STUDIES ON BACTERIAL CAPSULAR ...

4 downloads 0 Views 10MB Size Report
2075 Wesbrook Place. Vancouver, Canada. V 6 T 1W5. Date ...... H. Thurow, Y.M. Choy, N. Frank, H. Niemann , and S. Stirm. Carbohydr. Res.,41,241-255 ( 1 9 7 ...
STUDIES ON BACTERIAL CAPSULAR POLYSACCHARIDES AND ON A PLANT GUM

by JOSE LUIS LDI FABIO B.Sc., U n i v e r s i d a d de l a R e p u b l i c a , Uruguay, 1 9 7 5

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in THE

FACULTY OF GRADUATE STUDIES (Department o f Chemistry)

We accept t h i s t h e s i s as conforming to the r e q u i r e d

THE

standard

UNIVERSITY OF BRITISH COLUMBIA May, 1 9 8 1

©

Jose' L u i s D i F a b i o , 1 9 8 1

In

presenting

requirements

this

thesis

f o ran advanced

of

British

it

freely available

agree for

that

i n partial

Columbia,

I agree

that

f o rreference

permission

scholarly

degree

at the University

the Library

shall

and study.

I

f o rextensive

copying

p u r p o s e s may b e g r a n t e d

o r by h i so r h e r r e p r e s e n t a t i v e s .

understood

that

copying

f i n a n c i a l gain

or publication

shall

n o t be a l l o w e d

permission.

Department o f

CH€HJS[«y

The U n i v e r s i t y o f B r i t i s h 2075 Wesbrook P l a c e Vancouver, Canada V 6 T 1W5

Date

i?/7

>

Figure II.1

M.s.

o f (a)

1,2,5-tri-0-acetyl-3»k,6-tri-0-

methyl g a l a c t i t o l

and

(b)

-3-0-ethyl-4,6-di-0-methyl

1,2,5-tri-O-acetyl galactitol.

3k The

primary fragments formed g i v e r i s e t o secondary f r a g -

ments by l o s s o f a c e t i c a c i d ol

(M.W.

(M.W.

60),ketene

(M.W.

42),methan-

3 2 ) or formaldehyde (M.W. 3 0 ) .

T h i s i n f o r m a t i o n was used t o i d e n t i f y s p e c i f i c compounds f o r which standard s p e c t r a

were not a v a i l a b l e . F o r

example,when

u r o n i c a c i d d e g r a d a t i o n was performed on K l e b s i e l l a K 6 0 p o l y s a c c h a r i d e , the

p o s i t i o n where the u r o n i c a c i d was a t t a c h e d was

l a b e l l e d w i t h e t h y l i o d i d e . T h e e t h y l a t e d , p a r t i a l l y methylated a l d i t o l a c e t a t e thus obtained

(

l,2,5-tri-0-acetyl-3-0-ethyl-

4 , 6 - d i - 0 - m e t h y l g a l a c t i t o l ) was i d e n t i f i e d by means o f i t s m.s. and comparison w i t h the c o r r e s p o n d i n g methylated tive

(l,2,5-tri-0-acetyl-3t4,6-tri-0-methyl

galactitol).Several

masses are s h i f t e d by 14 u n i t s as i l l u s t r a t e d The

f r a g m e n t a t i o n expected i s shown below:

deriva-

i n F i g u r e II.1.

35

Primary f r a g m e n t a t i o n

CHgOCOCH^

CH ,0C0CHo I2 3

CH-OCH,

CH-0CH CH~ + 2 3 (m/e 203)

CHOCOCH^

I

CHOCOCH^ O

CHgOCH^ (m/e 161)

CHOCH, :H=OCH CH

CHOCOCHI 3 CH 0CH £

3

2

CHgOCOCH^

3

HOCOCH^

3

;HOCOCH

IH 0CH 2

;HOCH CH 2

3

CH-OCH+ 3 (m/e 2 4 7 )

3

3

(m/e 219)

Secondary f r a g m e n t a t i o n

CH 0CH 2

CHOCH-

3

CH0C0CH" CH=0CH

-Ac OH

3

II

H

3

H=0CH

3

3

(m/e 101)

(m/e 161)

CH, II

-Me OH

z

-CH C0 2

HOCOCH,

o

-ArOH Z^im

3

CH=0CH CH 2

(m/e

3

203)

CHOCOCH" CH CH=0CH CH 2

(m/e 1 4 3 )

3

(m/e

(m/e 129)

2

4= 0 CH=0CH

H-OCH^

H 0C0CH^ 3 H0C0CH

CH

3

3

87)

36 II.5 Sequencing o f sugars. The

i s o l a t i o n and c h a r a c t e r i z a t i o n o f fragments o f a p o l y -

saccharide

are the keys t o the d e t e r m i n a t i o n

o f the s e q u e n t i a l

arrangement o f the c o n s t i t u e n t monosaccharides i n the polymer. By u t i l i z i n g d i f f e r e n t techniques i t i s p o s s i b l e t o o b t a i n these fragments and by d e t e r m i n i n g the r e l a t i v e p o s i t i o n s o f one

t o the o t h e r , i n an a d d i t i v e manner,is p o s s i b l e t o b u i l d up

the sequence i n the p o l y s a c c h a r i d e

or i n the r e p e a t i n g u n i t .

II.5.1 P a r t i a l h y d r o l y s i s " ^ . 8 2

A considerable

8

amount o f data on r a t e constants

and k i n e t i c

parameters f o r the a c i d c a t a l y z e d h y d r o l y s i s o f g l y c o s i d e s o f 1

82 83 monosaccharides has been presented i n s e v e r a l reviews

' . J

Many f a c t o r s seem t o i n f l u e n c e the r a t e o f h y d r o l y s i s , such as r i n g size,configuration,conformation,polarity

o f the sugar ,

s i z e and p o l a r i t y o f the aglycon.Although data on

polysaccha-

r i d e s are not so e a s i l y a v a i l a b l e . i n f e r e n c e s can be made from the r e s u l t s on the monosaccharide g l y c o s i d e s , a n d

may be sum-

marized as f o l l o w s : i)

furanosides

are more l a b i l e than

pyranosides,

i i ) deoxysugars are more e a s i l y hydrolyzed

than hexoses,

i i i ) pentopyranosides a r e more a c i d l a b i l e than hexopyranosi des, iv)

a - g l y c o s i d e s are g e n e r a l l y more l a b i l e than 3 - g l y c o s i d e s ,

v)

(1-6) l i n k a g e s are more r e s i s t a n t t o a c i d h y d r o l y s i s than

(1-2),(1-3) and (1-4) v i ) residues hydrolyzed

present

linkages,

on s i d e chains

than when present

are o f t e n more e a s i l y

i n the main c h a i n ,

37 v i i ) u r o n i c a c i d s are more r e s i s t a n t to h y d r o l y s i s , v i i i ) aminosugars are more a c i d r e s i s t a n t than common hexoses. In h e t e r o p o l y s a c c h a r i d e s

we

f i n d t h a t some g l y c o s i d i c

l i n k a g e s are more r e s i s t a n t than others,so

t h a t , under c e r t a i n

c o n d i t i o n s of h y d r o l y s i s ( a c i d concentration,temperature time of h y d r o l y s i s ) s e l e c t i v e cleavages polysaccharide polysaccharides

w i l l occur

and

i n the

y i e l d i n g defined oligomeric units.For a c i d i c c o n t a i n i n g u r o n i c a c i d s .there s i s tance of

the

u r o n o s y l bond l e a d s to the accummulation of a l d o b i o u r o n i c and

t o a l e s s e r extent

acid

the a l d o t r i o u r o n i c and/or a l d o t e t r a o -

u r o n i c a c i d fragments.In p o l y s a c c h a r i d e s

w i t h deoxysugars i t

i s d i f f i c u l t to i s o l a t e , b y p a r t i a l h y d r o l y s i s oligomers w i t h deoxyhexosyl bonds.Usually a f t e r a p a r t i a l h y d r o l y s i s , t h e amount of monosaccharides i s high.By c o u p l i n g ' s e v e r a l t i o n techniques

i t i s p o s s i b l e to separate

separa-

the oligomers from

the monosaccharides as w e l l as to i s o l a t e pure o l i g o s a c c h a r i des. The

techniques

most commonly used are paper chromatogra-

phy ,gel-permeation chromatography,paper e l e c t r o p h o r e s i s g a s - l i q u i d chromatography (see S e c t i o n Because a c e t a l s . a c e t a t e s and i n the p o l y s a c c h a r i d e s bonds.it

and

II.5.*0.

formates t h a t may

be

present

are more a c i d l a b i l e than g l y c o s i d i c

i s o f t e n p o s s i b l e to s e l e c t i v e l y remove these sub-

s t i t u e n t s without a f f e c t i n g the r e s t of the

polysaccharide.

P a r t i a l h y d r o l y s i s can a l s o be c a r r i e d out on f u l l y methylated

polysaccharides. A complementary technique i s a c e t o l y s i s - \ a s the 8

r a t e of cleavage of the g l y c o s i d e s i n the two

relative

mechanisms i s

38 reversed.During cleaved,while II.5.2

acetolysis,(1-6)

they

Periodate

a r e t h e most

oxidation

linkages stable

and Smith

are

preferentially

during

acid

hydrolysis.

h y d r o l y s i s ^ " ^ .

86 It salts give

has been

known s i n c e

are capable two

1928

that

a,B-glycols

of cleaving

H

ICv"

H

CHOH

C

^

to

H

+ H„0 + 10 ~

0

^

J

^2

When more tions, formic

than acid

two h y d r o x y l groups i s

are i n contiguous

posi-

released,

R,

R,

I CHOH I (j)H0H

I

1

+

210^

+HC0 H + H 0+ 2 I 0 2

R

one o f

the v i c i n a l

h o l , formaldehyde

C H OH

A This

i s

produced,

+

i s

a primary

alco-

HCHQ

I OK

CHO

+

H 0 ?

+

10

R reaction

carbohydrate formation

termined

3

2

hydroxyl groups

2

CHOH

2

CHO

*2 When

1

CHO

CHOH

a

quantitatively

CHO

^2

as

and i t s

J l 0

+

the

acid

aldehydes:

?1 C

periodic

has found

chemistry.Since of formic

accurately

an analytical preparative

a wide

acid

range

of applications

the reduction

of periodate

and formaldehyde

on the microscale,periodate

technique,but

procedure.

i n a d d i t i o n . i t

i n and

c a n a l l be d e i s

invaluable

c a n be used

as

39 When of

used

as

an

polysaccharide

a n a l y t i c a l

is

oxidized

oxidation

being

periodate

and

i f

formed.Over-,and

any

is

plicate the

monitored

the

release

and

at

low

repulsions

charide

in

i f

certain

sugar 91

hemiacetals and

problem i t

the

of

formic

free is

the

hydroxyl

overcome

by

subjecting

oxidation

is

hydrolysis

the

gives

r e s i s t a n t

tent

with

the

possible

the

by

the

may

the

periodate,the

and/or may

occur

due

com-

working

i n

solutions to

of

electrothe

polysac-

a f f e c t s

both

periodate

ions

hindrance

formation

however

and

the

of

formaldehyde

by

ions

to

amount

consumption

buffered

d i o l s

known

of

minimized

periodate

dialdehydes

groups

i n

a d d i t i o n

r e p u l s i o n

them

to

very

sugars

products of

of

intramolecular

requisite

polysaccharide

are

of

not

(NaClO^)

be

exposed

the

products

i n

polysaccharide

data.As

formed

that

and

and

an

used

some

of

oxidized

by

oxidation

of

as the

a

the

released

number should

upon

of be

periodate

monosubstituted

is

to

p e r i o consis-

II.2

periodate

shows

consumed

hexoses.

fragmentation

sugar

inhib-

protected

example.Figure

moles

f i r s t

reduction.When

information.The

the

oxida-

which

substrate.The

borohydride

oxidation is

salts

can

by

polysaccharide.The

the

of

generated

u s e f u l

terminal

periodate

the of

hemiacetals)

methylation

oxidation

n i q u e , the

acid

with

7

complete.analysis

date

When

is

v i c i n a l

through

7

e l e c t r o s t a t i c

f i r s t

the

under-oxidation

residues,and

(with

upon

measuring

,a

92 '

7

of

residues

the

by

oxidation

between

87 88

solution

acidic;furthermore,steric

a c c e s i b i l i t y

tion

a

temperatures

periodate.Incomplete

the

i n

results.Overoxidation*^

dark

s t a t i c

technique

residues and

can

be

techi n

a

se-

40

Products

T e r m i n a l a n d monosubstituted

formed a f t e r o x . and

hexoses

hydrolysis CHnOH *-

'

CHO

h-OH + I HO

C^OH

OH

CHUOH

j

CHO

1

hOH • CH^DH CHJOH

CH^DH

—OH

- O H

-OH

HO-

CH-OH

IHJOH

CHJDH HjOH

V-C—

CH^H HO—/

*

cr

CHjOH

HO—/

CHO

CHJOH

CHO

UoH + h-OH

\ — 0 -

CHO HOH

tHJDH CH-DH

CH^H QL

F i g u r e I I . 2 . Common p r o d u c t s tion

f o r m e d on p e r i o d a t e o x i d a -

o f t e r m i n a l and m o n o s u b s t i t u t e d

hexoses.

41

parated

from the o x i d i z e d r e s i d u e s as mono-,oligo- or p o l y -

s a c c h a r i d e d e r i v a t i v e s a f t e r some chemical m o d i f i c a t i o n s . I f , a f t e r oxidation with periodate,the

aldehydes generated are

reduced t o a l c o h o l s w i t h sodium borohydride,the ( p o l y o l ) thus obtained

polyalcohol

i s c o n s t i t u t e d by g l y c o s i d i c l i n k a g e s 03

as w e l l as by a c y c l i c a c e t a l groupings.Smith

olf

degradation ^ 7

i s based on the d i f f e r e n t s t a b i l i t y towards a c i d of the g l y c o s i d i c bond and an a c y c l i c acetal.The

l a t t e r hydrolyzes

much

f a s t e r . T h e p o l y o l i s t r e a t e d w i t h m i l d a c i d and the products obtained,comprising;

a) s m a l l fragments d e r i v e d from o x i d i z e d ,

r e s i d u e s , o r b) g l y c o s i d e s o f mono- or o l i g o - s a c c h a r i d e s (the aglycons

being the s m a l l fragments mentioned b e f o r e ) and p o l y -

s a c c h a r i d e s d e r i v e d from non-oxidized

fragments are i s o l a t e d

and p u r i f i e d by d i f f e r e n t s e p a r a t i o n techniques I I . 5 . 4 ) and c h a r a c t e r i z e d by c o n v e n t i o n a l

(see S e c t i o n

procedures.Based

on the d i f f e r e n c e s i n the r a t e s o f o x i d a t i o n of v i c i n a l

diols

( c i s being o x i d i z e d f a s t e r than t r a n s ) , t h e f a c t t h a t t e r m i n a l r e s i d u e s are more a c c e s s i b l e t o p e r i o d a t e uronate anions tend t o r e p e l l the p e r i o d a t e

ions and t h a t

i o n s . i t i s pos-

s i b l e to s e l e c t i v e l y oxidize c e r t a i n residues

i n the p o l y s a c -

c h a r i d e ^ , doing what may be c a l l e d a " s e l e c t i v e Smith degradation" . 9 6

Scheme I I . 2 shows the Smith degradation K 26

of K l e b s i e l l a

polysaccharide.

II.5.3 Degradations based on g - e l i m i n a t i o n ' 7

.

S e v e r a l groups ( a l k o x y l , h y d r o x y l , e t c . ) i n the B - p o s i t i o n to an e l e c t r o n withdrawing group,such as c a r b o n y l , c a r b o x y l i c

kz

1. NalO^ 2. (CH OH) 3. NaBH 2

2

4

Z>. 0.5MTFA r.t. 24h 5. NaBty

Scheme 11,2

Smith

d e g r a d a t i o n o f K l e b s i e l l a K 26

polysaccharide.

*3 ester,amide or s u l f o n e are e l i m i n a t e d on treatment w i t h "base. The

presence of a hydrogen atom i n the 2

6 4.42

A^ was

2Hz),

6 4.87

(1.0H,J

1

2

( O ^ H . J ^ 8 H z ) and 6 2

showed s i g n a l s a t 6

2

(0.6H,J

8Hz).

o f A^ showed s i g n a l s

6

lj2

7 H z ) , 6 4.52

(see Table V . 3

4.52 5-25

(1.0H,J

lf2

7Hz)

and Spectrum N°30).

i d e n t i f i e d as 6-0-( R -D-glucopyranosyl u r o n i c a c i d ) - D -

g a l a c t o s e and

the i d e n t i t y confirmed by co-chromatography w i t h

an a u t h e n t i c sample. A

2

was

i d e n t i f i e d as 6-0-( g-D-glucopyran-

o s y l uronic a c i d ) - 6 - 0 - ( 8 -D-galactopyranosyl)-D-galactose.

174

( 1 0 mg),Ng ( 1 5 mg) and

Three n e u t r a l o l i g o s a c c h a r i d e s ,

( 5 mg) were i s o l a t e d by p r e p a r a t i v e paper chromatography from the n e u t r a l f r a c t i o n . A n a l y s i s from these i n Table

V . 2 , i n d i c a t e d the s t r u c t u r e s shown belows

N-^ 3 - 0 - ( 3 N

2

oligosaccharides,given

6-0-(

-D-galactopyranosyl)-D-galactose, B-D-galactopyranosyl)-D-galactose,

N^ 3-0-( B-D-galactopyranosyl)-6-0-(

g

-D-galactopyranosyl)-D-

galactose. A sample o f the gum

( 2 5 0 mg) was t r e a t e d w i t h

I M TFA on

a steam-bath f o r 1-f h.The a c i d was removed and the r e s i d u e d i s s o l v e d i n water ( 1 0 mL) and d i a l y z e d f o r 7 2 h a g a i n s t l e d water (l.OL).The +20°

non-dialyzable

6 4 . 5 3 (J^

2

distil-

m a t e r i a l ( 5 0 mg) h a d [ a ] ^

(c 1 . 7 » w a t e r ) and the "hi-n.m.r. spectrum i n DgO

s i g n a l s a t 6 5 - 4 0 and

was

recorded

^Hz) i n a l s l r a t i o . S u g a r

a n a l y s i s gave mannose,galactose and g l u c u r o n i c a c i d i n a r a t i o of 3 - 9 s 1 . 0 : 4 . 1 . M e t h y l a t i o n Table

a n a l y s i s gave the r e s u l t s shown i n

V.l,column I I I . H y d r o l y s i s o f t h i s m a t e r i a l ( 2 0 mg)

with

2M TFA on a steam-bath f o r 7 h showed by p.c. ( s o l v e n t ( A ) ) , galactose,mannose.glucuronic a c i d , t h e a l d o b i o u r o n i c a c i d A^ , the a l d o b i o u r o n i c a c i d A^ and other h i g h e r

oligomers.A^ ( 6 mg)

was i s o l a t e d by paper chromatography and analyzed Table

V . 2 . The ^H-n.m.r. spectrum (see Table

as shown i n

V . 3 and spectrum

N ° 3 D showed s i g n a l s a t 6 5 . 3 0 ( 0 . 8 H , s ) , K22

1

®

K38

K3?

Uronic a c i d i n c h a i n , a) l i n e a r . _ X -

0 - 0 -

K l , K5,

K63

- X - 0 - 0 - 0 -

K4,

_ x

K6

0 - 0

K9*,

_ X - 0 - 0 - 0 - 0 - 0 K70,

-

K81

-

K44

192

b) branch p o i n t on u r o n i c

acid

i ) s i n g l e u n i t side chain _ X - 0 - 0 -

- X - 0 - 0 - 0 -

I

I

0

0

Kll, ii)

K5?

K21, K24

two u n i t s i d e c h a i n

- X - 0 - 0 -

- X - 0 - 0 - 0 -

1

I

0

0

1

I

0

0

K31 i i i ) three u n i t s i d e c h a i n

K46

- X - 0 - 0 - 0 -

I 0

I

0

K26

I

0 i v ) p l u s branch p o i n t s on n e u t r a l sugars X - 0 - 0 - 0 -

I

|

|

0

0

0

K60

c) branch not on u r o n i c _ X - 0 - 0 -

I

0 K58

acid

- x - O - O - O -

- X - 0

I

I

0 K7, K61, K62

0 K52,

193 • - x - 0 - 0 -

•.

- X - 0 - 0 - 0 -

I

I

0

0

K16, K54 d)

double

Kl?

branch

not

on

uronic

acid

0 - X - 0 - 0 - 0 -

I

0 Uronic a)

acid

single

i n

side

chain

unit

side

chain

_ 0 - 0 - 0 -

I

I

X

X

K2, b)

_ o - 0 - 0 - 0 -

two

K8 single

K9t unit

side

K59

chain

- 0 - 0 - 0 - 0 - 0 -

I

I

X

0

K

c)

two

single

1

. 0 - 0 - 0 -

location

chains

r , j

units

0

exact

side

chain

forming

a

not

I

- 0 - 0 - 0 - 0 -

I

I

X

X

K30.K33

K27

side

determined

double

0

of

branch

194

d) two u n i t s i d e c h a i n i)

uronic acid terminal - 0 - 0 -

I K20, K23, K51. K55

0

X

i i ) uronic a c i d non-terminal - 0 - 0 -

- 0 - 0 - 0 -

I

- 0 - 0 - 0 - 0 -

I

X

X

I

0 K25, K47

I X

I

I

0 K13. K74

0 K12, K28, K36

e) three u n i t s i d e c h a i n i ) uronic a c i d non-terminal - 0 - 0 - 0 -

- 0 - 0 - 0 - 0 -

I

I

0

X

1 X

I

I 0

I

0

0

K18

K4l

195

APPENDIX I I THE STRUCTURES OF KLEBSIELLA CAPSULAR POLYSACCHARIDES

196

Structure

K-type Kl

1 man— 3

K2

a

1 G].cA K4

-2G1C—^GlcA-—^Man^—2(ji I_ c

P

K5

-AucA 1

4

2

A

V

1

1

B

OAc

K6

A

-2-Fuc-—^Glc-—^anl—^1 A— C

a

B

B

a

Gal ll

K7

P

4 6—2

1

^ Gal^OH B

^C n.m.r. 20 MHz, amb.temp.

acetone 31 . 0 7

I ' I

1

I

1

I

1

1

I

1

1

1

I

1

I

1

I

1

i

'

i

'

i

' i

I

K 60 Compound N

Spectrum No. 5

1

Glcv/OH

Glc ^rr- Man

13 C

n.m.r*

20 MHz. amb.temp.

102.54

99.85

96.80 83

93.07

K

60,

P

hal-

[ -JGICAJ 8 1„ H

Spectrum

polysaccharide

1

2 -

^Glc—]

Man

a

a

B

n

n.m.r.

100 MHz, 90°C

5.27

5.33

No.6

K 60, P-| p o l y s a c c h a r i d e y

Z

Spectrum

No.?

n.m.r.

2 0 MHz, amb.temp.

acetone 31 .07

101 . 4 2

Spectrum No. 11

K 60 , Compound GlcA-} ^

H

^QalB

^MarJ a

2G1C~0H a

n.m.r.

100 MHz,

90° C

5. 5.31

K 60, Compound A^

Spectrum No.12

^ C n.m.r. 2 0 MHz, amb.temp.

ro ro 101.51 101.35

104.51

96.67 I

I

93

1

K 26 , depyruvylated

polysaccharide

Spectrum No. 1 3

1

H

n.m.r

400 MHz

, water n u l l acetone 2.23

4.51 5.^9

5.rTs-01 4 . 6 3 [ 4 . 4 5

K 26,Compound

GlcA - — ^ Man~OH

1H n.m.r. a

100 MHz, 90°C

5.32 5.20

4.92

»)0M^

-J

1 1 1 1 1

1

1 1 1 1

I I I I

' '_i J 1 1 1

i rJ

,

1 1

L_l

K 26,Compound

Spectrum No.15

GlcA - — ^ Man~OH 13C J

° n.m.r.

20 MHz, amb.temp.

acetone 31.07

K 26,Compound

GlcA - — ^ a

M

a

n

A

Spectrum No.l?

2

1—?. Man^OH a

n.m.r. 2 0 MHz , amb.temp. 102.86

101.36

acetone 31.0?

93.56 93-35

i ' i

1

i ' I

1

I

1

I

r-r-' | i |

ro ro vo

Spectrum No.19

K 26, Compound Aj GlcA - — 2 .

M

a

n

1—2

a

M

a

n

1—1 Gal~OH

a

a

13 -^C n.m.r. 20 MHz , amb.temp.

'

I

'

I

1

I

1

l

1

l

1

I

1

I

1

1

1

I

1

I

1

I

r

K 26, Compound N Glc — Glc~OH 1 H n.m.r. 8

100 MHz ,90°C

Spectrum No.21

K 26 .Compound 1^ Glc - — - Glc~OH B

1 3' rC

n.m.r.

2 0 MHz , amb.temp.

61.60

acetone 31*0?

ro

103.50

96.81

92.95

K 26,Compound N

Spectrum No.22

2

Gal - — - Glc - — - Glc~OH *H n.m.r. 400 MHz , amb.temp.

HOD

4.46

acetone 2.23

4.5 5.24

4.67*

I

Spectrum No.23

Spectrum No. 24

K 26, Compound SH Gal

GlcA — ^ Man — - Gly 1

8

a

a

^C n.m.r. 20 MHz ,amb.temp.

acetone 31.07

0 6 0 K60, Compound X

Spectrum No.25

^C n.m.r.

20 MHz,amb.temp.

acetone 31.07

0 6 0 K60 , Compound P

n -^C n.m.r. 20 MHz

,amb.temp.

2

Spectrum NoZ6

046 X

K46,Compound

?

Spectrum No.2?

1

H n.m.r.

400 MHz, water n u l l acetone 2.23

ro

V>)

1.52

046

K46,Compound

P

x

Spectrum No.28

-T n.m.r. 20 MHz

,amb.temp.

ro -po

100.3? 101.00 101.33

97.14 95/ 97 95 81 :

93.11

acetone 31-0?

046 X

K46,Compound

P

Spectrum N 0 . 2 9

2

H n.m.r.

400 MHz, water n u l l

acetone 2.23

5.19 5.30

4.85 5.06

4.65

4.69

C. speciosa, Compound A

Spectrum No.31

GlcA - — - Man~OH 1 H n.m.r. 8

400 MHz, water n u l l

acetone 2.23

5.30

J

Spectrum No.32

C. speciosa, Compound GlcA - — - Man - — - GlcA - — - Man~OH ,

3

H n.m.r.

a

3

acetone

400 MHz, water n u l l

2.23

HOD

245

APPENDIX I V USES OF

PERACETYLATED

ALDONONITRILES

246

USES OF PERACETYLATED ALDONONITRILES

P e r a c e t y l a t e d a l d o n o n i t r i l e s have been known s i n c e 1 8 9 3 . They were f i r s t used

i n s y n t h e s i s , a ) the Wohl degradation" ' 1

(pentoses a r e obtained from the p e r a c e t y l a t e d h e x o n o n i t r i l e s ) , b) f o r m a t i o n o f 1 - a m i n o - l - d e o x y a l d i t o l s ,etc.The

synthesis of

these d e r i v a t i v e s has been s t u d i e d and the b e s t c o n d i t i o n s observed were the treatment

o f the aldose w i t h hydroxylamine

hy-

d r o c h l o r i d e i n p y r i d i n e and then a c e t y l a t i o n and d e h y d r a t i o n done a t the same time w i t h a c e t i c anhydride

a t h i g h tempera -

ture-^ ( i n the case o f g l u c o s e . i t has been observed temperature

a cyclic derivative i s preferentially

As d e r i v a t i v e s o f a n a l y t i c a l i n t e r e s t , t h e

t h a t a t low formed).

,the t r i m e t h y l -

4 silylated

oximes

and Jones-* used

were f i r s t used

for g.l.c.

separations.Lance

the p e r a c e t y l a t e d a l d o n o n i t r i l e s f o r g . l . c . s e -

p a r a t i o n o f the methyl

ethers o f D - x y l o s e . S e v e r a l s t a t i o n a r y

phases have been employed s i n c e 1 9 7 1 t o improve the s e p a r a t i o n

6—8 of

the PAAN ( p e r a c e t y l a t e d a l d o n o n i t r i l e s ) ~ . The g . l . c . r e t e n t i o n times and g.l.c.-m.s. f o r the a c e t y l 9 6 1 ated a l d o n o n i t r i l e s o f methyl e t h e r s o f mannose and glucose ' 7

have been reported.The

methylated

sugars i n a m e t h y l a t i o n a-

n a l y s i s can now be c o m p l e t e l y c h a r a c t e r i z e d and i d e n t i f i e d by u s i n g g.l.c.-m.s. o f the d e r i v e d a l d o n o n i t r i l e s and a l d i t o l ac e t a t e s . A l l methyl e t h e r s o f mannose can be separated by g . l . c . as a l d o n o n i t r i l e s

( see Table l ) . I n the course o f t h i s i n v e s -

t i g a t i o n , the p e r a c e t y l a t e d a l d o n o n i t r i l e s o f the methyl were a l s o used as means o f a n a l y z i n g the m e t h y l a t i o n

ethers

products

247 TABLE 1 RELATIVE G.L.C. RETENTION-TIMES OF PERACETYLATED ALDONONITRILES OF METHYL ETHERS OF D-GLUCOSE AND D-MANNOSE. M e t h y l ether —

Retention

times(on

5% o f

butanediol succinate) — D-Glucose

D-Mannose

2 , 3 , ^ , 6-tetra-

0.94

1.00

2,4,6

-tri-

1.45

1.59

2,3.6

-tri-

2.00

1.65

3.4,6

-tri-

1.85

1.89

2,3,4

-tri-

2.00

2.03

2,6

-di-

2.28

4,6

-di-

— —

2,3

-di-

3-50

2.55

3,6

-di-



2.85

2,4

-di-

2.84

3.16

3,4

-di-

3-58

3.68

-

2,3,4,6-tetra

nonitrile.etc.

:

2.45

5^0-acetyl-2,3,4,6-tetra-0-methyl-D-gluco-

- Relative to 5 - 0 - a c e t y l - 2 , 3 , 4 , 6 - t e t r a - 0 - m e t h y l -

mannononitrile.Data

from r e f e r e n c e s

9) and 1 0 ) .

TABLE 2 RELATIVE G.L.C. RETENTION TIMES OF PERACETYLATED ALDONONITRILES OF METHYL ETHERS OF SUGARS.

M e t h y l ether -

R e l a t i v e r e t e n t i o n times OV-225 3% -

2,3,4,6 2,4,6 2,4,6 2,4,6 2,3,4 2,3,6 3,4,6 4,6 4,6 3,6 2,3 2,3 2

-

- Glc - Glc - Man - Gal - Glc - Glc - Man - Man - Gal - Glc - Glc - Gal — Glc

1.00 °1.39 1.59 1.65 1.85 1. 98 1.98 2.20 2.44 2.59 2.81 2.81 3.02

2,3,4,6 - Glc : 5-0-acetyl-2,3,4,6-tetra-0-methylglucononitrile.

nitrile. -

Programmed a t 1 6 5 ° f o r 4 min,then a t 2°/min t o 220°,

i s o t h e r m a l f o r 32 min. - 6.6 min .

249

e s p e c i a l l y t o separate the 2,3,4-and ses

2,3,6-tri-0-methylgluco-

(see Table 2 ) . Ketoses

can a l s o be c h a r a c t e r i z e d and separated by g . l . c .

and g.l.c.-m.s. as the p e r a c e t y l a t e d o x i m e s . 11

In g e n e r a l , t h e PAAN have been used f o r examining n e u t r a l 12 13 sugars from p o l y s a c c h a r i d e s . g l y c o p r o t e i n s .mucopolysaccharides

13

.and products r e s u l t i n g from Smith d e g r a d a t i o n

14

.Another

use f o r these d e r i v a t i v e s , i s the d e t e r m i n a t i o n o f the degree o f p o l y m e r i z a t i o n o f o l i g o s a c c h a r i d e s and p o l y s a c c h a r i d e s as w e l l as the i d e n t i f i c a t i o n o f the r e d u c i n g end.The g e n e r a l proce dure,known as the M o r r i s o n procedure -*, i n v o l v e s the r e d u c t i o n 1

w i t h NaBH^ o f the r e d u c i n g e n d , h y d r o l y s i s , a n d treatment h y d r o l y z a t e w i t h hydroxylamine lowed by a c e t i c anhydride.The

o f the

hydrochloride i n pyridine f o l f r e e sugars a r e converted

into

the PAAN and the a l d i t o l i n t o the a l d i t o l a c e t a t e . A f t e r g . l . c . s e p a r a t i o n and q u a n t i t a t i o n , i t i s p o s s i b l e t o determine the r a t i o o f f r e e s u g a r / r e d u c i n g end which g i v e s the D.P.By i d e n t i f i c a t i o n o f the a l d i t o l a c e t a t e , t h e r e d u c i n g end i s d e t e r mined. A l d i t o l a c e t a t e s have been used f o r c d . measurements ^, 1

to determine ars

the a b s o l u t e c o n f i g u r a t i o n o f t h e i r parent

sug-

( D or L ).Sugars whose a l d i t o l s are meso compounds

( g a l a c t o s e , x y l o s e , e t c . ) c a n n o t be s t u d i e d , a s they do not show cd.

a c t i v i t y . T h e p e r a c e t y l a t e d a l d o n o n i t r i l e s , a s they keep

the c h i r a l i t y o f the parent sugars and chromophores a r e pres e n t , show c d . a c t i v i t y and can be used t o determine s o l u t e c o n f i g u r a t i o n o f the parent sugars.They

the ab-

can be e a s i l y

250

TABLE 3 CIRCULAR DICHROISM

Peracetylated

OF THE PERACETYLATED ALDONONITRILES.

Configuration

aldononitriles

S i g n o f the c.d. curve

Arabinose

L

-

Arabinose

D

+

Fucose

L

-

Fucose

D

+

Galactose

D

+

Glucose

D

+

Mannose

D

+

251

prepared and s e p a r a t e d by p r e p a r a t i v e g . l . c . R e s u l t s o f t h i s i n v e s t i g a t i o n are g i v e n i n Table 3 « Experimental. P r e p a r a t i o n o f the p e r a c e t y l a t e d The f r e e

aldononitriles.

sugars ( 5 - 1 0 mg) a r e d i s s o l v e d i n hydroxylamine

hydrochloride i n pyridine f o r 1 5 min.The s o l u t i o n

( 5 ^ , 1 mL) and heated on a steam-bath

i s cooled t o room temperature and a c e t i c

anhydride ( 1 mL) i s added and heated f o r 1 h on a steam-bath. Water ( 5 - 1 0 mL) i s added and the PAAN a r e e x t r a c t e d w i t h CHCl^. A f t e r removal o f the s o l v e n t , t h e samples a r e ready f o r g . l . c . S e p a r a t i o n o f the PAAN by g . l . c . The PAAN d e r i v e d from the f r e e sugars were s e p a r a t e d on a column o f 3 % O V - 2 2 5 on Gas Chrom Q and the temperature used was 2 1 0 ° isothermal.The PAAN d e r i v e d from methylated sugars were separated on the same column,with the temperature programme 1 6 5 ° f o r 4 min,then 2 % i i n

t o 2 2 0 ° f o r 3 2 min.

C i r c u l a r d i c h r o i s m measurements o f the PAAN. Samples o f the PAAN i s o l a t e d by p r e p a r a t i v e g . l . c . on O V - 2 2 5 3% ( i s o t h e r m a l 2 1 0 ° ) were d i s s o l v e d i n a c e t o n i t r i l e and the

c d . curves were measured.

252

BIBLIOGRAPHY 1.

A. Wohl, Ber.,26,(1893) 7 3 0 .

2.

C.H. Winestock and J.W.E. P l a u t , J . Org. Chem.,26,(1961) 4456-4462.

3.

V. D e u l o f e u , P. Cattaneo, and G. M e n d i v e l z a , J . Chem. S o c , (1934) I 4 7 r l 4 8 .

4.

C C . Sweeley, R. B e n t l e y , M. M a k i t a , and W.W. J . Amer. Chem. S o c , 8 5 , ( I 9 6 3 )

Wells,

2497T2507.

5.

D.G. Lance and J.K.N. Jones, Can. J . Chem. ,45_, (1967)1995^8.

6.

B.A. D m i t r i e v , L.V. Backinowsky,

O.S. Chizhov, B.M. Z o l o -

t a r e v , and N.K. Kochetkov, Carbohydr. R e s . , 1 2 , ( 1 9 7 1 ) 4 3 2 - 5 . 7.

J . Szafranek, C D . P f a f f e n b e r g e r , and E.C. Horning, Anal. Lett.,6,(1973)479-493.

8.

R. Varma, R.S. Varma, and A.H. Wardi, J . Chromatog.,77. (1973) 222-227.

9.

F.R. Seymour, R.D. P l a t t n e r , and M.E. S l o d k i , Res.,44,(1975)

Carbohydr.

181-198.

10. F.R. Seymour, M.E. S l o d k i , R.D. P l a t t n e r , a n d A. Jeanes, Carbohydr. Res. , £ 2 , (1977)

153-166.

11. F.R. Seymour, J . E . S t o u f f e r , and E.CM. Chen, Carbohydr. Res. ,83_, (1980) 201-242. 12. R. Varma, R.S. Varma, W.S. A l l e n , a n d A.H. Wardi,J. Chromat o g . ,86.(1973)205r210. 1 3 a . T . P . Mawhinney, M.S. F e a t h e r , G.J. Barbero,and J.R. M a r t i nez, A n a l . Biochem..101.(1980) 112-117. 13b.R. Varma and R.S. Varma, J . Chromatog.,128,(1976) 4 5 r 5 2 . 14. J.K. B a i r d , M.J. Holroyde, and E.C. E l l w o o d , Carbohydr. Res.,22,(1973) 15.

464^467.

I.M. M o r r i s o n , J . Chromatog.,

108, (1975) 36lr-364.

253

G.M. Bebault, J.M. Berry, Y.M. Choy, G.G.S. Dutton, N. Funnel,L.D. Hayward, and A.M. Stephen, Can. J . Chem., £1.(1973)

324.326.