomorpha triplaris Champion, 1914

end

R

Coleoptera

Curculiondiae

Baris seychellensis Champion, 1914

end

R

Coleoptera

Curculiondiae

Camptorrhinus brullei Bohem, 1826

ind

R

Coleoptera

Curculiondiae

Chaerorrhinodes tenuiculus Champion, 1914

end

R

Coleoptera

Curculiondiae

Choragus bolus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Choragus ornatus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Coccotrypes carpophagus (Hornung, 1842)

ind

R

Coleoptera

Curculiondiae

Coccotrypes excavatus Schedl, 1977

end

R

Coleoptera

Curculiondiae

Coccotrypes parvus Sampson, 1914

end

R

Coleoptera

Curculiondiae

Contexta murina Jordan, 1901

ind

R

Coleoptera

Curculiondiae

Coptus latiusculus Champion, 1914

end

R

Coleoptera

Curculiondiae

Corynaecia scotti Jordan, 1914

end

R

Coleoptera

Curculiondiae

Cosmopolites sordidus (Germar, 1824)

ind

R

Coleoptera

Curculiondiae

Cossonus incivilis (Fabricius, 1871)

ind

R

Coleoptera

Curculiondiae

Cratopus muticus Champion, 1914

end

R

Coleoptera

Curculiondiae

Cryphalus pallidus Eichhoff, 1871

ind

R

Coleoptera

Curculiondiae

Cycloterinus caecus Champion, 1914

end

R

Coleoptera

Curculiondiae

Cycloterinus canaliculatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Cycloterinus carinifer Champion, 1914

end

R

Coleoptera

Curculiondiae

Cycloterinus erosus Champion, 1914

end

R

Coleoptera

Curculiondiae

Cycloterinus foveatus Kolbe, 1910

end

R

Coleoptera

Curculiondiae

Cycloterinus unicristatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Cycloterodes sechellarum Kolbe, 1910

end

R

Coleoptera

Curculiondiae

Dendroctonomorphus muriceus Champion, 1914

ind

R

Coleoptera

Curculiondiae

Diocalandra frumenti (Fabricius, 1801)

ind,?

R

Coleoptera

Curculiondiae

Dryophthorus lymexylon (Fabricius, 1792)

ind

R

Coleoptera

Curculiondiae

Dysnos aethiops Jordan, 1914

end

R

Coleoptera

Curculiondiae

Endaeopsis delicatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Epitaphius licheneus Jordan, 1914

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

40

Coleoptera

Curculiondiae

Eucycloteres terreus Champion, 1914

end

R

Coleoptera

Curculiondiae

Eugnoristus braueri Kolbe, 1910

end

R

Coleoptera

Curculiondiae

Euops viriditinctus Champion, 1914

end

F

Coleoptera

Curculiondiae

Euphasalis amitina Kolbe, 1910

end

R

Coleoptera

Curculiondiae

Gonotrachelus quinquecarinatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Himatinum breviusculum Champion, 1914

end

R

Coleoptera

Curculiondiae

Himatinum confluum Champion, 1914

end

R

Coleoptera

Curculiondiae

Himatinum rugipenne Champion, 1914

end

R

Coleoptera

Curculiondiae

Homalorrhynchus rubricatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Homalorrhynchus serripes Champion, 1914

end

R

Coleoptera

Curculiondiae

Homalorrhynchus verschaffeltiae Champion, 1914

end

R

Coleoptera

Curculiondiae

Hormiscops laetus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Hormiscops sorbrinus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Hormiscops tesselatus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Hormiscops tibialis Jordan, 1914

end

R

Coleoptera

Curculiondiae

Hypopentathrum microcephalum Champion, 1914

end

R

Coleoptera

Curculiondiae

Lasiotrupis clavigera Champion, 1914

end

R

Coleoptera

Curculiondiae

Melarhinus incrustatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Microhimatium pubescens Champion, 1914

end

R

Coleoptera

Curculiondiae

Microplatymerus lodoiceivorus Champion, 1914

end

R

Coleoptera

Curculiondiae

Microtrupis longipennis Champion, 1914

end

R

Coleoptera

Curculiondiae

Microtrupis piligera Champion, 1914

end

R

Coleoptera

Curculiondiae

Microtrupis puncticeps Champion, 1914

end

R

Coleoptera

Curculiondiae

Myocaldanra exarata (Boheman, 1838)

ind

R

Coleoptera

Curculiondiae

Orthotemnus filiformis Champion, 1914

end

R

Coleoptera

Curculiondiae

Pentarthrum longicolle Champion, 1914

end

R

Coleoptera

Curculiondiae

Pentarthrum punctatissimum Champion 1914

end

R

Coleoptera

Curculiondiae

Pentarthrum seychellarum Champion, 1914

end

R

Coleoptera

Curculiondiae

Phaenicobates rufitarsis Champion, 1914

end

R

Coleoptera

Curculiondiae

Phlaeophagosoma conicicolle Champion, 1914

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

41

Coleoptera

Curculiondiae

Phoenicobates alatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates albosetosus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates curvipes Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates cuspidatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates cylindricus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates depressirostris Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates duplovestitus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates fortirostris Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates foveiventris Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates gibbirostris Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates hispidulus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates lodoiceae Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates nigrolimbatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates pandanicola Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates parallelus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates peropacus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates praslinensis Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates sebertensis Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates simplex Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates stevensoniae Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates tenuis Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobates vittatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobatopsis echinatus Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicobatopsis septiceps Champion, 1914

end

R

Coleoptera

Curculiondiae

Phoenicogenus inermis Champion,1914

end

R

Coleoptera

Curculiondiae

Platypus lepidus Chapius, 1866

ind

R

Coleoptera

Curculiondiae

Polytus mellerborgi (Boheman, 1838)

ind

R

Coleoptera

Curculiondiae

Proeces compressicollis Champion, 1914

end

R

Coleoptera

Curculiondiae

Proeces silvestris (Kolbe, 1910)

end

R

Coleoptera

Curculiondiae

Rhetogenes sexcristatus Champion, 1914

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

42

Coleoptera

Curculiondiae

Rhetogenes spurcus Champion, 1914

end

R

Coleoptera

Curculiondiae

Rhyncolosoma dubium (Gahan, 1900)

ind

R

Coleoptera

Curculiondiae

Sciatrophus fuscus Sampson, 1914

end

R

Coleoptera

Curculiondiae

Sciretinus dimidiatus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Scirtetinus eumelas Jordan, 1914

end

R

Coleoptera

Curculiondiae

Scirtetinus luteipes Jordan, 1914

end

R

Coleoptera

Curculiondiae

Scirtetinus piceus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Scolytogenes confragosus (Sampson, 1914)

end

R

Coleoptera

Curculiondiae

Scolytogenes crenatus (Sampson, 1914)

end

R

Coleoptera

Curculiondiae

Shutea acminatum (Champion, 1914)

end

R

Coleoptera

Curculiondiae

Sintorops alloeus Jordan, 1914

end

R

Coleoptera

Curculiondiae

Sitophilus linearis (Herbst, 1797)

ind

R

Coleoptera

Curculiondiae

Sphodrias magdaloides Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenomimus orientalis Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenopentarthrum pandanae Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis biformis Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis caliginosa Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis conicicephala Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis convexiuscula Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis crassipes Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis dumetorum Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis filum Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis lodoiceicola Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis nemoralis Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis nitidula Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis parallela Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis polita Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis rufipes (Fairmaire, 1902)

ind

R

Coleoptera

Curculiondiae

Stenotrupis sericata Champion, 1914

end

R

Coleoptera

Curculiondiae

Stenotrupis silvicola Champion, 1914

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

43

Coleoptera

Curculiondiae

Stenotrupis tarsalis Champion, 1914

end

R

Coleoptera

Curculiondiae

Sycites pilicornis Champion, 1914

end

R

Coleoptera

Curculiondiae

Tanyomus palmicola Champion, 1914

end

R

Coleoptera

Curculiondiae

Temnorrhamphus latirostris Champion, 1914

end

R

Coleoptera

Curculiondiae

Tetragonorrhamphus tuberculirostirs Champion, 1914

end

R

Coleoptera

Curculiondiae

Trapezirrhynchus silhouettensis Champion, 1914

end

R

Coleoptera

Curculiondiae

Trochorhopalus strangulatus (Gyllenhal, 1838)

ind

R

Coleoptera

Elmidae

Microlara mahensis Jäch, 1993

end

R

Coleoptera

Gyrinidae

Dineutus subspinosus (Klug, 1834)

end

R

Coleoptera

Histeridae

Abraeomorphus atomarius (Sharp, 1885)

end

R

Coleoptera

Histeridae

Aeletes daubani (Scott, 1913)

end

R

Coleoptera

Histeridae

Aeletes davidsoni (Scott, 1913)

end

R

Coleoptera

Histeridae

Aeletes fryeri (Scott, 1913)

end

R

Coleoptera

Histeridae

Bacanius rombophorus (Aubé, 1843)

end

R

Coleoptera

Histeridae

Carcinops troglodytes (Paykull, 1811)

end

R

Coleoptera

Histeridae

Platylomalus alluaudi (Schmidt, 1893)

end

R

Coleoptera

Histeridae

Saprinus erichsoni Marseul, 1855

end

R

Coleoptera

Hydrophilidae

Bourdonnaisia mahensis Scott, 1913

end

F

Coleoptera

Hydrophilidae

Bourdonnaisia silhouettae Scott, 1913

end

F

Coleoptera

Limnichidae

Hyphalus crowsoni Hernando & Ribera, 2000

end

R

Coleoptera

Limnichidae

Hyphalus madli Hernando & Ribera, 2004

end

R

Coleoptera

Scarabaeudae

Nesohoplias senecionis Scott, 1912

end

R

Coleoptera

Scarabaeudae

Saprosites palmarum (Scott, 1913)

end

R

Coleoptera

Scarabaeudae

Saprosites pygmaeus Harold, 1877

end

R

Coleoptera

Scydmaenidae

Stenichnoteras montanum Scott, 1921

end

R

Coleoptera

Tenebrionidae

Amarygmus seychellensis Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Bradymerus hispidus Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Bradymerus scotti Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Bradymerus seychellensis Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Cacoplesia annulipes Champion, 1917

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

44

Coleoptera

Tenebrionidae

Camarothelops braueri Kolbe, 1910

end

R

Coleoptera

Tenebrionidae

Cylindrosia foveifrons Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Enicmosoma punctum Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Heterophyllus atomus Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Mahena cuprea Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Palorus mahenus Gebien, 1922

end

R

Coleoptera

Tenebrionidae

end

R

Coleoptera

Tenebrionidae

Palorus praslinensis Gebien, 1922 Platydema inaequidens (Fairmaire, 1880) seychellarum Gebien, 1922

end

R

Coleoptera

Tenebrionidae

Pseudhadrus braueri Kolbe, 1910

end

R

Coleoptera

Tenebrionidae

Pseudhadrus seriatus Kolbe, 1910

end

Coleoptera

Tenebrionidae

Pulposipes herculeanus Solier, 1848

end

Coleoptera

Tenebrionidae

Rhipidandrus speculifrons (Gebien, 1922)

end

R

Coleoptera

Tenebrionidae

Tagalus cavifrons (Fairmaire, 1893)

end

R

Coleoptera

Tenebrionidae

Tyrtaeus singularis Grouvelle, 1918

end

R

Coleoptera

Tenebrionidae

Uloma crenatostiata Fairmaire, 1868

end

R

Dermaptera

Anisolabididae

Antisolabis scotti (Burr, 1910)

end

R

Dermaptera

Anisolabididae

Antisolabis seychellensis (Brindle, 1976)

end

R

Dermaptera

Forficulidae

Hypurgus ova (Bormans, 1883)

ind,?

C

Dermaptera

Spongiphoridae

Chaetolabia fryeri (Burr, 1910)

end

R

Dermaptera

Spongiphoridae

Chaetospania gardineri (Burr, 1910)

end

R

Diplopoda

Pachybolidae

Eucarlia alluaudi (Brölemann, 1896)

end

R

Diplopoda

Pachybolidae

Eucarlia hoffmani Golvatch & Korsós, 1992

end,?

R

Diplopoda

Pachybolidae

Eucarlia mauriesi Golovatch & Korsós, 1992.

end

R

Diplopoda

Pachybolidae

Spiromanes braueri (Attems, 1900)

end

O

Diplopoda

Paradoxosomatidae

Orthomorpha crinita Attems, 1900

end

R

Diplopoda

Siphonophoridae

Siphonophora silhouettensis Attems, 1900

end

O

Diplopoda

Siphonotidae

Rhinotus albifrons Mauriès, 1980

end

R

Diplopoda

Siphonotidae

Rhinotus densepilosus Golovatch & Korsós, 1984

end

O

Diplopoda

Siphonotidae

Rhinotus vanmoli Mauriès, 1980

end

F

Diplopoda

Spirobolidae

Spirobolus praslinus Saussure & Zehntner, 1902

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

45

R CR

R

Diplopoda

Spirostreptidae

Sechelleptus unilineatus Golovatch & Korsós, 1992

end

F

Diptera

Agromyzidae

Cerodontha piliseta (Becker, 1903)

ind

O

Diptera

Agromyzidae

Ophiomyia centrosematis (de Meijere, 1840)

ind

O

Diptera

Asilidae

Trichardis nigrescens (Ricardo, 1925)

ind

O

Diptera

Asteiidae

Asteia lambi Duda, 1927

ind

O

Diptera

Asteiidae

Phlebosotera striata Hendel, 1931

ind

O

Diptera

Bombyliidae

Anthrax johanni Zaitzev, 1997

ind

O

Diptera

Bombyliidae

Exoprosopa aldabrae Greathead, 1976

end

O

Diptera

Bombyliidae

Geron dilutus Bowden, 1974

ind

O

Diptera

Bombyliidae

Geron seychellarum Greathead, 1983

end

O

Diptera

Bombyliidae

Micomitra famula (Bezzi, 1923)

end

O

Diptera

Bombyliidae

Villa aldabrae Greathead, 1976

end

O

Diptera

Calliphoridae

Cosmina calida Bezzi, 1923

end

O

Diptera

Calliphoridae

Cosmina gerlachae Verves & Khrokalo, 2009

end

O

Diptera

Calliphoridae

Rhinia coxendix (Villeneuve, 1916)

ind

O

Diptera

Canacidae

Isocanace briani Mathis, 1982

ind

O

Diptera

Canacidae

Nocticanace actites Mathis & Wirth, 1979

ind

O

Diptera

Canacidae

Nocticanace flavipalpis Mathis & Wirth, 1979

ind

O

Diptera

Canacidae

Tethina ochracea (Hendel, 1913)

ind

O

Diptera

Cecidomyiidae

Asinapta northi Spungis, 2006

end

O

Diptera

Cecidomyiidae

Lepidodiplosis filipes (Kieffer, 1911)

end

O

Diptera

Cecidomyiidae

Seychellepidosis spinosus Spungis, 2007

end

O

Diptera

Ceratopogonidae

Bezzia africana Ingram & Macfie, 1923

ind

O

Diptera

Ceratopogonidae

Bezzia ornatissima (Kieffer, 1911)

end

O

Diptera

Ceratopogonidae

Culicoides adamskii Wirth, 1990

end

O

Diptera

Ceratopogonidae

Dasyhelea cogani Wirth, 1990

end

O

Diptera

Ceratopogonidae

Dasyhelea fenerivensis de Meillon, 1961

ind

O

Diptera

Ceratopogonidae

Dasyhelea hutsoni Wirth, 1990

ind

O

Diptera

Ceratopogonidae

Dasyhelea inconspicuosa Carter, Ingram & Macfie, 1921

ind

O

Diptera

Ceratopogonidae

Dasyhelea monosticta (Ingram & Macfie 1923)

ind

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

46

Diptera

Ceratopogonidae

Dasyhelea nigricans Carter, Ingram & Macfie, 1921

ind

O

Diptera

Ceratopogonidae

Dasyhelea tamsi Wirth & Messersmith, 1977

end

O

Diptera

Ceratopogonidae

Forcipomyia hutsoni Wirth & Ratanaworaban, 1976

end

O

Diptera

Ceratopogonidae

Forcipomyia psilonata (Kieffer, 1911)

ind

O

Diptera

Ceratopogonidae

Forcipomyia pulcherrima Santos Abreu, 1918

ind

O

Diptera

Ceratopogonidae

Forcipomyia sexannulata Clastrier, 1983

end

O

Diptera

Ceratopogonidae

Forcipomyia vesicula de Meillon & Wirth, 1983

ind

O

Diptera

Ceratopogonidae

Metacanthohelea cogani Wirth & Grogan, 1988

end

O

Diptera

Ceratopogonidae

Nilobezzia scotti (Kieffer, 1911)

end

O

Diptera

Ceratopogonidae

Stilobezzia spirogyrae Carter, Ingram & Macfie, 1921

ind

O

Diptera

Chironomidae

Chironomus seychelleanus Kieffer, 1911

ind

O

Diptera

Chironomidae

Clunio gerlachi Sæther, 2004

end

O

Diptera

Chironomidae

Larsia pallidissima (Kieffer, 1911)

end

O

Diptera

Chironomidae

Polypedilum brunneicorne (Kieffer, 1911)

ind

O

Diptera

Chironomidae

Polypedilum glabripenne (Kieffer, 1911)

end

O

Diptera

Chironomidae

Polypedilum melanophilum (Kieffer, 1911)

ind

O

Diptera

Chironomidae

Pseudosmittia remigula Sæther, 2004

end

O

Diptera

Chironomidae

Pseudosmittia triangula (Tokunaga, 1964)

ind

O

Diptera

Chironomidae

Semiocladius brevicornis (Tokunaga, 1964)

ind

O

Diptera

Chironomidae

Tanypus complanatus Sæther, 2004

end

O

Diptera

Chironomidae

Tanytarsus pallidulus Freeman, 1954

ind

O

Diptera

Chloropidae

Anatrichus erinaceus Loew, 1860

ind

O

Diptera

Chloropidae

Caderema femorata (Lamb, 1912)

end

O

Diptera

Chloropidae

Conioscinella dissimilicornis (Lamb, 1912)

end

O

Diptera

Chloropidae

Epimadiza rugosa (de Meijere, 1906)

ind

O

Diptera

Chloropidae

Fiebrigella atritibia (Sabrosky, 1951)

ind

O

Diptera

Chloropidae

Oscinella acuticornis Becker, 1912

ind

O

Diptera

Chloropidae

Pseudogampsocera scutellata (Lamb, 1912)

ind

O

Diptera

Chloropidae

Tricimba armata (Séguy, 1938)

ind

O

Diptera

Clusiidae

Heteromeringia nigrifrons Lamb, 1914

ind

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

47

Diptera

Culicidae

Uranotaenia nepenthes (Theobald, 1912)

ind

O

Diptera

Dolichopodidae

Acropsilus errabundus Lamb, 1922

ind

O

Diptera

Dolichopodidae

Aldabromyia plagiochaeta Meuffels & Grootaert, 2007

end

O

Diptera

Dolichopodidae

Amblypsilopus pallidicornis (Grimshaw, 1901)

ind

O

Diptera

Dolichopodidae

Chaetogonopteron aldabricum Meuffels & Grootaert, 2009

end

O

Diptera

Dolichopodidae

Chaetogonopteron marronense Meuffels & Grootaert, 2007

end

O

Diptera

Dolichopodidae

Chaetogonopteron seychellense Meuffels & Grootaert, 2007

end

O

Diptera

Dolichopodidae

Ethiosciapus prysjonesi Meuffels & Grootaert, 2007

end

O

Diptera

Dolichopodidae

Hydrophorus praecox (Lehmann, 1822)

ind

O

Diptera

Dolichopodidae

Lichtwardtia aldabrensis Meuffels & Grootaert, 2007

end

O

Diptera

Dolichopodidae

Mascaromyia leptogaster (Thomson, 1869)

ind

O

Diptera

Dolichopodidae

Medetera pachyneura Meuffels & Grootaert, 2007

end

O

Diptera

Dolichopodidae

Paraclius solivagus Lamb, 1922

end

O

Diptera

Dolichopodidae

Sympycnus allotarsis Meuffels & Grootaert, 2007

end

O

Diptera

Dolichopodidae

Tachytrechus tessellatus (Macquart, 1842)

ind

O

Diptera

Dolichopodidae

Thinophilus indigenus Becker, 1902

ind

O

Diptera

Drosophilidae

Drosophila vallismaia Tsacas, 1984

end

O

Diptera

Drosophilidae

Leucophenga grossipalpis (Lamb, 1914)

end

O

Diptera

Ephydridae

Allotrichoma breviciliatum Canzoneri, 1987

ind

O

Diptera

Ephydridae

Ceropsilopa lacticella Cresson, 1946

ind

O

Diptera

Ephydridae

Schema aldabricum Mathis & Zatwarnicki, 2003

end

O

Diptera

Hippoboscidae

Olfersia aenescens Thomson, 1869

ind

O

Diptera

Hippoboscidae

Olfersia spinifera (Leach, 1817)

ind

O

Diptera

Hybotidae

Parahybos iridipennis Kertesz, 1899

ind

O

Diptera

Lauxaniidae

Homoneura funebricornis (Lamb, 1914)

end

O

Diptera

Lauxaniidae

Homoneura laticosta (Thomson, 1869)

ind

O

Diptera

Lauxaniidae

Homoneura mahensis (Lamb, 1912)

end

O

Diptera

Lauxaniidae

Homoneura terminalis (Loew, 1826)

ind

O

Diptera

Milichidae

Enigmilichia dimorphica Deeming, 1981

ind

O

Diptera

Milichidae

Leptometopa nilssoni Sabrosky, 1987

ind

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

48

Diptera

Muscidae

Atherigona cornicauda Deeming, 1987

end

O

Diptera

Muscidae

Atherigona orientalis Schiner, 1868

ind

O

Diptera

Muscidae

Coenosia setalis Emden, 1940

ind

O

Diptera

Muscidae

Dichaetomyia fasciculifera (Stein, 1910)

end

O

Diptera

Muscidae

Lispe bengalensis Robineau-Desvoidy

ind

O

Diptera

Phoridae

Chonocephalus modestus Disney, 2005

end

O

Diptera

Phoridae

Dohrniphora papuana (Brues, 1905)

ind

O

Diptera

Phoridae

Megaselia aldabrae Disney, 2007

end

O

Diptera

Phoridae

Megaselia extans (Collin, 1912)

end

O

Diptera

Phoridae

Megaselia frontata (Collin, 1912)

ind

O

Diptera

Phoridae

Megaselia pseudomera Disney, 2006

end

O

Diptera

Phoridae

Megaselia senegalensis Disney

ind

O

Diptera

Phoridae

Puliciphora exachatina Disney, 1988

ind

O

Diptera

Pipunculidae

Eudorylas semiopacus (Lamb, 1922)

end

O

Diptera

Platystomatidae

Naupoda inscripta Speiser, 1910

ind

O

Diptera

Sarcophagidae

Ihosyia nomita (Zumpt, 1964)

ind

O

Diptera

Sarcophagidae

Liosarcophaga pyrrhopoda (Bezzi, 1923)

end

O

Diptera

Sarcophagidae

Parasarcophaga hirtipes (Wiedemann, 1830)

ind

O

Diptera

Sarcophagidae

Seselwana aldabrae (Zumpt, 1973)

end

O

Diptera

Scatopsidae

Rhegmoclemina botulus Haenni, 2007

end

O

Diptera

Sciaridae

Epidapus pallidus (Séguy, 1961)

ind

O

Diptera

Sciaridae

Pseudolycoriella setigera (Hardy, 1960)

ind

O

Diptera

Stratiomyiidae

Cardopomyia robusta Kertész, 1916

ind

O

Diptera

Stratiomyiidae

Oplodontha pulchripes (Bigot, 1859)

ind

O

Diptera

Tephritidae

Philophylla seychellensis (Lamb, 1914)

end

O

Diptera

Tephritidae

Psednometopum aldabrense (Lamb, 1914)

end

O

Diptera

Tephritidae

Taomyia ocellata (Lamb, 1914)

end

O

Diptera

Tipulidae

Atypophthalmus mahensis (Edwards, 1912)

end

O

Diptera

Tipulidae

Erioptera maculosa (Edwards, 1912)

end

O

Diptera

Tipulidae

Idiocera aldabrensis (Edwards, 1912)

ind

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

49

Diptera

Tipulidae

Orimarga fryeri Edwards, 1912

end

O

Diptera

Xenasteiidae

Xenasteia aldabrae Hardy, 1980

end

O

Diptera

Xenasteiidae

Xenasteia seychellensis Hardy, 1980

end

O

Ephemeroptera

Leptophlebidae

Hagenulodes braueri Ulmer, 1919

end

O

Ephemeroptera

Leptophlebidae

Maheathraulus scotti (Eaton, 1913)

end

F

Hemiptera

Ceratocombidae

Ceratocombus insularis Reuter, 1893

end

O

Hemiptera

Ceratocombidae

Gen. ? alboclavatus Distant, 1913

end

O

Hemiptera

Enicocephalidae

Cocles maheensis Villiers, 1975

end

O

Hemiptera

Enicocephalidae

Cocles silhouettensis Villiers, 1975

end

O

Hemiptera

Halobatidae

Gerris cereiventris Signoret, 1862

ind

O

Hemiptera

Halobatidae

Gerris dolosa (Bergroth, 1893)

ind

O

Hemiptera

Halobatidae

Halobates alluaudi Bergroth, 1893

ind

O

Hemiptera

Hebridae

Hebrus seychellensis Polhemus

end

O

Hemiptera

Hydrometridae

Hydrometra ambulator Stal, 1855

ind

O

Hemiptera

Margarodidae

Gigantococcus dilleniae Gerlach, 2010

end

O

Hemiptera

Membracidae

Leptocentrus madli Boulard, 1995

end

O

Hemiptera

Membracidae

Madlinus seychellensis Boulard, 1995

end

O

Hemiptera

Mesoveliidae

Seychellovelia hygrobia Andersen & Polhemus, 2003

end

O

Hemiptera

Nabidae

Arbela elegantula (Stal, 1865)

ind

O

Hemiptera

Nabidae

Prostemma reuteri Kerzhner, 1990

ind

O

Hemiptera

Ochteridae

Ochterus seychellensis Polhemus

end

O

Hemiptera

Pentatomidae

Amirantea aldabrensis Gerlach, 2009

end

O

Hemiptera

Pentatomidae

Amirantea gardineri Distant, 1909

end

O

Hemiptera

Pentatomidae

Carbula limpoponis (Stål, 1853)

ind

O

Hemiptera

Pentatomidae

Stenozygum aldabranum Distant, 1913

end

O

Hemiptera

Pentatomidae

Stenozygum insularum Distant, 1913

end

O

Hemiptera

Polyctenidae

Hypoctenes hutsoni Maa, 1970

end

O

Hemiptera

Pyrrhocoridae

Dysdercus faciatus Signoret, 1861

ind

O

Hemiptera

Pyrrhocoridae

Dysdercus nigrofasciatus Stal, 1855

ind

O

Hemiptera

Pyrrhocoridae

Dysdercus ortus Distant, 1909

end

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

50

Hemiptera

Pyrrhocoridae

Scantius forsteri (Fabricius, 1781)

ind

O

Hemiptera

Reduviidae

Calphurnioides elongatus Distant, 1913

end

O

Hemiptera

Reduviidae

Emesopsis reticulata (Distant, 1909)

ind

O

Hemiptera

Reduviidae

Empicoris rubromaculatus (Blackburn, 1889)

ind

O

Hemiptera

Reduviidae

Gardena seychellensis Distant, 1913

end

O

Hemiptera

Reduviidae

Mascaregnasa typica Distant, 1909

ind

O

Hemiptera

Reduviidae

Nagusta maura Distant, 1913

end

O

Hemiptera

Reduviidae

Oncocephalus angulatus Reuter, 1882

ind

O

Hemiptera

Reduviidae

Oncocephalus sordidus Stal, 1855

ind

O

Hemiptera

Reduviidae

Polytoxus modestus Distant, 1913

end

O

Hemiptera

Reduviidae

Quinssyana funeralis Distant, 1913

ind

O

Hemiptera

Reduviidae

Quinssyana typicalis Distant, 1913

end

O

Hemiptera

Reduviidae

Quinssyana varicolor Distant, 1913

end

O

Hemiptera

Reduviidae

Rochonia galeatus Distant, 1913

end

O

Hemiptera

Reduviidae

Stenolemus madagascariensis (Westwood, 1846)

ind

O

Hemiptera

Reduviidae

Triatoma rubrofasciata (DeGeer, 1773)

ind

O

Hemiptera

Saldidae

Salda insignis Distant, 1913

end

O

Hemiptera

Saldidae

Saldula niveolimbata (Reuter, 1900)

ind

O

Hemiptera

Tingidae

Cantinona praecellens Distant, 1913

end

O

Hemiptera

Tingidae

Cantinona takamakana Duarte Rodrigues, 1979

end

O

Hemiptera

Tingidae

Cysteochila michelana Duarte Rodrigues, 1982

end

O

Hemiptera

Tingidae

Dulinius unicolor (Signoret, 1861)

ind

O

Hemiptera

Tingidae

Habrochila iolana Drake, 1955

ind

O

Hemiptera

Tingidae

Paracopium insularis Duarte Rodrigues, 1982

ind

O

Hemiptera

Veliidae

Halovelia seychellensis Andersen, 1989 *

end

O

Hemiptera

Veliidae

Microvelia diluta Distant, 1909

ind

O

Hemiptera

Veliidae

Microvelia repentina Distant, 1904

ind

O

Hemiptera

Veliidae

Picaultia pronotalis Distant, 1913

end

O

Hemiptera

Veliidae

Rhagovelia nigricans (Burmeister, 1835)

ind

O

Hemiptera

Veliidae

Salduncula seychellensis Brown, 1956

end

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

51

Hirudinea

Haemadipsidae

Idiobdella seychellensis Harding 1913

end

O

Hirudinea

Haemadipsidae

Mahebdella miranda Richardson, 1978

end

R

Hymenoptera

Apidae

Amegilla antimena (de Saussure, 1890)

ind

O

Hymenoptera

Formicidae

Adelomyrmex sc01

end?

R

Hymenoptera

Formicidae

Adelomyrmex sc02

end?

R

Hymenoptera

Formicidae

Adelomyrmex sc03

end?

R

Hymenoptera

Formicidae

Adelomyrmex sc04

end?

R

Hymenoptera

Formicidae

Amblypone besucheti Baroni Urbani, 1978

end

R

Hymenoptera

Formicidae

Amblypone sc01

end?

R

Hymenoptera

Formicidae

Carebra mu01

ind

R

Hymenoptera

Formicidae

Cerapachys sc01

end?

R

Hymenoptera

Formicidae

Crematogaster gibba Emery, 1894

ind

R

Hymenoptera

Formicidae

Crematogaster rasoherinae Forel, 1891

ind

R

Hymenoptera

Formicidae

Discothyrea sc01

end?

R

Hymenoptera

Formicidae

Discothyrea sc02

end?

R

Hymenoptera

Formicidae

Discothyrea sc03

end?

R

Hymenoptera

Formicidae

Discothyrea scm01

ind

R

Hymenoptera

Formicidae

Leptogenys maxillosa (Smith, 1858)

ind

F

Hymenoptera

Formicidae

Pheidole braueri Forel, 1897

end

R

Hymenoptera

Formicidae

Pheidole mg015

ind

R

Hymenoptera

Formicidae

Pheidole mg121

ind

R

Hymenoptera

Formicidae

Pheidole sc01

end?

R

Hymenoptera

Formicidae

Pheidole sc02

end?

R

Hymenoptera

Formicidae

Pheidole scm01

ind

R

Hymenoptera

Formicidae

Platythyrea parallela (Smith, 1859)

ind

R

Hymenoptera

Formicidae

Proceratium sc01

end?

R

Hymenoptera

Formicidae

Proceratium sc02

end?

R

Hymenoptera

Formicidae

Proceratium scm01

ind

R

Hymenoptera

Formicidae

Proceratium scm02

ind

R

Hymenoptera

Formicidae

Strumigenys scotti Forel, 1912

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

52

Hymenoptera

Formicidae

Tapinoma subtile Santschi, 1911

ind?

Hymenoptera

Formicidae

Terataner scotti Forel, 1912

end?

R

Hymenoptera

Formicidae

Tetramorium bicarinatum (Nylander, 1846)

ind

R

Hymenoptera

Formicidae

Tetramorium lanuginosum Mayr, 1870

ind

R

Hymenoptera

Formicidae

Vollenhovia oblonga (Smith, 1860) alluaudi (Emery, 1894)

end

R

Hymenoptera

Formicidae

Vollenhovia piroskae Forel, 1912

end

F

Hymenoptera

Halticidae

Lasioglossum nicolli (Cockerell, 1912)

end

O

Hymenoptera

Megachilidae

Chalicodoma rufiventris (Guérin-Méneville, 1833)

ind

O

Hymenoptera

Megachilidae

Heriades aldabranum (Cockerell, 1912)

end

O

Hymenoptera

Megachilidae

Lithurgus pullatus Vachal, 1903

ind

O

Hymenoptera

Scoliidae

Campsomeriella caelebs (Sichel, 1864)

ind

O

Hymenoptera

Scoliidae

Lobhargita pilosella (de Saussure, 1892)

ind

O

Hymenoptera

Scoliidae

Scolia hyalinata Sichel, 1864

ind

O

Isopoda

Armadillidae

Pseudodiploexochus cuspidatus Ferrara & Taiti, 1985

end

R

Isopoda

Armadillidae

Spherillo maculosus Budde-Lund, 1904

end

Isopoda

Armadillidae

Venezillo parvus (Budde-Lund, 1885)

end

R

Isopoda

Irmaosidae

Irmaos lobatus Ferrara & Taiti, 1983

end

R

Isopoda

Irmaosidae

Irmaos sechellarum Ferrara & Taiti, 1983

end

R

Isopoda

Philosciidae

Littorophiloscia aldabrana Ferrara & Taiti, 1985

end

R

Isopoda

Philosciidae

Philoscina insularis Ferrara & Taiti, 1985

end

R

Isopoda

Philosciidae

Pseudosetaphora lateralis (Budde-Lund, 1913)

end

R

Isopoda

Philosciidae

Pseudosetaphora ovata (Budde-Lund, 1913)

end

R

Isopoda

Philosciidae

Sechelloscia angustissima (Budde-Lund, 1913)

end

R

Isopoda

Philosciidae

Sechelloscia benoiti Ferrara & Taiti, 1983

end

R

Isopoda

Philosciidae

Sechelloscia mucronata Ferrara & Taiti, 1983

end

R

Isopoda

Philosciidae

Sechelloscia vanmoli Ferrara & Taiti, 1983

end

R

Isopoda

Philosciidae

Setaphora pallidemaculata Budde-Lund, 1913

end

R

Isopoda

Platyarthridae

Trichorhina triocellata Ferrara & Taiti, 1985

end

R

Isopoda

Porcellionidae

Mahehia bicornis Budde-Lund, 1913

end

O

Isopoda

Porcellionidae

Mahehia laticauda Budde-Lund, 1913

end

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

53

R

Isopoda

Porcellionidae

Mahehia maculata Budde-Lund, 1913

end

Isopoda

Porcellionidae

Tura angusta (Budde-Lund, 1913)

ind

Isopoda

Trachelipodidae

Nagurus cristatus (Dollfus, 1891)

end

Isopoda

Trachelipodidae

Nagurus kensleyi Ferrara & Taiti, 1985

end

O

Isoptera

Kalotermitidae

Glyptotermes scotti (Homgren, 1909)

end

F

Isoptera

Kalotermitidae

Procryptotermes fryeri (Holmgren, 1909)

end

F

Lepidoptera

Arctiidae

Argina astraea (Drury, 1773)

ind

R

Lepidoptera

Arctiidae

Exilisia subfusca (Fryer, 1912)

end

R

Lepidoptera

Arctiidae

Mahensia seychellarum Fryer, 1912

end

R

Lepidoptera

Arctiidae

Nyctemera seychellensis (Hampson, 1908)

end

F

Lepidoptera

Blastobasidae

Blastobasis intrepida Meyrick, 1911

end

R

Lepidoptera

Choreutidae

Anthophila gratiosa (Meyrick, 1911)

end

R

Lepidoptera

Choreutidae

Anthophila quincyella Legrand, 1965

end

R

Lepidoptera

Epermeniidae

Epermenia moza Butler, 1878

ind

R

Lepidoptera

Gelechiidae

Apocritica chromatica Meyrick, 1911

end

R

Lepidoptera

Gelechiidae

Helcystogramma effera (Meyrick, 1918)

ind

R

Lepidoptera

Gelechiidae

Thiotricha tenuis (Walsingham, 1891) subtenuis Legrand, 1965

end

R

Lepidoptera

Gracilariidae

Acrocercops angelica Meyrick, 1919

end

R

Lepidoptera

Gracilariidae

Caloptilia tirantella Legrand, 1966

end

R

Lepidoptera

Gracilariidae

Cuphodes luxuriosa Meyrick, 1911

end

R

Lepidoptera

Gracilariidae

Cuphodes tridora Meyrick, 1911

end

R

Lepidoptera

Gracilariidae

Parectopa parolca (Meyrick, 1911)

end

R

Lepidoptera

Heliodinidae

Epicroesa sp.

end

O

Lepidoptera

Hesperidae

Pelopidas mathias mathias (Fabricius, 1775)

ind

R

Lepidoptera

Lyonetiidae

Lyonetia probolactis Meyrick, 1911

end

R

Lepidoptera

Metachandidae

Metachanda coetivyellaLegrand, 1965

end

R

Lepidoptera

Metachandidae

Metachanda columnata Meyrick, 1911

end

R

Lepidoptera

Metachandidae

Metachanda crypsitricha Meyrick, 1911

end

R

Lepidoptera

Metachandidae

Metachanda glaciata Meyrick, 1911

end

R

Lepidoptera

Metachandidae

Metachanda hydraula Meyrick, 1911

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

54

R

Lepidoptera

Metachandidae

Metachanda noctivaga Meyrick, 1911

end

R

Lepidoptera

Metachandidae

Metachanda plumbaginella Legrand, 1965

end

R

Lepidoptera

Momphidae

Ascalenia isotacta (Meyrick, 1911)

end

R

Lepidoptera

Momphidae

Cosmopteryx flavofasciata Wollaston, 1879

ind

R

Lepidoptera

Momphidae

Cosmopteryx mimetis Meyrick, 1897

ind

R

Lepidoptera

Momphidae

Lymnaecia superharpalea Legrand, 1965

end

R

Lepidoptera

Momphidae

Stagmatophora acris Meyrick, 1911

end

R

Lepidoptera

Momphidae

Stagmatophora hieroglypta Meyrick, 1911

end

R

Lepidoptera

Noctuidae

ind

R

Lepidoptera

Noctuidae

Acontia zelleri (Wallengren, 1856) Agrotis longidentifera (Hampson, 1903) microtica (Hampson, 1908)

end

R

Lepidoptera

Noctuidae

Bocana sp.

end,?

R

Lepidoptera

Noctuidae

Celama tarzanae Legrand, 1965

end

R

Lepidoptera

Noctuidae

Gesonia pansalis (Walker, 1858)

ind

R

Lepidoptera

Noctuidae

Maceda mansueta Walker, 1857

ind

R

Lepidoptera

Noctuidae

Porphyrinia ragusanoides Berio, 1954

ind

R

Lepidoptera

Noctuidae

Rhesala moestalis (Walker, 1865)

ind

R

Lepidoptera

Noctuidae

Spodoptera cilium (Guenée, 1852)

ind

R

Lepidoptera

Nymphalidae

Acraea ranavalona Boisduval, 1833

ind

R

Lepidoptera

Nymphalidae

Acraea terpsicore (Linnaeus, 1758) legrandi Carcasson, 1964

end

Lepidoptera

Nymphalidae

Euploea mitra Moore, 1857

end

Lepidoptera

Nymphalidae

Phalanta philiberti (Joannis, 1893)

end

Lepidoptera

Oecophoridae

Anachastis digitata Meyrick, 1911

end

R

Lepidoptera

Oecophoridae

Bigotianella menaiella Legrand, 1965

end

R

Lepidoptera

Oecophoridae

Bigotianella simpsonella Legrand, 1965

end

R

Lepidoptera

Oecophoridae

Bigotianella tournefortiaecolella Legrand, 1965

end

R

Lepidoptera

Oecophoridae

Chanystis syrtopa Meyrick, 1911

end

R

Lepidoptera

Oecophoridae

Cophomantella cubiculata (Meyrick, 1911)

end

R

Lepidoptera

Oecophoridae

Pachnistis fulvocapitella Legrand, 1965

end

R

Lepidoptera

Oecophoridae

Stathmopoda glyphanobola Diakonoff, 1983

end

R

Lepidoptera

Pyralidae

Achyra massalis (Walker, 1859)

ind

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

55

EN

R

Lepidoptera

Pyralidae

Ancylosis niveicostella Ragonot, 1893

ind

R

Lepidoptera

Pyralidae

Cadarena pudoraria (Fabricius, 1781)

ind

R

Lepidoptera

Pyralidae

Cnaphalocrocis trapezalis Guenée, 1854

ind

R

Lepidoptera

Pyralidae

Ematheudes nigropunctata (Legrand, 1965)

ind

R

Lepidoptera

Pyralidae

Eurrhyparodes tricoloralis (Zeller, 1852)

ind

R

Lepidoptera

Pyralidae

Glaucocharis muscela (Fryer, 1912)

end

R

Lepidoptera

Pyralidae

Haritalodes derogata (Fabricius, 1775)

ind

R

Lepidoptera

Pyralidae

Herpetogramma licarsisalis Walker, 1859

ind

R

Lepidoptera

Pyralidae

Herpetogramma phaeopteralis (Guenée, 1854)

ind

R

Lepidoptera

Pyralidae

Lamprosema charesalis (Walker, 1859)

ind

R

Lepidoptera

Pyralidae

Lamprosema delhommealis (Legrand, 1965)

end

R

Lepidoptera

Pyralidae

Mimudea ablactalis (Walker, 1859)

ind

R

Lepidoptera

Pyralidae

Noorda blitealis Walker, 1859

ind

R

Lepidoptera

Pyralidae

Piletocera basalis (Walker, 1865)

ind

R

Lepidoptera

Pyralidae

Pleuroptyia sabinusalis Walker, 1859

ind

R

Lepidoptera

Pyralidae

Ptyobathra irregularis (Legrand, 1965)

end

R

Lepidoptera

Pyralidae

Pycnarmon diaphana (Cramer, 1782)

ind

R

Lepidoptera

Pyralidae

Pyralis manihotalis Guenée, 1854

ind

R

Lepidoptera

Pyralidae

ind

R

Lepidoptera

Sphingidae

Stemorrhages sericea (Drury, 1770) Bataconema coquerelii (Bosiduval, 1875) aldabrensis Aurvillius, 1909

end

R

Lepidoptera

Sphingidae

Cephonodes tamsi Griveaud, 1960 ‘

end

R

Lepidoptera

Sphingidae

Macroglossum alluaudi Joannis, 1893

end

R

Lepidoptera

Sphingidae

Nephele leighi Joicey & Talbot, 1921

end

R

Lepidoptera

Sphingidae

Temnora fumosa (Walker, 1856) pekoveri (Walker, 1877)

ind

R

Lepidoptera

Tineidae

Afrocelestis lochaea (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis crobylora (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis cyanodesma (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis ensifera (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis fricata (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis ichnora (Meyrick, 1911)

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

56

Lepidoptera

Tineidae

Amphixystis lactiflua (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis nephalia (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis polystrigella (Legrand, 1965)

end

R

Lepidoptera

Tineidae

Amphixystis rhothiaula (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis rorida (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Amphixystis roseostrigella (Legrand, 1965)

end

R

Lepidoptera

Tineidae

Crypsithyrodes concolorella (Walker, 1863)

ind,?

R

Lepidoptera

Tineidae

Erechthias calypta Meyrick, 1911

end

R

Lepidoptera

Tineidae

Erechthias methodica (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Erechthias molynta (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Erechthias polyplaga (Legrand, 1965)

end

R

Lepidoptera

Tineidae

Erechthias trichodora (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Opogona florea (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Opogona harpalea Meyrick, 1911

end

R

Lepidoptera

Tineidae

Opogona heliogramma (Meyrick, 1911)

end

R

Lepidoptera

Tineidae

Tinea coronata Meyrick, 1911

end

R

Lepidoptera

Tineidae

Tinea milichopa Meyrick, 1911

end

R

Lepidoptera

Tortricidae

Cryptophlebia caeca Diakonoff, 1969

end

R

Lepidoptera

Tortricidae

Cryptophlebia chaomorpha (Meyrick, 1929)

ind

R

Lepidoptera

Tortricidae

Olothreutes conchopleura (Meyrick, 1911)

end

R

Lepidoptera

Tortricidae

Olothreutes hygrantis Meyrick, 1911

end

Mollusca

Acavidae

Stylodonta studeriana (Férussac, 1821)

end

EN

C

Mollusca

Acavidae

Stylodonta unidentata (Holten, 1802)

end

VU

F

Mollusca

Bulinidae

Bulinus bavayi (Dautzenberg, 1894)

ind

Mollusca

Cerastuidae

Pachnodus (Nesiocerastus) curiosae Gerlach, 2003

end

EX

Mollusca

Cerastuidae

Pachnodus (Nesiocerastus) fregatensis Van Mol & Coppois, 1980

end

EN

F

Mollusca

Cerastuidae

Pachnodus (Nesiocerastus) kantilali Van Mol & Coppois, 1980

end

EN

O

Mollusca

Cerastuidae

Pachnodus (Nesiocerastus) ladiguensis Gerlach, 2003

end

EX

Mollusca

Cerastuidae

Pachnodus (Nesiocerastus) ornatus (Dufo, 1840)

end

EN

F

Mollusca

Cerastuidae

Pachnodus (Nesiocerastus) oxoniensis Gerlach, 1994

end

CR

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

57

R

C

Mollusca

Cerastuidae

end

Cerastuidae

Pachnodus (Nesiocerastus) praslinus Gerlach, 1990 Pachnodus (Nesiocerastus) silhouettanus Van Mol & Coppois, 1980

VU

F

Mollusca Mollusca

Cerastuidae

Pachnodus (Pachndous) niger (Dufo, 1840)

end

EN

F

Mollusca

Cerastuidae

Mollusca

Cerastuidae

Pachnodus (Pachnodus) becketti Gerlach, 1994

end

EN

O

Pachnodus (Pachnodus) lionetti Van Mol & Coppois, 1980

end

VU

O

Mollusca

Cerastuidae

Pachnodus (Pachnodus) niger x velutinus Gerlach, 1994

end

Mollusca

Cerastuidae

Pachnodus (Pachnodus) velutinus (Pfeiffer, 1841)

end

EX

Mollusca

Cerastuidae

Rhachistia aldabrae (Martens, 1898)

end

EX

Mollusca

Chronidae

Kaliella aldabrana Gerlach, 2009

end

EN

R

Mollusca

Chronidae

Nesokaliella intermedia Gerlach, 2001

end

VU

R

Mollusca

Chronidae

Nesokaliella minuta Gerlach, 1998

end

VU

R

Mollusca

Chronidae

Nesokaliella subturritula (G. & H. Nevill, 1878)

end

VU

R

Mollusca

Cyclophoridae

Cyathopoma blandfordi Adams, 1868

end

Mollusca

Cyclophoridae

Cyathopoma picardense Gerlach, 2006

end

EN

R

Mollusca

Helicarionidae

Dupontia levensonia Gerlach, 2003

end

CR

R

Mollusca

Helicarionidae

Pilula mahensiana (Martens, 1898)

end

EN

R

Mollusca

Helicinidae

Pleuropoma theobaldiana (Nevill & Nevill, 1878)

end

Mollusca

Hydrobiidae

Moominia willii Gerlach, 2003

end

Mollusca

Neritidae

Neritilia consimilis (Martens, 1879)

ind

C

Mollusca

Neritidae

Neritina (Neritina) pulligera (Linnaeus, 1767)

ind

C

Mollusca

Neritidae

Neritina (Vittina) gagates Lamarck, 1822

ind

C

Mollusca

Neritidae

Septaria borbonica (Bory St. Vincent, 1803)

ind

C

Mollusca

Pomatisidae

Tropidophora gardineri Gerlach, 2006

end

Mollusca

Pomatisidae

Tropidophora pulchra (Gray, 1834)

end

Mollusca

Punctidae

Punctum seychellarum Gerlach, 1998

end

VU

R

Mollusca

Streptaxidae

Acanthennea erinacea (Martens, 1898)

end

VU

R

Mollusca

Streptaxidae

Augustula braueri (Martens, 1898)

end

VU

R

Mollusca

Streptaxidae

Careoradula perelegans (Martens, 1898)

end

EN

R

Mollusca

Streptaxidae

Conturbatia crenata Gerlach, 2001

end

CR

R

Mollusca

Streptaxidae

Edentulina dussumieri (Dufo, 1840)

end

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

end

58

C

C

C

C EN

EN

R

R F

F

Mollusca

Streptaxidae

Edentulina moreleti (Adams, 1868)

end

EN

R

Mollusca

Streptaxidae

Glabrennea gardineri (Sykes, 1909)

end

EN

R

Mollusca

Streptaxidae

Glabrennea silhouettensis (Verdcourt, 1994)

end

CR

R

Mollusca

Streptaxidae

Glabrennea thomassetti (Sykes, 1909)

end

CR

R

Mollusca

Streptaxidae

Gulella gwendolinae (Preston, 1910) aldabrae Bruggen, 1975

end

Mollusca

Streptaxidae

Imperturbatia constans (Martens, 1898)

end

EN

F

Mollusca

Streptaxidae

Imperturbatia violascens (Martens, 1898)

end

EN

R

Mollusca

Streptaxidae

Priodiscus costatus Gerlach, 1995

end

VU

R

Mollusca

Streptaxidae

Priodiscus serratus (Adams, 1868)

end

VU

R

Mollusca

Streptaxidae

Priodiscus spinosus Gerlach, 1995

end

VU

Mollusca

Streptaxidae

Seychellaxis souleyetianus (Petit, 1841)

end

Mollusca

Streptaxidae

Silhouettia silhouettae (Martens, 1898)

end

Mollusca

Streptaxidae

Stereostele nevilli (Adams, 1868)

end

F

Mollusca

Streptaxidae

Streptostele acicula (Morelet, 1877) maheensis (Connoly, 1925)

end

O

Mollusca

Succineidae

Quickia aldabrensis Patterson, 1975

end

EN

R

Mollusca

Thiaridae

Paludomus ajanensis Morelet, 1860

end

EN

R

Neuroptera

Conipterygidae

Semidalis africana Enderlein, 1906

ind

R

Neuroptera

Conipterygidae

Semidalis mascarenica Fraser, 1952

ind

R

Neuroptera

Myrmeleonidae

Creoleon mortifer (Walker, 1853)

ind

R

Neuroptera

Myrmeleonidae

Distoleon ornatus (Needham, 1913)

end

R

Odonata

Aeshnidae

Anax tristis (Hagen, 1897)

ind

O

Odonata

Aeshnidae

Gynacantha stylata Martin, 1896

end

O

Odonata

Coenagrionidae

Agriocnemis pygmaea (Rambar, 1842)

ind

O

Odonata

Coenagrionidae

Teinobasis alluaudi (Martin, 1896)

ind

Odonata

Corduliidae

ind

O

Odonata

Lestidae

Hemicordulia similis (Rambur, 1842) Lestes unicolor McLachlan, 1895 aldabrensis (Blackman & Pinhey, 1967)

end

O

Odonata

Megapodagrionidae

Allolestes maclachlani Selys, 1869

end

Odonata

Platycnemididae

Leptocnemis cyanops (Selys, 1869)

end

Oligochaeta

Acanthodrillidae

Maheina braueri (Michaelsen, 1897)

end

Opiliones

Assamiidae

Bandona palpalis Roewer, 1927

ind

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

59

R

R F

VU

VU

F

O

EN O R

Opiliones

BIANTIDAE

Biantes albimanus (Loman, 1902)

end

R

Opiliones

BIANTIDAE

Biantes minimus Rambla, 1983

end

O

Opiliones

BIANTIDAE

Biantes parvulus (Hirst, 1911)

end

R

Opiliones

PHALAGODIDAE

Hirstienus nanus (Hirst, 1913)

end

R

Opiliones

PODOCTIDAE

Centrobunus braueri Loman, 1902

end

Opiliones

PODOCTIDAE

Holozoster ovalis Loman, 1902

Opiliones

PODOCTIDAE

Ibalonius bimaculatus Loman, 1902

end

F

Opiliones

PODOCTIDAE

Ibalonius flavopictus Hirst, 1911

end

C

Opiliones

PODOCTIDAE

Ibalonius inscriptus Loman, 1902

end

O

Opiliones

PODOCTIDAE

Ibalonius karschi Loman, 1902

end

R

Opiliones

PODOCTIDAE

Ibalonius lomani Hirst, 1911

end

R

Opiliones

PODOCTIDAE

Peromona erinacea Roewer, 1949

end

R

Opiliones

PODOCTIDAE

Sitalcicus gardineri (Hirst, 1911)

end

R

Opiliones

PODOCTIDAE

Sitalcicus incertus Rambla, 1983

end

R

Opiliones

SAMOIDAE

Benoitinus elegans Rambla, 1983

end

R

Opiliones

SAMOIDAE

Mitraceras crassipalpum Loman, 1902

end

R

Opiliones

Samoidae

Mitraceras pulchra Rambla, 1983

Opiliones

SAMOIDAE

Samoa sechellana Rambla, 1983

end

R

Opiliones

ZALMOXIOIDAE

Metazalmoxis ferruginea Roewer, 1912

end

R

Orthoptera

Acrididae

Pternoscirtus aldabrae (Saussure, 1899)

end

O

Orthoptera

Gryllidae

Chorthippus parvulus (Saussure, 1899)

end

R

Orthoptera

Gryllidae

Fryerius aphonoides (Bolivar, 1912)

end

R

Orthoptera

Gryllidae

Gryllapterus tomentosus Bolivar, 1912

end

R

Orthoptera

Gryllidae

Orthoxiphus nigrifrons (Bolivar, 1912)

end

R

Orthoptera

Gryllidae

Phaeogryllus fuscus Bolivar, 1912

end

R

Orthoptera

Gryllidae

Phalangacris alluaudi Bolivar, 1895

end

O

Orthoptera

Gryllidae

Phalangacris phaloricephala Gorochov, 2006

end

O

Orthoptera

Gryllidae

Phaloria insularis insularis (Bolivar, 1912)

end

R

Orthoptera

Gryllidae

Scottiola salticiformis (Bolivar, 1912)

end

C

Orthoptera

Gryllidae

Seychellesia longicercata Bolivar, 1912

end

C

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

R O

60

Orthoptera

Gryllidae

Seychellesia nitidula Bolivar, 1912

end

F

Orthoptera

Gryllidae

Seychellesia patellifera Bolivar, 1912

end

F

Orthoptera

Gryllidae

Subtiloria succineus (Bolivar, 1912)

end

R

Orthoptera

Gryllidae

Trigonidium bolivari (Chopard, 1968)

end

C

Orthoptera

Gryllidae

Zarceus major Bolivar, 1912

end

R

Orthoptera

Mogoplistidae

Arachnocephalus medvedevi Gorochov, 1994

end

R

Orthoptera

Mogoplistidae

Arachnocephalus subsulcatus Saussure, 1899

end

R

Orthoptera

Mogoplistidae

Ectatoderus aldabrae Gorochov, 1994

end

R

Orthoptera

Mogoplistidae

Ectatoderus nigriceps Bolivar, 1912

end

R

Orthoptera

Mogoplistidae

Ectatoderus squamiger Bolivar, 1912

end

R

Orthoptera

Mogoplistidae

Ornebius stenus Gorochov, 1994

end

R

Orthoptera

Mogoplistidae

Ornebius syrticus Bolivar, 1912

end

R

Orthoptera

Mogoplistidae

Ornebius validus (Bolivar, 1895)

end

C

Orthoptera

Tetrigidae

Amphinotus nymphula (Bolivar, 1912)

end

O

Orthoptera

Tetrigidae

Amphinotus pupulus (Bolivar, 1912)

end

O

Orthoptera

Tetrigidae

Coptotiggia cristata Bolivar, 1912

end

R

Orthoptera

Tetrigidae

Procytettix fusiformis Bolivar, 1912

end

O

Orthoptera

Tetrigidae

Procytettix thalassanax Gunther, 1939

end

O

Orthoptera

Tettigonidae

Brachyphisis visenda (Bolivar, 1912)

end

F

Orthoptera

Tettigonidae

Odontolakis sexpunctatus (Serville, 1839)

end,?

R

Orthoptera

Tettigonidae

Plangia ovalifolia Bolivar, 1912

end

O

Palpigradi

Eukoeneniidae

Koeneniodes madecassus Rémy, 1950

ind

R

Phasmatodea

Lonchodidae

Carausius alluaudi (Bolivar, 1895)

end

C

Phasmatodea

Lonchodidae

Carausius gardineri Bolivar & Ferriere, 1912

end

O

Phasmatodea

Lonchodidae

Carausius scotti Bolivar & Ferriere, 1912

end

R

Phasmatodea

Lonchodidae

Carausius sechellensis (Bolivar, 1895)

end

O

Phasmatodea

Phyllidae

Phyllium bioculatum Gray, 1832

end

R

Phasmatodea

Platycranidae

Graffaea seychellensis Bolivar & Ferriere, 1912

end

R

Platyhelminthes

Geoplanidae

Pelmatoplana braueri (Graff, 1899)

end

Platyhelminthes

Geoplanidae

Pelmatoplana mahéensis (Graff, 1899)

end

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

61

Pseudoscorpiones GARYPINIDAE

Aldabrinus aldabrinus Chamberlin, 1930

end

R

Psocoptera

Caeciliusidae

Asiocaecilius comorensis (Enderlein, 1908)

ind

R

Psocoptera

Caeciliusidae

Caeciliius seychellensis Enderlein, 1931

end

R

Psocoptera

Caeciliusidae

Valenzuela protritus (Enderlein, 1931)

end

R

Psocoptera

Caeciliusidae

Valenzuela vau (Enderlein, 1931)

end

R

Psocoptera

Hemipsocidae

Anopistoscena specularifrons Enderlein, 1912

end

R

Psocoptera

Lepidopsocidae

Echmepteryx acutipennis Enderlein, 1931

end

R

Psocoptera

Lepidopsocidae

Echmepteryx annulitibia (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx argentofasciata (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx dryas (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx fastigata (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx hebes (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx hieroglyphica Enderlein, 1931

end

R

Psocoptera

Lepidopsocidae

Echmepteryx madagascariensis (Kolbe, 1885)

ind

R

Psocoptera

Lepidopsocidae

Echmepteryx mahénsis (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx monticola (Enderlein, 9131)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx nigra (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx psyche (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx punctulata (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Echmepteryx symmetrolepis (Enderlein, 1931)

end

R

Psocoptera

Lepidopsocidae

Lepidopsocus fasciatus Enderlein, 1931

end

R

Psocoptera

Lepidopsocidae

Lepidopsocus nepticulides Enderlein, 1903

ind

R

Psocoptera

Lepidopsocidae

Lepidopsocus ochreus Enderlein, 1931

end

R

Psocoptera

Pseudocaeciliidae

Scottiella hirsuticornis Enderlein, 1931

end

R

Psocoptera

Pseudocaeciliidae

Scottiella micans Enderlein, 1931

end

R

Psocoptera

Psocidae

Ptycta laevidorsum (Enderlein, 1931)

end

R

Psocoptera

Psoquillidae

Eosilla denervosa (Enderlein, 1912)

ind

R

Psocoptera

Psyllipsocidae

Psocathropos pilipennis (Enderlein)

ind

R

Pthiraptera

Menopodidae

end

R

Pthiraptera

Menopodidae

Colpocephalum abbotti Price, 1976 Dennyus carljonesi Clayton, Price & Page, 1996. fosteri Clayton, Price & Page, 1996

end

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

62

Pthiraptera

Philopteridae

Ardeicola freemani Tandan, 1976

end

R

Schizomida

HUBBARDIIDAE

Anepsiozomus sobrinus Harvey, 2001

end

F

Schizomida

HUBBARDIIDAE

Apozomus gerlachi Harvey, 2001

end

F

Schizomida

HUBBARDIIDAE

Bamazomus aviculus Harvey, 2001

end

F

Schizomida

HUBBARDIIDAE

Mahezomus apicoporus Harvey, 2001

end

R

Scorpiones

BUTHIDAE

Lychas braueri (Kraepelin, 1896)

end

R

Scorpiones

LIOCHELIDAE

Chiromachus ochropus (C.L. Koch, 1837)

ind

F

Trichoptera

Atriplectidae

Hughscottiella auricapilla Ulmer, 1910

end

C

Trichoptera

Ecnomidae

Ecnomus insularis Ulmer, 1910

end

C

Trichoptera

Ecnomidae

Ecnomus maheensis Malicky, 1993

end

O

Trichoptera

Helicopsychidae

Helicopsyche kantilali Marlier & Malicky, 1979

end

C

Trichoptera

Helicopsychidae

Helicopsyche palpalis (Ulmer, 1910)

end

C

Trichoptera

Hydropsychidae

Hydromanicus seychellensis Ulmer, 1910

end

C

Trichoptera

Hydroptilidae

Oxyethira sechellensis Malicky, 1993

end

O

Trichoptera

Leptoceridae

Oecetis michaeli Malicky, 1999

end

R

Trichoptera

Odontoceridae

Leptodermatopteryx tenuis Ulmer, 1910

end

C

Trichoptera

Polycentropodidae

Cyrnodes scotti Ulmer, 1910

end

O

Trichoptera

Sericostomatidae

Seselpsyche matyoti Malicky, 1993

end

O

Trichoptera

Sericostomatidae

Seselpsyche terpsichore Malicky, 2008

end

O

Zygentoma

Lepismatidae

Acrotelsella elongata Carpenter, 1916

end

O

Zygentoma

Lepismatidae

Acrotelsella scotti Carpenter, 1916

end

O

Zygentoma

Nicoletidae

Lepidospora braueri Escherich, 1905

end

O

VII.5 Vascular

plants (Bruno Senterre): 114 entries

CLASS

FAMILY

SPECIES

Dicotyledon

Acanthaceae

Justicia gardineri Turrill

end,?

EX

R

Dicotyledon

Acanthaceae

Pseuderanthemum tunicatum (Afzel.) Milne-Redh.

ind,?

CR

R

Dicotyledon

Amaranthaceae

Lagrezia madagascariensis (Poir.) Moq.

exo,?

CR

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

Vernacular names

63

Origin IUCN Rarity

Dicotyledon

Anacardiaceae

Campnosperma seychellarum March

Dicotyledon

Apocynaceae

Carissa edulis (Forssk.) Vahl var. sechellensis (Baker) Pichon

bois de montagne, capucin blanc?, colophante? bois sandal, sandal, Bois l'encens (Friedmann 1994: 422)

Dicotyledon

Apocynaceae

Cerbera venenifera (Poir.) Steud.

tanghin, ordeal plant

ind,?

Dicotyledon

Araliaceae

Gastonia crassa (Hemsl.) F.Friedmann

Bois banane

end

VU

F

Dicotyledon

Araliaceae

Gastonia lionnetii F.Friedmann

Bois banane

end

CR

R

Dicotyledon

Araliaceae

Gastonia sechellarum (Baker) Harms var. contracta F.Friedmann

end

CR

R

Dicotyledon

Araliaceae

Gastonia sechellarum (Baker) Harms var. curiosae F.Friedmann

end

CR

R

Dicotyledon

Araliaceae

Gastonia sechellarum (Baker) Harms var. sechellarum

end

VU

O

Dicotyledon

Araliaceae

Schefflera procumbens (Hemsl.) F.Friedmann

end

VU

R

Dicotyledon

Asclepiadaceae

Secamone schimperiana (Hemsl.) Klack.

end

EN

R

Dicotyledon

Asclepiadaceae

Tylophora coriaceae Marais

ind

VU

R

Dicotyledon

Asclepiadaceae

Tylophora indica (Burm.f.) Merr.

ipec sauvage

ind,?

Dicotyledon

Asteraceae

Vernonia sechellensis Baker

Ayapana sauvage

end

EX

R

Dicotyledon

Balsaminaceae

Impatiens gordonii Horne ex Baker

balsamine sauvage

end

CR

R

Dicotyledon

Bignoniaceae

Colea seychellarum Seem.

bilimbi marron

end

EN

O

Dicotyledon

Boraginaceae

Tournefortia puberula Baker

ind

VU

R

Dicotyledon

Cucurbitaceae

Peponium sublitorale C.Jeffrey & J.S.Page

end

Dicotyledon

Cucurbitaceae

Peponium vogelii (Hook.f.) Engl.

ind

CR

Dicotyledon

Dilleniaceae

Dillenia ferruginea (Baill.) Gilg

bois rouge

end

VU

Dicotyledon

Dipterocarpaceae

Vateriopsis seychellarum Heim

Bwa-d-fer; Bois de fer

end

CR

R

Dicotyledon

Escalloniaceae

Brexia madagascariensis Thouars

bois cateau

ind

VU

O

Dicotyledon

Euphorbiaceae

Drypetes riseleyi Airy Shaw

bois mare petite feuille

end

CR

O

Dicotyledon

Euphorbiaceae

Excoecaria benthamiana Hemsley

bois charlot, bois jasmin rouge

end

VU

O

Dicotyledon

Euphorbiaceae

Lautembergia neraudiana (Baillon) Coode

ind

EX

R

Dicotyledon

Fabaceae

Erythrina variegata L

Dicotyledon

Flacourtiaceae

Ludia mauritiana J.F.Gmel. var. sechellensis F.Friedmann

end

VU

Dicotyledon

Icacinaceae

Grisollea thomassetii Hemsl.

end

CR

O

Dicotyledon

Lamiaceae

Achyrospermum sechellarum Baker

end

CR

R

Dicotyledon

Leeaceae

Leea guineensis G.Don

exo,?

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

Bois papaye, Bois banane

Mourouc

64

end

CR

F

end

CR

R R

R

R

ind

R

R

Bakerella clavata (Desrouss.) S.Balle subsp. sechellensis (Baker) S.Balle

Bois marmaille

end

Medusagynaceae

Medusagyne oppositifolia Baker

bois medus, jellyfish tree

end

CR

R

Mimosaceae

Acacia pennata (L.) Willd.

ind

CR

R

Dicotyledon

Molluginaceae

Glinus oppositifolius (L.) Aug. DC.

ind,?

O

Dicotyledon

Moraceae

Ficus bojeri Baker

ind

O

Dicotyledon

Moraceae

Ficus rubra Vahl

ind

O

Dicotyledon

Moraceae

Trilepisium madagascariense DC.

ind

CR

R

Dicotyledon

Myrsinaceae

Rapanea seychellarum Mez

end

CR

R

Dicotyledon

Nepenthaceae

Nepenthes pervillei Bl.

liane pot a eau, pitcher plant

end

VU

O

Dicotyledon

Nyctaginaceae

Pisonia sechellarum Friedm.

Mapou de gran bwa

end

CR

Dicotyledon

Olacaceae

ind,?

Dicotyledon

Oleaceae

Ximenia americana L. Jasminum fluminense Vell. subsp. mauritianum (Bojer ex DC.) Turrill

Dicotyledon

Onagraceae

Ludwigia jussiaeoides Desr.

ind,?

EX

R

Dicotyledon

Passifloraceae

Adenia gummifera (Harv.) Harms

lalyann marya, liane Maria, liane Blanc

ind

EN

R

Dicotyledon

Piperaceae

Piper silhouettanum Gerlach

wild pepper'Friedmann

R

Dicotyledon

Pittosporaceae

Pittosporum senacia Putt. subsp. wrightii (Hemsl.) Cufod.

Dicotyledon

Rhamnaceae

Smythea lanceata (Tul.) Summerhayes

Dicotyledon

Rubiaceae

Amaracarpus pubescens Bl. subsp. sechellarum F.Friedmann

Dicotyledon

Rubiaceae

Canthium carinatum (Baker) Summerh.

Dicotyledon

Rubiaceae

Canthium sechellense Summerh.

Dicotyledon

Rubiaceae

Craterispermum microdon Baker

Dicotyledon

Rubiaceae

Glionnetia sericea (Baker) Tirv.

Dicotyledon

Rubiaceae

Ixora pudica Baker

Dicotyledon

Rubiaceae

Psathura sechellarum Baker

Dicotyledon

Rubiaceae

Psychotria pervillei Baker

Dicotyledon

Rubiaceae

Psychotria silhouettae F.Friedmann

Dicotyledon

Loranthaceae

Dicotyledon Dicotyledon

Lafouche

EX

bois dur blanc bois doux ixora blanc bois couleuvre

R

end

CR

end

VU

ind

EX

R

end

CR

R

end

VU

end

EN

end

EN

O

EN

O

end

VU

F

end

CR

R

end

VU

end

CR

R

end

CR

O

Dicotyledon

Rubiaceae

Rothmannia annae (Wright)Keay

Dicotyledon

Rubiaceae

Tarenna sechellensis (Baker) Summerh.

bois dur blanc, bois dur bleu

end

VU

Dicotyledon

Rubiaceae

Timonius sechellensis Summerh.

bois cassant de montagne, bois cassant

end

VU

65

R

end

bois citron, bois calabash, wrights gardenia

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

R R

ind,?

Bwa senti (Carlström)

R

grand bois Dicotyledon

Sapindaceae

Allophyllus sechellensis Summerh.

Bwa kafoul trwa fey, Bois cafoul 3 feuilles end

VU

Dicotyledon

Sapotaceae

Northea hornei (M.M.Hartog) Pierre

Kapisen, Capucin

end

VU

Dicotyledon

Simaroubaceae

Soulamea terminalioides Baker

Colophante

end

VU

O

Dicotyledon

Viscaceae

Korthalsella opuntia (Thunb.)Merr.

ind

EX

R

Dicotyledon

Viscaceae

Viscum triflorum DC.

Bois marmaille

ind

EN

R

Monocotyledon

Arecaceae

Lodoicea maldivica (Gmel.)Pers.

coco de mer, double coconut

end

VU

O

Monocotyledon

Arecaceae

Nephrosperma vanhoutteanum (H.Wendl. ex van-Houtt.) Balf.f.

latanier millepatte

end

VU

Monocotyledon

Arecaceae

Roscheria melanochaetes (H.Wendl.) H.Wendl. ex Balf.f.

latanier hauban

end

VU

Monocotyledon

Arecaceae

Verschaffeltia splendida H.Wendl.

latanier latte, latte

end

VU

Monocotyledon

Hypoxidaceae

Hypoxidia maheensis F.Friedmann

end

EN

R

Monocotyledon

Orchidaceae

Agrostophyllum occidentale Schltr.

end

VU

F

Monocotyledon

Orchidaceae

Agrostophyllum seychellarum Rolfe

end

R

Monocotyledon

Orchidaceae

Angraecum maheensis Schlechter

end

R

Monocotyledon

Orchidaceae

Calanthe triplicata (Willem.) Ames

ind

CR

Monocotyledon

Orchidaceae

Disperis tripetaloides (Thouars) Lindl.

ind

VU

Monocotyledon

Orchidaceae

Eulophidium seychellarum (Rolfe ex Summerh.) Summerh.

end,?

EX

R

Monocotyledon

Orchidaceae

Hederorkis seychellensis Bosser

end

EN

O

Monocotyledon

Orchidaceae

Oeoniella polystachys Schlechter

ind

CR

R

Monocotyledon

Orchidaceae

Phaius tetragonus (Thouars) Reichb.f.

ind

VU

O

Monocotyledon

Orchidaceae

Platylepis occulta (Thouars) Rchb.f.

ind

VU

R

Monocotyledon

Orchidaceae

Platylepis sechellarum S.Moore

end

EN

O

Monocotyledon

Pandanaceae

Pandanus balfourii Martelli

end

VU

Monocotyledon

Pandanaceae

Pandanus hornei Balf.f.

end

VU

Monocotyledon

Poaceae

Garnotia sechellensis Hubb. & Summerhayes

end

EN

Monocotyledon

Potamogetonaceae

Potamogeton richardi Solms

ind

Monocotyledon

Potamogetonaceae

Potamogeton thunbergii Chern. & Schltr.

ind

Monocotyledon

Triuridaceae

Seychellaria thomassetii Hemsl.

end

Pteridophyta

Aspleniaceae

Asplenium caudatum Forst. var. minor C.Chr.

end

R

Pteridophyta

Cyatheaceae

Cyathea sechellarum Mett.

end

O

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

vacoa de riviere, balfour's pandanus

66

O

R R R

NT

R

Pteridophyta

Dennstaedtiaceae

Sphenomeris chusana (L.) Cop.

ind

Pteridophyta

Dryopteridaceae

Tectaria pleiotoma (Baker) C.Chr.

end

R

Pteridophyta

Grammitidaceae

Ctenopteris elastica (Bory ex Willd.) Copel.

ind

O

Pteridophyta

Grammitidaceae

Grammitis pervillei (Mett. ex Kuhn) Tardieu

ind

O

Pteridophyta

Grammitidaceae

Grammitis sp.1

end

R

Pteridophyta

Hymenophyllaceae

Crepidomanes sp.1 aff. mannii

end

R

Pteridophyta

Hymenophyllaceae

Didymoglossum sp.1 aff. motleyi

end

R

Pteridophyta

Hymenophyllaceae

Hymenophyllum polyanthos (Sw.) Sw. var. A

ind

R

Pteridophyta

Hymenophyllaceae

Hymenophyllym hirsutum (L.) Sw.

ind

R

Pteridophyta

Hymenophyllaceae

Trichomanes bipunctatum Poir.

ind

R

Pteridophyta

Hymenophyllaceae

Trichomanes digitatum Sw.

ind

R

Pteridophyta

Hymenophyllaceae

Trichomanes fulgens C.Chr.

end

R

Pteridophyta

Hymenophyllaceae

Trichomanes tamarisciforme Jacq.

ind

R

Pteridophyta

Lomariopsidaceae

Lomariopsis pervillei (Mett.) Kuhn

end

R

Pteridophyta

Marattiaceae

Angiopteris sp.1

end

R

Pteridophyta

Marattiaceae

Ptisana fraxinea Sm.

ind

R

Pteridophyta

Oleandraceae

Nephrolepis acutifolia (Desv.) Christ

ind

R

Pteridophyta

Oleandraceae

Nephrolepis undulata (Afzel. ex Sw.) J.Sm.

ind

O

Pteridophyta

Polypodiaceae

Drymoglossum niphoboloides (Luerss.) Bak.

ind

R

Pteridophyta

Pteridaceae

Afropteris barklyae (Baker) Alston

end

R

Pteridophyta

Selaginellaceae

Selaginella sechellarum Baker

end,?

R

Pteridophyta

Vittariaceae

Antrophyum immersum (Bory ex Willd.) Mett.

ind

R

Pteridophyta

Vittariaceae

Antrophyum malgassicum C.Chr.

ind

R

Pteridophyta

Vittariaceae

Haplopteris zosterifolia (Willd.) E.H.Crane

ind

R

Senterre et al. (2011) Seychelles key biodiversity areas - Output 1

67

R