Solutions for Integral Boundary Value Problems of Nonlinear

6 downloads 0 Views 1MB Size Report
Oct 19, 2018 - theorem to obtain two positive solutions existence theorems when grows ...... for bioprocesses of HIV infection,Ҁ Applied Mathematics and.
Hindawi Journal of Function Spaces Volume 2018, Article ID 2193234, 10 pages https://doi.org/10.1155/2018/2193234

Research Article Solutions for Integral Boundary Value Problems of Nonlinear Hadamard Fractional Differential Equations Keyu Zhang ,1 Jianguo Wang 1 2

,1 and Wenjie Ma2

School of Mathematics, Qilu Normal University, Jinan 250013, China Department of Applied Mathematics, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Keyu Zhang; keyu [email protected] Received 25 August 2018; Accepted 19 October 2018; Published 1 November 2018 Academic Editor: Xinguang Zhang Copyright Β© 2018 Keyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper using fixed point methods we establish some existence theorems of positive (nontrivial) solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations.

1. Introduction In this work we study the following integral boundary value problems of nonlinear Hadamard fractional differential equations 𝐷𝛽 (πœ‘π‘ (𝐷𝛼 𝑒 (𝑑))) = 𝑓 (𝑑, 𝑒 (𝑑)) ,

1 < 𝑑 < 𝑒,

πœ‘π‘ (𝐷𝛼 𝑒 (𝑒)) = πœ‡ ∫ πœ‘π‘ (𝐷𝛼 𝑒 (𝑑)) 1

d𝑑 , 𝑑

where 𝛼, 𝛽, and πœ‡ are three positive real numbers with 𝛼 ∈ (2, 3], 𝛽 ∈ (1, 2], and πœ‡ ∈ [0, 𝛽), πœ‘π‘ (𝑠) = |𝑠|π‘βˆ’2 𝑠 is the 𝑝Laplacian for 𝑝 > 1, 𝑠 ∈ R, and 𝑓 is a continuous function on [1, 𝑒] Γ— R. Moreover, let πœ‘π‘βˆ’1 = πœ‘π‘ž with 1/𝑝 + 1/π‘ž = 1. In what follows, we offer some related definitions and lemmas for Hadamard fractional calculus. Definition 1 (see [1, Page 111]). The 𝛼th Hadamard fractional order derivative of a function 𝑦 : [1, +∞) 󳨀→ R is defined by 𝐷𝛼 𝑦 (𝑑) =

𝑑 1 𝑑 π›Όβˆ’1 d𝑠 ∫ (log ) 𝑦 (𝑠) , Ξ“ (𝛼) 1 𝑠 𝑠

(3)

Lemma 2 (see [1, Theorem 2.3]). Let 𝛼 > 0, 𝑛 = [𝛼] + 1. Then (1)

𝑒

𝐼𝛼 𝑦 (𝑑) =

where Ξ“ is the gamma function.

𝑒 (1) = 𝑒󸀠 (1) = 𝑒󸀠 (𝑒) = 0, 𝐷𝛼 𝑒 (1) = 0,

also offer the 𝛼th Hadamard fractional order integral of 𝑦 : [1, +∞) 󳨀→ R which is defined by

d 𝑛 𝑑 1 𝑑 π‘›βˆ’π›Όβˆ’1 d𝑠 (𝑑 ) ∫ (log ) 𝑦 (𝑠) , (2) Ξ“ (𝑛 βˆ’ 𝛼) d𝑑 𝑠 𝑠 1

where 𝛼 > 0, 𝑛 = [𝛼] + 1, and [𝛼] denotes the largest integer which is less than or equal to 𝛼. Moreover, we here

𝐼𝛼 𝐷𝛼 𝑦 (𝑑) = 𝑦 (𝑑) + 𝑐1 (log 𝑑) + 𝑐𝑛 (log 𝑑)

π›Όβˆ’π‘›

,

π›Όβˆ’1

+ 𝑐2 (log 𝑑)

π›Όβˆ’2

+ β‹…β‹…β‹…

(4)

where 𝑐𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛. In recent years, there have been some significant developments in the study of boundary value problems for nonlinear fractional differential equations; we refer to [2–11] and the references therein. For more related works, see also [12–49]. For example, by using monotone iterative methods, Wang et al. [3] investigated a class of boundary value problems of Hadamard fractional differential equations involving nonlocal multipoint discrete and Hadamard integral boundary conditions and established monotone iterative sequences, which can converge to the unique positive solution of their problems. Similar methods are also applied in [4, 5, 12–15]. For differential equations with the 𝑝-Laplacian, see, for example, [6, 7, 15–20] and the references therein. In [6], Wang

2

Journal of Function Spaces sign-changing and unbounded from below. This improves and generalizes some semipositone problems [21–31].

considered the nonlinear Hadamard fractional differential equation with integral boundary condition and 𝑝-Laplacian operator 𝐷𝛽 πœ‘π‘ (𝐷𝛼 𝑒 (𝑑)) = 𝑓 (𝑑, 𝑒 (𝑑)) ,

2. Preliminaries

𝑑 ∈ (1, 𝑇) ,

𝑒 (𝑇) = πœ†πΌπœŽ 𝑒 (πœ‚) ,

In this section, we first calculate Green’s functions associated with (1) and then transform the boundary value problem into its integral form. For this, we give the following lemma.

(5)

𝐷𝛼 𝑒 (1) = 0,

Lemma 3. Let 𝛼, 𝛽, πœ‡, πœ‘π‘ , and 𝐷𝛼 , 𝐷𝛽 be as in (1). Then (1) can take the integral form

𝑒 (1) = 0, where 𝑓 grows (𝑝 βˆ’ 1)–sublinearly at +∞, and by using the Schauder fixed point theorem, a solution existence result is obtained. In [7], Li and Lin used the Guo-Krasnosel’skii fixed point theorem to obtain the existence and uniqueness of positive solutions for (1) with πœ‡ = 0. However, we note that these are seldom considered Hadamard fractional differential equations with the 𝑝Laplacian in the literature; in this paper we are devoted to this direction. We first utilize the Guo-Krasnosel’skii fixed point theorem to obtain two positive solutions existence theorems when 𝑓 grows (𝑝 βˆ’ 1)–superlinearly and (𝑝 βˆ’ 1)–sublinearly with the 𝑝-Laplacian, and secondly by using the fixed point index, we obtain a nontrivial solution existence theorem without the 𝑝-Laplacian, but the nonlinearity can allow being

𝐻 (𝑑, 𝜏) = 𝐻1 (𝑑, 𝜏) +

𝑒

𝑒

1

1

𝑒 (𝑑) = ∫ 𝐺 (𝑑, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏))

where 𝐺 (𝑑, 𝑠) =

1 Ξ“ (𝛼) π›Όβˆ’1

+ 𝑐2 (log 𝑑)

π›½βˆ’2

π›½βˆ’1

(9)

Note that 𝐷𝛼 𝑒(1) = 0 implies πœ‘π‘ (𝐷𝛼 𝑒(1)) = 0, and then 𝑐2 = 0. Therefore, we obtain π›½βˆ’1

.

=

𝑐1 =

(10)

πœ‘π‘ (𝐷𝛼 𝑒 (𝑒)) = 𝐼𝛽 𝑦 (𝑒) + 𝑐1

1 ≀ 𝑑 ≀ 𝑠 ≀ 𝑒,

π›½βˆ’1

,

for 𝑑, 𝜏 ∈ [1, 𝑒] , 1 ≀ 𝜏 ≀ 𝑑 ≀ 𝑒,

𝑒 𝑑 πœ‡ πœ‡π‘1 d𝜏 d𝑑 π›½βˆ’1 + . ∫ ∫ (log 𝑑 βˆ’ log 𝜏) 𝑦 (𝜏) 𝛽 𝜏 𝑑 Ξ“ (𝛽) 1 1

𝑒 𝑑 πœ‡π›½ d𝜏 d𝑑 π›½βˆ’1 ∫ ∫ (log 𝑑 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 𝑑 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1 1

Substituting 𝑐1 into (10) gives (11)

πœ‘π‘ (𝐷𝛼 𝑒 (𝑑)) =

𝑑 1 d𝜏 π›½βˆ’1 ∫ (log 𝑑 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 Ξ“ (𝛽) 1

π›½βˆ’1

d𝑑 πœ‡ ∫ πœ‘π‘ (𝐷𝛼 𝑒 (𝑑)) 𝑑 1 𝑒

𝑒 d𝑑 π›½βˆ’1 d𝑑 = πœ‡ ∫ 𝐼 𝑦 (𝑑) + πœ‡π‘1 ∫ (log 𝑑) 𝑑 𝑑 1 1 𝛽

(8)

1 ≀ 𝑑 ≀ 𝜏 ≀ 𝑒.

𝑒 𝛽 d𝜏 π›½βˆ’1 ∫ (1 βˆ’ log 𝜏) 𝑦 (𝜏) . βˆ’ 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1

and 𝑒

(7)

𝑒

𝑒

𝑒 1 d𝜏 π›½βˆ’1 ∫ (1 βˆ’ log 𝜏) 𝑦 (𝜏) , 𝜏 Ξ“ (𝛽) 1

1 ≀ 𝑠 ≀ 𝑑 ≀ 𝑒,

The condition πœ‘π‘ (𝐷𝛼 𝑒(𝑒)) = πœ‡ ∫1 πœ‘π‘ (𝐷𝛼 𝑒(𝑑))(d𝑑/𝑑) enables us to obtain

Next, we calculate πœ‘π‘ (𝐷𝛼 𝑒(𝑒)) and πœ‡ ∫1 πœ‘π‘ (𝐷𝛼 𝑒(𝑑))(d𝑑/𝑑):

= 𝑐1 +

,

(12)

,

for 𝑐𝑖 ∈ R, 𝑖 = 1, 2.

πœ‘π‘ (𝐷𝛼 𝑒 (𝑑)) = 𝐼𝛽 𝑦 (𝑑) + 𝑐1 (log 𝑑)

π›Όβˆ’1

and

Proof. Use 𝑦(𝑑) to replace 𝑓(𝑑, 𝑒) in (1). Let 𝐷𝛽 (πœ‘π‘ (𝐷𝛼 𝑒(𝑑))) = 𝑦(𝑑). Then from Lemma 2 we have π›½βˆ’1

π›Όβˆ’2

{(log 𝑑) (1 βˆ’ log 𝑠) βˆ’ (log 𝑑 βˆ’ log 𝑠) β‹…{ π›Όβˆ’1 π›Όβˆ’2 {(log 𝑑) (1 βˆ’ log 𝑠) ,

1 {(log 𝑑) (1 βˆ’ log 𝜏) βˆ’ (log 𝑑 βˆ’ log 𝜏) 𝐻1 (𝑑, 𝜏) = Ξ“ (𝛽) {(log 𝑑)π›½βˆ’1 (1 βˆ’ log 𝜏)π›½βˆ’1 , {

πœ‘π‘ (𝐷𝛼 𝑒 (𝑑)) = 𝐼𝛽 𝑦 (𝑑) + 𝑐1 (log 𝑑)

(6)

for 𝑑 ∈ [1, 𝑒] ,

πœ‡ π›½βˆ’1 π›½βˆ’1 (log 𝑑) log 𝜏 (1 βˆ’ log 𝜏) , (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) π›½βˆ’1

d𝜏 d𝑠 ) , 𝜏 𝑠

βˆ’

𝑒 𝛽 (log 𝑑) d𝜏 π›½βˆ’1 ∫ (1 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1

+

𝑒 𝑑 πœ‡π›½ (log 𝑑) d𝜏 d𝑑 π›½βˆ’1 ∫ ∫ (log 𝑑 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 𝑑 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1 1

π›½βˆ’1

(13)

Journal of Function Spaces

3 π›½βˆ’1

Note that βˆ’πœ‘π‘ (𝐷𝛼 𝑒(𝑑)) = πœ‘π‘ (βˆ’π·π›Ό 𝑒(𝑑)), and hence we obtain

𝑑 1 d𝜏 (log 𝑑) π›½βˆ’1 βˆ’ ∫ (log 𝑑 βˆ’ log 𝜏) 𝑦 (𝜏) = 𝜏 Ξ“ (𝛽) 1 Ξ“ (𝛽) 𝑒

β‹… ∫ (1 βˆ’ log 𝜏)

π›½βˆ’1

1

𝑒

βˆ’ 𝐷𝛼 𝑒 (𝑑) = πœ‘π‘ž (∫ 𝐻 (𝑑, 𝜏) 𝑦 (𝜏) 1

π›½βˆ’1

𝑦 (𝜏)

d𝜏 (log 𝑑) + 𝜏 Ξ“ (𝛽)

𝑒

Then, if we let π‘₯(𝑑) = πœ‘π‘ž (∫1 𝐻(𝑑, 𝜏)𝑦(𝜏)(d𝜏/𝜏)), 𝑑 ∈ [1, 𝑒], from Lemma 2 we obtain

π›½βˆ’1

𝛽 (log 𝑑) d𝜏 π›½βˆ’1 βˆ’ β‹… ∫ (1 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1 β‹… ∫ (1 βˆ’ log 𝜏)

π›½βˆ’1

1

𝑒

𝑑

1

1

𝑑

β‹… ∫ [(log 𝑑)

π›½βˆ’1

1

𝑒 (𝑑) = βˆ’πΌπ›Ό π‘₯ (𝑑) + 𝑐1 (log 𝑑)

π›½βˆ’1

d𝜏 πœ‡π›½ (log 𝑑) + 𝑦 (𝜏) 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽)

β‹… ∫ ∫ (log 𝑑 βˆ’ log 𝜏)

π›½βˆ’1

(1 βˆ’ log 𝜏)

π›½βˆ’1

+ 𝑐3 (log 𝑑)

βˆ’ (log 𝑑 βˆ’ log 𝜏)

π›½βˆ’1

𝑐1 =

]

𝑒 (𝑑) = βˆ’

π›½βˆ’1

𝑒

𝑑

1

1

d𝜏 πœ‡π›½ (log 𝑑) + 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽)

β‹… ∫ ∫ (log 𝑑 βˆ’ log 𝜏)

π›½βˆ’1

, for 𝑐𝑖 ∈ R, 𝑖 = 1, 2, 3.

𝑒 1 d𝑠 π›Όβˆ’2 ∫ (1 βˆ’ log 𝑠) π‘₯ (𝑠) . Ξ“ (𝛼) 1 𝑠

𝑒

d𝜏 d𝑑 𝜏 𝑑

for 𝑑 ∈ [1, 𝑒] .

1

𝑒

𝑒

1

𝜏

This completes the proof. Lemma 4. Green’s functions 𝐺, 𝐻 defined by (7) and (8) have the following properties: (i) 𝐺, 𝐻 are continuous, nonnegative functions on [1, 𝑒] Γ— [1, 𝑒], (ii) (log 𝑑)π›Όβˆ’1 [(1βˆ’log 𝑠)π›Όβˆ’2 βˆ’(1βˆ’log 𝑠)π›Όβˆ’1 ] ≀ Ξ“(𝛼)𝐺(𝑑, 𝑠) ≀ (1 βˆ’ log 𝑠)π›Όβˆ’2 βˆ’ (1 βˆ’ log 𝑠)π›Όβˆ’1 , for 𝑑, 𝑠 ∈ [1, 𝑒]. From [7, Lemma 7] and [8, Lemma 2.2] we easily obtain this lemma, so we omit its proof. Let 𝑒 d𝜏 𝐺1 (𝑑, 𝑠) = ∫ 𝐺 (𝑑, 𝜏) 𝐻 (𝜏, 𝑠) , 𝜏 1

π›½βˆ’1

𝑒

β‹… ∫ ∫ (log 𝑑 βˆ’ log 𝜏)

d𝜏 πœ‡π›½ (log 𝑑) + 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) π›½βˆ’1

𝑦 (𝜏)

d𝑑 d𝜏 𝑑 𝜏

π›½βˆ’1

βˆ’

𝑒 πœ‡ (log 𝑑) d𝜏 π›½βˆ’1 ∫ (1 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1 π›½βˆ’1

𝑒

= βˆ’ ∫ 𝐻1 (𝑑, 𝜏) 𝑦 (𝜏) 1

πœ‡ (log 𝑑) d𝜏 + 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽)

πœ™ (𝑠) =

π›½βˆ’1

𝑒

πœ‡ (log 𝑑) d𝜏 𝛽 βˆ’ β‹… ∫ (1 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1 𝑒

β‹… ∫ (1 βˆ’ log 𝜏)

π›½βˆ’1

1

𝑦 (𝜏)

β‹… ∫ [(1 βˆ’ log 𝑑)

𝑒

1

d𝜏 = βˆ’ ∫ 𝐻1 (𝑑, 𝜏) 𝜏 1

𝑦 (𝜏)

(19) π›Όβˆ’2

βˆ’ (1 βˆ’ log 𝑑)

π›Όβˆ’1

] 𝐻 (𝑑, 𝑠)

d𝑑 , 𝑑

for 𝑑, 𝑠 ∈ [1, 𝑒] .

πœ‡ d𝜏 π›½βˆ’1 βˆ’βˆ« (log 𝑑) β‹… 𝑦 (𝜏) 𝜏 1 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) π›½βˆ’1

1 Ξ“ (𝛼)

𝑒

𝑒

β‹… log 𝜏 (1 βˆ’ log 𝜏)

(18)

𝑒

d𝜏 d𝑠 = ∫ 𝐺 (𝑑, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑦 (𝜏) ) , 𝜏 𝑠 1 1

𝑒 πœ‡ (log 𝑑) d𝜏 π›½βˆ’1 ∫ (1 βˆ’ log 𝜏) 𝑦 (𝜏) 𝜏 (𝛽 βˆ’ πœ‡) Ξ“ (𝛽) 1

= βˆ’ ∫ 𝐻1 (𝑑, 𝜏) 𝑦 (𝜏)

(16)

(17)

𝑒 1 d𝑠 π›Όβˆ’1 π›Όβˆ’2 ∫ (log 𝑑) (1 βˆ’ log 𝑠) π‘₯ (𝑠) Ξ“ (𝛼) 1 𝑠

π›½βˆ’1

βˆ’

π›Όβˆ’2

𝑑 1 d𝑠 π›Όβˆ’1 ∫ (log 𝑑 βˆ’ log 𝑠) π‘₯ (𝑠) Ξ“ (𝛼) 1 𝑠

+

𝑦 (𝜏)

+ 𝑐2 (log 𝑑)

As a result, from (16) we have

𝑒 1 d𝜏 π›½βˆ’1 π›½βˆ’1 βˆ’ ∫ (log 𝑑) (1 βˆ’ log 𝜏) β‹… 𝑦 (𝜏) 𝜏 Ξ“ (𝛽) 𝑑

β‹… 𝑦 (𝜏)

π›Όβˆ’3

π›Όβˆ’1

The condition 𝑒(1) = 𝑒󸀠 (1) = 0 implies that 𝑐2 = 𝑐3 = 0. Then we substitute 𝑒 into the first derivative of 𝑒, and we calculate 𝑐1 as follows:

1 d𝜏 d𝑑 =βˆ’ 𝜏 𝑑 Ξ“ (𝛽)

𝑦 (𝜏)

(15)

for 𝛼 ∈ (2, 3] , 𝑑 ∈ [1, 𝑒] .

𝑒

𝑒

d𝜏 ), 𝜏

Then we obtain the following lemma. 𝑒

Lemma 5. There exist πœ…1 = ∫1 (log 𝑑)π›Όβˆ’1 πœ™(𝑑)(d𝑑/𝑑), πœ…2 = 𝑒 ∫1 πœ™(𝑑)(d𝑑/𝑑) such that

𝑒

d𝜏 = βˆ’ ∫ 𝐻 (𝑑, 𝜏) 𝜏 1

𝑒

πœ…1 πœ™ (𝑠) ≀ ∫ 𝐺1 (𝑑, 𝑠) πœ™ (𝑑)

d𝜏 β‹… 𝑦 (𝜏) . 𝜏

1

(14)

d𝑑 ≀ πœ…2 πœ™ (𝑠) , 𝑑

(20) for 𝑠 ∈ [1, 𝑒] .

4

Journal of Function Spaces

Proof. We only prove the left inequality above. From Lemma 4(ii) we have 𝑒

∫ 𝐺1 (𝑑, 𝑠) πœ™ (𝑑) 1

β‹… 𝐻 (𝜏, 𝑠) 𝑒

𝑒

1

1

𝑒 𝑒 dt = ∫ ∫ 𝐺 (𝑑, 𝜏) 𝑑 1 1

d𝜏 d𝑑 1 πœ™ (𝑑) β‰₯ 𝜏 𝑑 Ξ“ (𝛼)

β‹… ∫ ∫ (log 𝑑)

π›Όβˆ’1

(21)

[(1 βˆ’ log 𝜏)

π›Όβˆ’2

βˆ’ (1 βˆ’ log 𝜏)

π›Όβˆ’1

]

d𝑑 d𝜏 πœ™ (𝑑) = πœ…1 πœ™ (𝑠) . 𝜏 𝑑 This completes the proof. β‹… 𝐻 (𝜏, 𝑠)

Let E = 𝐢[1, 𝑒] be the Banach space equipped with the norm ‖𝑒‖ = maxπ‘‘βˆˆ[1,𝑒] |𝑒(𝑑)|. Then we define two sets on E as follows: 𝑃 = {𝑒 ∈ E : 𝑒 (𝑑) β‰₯ 0, βˆ€π‘‘ ∈ [1, 𝑒]} , 𝑃0 = {𝑒 ∈ E : 𝑒 (𝑑) β‰₯ (log 𝑑)

π›Όβˆ’1

‖𝑒‖ , βˆ€π‘‘ ∈ [1, 𝑒]} .

(22)

Consequently, 𝑃, 𝑃0 are cones on E. From Lemma 3 we can define an operator 𝐴 on E as follows: 𝑒

= ∫ 𝐺 (𝑑, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏)) 1

Let 𝐡󰜚 fl {𝑒 ∈ E : ‖𝑒‖ < 󰜚} for 󰜚 > 0. Now, we first list our assumptions on 𝑓: (H1) 𝑓 ∈ 𝐢([0, 1] Γ— R+ , R+ ), (H2) there exist 𝛿1 ∈ (1, 𝑒), 𝑑0 ∈ (1, 𝑒) such that lim inf 𝑒󳨀→+∞ (𝑓(𝑑, 𝑒)/πœ‘π‘ (𝑒)) β‰₯ πœ‘π‘ (𝑁1 ), lim inf 𝑒󳨀→0+ (𝑓(𝑑, 𝑒)/ πœ‘π‘ (𝑒)) β‰₯ πœ‘π‘ (𝑁2 ), uniformly on 𝑑 ∈ [𝛿1 , 𝑒], where 2𝑁1βˆ’1 , 𝑒 𝑒 𝑁2βˆ’1 ∈ (0, (log 𝛿1 )π›Όβˆ’1 ∫1 𝐺(𝑑0 , 𝑠)πœ‘π‘ž (βˆ«π›Ώ 𝐻(𝑠, 𝜏)(d𝜏/𝜏))(d𝑠/𝑠)), 1 (H3) there exists 𝜌1 > 0 such that 𝑓(𝑑, 𝑒) ≀ πœ‘π‘ (𝑁3 𝜌1 ), 𝑒 𝑒 βˆ€π‘’ ∈ [0, 𝜌1 ], 𝑑 ∈ [1, 𝑒], where 𝑁3βˆ’1 > ∫1 𝐺(𝑒, 𝑠)πœ‘π‘ž (∫1 𝐻(𝑠, 𝜏)(d𝜏/𝜏))(d𝑠/𝑠), (H4) lim sup𝑒󳨀→+∞ (𝑓(𝑑, 𝑒)/πœ‘π‘ (𝑒)) ≀ πœ‘π‘ (𝑀1 ), lim sup𝑒󳨀→0+ (𝑓(𝑑, 𝑒)/πœ‘π‘ (𝑒)) ≀ πœ‘π‘ (𝑀2 ), uniformly on 𝑒 𝑒 𝑑 ∈ [1, 𝑒], where (2𝑀1 )βˆ’1 , 𝑀2βˆ’1 > ∫1 𝐺(𝑒, 𝑠)πœ‘π‘ž (∫1 𝐻(𝑠, 𝜏)(d𝜏/ 𝜏))(d𝑠/𝑠), (H5) there exist 𝜌2 > 0, 𝛿1 ∈ (1, 𝑒), 𝑑0 ∈ (1, 𝑒) such that 𝑓(𝑑, 𝑒) β‰₯ πœ‘π‘ (𝑀3 𝜌2 ), βˆ€π‘’ ∈ [(log 𝛿1 )π›Όβˆ’1 𝜌2 , 𝜌2 ], 𝑑 ∈ [𝛿1 , 𝑒], where 𝑒

𝑒

1

𝛿1

𝑀3βˆ’1 ∈ (0, ∫ 𝐺 (𝑑0 , 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏)

d𝜏 d𝑠 ) ). 𝜏 𝑠

(26)

Lemma 9. Suppose that (H1) holds. Then 𝐴(𝑃) βŠ‚ 𝑃0 .

(𝐴𝑒) (𝑑) 𝑒

3. Positive Solutions for (1)

1

d𝜏 d𝑠 ) , 𝜏 𝑠

(23)

(𝐴𝑒) (𝑑) ≀

for 𝑒 ∈ E, 𝑑 ∈ [1, 𝑒] . The continuity of 𝐺, 𝐻, 𝑓 implies that 𝐴 : E 󳨀→ E is a completely continuous operator and the existence of solutions for (1) if and only if the existence of fixed points for 𝐴. Lemma 6 (see [50]). Let E be a Banach space and Ξ© a bounded open set in E. Suppose that 𝐴 : Ξ© 󳨀→ E is a continuous compact operator. If there exists 𝑒0 ∈ 𝐸 \ {0} such that 𝑒 βˆ’ 𝐴𝑒 =ΜΈ πœ‡π‘’0 ,

βˆ€π‘’ ∈ πœ•Ξ©, πœ‡ β‰₯ 0,

𝑒

d𝜏 d𝑠 ) , 𝜏 𝑠

β‹… πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏)) 1

On the other hand, π›Όβˆ’1

(𝐴𝑒) (𝑑) β‰₯ (log 𝑑) 𝑒

(25)

then the topological degree deg(𝐼 βˆ’ 𝐴, Ξ©, 0) = 1. Lemma 8 (see [50]). Let E be a Banach space and 𝑃 βŠ‚ E a cone in E. Assume that Ξ©1 , Ξ©2 are open subsets of E with 0 ∈ Ξ©1 βŠ‚ Ξ©1 βŠ‚ Ξ©2 , and let 𝐴 : 𝑃 ∩ (Ξ©2 \ Ξ©1 ) 󳨀→ 𝑃 be a completely continuous operator such that either (G1) ‖𝐴𝑒‖ ≀ ‖𝑒‖, 𝑒 ∈ πœ•Ξ©1 ∩ 𝑃, and ‖𝐴𝑒‖ β‰₯ ‖𝑒‖, 𝑒 ∈ πœ•Ξ©2 ∩ 𝑃, or (G2) ‖𝐴𝑒‖ β‰₯ ‖𝑒‖, 𝑒 ∈ πœ•Ξ©1 ∩ 𝑃, and ‖𝐴𝑒‖ ≀ ‖𝑒‖, 𝑒 ∈ πœ•Ξ©2 ∩ 𝑃. Then 𝐴 has a fixed point in 𝑃 ∩ (Ξ©2 \ Ξ©1 ).

(27) βˆ€π‘‘ ∈ [1, 𝑒] .

β‹… ∫ [(1 βˆ’ log 𝑠)

Lemma 7 (see [50]). Let E be a Banach space and Ξ© a bounded open set in E with 0 ∈ Ξ©. Suppose that 𝐴 : Ξ© 󳨀→ E is a continuous compact operator. If βˆ€π‘’ ∈ πœ•Ξ©, πœ‡ β‰₯ 1,

𝑒 1 π›Όβˆ’2 π›Όβˆ’1 ∫ [(1 βˆ’ log 𝑠) βˆ’ (1 βˆ’ log 𝑠) ] Ξ“ (𝛼) 1

β‹…

(24)

then the topological degree deg(𝐼 βˆ’ 𝐴, Ξ©, 0) = 0.

𝐴𝑒 =ΜΈ πœ‡π‘’,

Proof. If 𝑒 ∈ 𝑃, from Lemma 4 we have

π›Όβˆ’2

1

1 Ξ“ (𝛼) βˆ’ (1 βˆ’ log 𝑠)

π›Όβˆ’1

] (28)

𝑒

d𝜏 d𝑠 β‹… πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏)) ) 𝜏 𝑠 1 β‰₯ (log 𝑑)

π›Όβˆ’1

‖𝐴𝑒‖ ,

βˆ€π‘‘ ∈ [1, 𝑒] .

This completes the proof. Remark 10. Our aim is to find operator equation 𝑒 = 𝐴𝑒 has fixed points in 𝑃, and from Lemma 9, these fixed points must belong to the cone 𝑃0 . Therefore, our work space can be chosen 𝑃0 rather than 𝑃. In what follows, we discuss the existence of positive solutions for (1) in 𝑃0 . Theorem 11. Suppose that (H1)-(H3) hold. Then (1) has at least two positive solutions.

Journal of Function Spaces

5

Proof. From (H3), when 𝑒 ∈ πœ•π΅πœŒ1 ∩ 𝑃0 , we have

Combining this and (33), we find

(𝐴𝑒) (𝑑)

𝑒

𝑒

1

𝛿1

‖𝐴𝑒‖ β‰₯ ∫ 𝐺 (𝑑0 , 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑒

𝑒

d𝜏 d𝑠 ≀ max ∫ 𝐺 (𝑑, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏)) ) π‘‘βˆˆ[1,𝑒] 1 𝜏 𝑠 1 𝑒

𝑒

≀ ∫ 𝐺 (𝑒, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) πœ‘π‘ (𝑁3 𝜌1 ) 1

1

𝑒

d𝜏 d𝑠 ) 𝜏 𝑠

β‹… πœ‘π‘ (𝑁1 (log 𝛿1 ) (29)

= (𝑁1 (log 𝛿1 )

𝑒

d𝜏 d𝑠 < 𝜌1 , = 𝑁3 𝜌1 ∫ 𝐺 (𝑒, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) ) 𝜏 𝑠 1 1

𝑒

𝛿1

d𝜏 d𝑠 ) 𝜏 𝑠

𝑅1 βˆ’ 𝐢2 )

𝑒

(36)

𝑅1 βˆ’ 𝐢2 ) ∫ 𝐺 (𝑑0 , 𝑠) 1

d𝜏 d𝑠 ) β‰₯ 2𝑅1 βˆ’ 𝐢3 , 𝜏 𝑠

𝑒

𝑒

where 𝐢3 = 𝐢2 ∫1 𝐺(𝑑0 , 𝑠)πœ‘π‘ž (βˆ«π›Ώ 𝐻(𝑠, 𝜏)(d𝜏/𝜏))(d𝑠/𝑠). Conse1 quently, we have

Hence, we obtain for 𝑒 ∈ πœ•π΅πœŒ1 ∩ 𝑃0 .

π›Όβˆ’1

β‹… πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏)

βˆ€π‘‘ ∈ [1, 𝑒] .

‖𝐴𝑒‖ < ‖𝑒‖ ,

π›Όβˆ’1

‖𝐴𝑒‖ > ‖𝑒‖ , for πœ•π΅π‘…1 ∩ 𝑃0 , if ‖𝑒‖ 󳨀→ ∞.

(30)

(37)

(31)

In summary, from (30), (33), and (37) with 𝑅1 > 𝜌1 > π‘Ÿ1 , Lemma 8 enables us to obtain that (1) has at least two positive solutions in (𝐡𝑅1 \𝐡𝜌1 )βˆ©π‘ƒ0 and (𝐡𝜌1 \π΅π‘Ÿ1 )βˆ©π‘ƒ0 . This completes the proof.

Note that if 𝑒 ∈ πœ•π΅π‘Ÿ1 ∩ 𝑃0 , 𝑑 ∈ [𝛿1 , 𝑒], from the definition of 𝑃0 we have

Theorem 12. Suppose that (H1), (H4)-(H5) hold. Then (1) has at least two positive solutions.

On the other hand, by the second limit inequality in (H2), there exists π‘Ÿ1 ∈ (0, 𝜌1 ) such that 𝑓 (𝑑, 𝑒) β‰₯ πœ‘π‘ (𝑁2 𝑒) ,

βˆ€π‘’ ∈ [0, π‘Ÿ1 ] , 𝑑 ∈ [𝛿1 , 𝑒] .

𝑒 (𝑑) β‰₯ (log 𝛿1 )

π›Όβˆ’1

‖𝑒‖ .

(32)

This, together with (31), implies that 𝑒

‖𝐴𝑒‖

‖𝐴𝑒‖ = max (𝐴𝑒) (𝑑) β‰₯ (𝐴𝑒) (𝑑0 ) = ∫ 𝐺 (𝑑0 , 𝑠) π‘‘βˆˆ[1,𝑒]

1

d𝜏 d𝑠 β‹… πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏)) ) 𝜏 𝑠 1 𝑒

𝑒

1

𝛿1

d𝜏 d𝑠 π›Όβˆ’1 β‹… πœ‘π‘ (𝑁2 (log 𝛿1 ) ‖𝑒‖) ) 𝜏 𝑠

𝑒

β‹… πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝛿1

𝑒

1

1

𝑒

𝑒

1

𝛿1

β‰₯ ∫ 𝐺 (𝑑0 , 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) πœ‘π‘ (𝑀3 𝜌2 )

β‰₯ ∫ 𝐺 (𝑑0 , 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏)

π›Όβˆ’1

𝑒

β‰₯ ∫ 𝐺 (𝑑0 , 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏))

𝑒

= 𝑁2 (log 𝛿1 )

Proof. If 𝑒 ∈ πœ•π΅πœŒ2 ∩ 𝑃0 , we have ‖𝑒‖ = 𝜌2 , and 𝑒 ∈ [(log 𝛿1 )π›Όβˆ’1 𝜌2 , 𝜌2 ], for 𝑒 ∈ 𝑃0 , 𝑑 ∈ [𝛿1 , 𝑒]. Hence, from (H5) we obtain

(33)

‖𝑒‖ ∫ 𝐺 (𝑑0 , 𝑠)

𝛿1

(38)

d𝜏 d𝑠 ) > 𝜌2 . 𝜏 𝑠

for 𝑒 ∈ πœ•π΅πœŒ2 ∩ 𝑃0 .

(39)

On the other hand, by the second limit inequality in (H4), there exists π‘Ÿ2 ∈ (0, 𝜌2 ) such that

d𝜏 d𝑠 ) > ‖𝑒‖ , 𝜏 𝑠

𝑓 (𝑑, 𝑒) ≀ πœ‘π‘ (𝑀2 𝑒) ,

for 𝑒 ∈ πœ•π΅π‘Ÿ1 ∩ 𝑃0 . By the first limit inequality in (H2), there exist 𝑅1 > 𝜌1 and 𝐢1 > 0 such that +

βˆ€π‘’ ∈ R , 𝑑 ∈ [𝛿1 , 𝑒] .

(34)

Note that 𝑅1 can be chosen large enough, and if 𝑒 ∈ πœ•π΅π‘…1 βˆ©π‘ƒ0 , together with (32), there exists 𝐢2 > 0 such that π›Όβˆ’1

1

‖𝐴𝑒‖ > ‖𝑒‖ ,

1

𝑓 (𝑑, 𝑒) β‰₯ πœ‘π‘ (𝑁1 (log 𝛿1 )

𝑒

d𝜏 d𝑠 ) 𝜏 𝑠

This indicates that

𝑒

𝑓 (𝑑, 𝑒) β‰₯ πœ‘π‘ (𝑁1 𝑒) βˆ’ 𝐢1 ,

𝑒

β‰₯ 𝑀3 𝜌2 ∫ 𝐺 (𝑑0 , 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏)

d𝜏 d𝑠 ) 𝜏 𝑠

βˆ€π‘‘ ∈ [𝛿1 , 𝑒] .

(35)

(40)

This, if 𝑒 ∈ πœ•π΅π‘Ÿ2 ∩ 𝑃0 , implies that ‖𝐴𝑒‖ 𝑒

𝑒

1

1

𝑒

𝑒

≀ ∫ 𝐺 (𝑒, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) πœ‘π‘ (𝑀2 𝑒 (𝜏)) ≀ ∫ 𝐺 (𝑒, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) πœ‘π‘ (𝑀2 π‘Ÿ2 ) 1

𝑅1 βˆ’ 𝐢2 ) ,

βˆ€π‘’ ∈ [0, π‘Ÿ2 ] , 𝑑 ∈ [1, 𝑒] .

1

𝑒

𝑒

1

1

= 𝑀2 π‘Ÿ2 ∫ 𝐺 (𝑒, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏)

d𝜏 d𝑠 ) 𝜏 𝑠

d𝜏 d𝑠 ) 𝜏 𝑠

d𝜏 d𝑠 ) < π‘Ÿ2 . 𝜏 𝑠

(41)

6

Journal of Function Spaces solutions in (𝐡𝑅2 \𝐡𝜌2 )βˆ©π‘ƒ0 and (𝐡𝜌2 \π΅π‘Ÿ2 )βˆ©π‘ƒ0 . This completes the proof.

This gives ‖𝐴𝑒‖ < ‖𝑒‖ ,

for 𝑒 ∈ πœ•π΅π‘Ÿ2 ∩ 𝑃0 .

(42)

By the first limit inequality in (H4), there exist 𝑅2 > 𝜌2 and 𝐢4 > 0 such that βˆ€π‘’ ∈ R+ , 𝑑 ∈ [1, 𝑒] .

𝑓 (𝑑, 𝑒) ≀ πœ‘π‘ (𝑀1 𝑒 + 𝐢4 ) ,

Example 13. Let 𝑓 (𝑑, 𝑒) π‘βˆ’1βˆ’π›Ύ

(43)

Consequently, if 𝑒 ∈ πœ•π΅π‘…2 βˆ©π‘ƒ0 with 𝑅2 large enough, we obtain 𝑒

‖𝐴𝑒‖ ≀ ∫ 𝐺 (𝑒, 𝑠) β‹… πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) πœ‘π‘ (𝑀1 𝑅2 + 𝐢4 ) 1

𝑒

lim inf

d𝜏 d𝑠 ) 𝜏 𝑠

𝑒󳨀→+∞

d𝜏 d𝑠 = (𝑀1 𝑅2 + 𝐢4 ) ∫ 𝐺 (𝑒, 𝑠) πœ‘π‘ž (∫ 𝐻 (𝑠, 𝜏) ) 𝜏 𝑠 1 1

for 𝑒 ∈ πœ•π΅π‘…2 ∩ 𝑃0 , if ‖𝑒‖ 󳨀→ ∞.

(47)

π‘βˆ’1

𝑁3 𝑒𝛾2

π‘’π‘βˆ’1

= +∞

βˆ’(π›Όβˆ’1)𝛾

π‘βˆ’1βˆ’π›Ύ

Moreover, for 𝑒 ∈ [0, 𝜌1 ], 𝑑 ∈ [1, 𝑒] we have π‘βˆ’1βˆ’π›Ύ2

(45)

In a word, from (39), (42), and (45) with 𝑅2 > 𝜌2 > π‘Ÿ2 , Lemma 8 enables us to obtain that (1) has at least two positive π‘βˆ’1

3 3 𝜌2 𝑀3 𝑒𝛾3 , {(log 𝛿1 ) 𝑓 (𝑑, 𝑒) = { βˆ’(π›Όβˆ’1)𝛾4 π‘βˆ’1βˆ’π›Ύ4 π‘βˆ’1 𝜌2 𝑀3 𝑒𝛾4 , {(log 𝛿1 )

𝑓 (𝑑, 𝑒) ≀ 𝜌1

𝑓 (𝑑, 𝑒) lim sup 𝑒󳨀→+∞ πœ‘π‘ (𝑒)

π‘βˆ’1 𝛾

𝑁3 𝜌1 2 = (𝑁3 𝜌1 )

π‘βˆ’1

.

(48)

Therefore, (H1)-(H3) hold. Example 14. Let 𝑒 ∈ [(log 𝛿1 )

π›Όβˆ’1

𝑒 ∈ [0, (log 𝛿1 )

where 𝛾3 ∈ (0, π‘βˆ’1), 𝛾4 ∈ (π‘βˆ’1, +∞), and 𝑀3 , 𝜌2 are defined by (H5). Then

𝜌2 , +∞) , 𝑑 ∈ [1, 𝑒] ,

π›Όβˆ’1

(49)

𝜌2 ) , 𝑑 ∈ [1, 𝑒] ,

= (𝑀3 𝜌2 )

π‘βˆ’1

. (51)

Therefore, (H1), (H4)-(H5) hold. βˆ’(π›Όβˆ’1)𝛾3

π‘βˆ’1βˆ’π›Ύ3

𝜌2

π‘’π‘βˆ’1

𝑒󳨀→+∞

4. Nontrivial Solutions for (1)

π‘βˆ’1

𝑀3 𝑒𝛾3

=0

≀ πœ‘π‘ (𝑀1 ) ,

(50)

𝑓 (𝑑, 𝑒) lim sup 𝑒󳨀→0+ πœ‘π‘ (𝑒) (log 𝛿1 )

= +∞

β‰₯ πœ‘π‘ (𝑁2 ) .

where 𝐢5 = 𝐢4 ∫1 𝐺(𝑒, 𝑠)πœ‘π‘ž (∫1 𝐻(𝑠, 𝜏)(d𝜏/𝜏))(d𝑠/𝑠). Hence, we have

= lim sup

π‘’π‘βˆ’1

π‘βˆ’1βˆ’π›Ύ2

𝑒

(log 𝛿1 )

π‘βˆ’1

𝑁3 𝑒𝛾1

β‰₯ πœ‘π‘ (𝑁1 ) , 𝜌1 𝑓 (𝑑, 𝑒) = lim inf lim inf 𝑒󳨀→0+ πœ‘π‘ (𝑒) 𝑒󳨀→0+

1 ≀ 𝑅2 + 𝐢5 , 2 𝑒

𝜌 𝑓 (𝑑, 𝑒) = lim inf 1 𝑒󳨀 β†’+∞ πœ‘π‘ (𝑒)

(44)

𝑒

(46)

𝑒 ∈ [0, 𝜌1 ] , 𝑑 ∈ [1, 𝑒] ,

π‘βˆ’1βˆ’π›Ύ1

𝑒

= lim sup

𝑒 ∈ (𝜌1 , +∞) , 𝑑 ∈ [1, 𝑒] ,

where 𝛾1 ∈ (𝑝 βˆ’ 1, +∞), 𝛾2 ∈ (0, 𝑝 βˆ’ 1), and 𝑁3 , 𝜌1 are defined by (H3). Then

1

‖𝐴𝑒‖ < ‖𝑒‖ ,

π‘βˆ’1

1 𝑁3 𝑒𝛾1 , {𝜌1 = { π‘βˆ’1βˆ’π›Ύ π‘βˆ’1 2 𝑁3 𝑒𝛾2 , {𝜌1

In this section we consider the boundary value problem (1) without the 𝑝-Laplacian, i.e., 𝑝 = 2. In this case, (1) can be transformed into its integral form as follows: 𝑒

𝑒

1 𝑒

1

𝑒 (𝑑) = ∫ 𝐺 (𝑑, 𝑠) ∫ 𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑒 (𝜏)) βˆ’(π›Όβˆ’1)𝛾4

+

𝑒󳨀→0

π‘βˆ’1βˆ’π›Ύ4 π‘βˆ’1 𝜌2 𝑀3 𝑒𝛾4 π‘’π‘βˆ’1

=0

≀ πœ‘π‘ (𝑀2 ) . Moreover, for 𝑒 ∈ [(log 𝛿1 )π›Όβˆ’1 𝜌2 , 𝜌2 ], 𝑑 ∈ [𝛿1 , 𝑒] we have 𝑓 (𝑑, 𝑒) β‰₯ (log 𝛿1 )

βˆ’(π›Όβˆ’1)𝛾3

π‘βˆ’1βˆ’π›Ύ3

𝜌2

π‘βˆ’1

𝑀3 𝑒𝛾3

d𝜏 d𝑠 𝜏 𝑠

(52) d𝑠 , for 𝑑 ∈ [1, 𝑒] . 𝑠 1 As said in Section 3, we define an operator, still denoted by 𝐴, as follows: 𝑒 d𝑠 (𝐴𝑒) (𝑑) = ∫ 𝐺1 (𝑑, 𝑠) 𝑓 (𝑠, 𝑒 (𝑠)) , 𝑠 1 (53) = ∫ 𝐺1 (𝑑, 𝑠) 𝑓 (𝑠, 𝑒 (𝑠))

for 𝑒 ∈ E, 𝑑 ∈ [1, 𝑒] .

Journal of Function Spaces

7

In what follows, we aim to find the existence of fixed points of 𝐴. For this, we list our assumptions on 𝑓: (H6) 𝑓 ∈ 𝐢([1, 𝑒] Γ— R, R), (H7) There exist nonnegative functions π‘Ž(𝑑), 𝑏(𝑑) ∈ E with 𝑏 ≑̸ 0 and 𝐾(𝑒) ∈ 𝐢(R, R+ ) such that 𝑓 (𝑑, 𝑒) β‰₯ βˆ’π‘Ž (𝑑) βˆ’ 𝑏 (𝑑) 𝐾 (𝑒) ,

βˆ€π‘’ ∈ R, 𝑑 ∈ [1, 𝑒] .

Multiply both sides of the above inequality by πœ™(𝑑) and integrate from 1 to 𝑒 and together with Lemma 5 we obtain 𝑒

d𝑑 󡄨 󡄨 ∫ 󡄨󡄨󡄨𝑒1 (𝑑)󡄨󡄨󡄨 πœ™ (𝑑) 𝑑 1 𝑒

(54)

𝑒

d𝑑 󡄨 󡄨 d𝑠 ≀ (πœ…2βˆ’1 βˆ’ πœ€3 ) ∫ ∫ 𝐺1 (𝑑, 𝑠) 󡄨󡄨󡄨𝑒1 (𝑠)󡄨󡄨󡄨 πœ™ (𝑑) 𝑠 𝑑 1 1

(60)

𝑒

Moreover, lim

|𝑒|σ³¨€β†’βˆž

d𝑑 󡄨 󡄨 ≀ (πœ…2βˆ’1 βˆ’ πœ€3 ) πœ…2 ∫ 󡄨󡄨󡄨𝑒1 (𝑑)󡄨󡄨󡄨 πœ™ (𝑑) . 𝑑 1

𝐾 (𝑒) = 0, |𝑒|

(55)

(H8) lim inf |𝑒|σ³¨€β†’βˆž (𝑓(𝑑, 𝑒)/|𝑒|) > πœ…1βˆ’1 , uniformly in 𝑑 ∈ [1, 𝑒], (H9) lim inf |𝑒|󳨀→0 (|𝑓(𝑑, 𝑒)|/|𝑒|) < πœ…2βˆ’1 , uniformly in 𝑑 ∈ [1, 𝑒]. Theorem 15. Suppose that (H6)-(H9) hold. Then (1) has at least one nontrivial solution. Proof. From (H9) there exist πœ€3 ∈ that 󡄨󡄨 󡄨 βˆ’1 󡄨󡄨𝑓 (𝑑, 𝑒)󡄨󡄨󡄨 ≀ (πœ…2 βˆ’ πœ€3 ) |𝑒| ,

(0, πœ…2βˆ’1 )

and π‘Ÿ3 > 0 such

𝑒

This implies that ∫1 |𝑒1 (𝑑)|πœ™(𝑑)(d𝑑/𝑑) = 0, and 𝑒1 ≑ 0 for the fact that πœ™(𝑑) ≑̸ 0, for 𝑑 ∈ [1, 𝑒], which contradicts 𝑒1 ∈ πœ•π΅π‘Ÿ3 . Therefore, (57) is true, and from Lemma 7 we obtain deg (𝐼 βˆ’ 𝐴, π΅π‘Ÿ3 , 0) = 1.

On the other hand, by (H8), there exist πœ€4 > 0 and 𝑋0 > 0 such that 𝑓 (𝑑, 𝑒) β‰₯ (πœ…1βˆ’1 + πœ€4 ) |𝑒| , βˆ€π‘‘ ∈ [1, 𝑒] , |𝑒| > 𝑋0 .

(62)

For every fixed πœ– with β€–π‘β€–πœ– ∈ (0, πœ€4 ), ‖𝑏‖ = maxπ‘‘βˆˆ[1,𝑒] |𝑏(𝑑)|, and from (H7), there exists 𝑋1 > 𝑋0 such that

βˆ€π‘‘ ∈ [1, 𝑒] , |𝑒| ∈ [0, π‘Ÿ3 ) . (56)

For this π‘Ÿ3 , we show that

(61)

𝐾 (𝑒) ≀ πœ– |𝑒| ,

βˆ€ |𝑒| > 𝑋1 .

(63)

Combining the two inequalities above, (H7) enables us to find

𝐴𝑒 =ΜΈ πœ‡π‘’,

𝑒 ∈ πœ•π΅π‘Ÿ3 , πœ‡ β‰₯ 1.

(57)

β‰₯ (πœ…1βˆ’1 + πœ€4 ) |𝑒| βˆ’ π‘Ž (𝑑) βˆ’ πœ–π‘ (𝑑) |𝑒|

If otherwise, there exist 𝑒1 ∈ πœ•π΅π‘Ÿ3 , πœ‡1 β‰₯ 1 such that 𝐴𝑒1 = πœ‡1 𝑒1 ,

𝑓 (𝑑, 𝑒) β‰₯ (πœ…1βˆ’1 + πœ€4 ) |𝑒| βˆ’ π‘Ž (𝑑) βˆ’ 𝑏 (𝑑) 𝐾 (𝑒)

(58)

(64)

β‰₯ (πœ…1βˆ’1 + πœ€4 βˆ’ ‖𝑏‖ πœ–) |𝑒| βˆ’ π‘Ž (𝑑) , βˆ€ |𝑒| > 𝑋1 , 𝑑 ∈ [1, 𝑒] .

and hence, we obtain

If we take 𝐢6 = (πœ…1βˆ’1 + πœ€4 βˆ’ β€–π‘β€–πœ–)𝑋1 + maxπ‘‘βˆˆ[1,𝑒],|𝑒|≀𝑋1 |𝑓(𝑑, 𝑒)|, πΎβˆ— = max|𝑒|≀𝑋1 𝐾(𝑒). Then we easily have

󡄨 󡄨 󡄨 󡄨󡄨 󡄨 1 󡄨󡄨 󡄨󡄨𝑒1 (𝑑)󡄨󡄨󡄨 = 󡄨(𝐴𝑒1 ) (𝑑)󡄨󡄨󡄨 ≀ 󡄨󡄨󡄨(𝐴𝑒1 ) (𝑑)󡄨󡄨󡄨 πœ‡1 󡄨 𝑒

󡄨 󡄨 d𝑠 ≀ ∫ 𝐺1 (𝑑, 𝑠) 󡄨󡄨󡄨𝑓 (𝑠, 𝑒1 (𝑠))󡄨󡄨󡄨 𝑠 1

(59)

𝑓 (𝑑, 𝑒) β‰₯ (πœ…1βˆ’1 + πœ€4 βˆ’ ‖𝑏‖ πœ–) |𝑒| βˆ’ π‘Ž (𝑑) βˆ’ 𝐢6 , βˆ€π‘’ ∈ R, 𝑑 ∈ [1, 𝑒] .

𝑒

󡄨 󡄨 d𝑠 ≀ (πœ…2βˆ’1 βˆ’ πœ€3 ) ∫ 𝐺1 (𝑑, 𝑠) 󡄨󡄨󡄨𝑒1 (𝑠)󡄨󡄨󡄨 . 𝑠 1

Note that πœ– can be chosen arbitrarily small, and we let

𝑒

𝑒

βˆ’1 βˆ— { (πœ…1 + 2 (πœ€4 βˆ’ ‖𝑏‖ πœ–)) ∫1 π‘Š (𝑠) (π‘Ž (𝑠) + ‖𝑏‖ 𝐾 + 𝐢6 ) (d𝑠/𝑠) ∫1 π‘Š (𝑠) (π‘Ž (𝑠) + ‖𝑏‖ πΎβˆ— + 𝐢6 ) (d𝑠/𝑠) } 𝑅3 β‰₯ max { , 𝑒 𝑒 }, (πœ€4 βˆ’ ‖𝑏‖ πœ–) Ξ“ (𝛼) βˆ’ ‖𝑏‖ πœ– (πœ…1βˆ’1 + 2 (πœ€4 βˆ’ ‖𝑏‖ πœ–)) ∫1 π‘Š (𝑠) (d𝑠/𝑠) Ξ“ (𝛼) βˆ’ ‖𝑏‖ πœ– ∫1 π‘Š (𝑠) (d𝑠/𝑠) { }

𝑒

where π‘Š(𝑠) = ∫1 (1 βˆ’ log 𝜏)π›Όβˆ’2 𝐻(𝜏, 𝑠)(d𝜏/𝜏), for 𝑠 ∈ [1, 𝑒]. Now we prove that 𝑒 βˆ’ 𝐴𝑒 =ΜΈ πœ‡πœ™,

βˆ€π‘’ ∈ πœ•π΅π‘…3 , πœ‡ β‰₯ 0,

(67)

where πœ™ is defined by (19). Indeed, if (67) is not true, then there exists 𝑒2 ∈ πœ•π΅π‘…3 and πœ‡0 > 0 such that 𝑒2 βˆ’ 𝐴𝑒2 = πœ‡0 πœ™.

(65)

(68)

𝑒

(66)

Let 𝑒̃(𝑑) = ∫1 𝐺1 (𝑑, 𝑠)[π‘Ž(𝑠) + 𝑏(𝑠)𝐾(𝑒2 (𝑠)) + 𝐢6 ](d𝑠/𝑠). Then 𝑒̃ ∈ 𝑃0 and 𝑒

𝑒̃ (𝑑) = ∫ 𝐺1 (𝑑, 𝑠) [π‘Ž (𝑠) + 𝑏 (𝑠) 𝐾 (𝑒2 (𝑠)) + 𝐢6 ] 1

𝑒

𝑒

1

1

β‰€βˆ« ∫

d𝑠 𝑠

1 d𝜏 π›Όβˆ’1 π›Όβˆ’2 (log 𝑑) (1 βˆ’ log 𝜏) 𝐻 (𝜏, 𝑠) Ξ“ (𝛼) 𝜏

8

Journal of Function Spaces β‹… [π‘Ž (𝑠) + 𝑏 (𝑠) 𝐾 (𝑒2 (𝑠)) + 𝐢6 ]

d𝑠 𝑠

On the other hand, we have 𝑒

πœ…1βˆ’1 ∫ 𝐺1 (𝑑, 𝑠) [𝑒2 (𝑠) + 𝑒̃ (𝑠)]

𝑒 𝑒 d𝜏 1 π›Όβˆ’1 π›Όβˆ’2 (log 𝑑) ∫ ∫ (1 βˆ’ log 𝜏) 𝐻 (𝜏, 𝑠) ≀ Ξ“ (𝛼) 𝜏 1 1

1

𝑒

+ (πœ€4 βˆ’ ‖𝑏‖ πœ–) ∫ 𝐺1 (𝑑, 𝑠) 𝑒2 (𝑠)

d𝑠 β‹… [π‘Ž (𝑠) + 𝑏 (𝑠) 𝐾 (𝑒2 (𝑠)) + 𝐢6 ] 𝑠

1

βˆ’

𝑒 1 π›Όβˆ’1 (log 𝑑) ∫ π‘Š (𝑠) Ξ“ (𝛼) 1

=

1

+

𝑒

(πœ€4 βˆ’ ‖𝑏‖ πœ–) ∫ 𝐺1 (𝑑, 𝑠) 𝑒2 (𝑠) 1

𝑒

d𝑠 1 ∫ π‘Š (𝑠) [π‘Ž (𝑠) + 𝑏 (𝑠) 𝐾 (𝑒2 (𝑠)) + 𝐢6 ] Ξ“ (𝛼) 1 𝑠

βˆ’

|𝑒2 |>𝑋1

π‘Š (𝑠) 𝐾 (𝑒2 (𝑠))

𝑒

1

(70)

𝑒

d𝑠 𝑠

βˆ’ (πœ…1βˆ’1 + πœ€4 βˆ’ ‖𝑏‖ πœ–) ∫ 𝐺1 (𝑑, 𝑠) 𝑒̃ (𝑠)

d𝑠 𝑠

𝑒

𝑒‖) ∫ 𝐺1 (𝑑, 𝑠) (log 𝑠) β‰₯ (πœ€4 βˆ’ ‖𝑏‖ πœ–) (𝑅3 βˆ’ β€–Μƒ

𝑒

1

πœ…βˆ’1 + πœ€4 βˆ’ ‖𝑏‖ πœ– βˆ’ 1 Ξ“ (𝛼)

d𝑠 . 𝑠

𝑒

β‹… ∫ π‘Š (𝑠) (π‘Ž (𝑠) + ‖𝑏‖ πΎβˆ— + ‖𝑏‖ πœ–π‘…3 + 𝐢6 )

Plus 𝑒̃ into (68) gives

1

𝑒

𝑒2 (𝑑) + 𝑒̃ (𝑑) = (𝐴𝑒2 ) (𝑑) + 𝑒̃ (𝑑) + πœ‡0 πœ™ (𝑑)

β‹… ∫ 𝐺1 (𝑑, 𝑠) (log 𝑠)

π›Όβˆ’1

1

𝑒

= ∫ 𝐺1 (𝑑, 𝑠) [𝑓 (𝑠, 𝑒2 (𝑠)) + π‘Ž (𝑠) + 𝑏 (𝑠) 𝐾 (𝑒2 (𝑠)) (71) 1 d𝑠 + πœ‡0 πœ™ (𝑑) . 𝑠 Note that 𝑓(𝑠, 𝑒2 (𝑠)) + π‘Ž(𝑠) + 𝑏(𝑠)𝐾(𝑒2 (𝑠)) + 𝐢6 ∈ 𝑃, 𝑠 ∈ [1, 𝑒] and πœ™ ∈ 𝑃0 . Lemma 9 enables us to know that 𝑒2 + 𝑒̃ ∈ 𝑃0 . From (65) we have + 𝐢6 ]

𝑒

(𝐴𝑒2 ) (𝑑) + 𝑒̃ (𝑑) = ∫ 𝐺1 (𝑑, 𝑠) [𝑓 (𝑠, 𝑒2 (𝑠)) + π‘Ž (𝑠) 1

𝑒 d𝑠 β‰₯ ∫ 𝐺1 (𝑑, 𝑠) 𝑠 1 𝑒

󡄨 󡄨 d𝑠 β‰₯ ∫ 𝐺1 (𝑑, 𝑠) (πœ…1βˆ’1 + πœ€4 βˆ’ ‖𝑏‖ πœ–) 󡄨󡄨󡄨𝑒2 (𝑠)󡄨󡄨󡄨 𝑠 1

+ πœ€4 βˆ’ ‖𝑏‖ πœ–) 𝑒2 (𝑠)

d𝑠 . 𝑠

d𝑠 β‰₯ 0. 𝑠

As a result, we have 𝑒

(𝐴𝑒2 ) (𝑑) + 𝑒̃ (𝑑) β‰₯ πœ…1βˆ’1 ∫ 𝐺1 (𝑑, 𝑠) [𝑒2 (𝑠) + 𝑒̃ (𝑠)] 1

fl

πœ…1βˆ’1 𝑇 (𝑒2

+ 𝑒̃) (𝑑) ,

d𝑠 𝑠

(76)

βˆ€π‘‘ ∈ [1, 𝑒] ,

𝑒

where (𝑇𝑒)(𝑑) = ∫1 𝐺1 (𝑑, 𝑠)𝑒(𝑠)(d𝑠/𝑠), for 𝑒 ∈ E, 𝑑 ∈ [1, 𝑒]. Using (68) we obtain (77)

β‰₯ πœ‡0 πœ™. (72)

(75)

d𝑠 𝑠

𝑒2 + 𝑒̃ = 𝐴𝑒2 + 𝑒̃ + πœ‡0 πœ™ β‰₯ πœ…1βˆ’1 𝑇 (𝑒2 + 𝑒̃) + πœ‡0 πœ™

𝑒

d𝑠 β‰₯ ∫ 𝐺1 (𝑑, 𝑠) 𝑠 1

β‹… [𝑓 (𝑠, 𝑒2 (𝑠)) + π‘Ž (𝑠) + 𝐢6 ]

d𝑠 𝑠

π›Όβˆ’1

1

β‹… ∫ π‘Š (𝑠) (π‘Ž (𝑠) + ‖𝑏‖ πΎβˆ— + ‖𝑏‖ πœ–π‘…3 + 𝐢6 )

β‹…

1

1

d𝑠 ‖𝑏‖ πœ– + 𝑠 Ξ“ (𝛼)

1 󡄨 󡄨 d𝑠 ≀ π‘Š (𝑠) 󡄨󡄨󡄨𝑒2 (𝑠)󡄨󡄨󡄨 𝑠 Ξ“ (𝛼) |𝑒2 |>𝑋1

(πœ…1βˆ’1

d𝑠 β‰₯ 0. ∫ 𝐺1 (𝑑, 𝑠) 𝑒̃ (𝑠) 𝑠 1

𝑒

β‹…βˆ«

+ 𝑏 (𝑠) 𝐾 (𝑒2 (𝑠)) + 𝐢6 ]

(74)

𝑒

(πœ€4 βˆ’ ‖𝑏‖ πœ–) ∫ 𝐺1 (𝑑, 𝑠) [𝑒2 (𝑠) + 𝑒̃ (𝑠)]

1 d𝑠 )≀ 𝑠 Ξ“ (𝛼)

β‹… ∫ π‘Š (𝑠) (π‘Ž (𝑠) + ‖𝑏‖ πΎβˆ— + 𝐢6 )

πœ…1βˆ’1

d𝑠 𝑠

Indeed, 𝑒2 + 𝑒̃ ∈ 𝑃0 implies that 𝑒2 (𝑑) + 𝑒̃(𝑑) β‰₯ (log 𝑑)π›Όβˆ’1 ‖𝑒2 + 𝑒̃‖ β‰₯ (log 𝑑)π›Όβˆ’1 (‖𝑒2 β€– βˆ’ β€–Μƒ 𝑒‖), for 𝑑 ∈ [1, 𝑒]. Consequently,

d𝑠 ‖𝑏‖ (∫ π‘Š (𝑠) 𝐾 (𝑒2 (𝑠)) Ξ“ (𝛼) |𝑒2 |≀𝑋1 𝑠

+∫

d𝑠 . 𝑠

This inequality holds if

Consequently, we have

𝑒 1 d𝑠 ∫ π‘Š (𝑠) (π‘Ž (𝑠) + 𝐢6 ) ≀ Ξ“ (𝛼) 1 𝑠

(73)

d𝑠 ∫ 𝐺1 (𝑑, 𝑠) 𝑒̃ (𝑠) 𝑠 1

𝑒

(69)

d𝑠 𝑠

𝑒

πœ…1βˆ’1

β‰₯ πœ…1βˆ’1 ∫ 𝐺1 (𝑑, 𝑠) [𝑒2 (𝑠) + 𝑒̃ (𝑠)]

d𝑠 β‹… [π‘Ž (𝑠) + 𝑏 (𝑠) 𝐾 (𝑒2 (𝑠)) + 𝐢6 ] . 𝑠

𝑒‖ ≀ β€–Μƒ

d𝑠 𝑠

Define πœ‡βˆ— = sup {πœ‡ > 0 : 𝑒2 + 𝑒̃ β‰₯ πœ‡πœ™} .

(78) βˆ—

Note that πœ‡0 ∈ {πœ‡ > 0 : 𝑒2 + 𝑒̃ β‰₯ πœ‡πœ™}, and then πœ‡ β‰₯ πœ‡0 , 𝑒2 + 𝑒̃ β‰₯ πœ‡βˆ— πœ™. From Lemma 5 we have πœ…1βˆ’1 𝑇 (𝑒2 + 𝑒̃) β‰₯ πœ‡βˆ— πœ…1βˆ’1 π‘‡πœ™ β‰₯ πœ‡βˆ— πœ™,

(79)

Journal of Function Spaces

9

and hence 𝑒2 + 𝑒̃ β‰₯

πœ…1βˆ’1 𝑇 (𝑒2

βˆ—

+ 𝑒̃) + πœ‡0 πœ™ β‰₯ (πœ‡0 + πœ‡ ) πœ™,

(80)

which contradicts the definition of πœ‡βˆ— . Therefore, (67) holds, and from Lemma 6 we obtain deg (𝐼 βˆ’ 𝐴, 𝐡𝑅3 , 0) = 0.

(81)

This, together with (61), implies that deg (𝐼 βˆ’ 𝐴, 𝐡𝑅3 \ π΅π‘Ÿ3 , 0) = deg (𝐼 βˆ’ 𝐴, 𝐡𝑅3 , 0) βˆ’ deg (𝐼 βˆ’ 𝐴, π΅π‘Ÿ3 , 0) = βˆ’1.

(82)

Therefore the operator 𝐴 has at least one fixed point in 𝐡𝑅3 \ π΅π‘Ÿ3 , and (1) has at least one nontrivial solution. This completes the proof. Example 16. Let 𝑓(𝑑, 𝑒) = π‘Ž|𝑒| βˆ’ π‘π‘˜(𝑒), π‘˜(𝑒) = ln(|𝑒| + 1), 𝑒 ∈ R, 𝑑 ∈ [1, 𝑒], where π‘Ž ∈ (πœ…1βˆ’1 , +∞) and 𝑏 ∈ (π‘Ž, π‘Ž + πœ…2βˆ’1 ). Then lim|𝑒|󳨀→+∞ (π‘˜(𝑒)/|𝑒|) = 0, and lim|𝑒|󳨀→+∞ ((π‘Ž|𝑒| βˆ’ 𝑏 ln(|𝑒| + 1))/|𝑒|) = π‘Ž > πœ…1βˆ’1 , lim|𝑒|󳨀→0 (|π‘Ž|𝑒| βˆ’ 𝑏 ln(|𝑒| + 1)|/|𝑒|) = |π‘Ž βˆ’ 𝑏| < πœ…2βˆ’1 . Therefore, (H6)-(H9) hold.

Data Availability No data were used to support this study.

Conflicts of Interest The authors declare that they have no competing interests.

Acknowledgments This work is supported by Natural Science Foundation of Shandong Province (ZR2018MA011, ZR2018MA009, and ZR2015AM014).

References [1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. [2] W. Yang, β€œPositive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations,” Journal of Nonlinear Sciences and Applications. JNSA, vol. 8, no. 2, pp. 110–129, 2015. [3] G. Wang, K. Pei, R. P. Agarwal, L. Zhang, and B. Ahmad, β€œNonlocal HADamard fractional boundary value problem with HADamard integral and discrete boundary conditions on a half-line,” Journal of Computational and Applied Mathematics, vol. 343, pp. 230–239, 2018. [4] K. Pei, G. Wang, and Y. Sun, β€œSuccessive iterations and positive extremal solutions for a Hadamard type fractional integrodifferential equations on infinite domain,” Applied Mathematics and Computation, vol. 312, pp. 158–168, 2017. [5] C. Zhai, W. Wang, and H. Li, β€œA uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions,” Journal of Inequalities and Applications, Paper No. 207, 16 pages, 2018.

[6] G. Wang and T. Wang, β€œOn a nonlinear Hadamard type fractional differential equation with p-Laplacian operator and strip condition,” Journal of Nonlinear Sciences and Applications. JNSA, vol. 9, no. 7, pp. 5073–5081, 2016. [7] Y.-l. Li and S.-y. Lin, β€œPositive solution for the nonlinear Hadamard type fractional differential equation with pLaplacian,” Journal of Function Spaces and Applications, vol. 2013, Article ID 951643, 10 pages, 2013. [8] H. Huang and W. Liu, β€œPositive solutions for a class of nonlinear Hadamard fractional differential equations with a parameter,” Advances in Difference Equations, 13, article 96 pages, 2018. [9] B. Ahmad and S. K. Ntouyas, β€œA fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations,” Fractional Calculus and Applied Analysis, vol. 17, no. 2, pp. 348–360, 2014. [10] D. Vivek, K. Kanagarajan, and E. . Elsayed, β€œNonlocal initial value problems for implicit differential equations with HilferHADamard fractional derivative,” Nonlinear Analysis: Modelling and Control, vol. 23, no. 3, pp. 341–360, 2018. [11] M. Benchohra, S. Bouriah, and J. J. Nieto, β€œExistence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equation,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. RACSAM, vol. 112, no. 1, pp. 25–35, 2018. [12] Y. Cui, β€œUniqueness of solution for boundary value problems for fractional differential equations,” Applied Mathematics Letters, vol. 51, pp. 48–54, 2016. [13] Y. Cui, W. Ma, Q. Sun, and X. Su, β€œNew uniqueness results for boundary value problem of fractional differential equation,” Nonlinear Analysis: Modelling and Control, pp. 31–39, 2018. [14] Y. Zou and G. He, β€œOn the uniqueness of solutions for a class of fractional differential equations,” Applied Mathematics Letters, vol. 74, pp. 68–73, 2017. [15] L. Guo, L. Liu, and Y. Wu, β€œIterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters,” Nonlinear Analysis: Modelling and Control, vol. 23, no. 2, pp. 182–203, 2018. [16] Y. Zou and G. He, β€œA fixed point theorem for systems of nonlinear operator equations and applications to (p1,p2)-Laplacian system,” Mediterranean Journal of Mathematics. [17] J. Wu, X. Zhang, L. Liu, Y. Wu, and Y. Cui, β€œThe convergence analysis and error estimation for unique solution of a pLaplacian fractional differential equation with singular decreasing nonlinearity,” Boundary Value Problems, 15, article 82 pages, 2018. [18] Y. Wang and J. Jiang, β€œExistence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian,” Advances in Difference Equations, 19, article 337 pages, 2017. [19] X. Zhang, L. Liu, Y. Wu, and Y. Cui, β€œEntire blow-up solutions for a quasilinear p-Laplacian SchrΒ¨odinger equation with a nonsquare diffusion term,” Applied Mathematics Letters, vol. 74, pp. 85–93, 2017. [20] X. Hao, H. Wang, L. Liu, and Y. Cui, β€œPositive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator,” Boundary Value Problems, 18, article 182 pages, 2017. [21] J. Xu, C. S. Goodrich, and Y. Cui, β€œPositive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities,” Revista de la Real Academia de Ciencias Exactas, FΒ΄Δ±sicas y Naturales. Serie A. MatemΒ΄aticas.

10 [22] Y. Wang, L. Liu, X. Zhang, and Y. Wu, β€œPositive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection,” Applied Mathematics and Computation, vol. 258, pp. 312–324, 2015. [23] Y. Wang, L. Liu, and Y. Wu, β€œPositive solutions for singular semipositone boundary value problems on infinite intervals,” Applied Mathematics and Computation, vol. 227, pp. 256–273, 2014. [24] Z. Zhao, β€œPositive solutions of semi-positone Hammerstein integral equations and applications,” Applied Mathematics and Computation, vol. 219, no. 5, pp. 2789–2797, 2012. [25] Z. Zhao, β€œExistence of positive solutions for 2nth-order singular semipositone differential equations with Sturm-Liouville boundary conditions,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 3-4, pp. 1348–1357, 2010. [26] Y. Guo, β€œPositive solutions of second-order semipositone singular three-point boundary value problems,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 5, pp. 1–11, 2009. [27] X. Qiu, J. Xu, D. O’Regan, and Y. Cui, β€œPositive solutions for a system of nonlinear semipositone boundary value problems with Riemann-Liouville fractional derivatives,” Journal of Function Spaces, vol. 2018, Article ID 7351653, 10 pages, 2018. [28] R. Pu, X. Zhang, Y. Cui, P. Li, and W. Wang, β€œPositive solutions for singular semipositone fractional differential equation subject to multipoint boundary conditions,” Journal of Function Spaces, vol. 2017, Article ID 5892616, 7 pages, 2017. [29] C. Chen, J. Xu, D. O’Regan, and Z. Fu, β€œPositive solutions for a system of semipositone fractional difference boundary value problems,” Journal of Function Spaces, vol. 2018, Article ID 6835028, 11 pages, 2018. [30] W. Cheng, J. Xu, and Y. Cui, β€œPositive solutions for a system of nonlinear semipositone fractional q-difference equations with q-integral boundary conditions,” The Journal of Nonlinear Science and Applications, vol. 10, no. 08, pp. 4430–4440, 2017. [31] H. Li and J. Sun, β€œPositive solutions of superlinear semipositone nonlinear boundary value problems,” Computers & Mathematics with Applications, vol. 61, no. 9, pp. 2806–2815, 2011. [32] H. Li and J. Sun, β€œPositive solutions of sublinear Sturm-Liouville problems with changing sign nonlinearity,” Computers and Mathematics with Applications, vol. 58, no. 9, pp. 1808–1815, 2009. [33] Y. Cui, β€œComputation of topological degree in ordered banach spaces with lattice structure and applications,” Applications of Mathematics, vol. 58, no. 6, pp. 689–702, 2013. [34] Y. Wang, L. Liu, and Y. Wu, β€œPositive solutions for a class of fractional boundary value problem with changing sign nonlinearity,” Nonlinear Analysis, vol. 74, no. 17, pp. 6434–6441, 2011. [35] J. Liu and Z. Zhao, β€œMultiple positive solutions for secondorder three-point boundary-value problems with sign changing nonlinearities,” Electronic Journal of Differential Equations, vol. 152, pp. 1–7, 2012. [36] X. Zhang, L. Liu, and Y. Zou, β€œFixed-point theorems for systems of operator equations and their applications to the fractional differential equations,” Journal of Function Spaces, vol. 2018, Article ID 7469868, 9 pages, 2018. [37] Y. Wu and Z. Zhao, β€œPositive solutions for third-order boundary value problems with change of signs,” Applied Mathematics and Computation, vol. 218, no. 6, pp. 2744–2749, 2011.

Journal of Function Spaces [38] K. M. Zhang, β€œOn a sign-changing solution for some fractional differential equations,” Boundary Value Problems, 8, article 59 pages, 2017. [39] K. Zhang, β€œNontrivial solutions of fourth-order singular boundary value problems with sign-changing nonlinear terms,” Topological Methods in Nonlinear Analysis, vol. 40, no. 1, pp. 53– 70, 2012. [40] W. Fan, X. Hao, L. Liu, and Y. Wu, β€œNontrivial solutions of singular fourth-order Sturm-Liouville boundary value problems with a sign-changing nonlinear term,” Applied Mathematics and Computation, vol. 217, no. 15, pp. 6700–6708, 2011. [41] X. Hao, M. Zuo, and L. Liu, β€œMultiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities,” Applied Mathematics Letters, vol. 82, pp. 24–31, 2018. [42] L. Liu, B. Liu, and Y. Wu, β€œNontrivial solutions for higherorder m-point boundary value problem with a sign-changing nonlinear term,” Applied Mathematics and Computation, vol. 217, no. 8, pp. 3792–3800, 2010. [43] Y. Guo, β€œNontrivial solutions for boundary-value problems of nonlinear fractional differential equations,” Bulletin of the Korean Mathematical Society, vol. 47, no. 1, pp. 81–87, 2010. [44] Y. Guo, β€œNontrivial periodic solutions of nonlinear functional differential systems with feedback control,” Turkish Journal of Mathematics, vol. 34, no. 1, pp. 35–44, 2010. [45] M. Zuo, X. Hao, L. Liu, and Y. Cui, β€œExistence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions,” Boundary Value Problems, vol. 2017, article no. 161, 15, article 161 pages, 2017. [46] X. Zhang, L. Liu, Y. Wu, and Y. Zou, β€œExistence and uniqueness of solutions for systems of fractional differential equations with Riemann-Stieltjes integral boundary condition,” Advances in Difference Equations, 15, article 204 pages, 2018. [47] Z. Bai and Y. Zhang, β€œSolvability of fractional three-point boundary value problems with nonlinear growth,” Applied Mathematics and Computation, vol. 218, no. 5, pp. 1719–1725, 2011. [48] Y. Zhang, Z. Bai, and T. Feng, β€œExistence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 1032–1047, 2011. [49] X. Zhang, L. Liu, Y. Wu, and Y. Cui, β€œNew result on the critical exponent for solution of an ordinary fractional differential problem,” Journal of Function Spaces, vol. 2017, Article ID 3976469, 4 pages, 2017. [50] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, Florida, Fla, USA, 1988.

Advances in

Operations Research Hindawi www.hindawi.com

Volume 2018

Advances in

Decision Sciences Hindawi www.hindawi.com

Volume 2018

Journal of

Applied Mathematics Hindawi www.hindawi.com

Volume 2018

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com www.hindawi.com

Volume 2018 2013

Journal of

Probability and Statistics Hindawi www.hindawi.com

Volume 2018

International Journal of Mathematics and Mathematical Sciences

Journal of

Optimization Hindawi www.hindawi.com

Hindawi www.hindawi.com

Volume 2018

Volume 2018

Submit your manuscripts at www.hindawi.com International Journal of

Engineering Mathematics Hindawi www.hindawi.com

International Journal of

Analysis

Journal of

Complex Analysis Hindawi www.hindawi.com

Volume 2018

International Journal of

Stochastic Analysis Hindawi www.hindawi.com

Hindawi www.hindawi.com

Volume 2018

Volume 2018

Advances in

Numerical Analysis Hindawi www.hindawi.com

Volume 2018

Journal of

Hindawi www.hindawi.com

Volume 2018

Journal of

Mathematics Hindawi www.hindawi.com

Mathematical Problems in Engineering

Function Spaces Volume 2018

Hindawi www.hindawi.com

Volume 2018

International Journal of

Differential Equations Hindawi www.hindawi.com

Volume 2018

Abstract and Applied Analysis Hindawi www.hindawi.com

Volume 2018

Discrete Dynamics in Nature and Society Hindawi www.hindawi.com

Volume 2018

Advances in

Mathematical Physics Volume 2018

Hindawi www.hindawi.com

Volume 2018