Supporting Information - PLOS

1 downloads 0 Views 150KB Size Report
The Dual Oscillator Model equations are as follows. Glycolysis: dGi/dt = JGLUT – JGK. dF6P/dt = (1+kGPI)-(JGK - JPFK). dFBP/dt = (1 + kuc)-1(JPFK – JPDH).
Supporting Information S1 Model Equations The Dual Oscillator Model equations are as follows. Glycolysis: dGi /dt = JGLUT − JGK dF6P/dt = (1 + kGPI )−1 (JGK − JPFK ) dFBP/dt = (1 + kLG )−1 (JPFK − JPDH )   Ge Gi JGLUT = VGLUT − GLC GLC Ge + kGLUT Gi + kGLUT hGLC

JGK = VGK JPFK

Gi GK

hGLC

hGLC

GK Gi GK + kGK P (1 − kPFK )w1110 + kPFK i,j,l∈{0,1} wij1l P = VPFK i,j,k,l∈{0,1} wijkl  i  j  k  l 2 2

wijkl =

AMP AMP KPFK

FBP F6P ATP FBP F6P ATP KPFK KPFK KPFK jk jl kl ik il fAMP fFBP fMT fBT fATP

√ JPDH = kPDH FBP

ATP Production/Hydrolysis: dATP/dt = JANT − Jhyd  JANT = VANT ADP exp

PDH kANT + kANT

JPDH PDH JPDH + VANT

  Cac 1 − Ca kANT

Ca Jhyd = (khyd,bas + khyd Cac )ATP

AMP = ADP2 /ATP ATP + ADP + AMP = Atot Membrane Potential and Calcium Concentrations:

PLOS

1/2

dV /dt = −(ICa(V ) + IK(V ) + IK(Ca) + IK(ATP) )/Cm dnK(V ) /dt = (nK(V ),∞ − nK(V ) )/τK(V ) Ca dCac /dt = kcyt (JPM − JER ) Ca dCaER /dt = kER JER

Ii(s) = gi(s) ni(s) · (V − Vi ), ni(s),∞ = [1 + (ki(s) /r(s))

i(s) ∈ {Ca(V ), K(V ), K(Ca), K(ATP)}

hi(s) −1

]

,

i(s) ∈ {Ca(V ), K(V ), K(Ca)}

ni(s) = ni(s),∞ for i(s) ∈ {Ca(V ), K(V )}  s e if s = V r(s) = s otherwise   2  − MgADP− + 0.89 0.08 1 + 2 MgADP kdd kdd nK(ATP) =  2   − 3− ADP ATP4− 1 + + 1 + MgADP kdd ktd ktt MgADP− = 0.0165ADP ADP3− = 0.135ADP ADP4− = 0.05ATP JPM = −[ICa(V ) /(2F ) + kPM Cac ] JER = kER,in Cac − kER,out (CaER − Cac ) S1 Text. Model Equations. Equations for the Dual Oscillator Model.

PLOS

2/2