Supervenience, Entailment, and Impossible Objects

2 downloads 0 Views 584KB Size Report
and Impossible Objects. Dmitry Zaitsev. The 9th Smirnov Readings in Logic. June Н8, 2ОН5, Moscow (Russia). Dmitry Zaitsev. Supervenience, Entailment, and ...
                     

          

                       

        

                     

  

   



             



        



      

        

                     

                           

   !  !                "     #  " $      !              !     !                  

  %          &          !    '  

           %                   

        

                     

                               !  !                "     #  " $      ! 

              

  %          &          !    '  

           %                   

        

                     

                ( '  

%    &  %     #    %   &   %       (#    )     *  

   #&   %   (#&       +,-        %   .      +/-       +#  -  0                   

        

                     

                ( '  

%    &  %     #    %   &   %       (#    )     *  

   #&   %   (#&       +,-        %   .      +/-       +#  -  0                   

        

                     

  

)       ▷ 1      2       ▷ 1      #(      ▷ 1      $      ▷ $ ! 1 ! )              ▷ 1        ▷ 1         #3      

        

                     

   

(

       (         

⇔ ∀x∀y(∀F (F ∈ A ⊃ (F (x) ≡ F (y))) ⊃ ∀G(G ∈ B ⊃ (G(x) ≡ G(y))))

4  x ≈A y    ∀F (F ∈ A ⊃ (F (x) ≡ F (y))!  (    %    %        (          (

⇔ ∀x∀y(x ≈A y ⊃ x ≈B y)

    

        

                     

   

(

       (         

⇔ ∀x∀y(∀F (F ∈ A ⊃ (F (x) ≡ F (y))) ⊃ ∀G(G ∈ B ⊃ (G(x) ≡ G(y))))

4  x ≈A y    ∀F (F ∈ A ⊃ (F (x) ≡ F (y))!  (    %    % (

       (         

⇔ ∀x∀y(x ≈A y ⊃ x ≈B y)

    

        

                     

       

3  % 

       

       

  !" #  "

       

      ,           .        5  !   !   # " /   .       6       " 7        6     .         

        

                     

       

/ (#       #   !        ( /, '     3      !        +(-        + -!                    //  '     4  B = {P ∧ Q}! A = {P, Q}!      %    P (a), Q(b), ¬P (b), ¬Q(a) *   a   b  (#    %     #         

        

                     

       

/ (#       #   !        ( 7    (!   (#         #    7, 8     B = {¬P }    A = {P }! % ¬P     P 

    

        

                     



    

        . 9    +   

    -                     

  4             9         C1, C2 , ...Cn  *      A % %        '     C1 ∧ C2 ∧ ... ∧ Cn 

4: Pi ∣¬Pi∣Pi ∧ Pi ∣Pi ∨ Pi      

        

                     

     

*           

$"  %     &  " 

''

$"  % (    &       "  ( )  * + *,'" 4            8 #        !   1 : {α∣α ⊆ L}! %  +,- ∀Pi ∈  (Pi ∈ α  ¬Pi ∈ α) +/- ∀Pi ∈  (Pi ∉ α  ¬Pi ∉ α)     

        

                     

     

9       d ∀kn ∈ N, d(kn ) ∈ W  ∣A(k)∣d = t(f ) A ∶= P ∣P (k)∣d = t ⇔ P ∈ d(k)" A ∶= ¬B ∣¬B∣d = t ⇔ ∣B∣d = f "

∣P (k)∣d = f ⇔ ¬P ∈ d(k) ∣¬B∣d = f ⇔ ∣B∣d = t

A ∶= B ∧ C ∣B ∧ C∣d = t ⇔ ∣B∣d = t   ∣B∣d = t" ∣B ∧ C∣d = f ⇔ ∣B∣d = f  ∣B∣d = f

    

        

                     

     



A ⊧s B ⇔ ∀d ∀x ∀y (∣A(x)∣d = ∣A(y)∣d ⇒ ∣B(x)∣d = ∣B(y)∣d )

∀A A ⊧s B ∨ ¬B

+,+/-

∀Pi ∈ ∀Pi ∈

 (Pi ∈ α  ¬Pi ∈ α)  (Pi ∉ α  ¬Pi ∉ α)

    

        

                     

     

 A ⊧s B ⇔ ∀d ∀x ∀y (∣A(x)∣d = ∣A(y)∣d ⇒ ∣B(x)∣d = ∣B(y)∣d ) *   ∀A A ⊧s B ∧ ¬B +,+/-

∀Pi ∈ ∀Pi ∈

 (Pi ∈ α  ¬Pi ∈ α)  (Pi ∉ α  ¬Pi ∉ α)

    

        

                     

     

 A ⊧s B ⇔ ∀d ∀x ∀y (∣A(x)∣d = ∣A(y)∣d ⇒ ∣B(x)∣d = ∣B(y)∣d ) *   ∀A A ⊧s B ∧ ¬B ! 2 '  +,- ∀Pi ∈  +/- ∀Pi ∈ 

(Pi ∈ α  ¬Pi ∈ α) (Pi ∉ α  ¬Pi ∉ α)

    

        

                     

         

      )      +;   -  )     + 

-   3     A/α

< A    α

A/α < A    α

    

        

                     

         

  + -    )      +;   -  )     + 

-   3     p/α ⇔ p ∈ α p/α ⇔ ¬p ∈ α ¬A/α ⇔ A/α ¬A/α ⇔ A/α A ∧ B/α ⇔ A/α   B/α A ∧ B/α ⇔ A/α  B/α



A ⊧r B ⇔ ∀α( A/α ⇒

    

B/α )

        

                     

         

             #    A ⊧se B⇔ ∀α∀β((( A/α   A/β )  (A/α   A/β )) ⇒ (( B/α   B/β )  (B/α   B/β )))        2   ∀α(∣A(k)∣d = t   d(k) = α ⇔ A/α ∀α(∣A(k)∣d = f   d(k) = α ⇔ A/α    2 A ⊧r B ⇔ A ⊧se     

        

                     

         

             #    A ⊧se B⇔ ∀α∀β((( A/α   A/β )  (A/α   A/β )) ⇒ (( B/α   B/β )  (B/α   B/β )))        2   ∀α(∣A(k)∣d = t   d(k) = α ⇔ A/α ∀α(∣A(k)∣d = f   d(k) = α ⇔ A/α    2 A ⊧s B ⇔ A ⊧se B      

        

                     

         

             #    A ⊧se B⇔ ∀α∀β((( A/α   A/β )  (A/α   A/β )) ⇒ (( B/α   B/β )  (B/α   B/β )))        2   ∀α(∣A(k)∣d = t   d(k) = α ⇔ A/α ∀α(∣A(k)∣d = f   d(k) = α ⇔ A/α    2 A ⊧s B ⇔ A ⊧se B      

        

                     

     

A ⊧se B ⇔ ∀α∀β ((( A/α   A/β )  (A/α   A/β )) ⇒ (( B/α   B/β )  (B/α   B/β ))) A ⊧se B ⇔ ∀α∀β(( A/α

 

A/β )⇒ (( B/α   B/β )  (B/α   B/β )))

∀α∀β(( A/α

  A/β ) ⇒ (( B/α   B/β )  (B/α   B/β )))     

 

        

                     

     



A ⊧pse B ⇔ ∀α∀β(( A/α   A/β ) ⇒ (( B/α   B/β )  (B/α

  B/β )))

8

A ⊧nse B ⇔ ∀α∀β((A/α   A/β ) ⇒ (( B/α   B/β )  (B/α

  B/β )))

A ⊧se B ⇔ A ⊧pse B

  A ⊧nse B

    

        

                     

     



A ⊧pse B ⇔ ∀α∀β(( A/α   A/β ) ⇒ (( B/α   B/β )  (B/α

  B/β )))

8

A ⊧nse B ⇔ ∀α∀β((A/α   A/β ) ⇒ (( B/α   B/β )  (B/α

  B/β )))



A ⊧se B ⇔ A ⊧pse B

  A ⊧nse B

    

        

                     





A ⊧pse B ⇔ ∀α∀β(( A/α   A/β ) ⇒ (( B/α   B/β )  (B/α

   )

A ⊧pse B ⇔ A ⊧r B

    

  B/β )))

 A ⊧r ¬B 

        

                     



8

A ⊧nse B ⇔ ∀α∀β((A/α   A/β ) ⇒ (( B/α   B/β )  (B/α

   ))

A ⊧nse B ⇔ ¬A ⊧r B

    

  B/β )))

 ¬A ⊧r ¬B 

        

                     

    

   )    ))

A ⊧pse B ⇔ A ⊧r B

 A ⊧r ¬B 

A ⊧nse B ⇔ ¬A ⊧r B

 ¬A ⊧r ¬B 

   

A ⊧se B ⇔ (A ⊧r B   B ⊧r A)  (¬A ⊧r B   B ⊧r ¬A)  (A ⊧r B   ¬A ⊧r B)  (B ⊧r ¬A   B ⊧r A)

    

        

                     

    A ⊧se B ⇔ ⇔ ⇔ ⇔

+,+/+7+=-

(A ∣∣r B) (¬A ∣∣r B) (A ∨ ¬A ⊧r B) (B ⊧r A ∧ ¬A)

  

          '  +'  -!  !     

    

        

                     

    A ⊧se B ⇔ ⇔ ⇔ ⇔

+,+/+7+=-

(A ∣∣r B) (¬A ∣∣r B) (A ∨ ¬A ⊧r B) (B ⊧r A ∧ ¬A)

  

          '  +'  -!  !     

    

        

                     

    A ⊧se B ⇔ ⇔ ⇔ ⇔

+,- (A ∣∣r B)  +/- (¬A ∣∣r B)  +7- (A ∨ ¬A ⊧r B)  +=- (B ⊧r A ∧ ¬A)

 %! A ⊧se ¬A! ¬A ⊧se A

    

        

                     

    A ⊧se B ⇔ ⇔ ⇔ ⇔

+,+/+7+=-

(A ∣∣r B) (¬A ∣∣r B) (A ∨ ¬A ⊧r B) (B ⊧r A ∧ ¬A)

  

    ∧   ∨)!     %       9   C ∧ (A ∧ ¬A) ⊧se A ∧ ¬A

    

        

                     

-.! /012