Supporting Information

50 downloads 0 Views 5MB Size Report
Maxima and minima of Young's modulus (GPa) for the MIL-68 MOFs. Table S6. Maxima and minima of Young's modulus (GPa) for NOTT-401 and the CAU-10.
Theoretical study of mechanical anisotropy of rod-packed MOFs formed by {M(O,OH)(CO2)2}n rod SBUs

Supporting Information Maxim Peskov, Eugeny V. Alexandrov, Andrey V. Goltsev, Vladislav A. Blatov

Table S1. Monkhorst-Pack (MP) k-point grids used in the calculations. Table S2. Optimized unit cell parameters of metal-organic frameworks. Table S3. Maxima and minima of Young’s modulus (GPa) for MIL-60(V), MIL-118(Al), MIL116(Al), MIL-122(Al), and MIL-122(Ga). Table S4. Maxima and minima of Young’s modulus (GPa) for CPF-1(Mg) and NOTT-400(Sc). Table S5. Maxima and minima of Young’s modulus (GPa) for the MIL-68 MOFs. Table S6. Maxima and minima of Young’s modulus (GPa) for NOTT-401 and the CAU-10 MOFs. Table S7. Maxima and minima of Young's modulus (GPa) for MIL-53, MIL-121, MIL-61. Table S8. Maxima and minima of Young's modulus (GPa) for Al(OH)(1,4-NDC)·2H2O. Table S9. Maxima and minima of Young's modulus (GPa) for CAU-8. Table S10. Underlying topology of 23 metal-organic frameworks. Table S11. Young’s modulus, shear modulus, linear compressibility, and Poisson’s ratio of 23 metal-organic frameworks. Figure S1. Cartesian projections of shear modulus for (a) MIL-118, (b) MIL-116, (c) MIL-60. Figure S2. Cartesian projections of linear compressibility for (a) MIL-118, (b) MIL-116, (c) MIL-60. Figure S3. Cartesian projections of Poisson's ratio for (a) MIL-118, (b) MIL-116, (c) MIL-60. Figure S4. Cartesian projections of shear modulus for (a) NOTT-400 and (b) CPF-1. Figure S5. Cartesian projections of linear compressibility for (a) NOTT-400 and (b) CPF-1. Figure S6. Cartesian projections of Poisson's ratio for (a) NOTT-400 and (b) CPF-1. Figure S1. Cartesian projections of shear modulus for (a) MIL-122(Al) and (b) MIL-122(Ga). Figure S8. Cartesian projections of linear compressibility for (a) MIL-122(Al) and (b) MIL122(Ga). Figure S9. Cartesian projections of Poisson's ratio for (a) MIL-122(Al) and (b) MIL-122(Ga). Figure S10. Cartesian projections of shear modulus for (a) NOTT-401, (b) CAU-10(Sc), (c) CAU-10(Al), (d) CAU-10(Al), and (e) CAU-10(Al). Figure S11. Cartesian projections of linear compressibility for (a) NOTT-401, (b) CAU-10(Sc), (c) CAU-10(Al), (d) CAU-10(Al), and (e) CAU-10(Al).

Figure S12. Cartesian projections of Poisson's ratio for (a) NOTT-401, (b) CAU-10(Sc), (c) CAU-10(Al), (d) CAU-10(Al), and (e) CAU-10(Al). Figure S13. Cartesian projections of shear modulus for (a) MIL-53(Al), (b) MIL-53(Fe), (c) MIL-53(Ga), and (d) MIL-53(V). Figure S14. Cartesian projections of linear compressibility for (a) MIL-53(Al), (b) MIL-53(Fe), (c) MIL-53(Ga), and (d) MIL-53(V). Figure S15. Cartesian projections of Poisson's ratio for (a) MIL-53(Al), (b) MIL-53(Fe), (c) MIL-53(Ga), and (d) MIL-53(V). Figure S16. Cartesian projections of shear modulus for MIL-121. Figure S17. Cartesian projections of linear compressibility for MIL-121. Figure S18. Cartesian projections of Poisson's ratio for MIL-121. Figure S19. Cartesian projections of shear modulus for MIL-61. Figure S20. Cartesian projections of linear compressibility for MIL-61. Figure S21. Cartesian projections of Poisson's ratio for MIL-61. Figure S22. Cartesian projections of shear modulus for Al(OH)(1,4-NDC)·2H2O. Figure S23. Cartesian projections of linear compressibility for Al(OH)(1,4-NDC)·2H2O. Figure S2. Cartesian projections of Poisson's ratio for Al(OH)(1,4-NDC)·2H2O. Figure S25. Cartesian projections of shear modulus for CAU-8. Figure S26. Cartesian projections of linear compressibility for CAU-8. Figure S27. Cartesian projections of Poisson's ratio for CAU-8. Figure S28. Cartesian projections of shear modulus for (a) MIL-68(Fe) and (b) MIL-68(V). Figure S29. Cartesian projections of linear compressibility for (a) MIL-68(Fe) and (b) MIL68(V). Figure S30. Cartesian projections of Poisson's ratio for (a) MIL-68(Fe) and (b) MIL-68(V).

Table S1. Monkhorst-Pack (MP) k-point grids used in the calculations RefCode

GUXQAR

MP k-points irreduc.

unit cell parameters (from experiment) Sp. Gr.

a, Å

b, Å

c, Å

angle, °

P-1

6.3758

6.8840

9.0254

α=69.01

k-points 4x4x3

26

2x4x3

12

β=85.20 γ=79.45 GUKVEO

Pbam

11.3322 6.6189

NUFYAP

P21/c

9.5182

10.0695 6.6464

β=91.26

3x3x4

14

NUFYET

P21/c

9.6501

10.0585 6.7507

β=92.48

2x2x2

8

SABVUN

Imma

6.6085

16.6750 12.8130

4x2x2

12

POJTOY

C2/c

21.2693 6.7589

6.8838

β=114.63 2 x 2 x 4

12

LOQLIN01 C2/c

19.8330 6.8556

6.7143

β=103.88 2 x 3 x 5

16

ASOHUL

Pnma

17.6956 6.8745

11.9303

2x4x2

12

RAWZIA

C2/c

17.5448 13.5781 6.6642

GUXQEV

Pnma

14.8860 6.9164

XOCROY

C2/c

EXEQII

8.7217

β=113.20 1 x 2 x 3

4

10.6669

2x4x2

8

11.7300 6.7420

17.5780 β=90.00

2x4x2

12

I4122

15.3470

12.3845

2x2x2

6

HAFVUH

I4122

15.2927

12.3010

3x3x4

9

CELZOK

I41/amd

21.4917

10.1810

1x1x2

2

WOJJOV

P4/nmm 21.1012

6.6095

1x1x4

3

XADCOW

Cmcm

21.3011 36.8730 6.8883

2x1x5

6

LOQLIN

Cmcm

21.1760 36.7030 6.7423

1x1x3

2

ATOTIM

Cmcm

21.2105 36.7210 6.8606

2x1x5

6

EXEQEE

I41/amd

22.6050

12.4740

1x1x2

2

PEYSUJ

I41/amd

21.5064

10.1648

1x1x2

2

CELZUQ

I41

21.5470

10.3780

1x1x3

2

CELZIE

I41/a

21.3609

10.5698

1x1x2

2

ZESZEE

I41/a

13.0625

52.5650

3x3x1

3

Table S2. Optimized unit cell parameters of metal-organic frameworks RefCode

GUXQAR

unit cell (from experiment)

unit cell (calculated)

a, Å

b, Å

c, Å

angle, °

a, Å

b, Å

c, Å

angle,°

6.3758

6.8840

9.0254

α =69.01

6.4273

6.9160

9.1251

67.908

β =85.20

85.999

γ =79.45

79.133

GUKVEO

11.3322 6.6189

NUFYAP

9.5182

10.0695 6.6464

β =91.26

9.5622

10.3939 6.7209

92.091

NUFYET

9.6501

10.0585 6.7507

β =92.48

9.7120

10.4142 6.8430

92.485

SABVUN

6.6085

16.6750 12.8130

6.7418

16.8676 12.9886

POJTOY

21.2693 6.7589

6.8838

β=114.63 17.4049 13.9556 6.6797

112.53

LOQLIN01

19.8330 6.8556

6.7143

β=103.88 17.9085 13.9611 6.8269

112.54

ASOHUL

17.6956 6.8745

11.9303

RAWZIA

17.5448 13.5781 6.6642

GUXQEV

14.8860 6.9164

10.6669

14.9616 7.1006

10.7551

XOCROY

11.7300 6.7420

17.5780 β =90

11.6225 6.7896

17.7681 90.462

EXEQII

15.3470

12.3845

15.5251

12.5593

HAFVUH

15.2927

12.3010

15.3144

12.6133

CELZOK

21.4917

10.1810

21.7670

10.6609

WOJJOV

21.1012

6.6095

21.5513

6.7450

XADCOW

21.3011 36.8730 6.8883

21.1638 36.2584 6.6898

LOQLIN

21.1760 36.7030 6.7423

21.5627 36.9155 6.8836

ATOTIM

21.2105 36.7210 6.8606

21.5124 36.8005 6.9975

EXEQEE

22.6050

12.4740

22.8236

12.8221

PEYSUJ

21.5064

10.1648

21.7945

10.6343

8.7217

11.8675 6.7144

17.6781 6.9851

8.7046

12.2450

β=113.20 17.6321 13.7175 6.7807

112.74

CELZUQ

21.5470

10.3780

21.7945

10.6343

CELZIE

21.3609

10.5698

21.7806

10.7254

ZESZEE

13.0625

52.5650

13.3068

53.1281

Table S3. Maxima and minima of Young’s modulus (GPa) for MIL-60(V) (RefCode: GUXQAR), MIL-118(Al) (RefCode: GUKVEO), MIL-116(Al) (RefCode: XOCROY), MIL122(Al) (RefCode: NUFYAP), and MIL-122(Ga) (RefCode: NUFYET) Related SBU Rod Diagonal of ligand wide aperture narrow aperture between rod and ligand Anisotropy Voigt

MIL-60(V) 73.1 116.8, 108.0 69.5 13.219 72, 19.0574 26.0(125º)/ 8.835 66.868

MIL-116(Al) 104.313 189.503, 194.84 26.9

MIL-118(Al) MIL-122(Al) MIL-122(Ga) 107.9 109.8 90.4 134.26 14.8

27.4

24.8

150.417

110.7

212.0

184.8

58.3(49º), 22.1098 8.812 95.433

31.8

77.0/51.1

9.37 68.88

7.733 92.955

86.0(θ=30º)/ 66.2(38º) 7.451 85.941

Table S4. Maxima and minima of Young’s modulus (GPa) for CPF-1(Mg) (RefCode: HAFVUH) and NOTT-400(Sc) (RefCode: EXEQII) Related SBU Rod Ligand wide aperture of channel narrow aperture of channel between rod and ligand

CPF-1(Mg) 72.4 34.8 5.6 5.6 31.8 (θ=56º) 12.91 33.863 5.44 -0.52253

Anisotropy Average (Voigt) βmin νmin

NOTT-400(Sc) 85.6 41.5 2.9 2.9 40.4 (θ=65º) 29.05 41.476 4.9445 -1.4961

Table S5. Maxima and minima of Young’s modulus (GPa) for the MIL-68 MOFs Related SBU Rod Ligand wide aperture of channel narrow aperture of channel Minima between rod and ligands max/min Voigt βmin νmin

MIL-68(V) 33.44(001) 33.697(100), 20.0(110) 19.2(110) 25.4998(010) 13.498(012)

MIL-68(Ga) 36.1795(001) 35.2885(100), 29.5(110) 28.8(110) 33.0854(010) 12.3814(012)

MIL-68(Fe) 42.2787 55.9057(100), 31.0(110) 28.9(110) 43.1451(010) 19.9076(012)

2.5 23.16 8.562 0.061359

2.9 25.718 12.521 0.0936

2.8 33.003 8.3631 0.0843

Table S6. Maxima and minima of Young’s modulus (GPa) for NOTT-401 (RefCode: EXEQEE) and the CAU-10 MOFs Related SBU

NOTT-401

CAU-10-H (CELZUQ)

Rod Ligand wide aperture of channel narrow aperture of channel between rod and ligand Anisotropy Voigt βmin νmin

5.5058(001) 10.8 55.0809(100) 77.221 5.7746(110) 10.14 5.7746(110)

CAU-10-CH3 (CELZOK)

CAU-10-Br (PEYSUJ)

5.125(001) 78.3769(100;010) 17.941(011)

CAU-10OCH3 (CELZIE) 2.9 77.6 22.7

10.14

17.941(011)

22.7

19.7

29.6(66.9º)

38.5(θ=67º)

43.0(70.5º)

44.5(63º)

10 25.681 -0.969 -0.322

7.616 35.054 8.468 -0.21493

15.29 35.436 2.8652 -0.32789

51.5 (θ=71.4º) 26.34 38.517 -3.7781 -0.98331

11.0 79.7 19.7

7.218 40.772 4.9201 -0.23251

Table S7. Maxima and minima of Young's modulus (GPa) for MIL-53, MIL-121, MIL-61 Related SBU

MIL-53(Al) (SABVUN)

MIL-53(V) (ASOHUL)

MIL-53(Fe) (POJTOY)

MIL-121(Al) (RAWZIA)

41.0 71.4 1.4

MIL-53(Ga) (LOQLIN01 ) 32.6 66.7, 67.0 0.8

50.4 96.0, 96.4 2.2

55.7 87.4 20.1

MIL-61(V) (GUXQEV ) 58.7 86.5, 86.6 44.6

Rod Ligand wide aperture of channel narrow aperture of channel between rod and ligand Anisotropy Voigt βmin νmin

56.0 79.9 0.8 2.7

7.4

1.7

4.0

23.1

52.0

27.1(65º)

25.0 (φ=50º) 50 37.209 -162.62 -1.1713

21.1 (θ=41º), 21.2(θ=37º) 83.01 33.191 -260.28 -1.9564

30.0 (θ=41º), 32.6 (θ=41º) 43.7 48.133 -72.875 -1.0642

39(40º)/49(47º)

14.5 (011), 23.4 (110) 5.959 48.383 4.9966 -0.01

95.87 41.801 -281.06 -2.4248

4.335 54.098 1.9117 -0.1583

Table S8. Maxima and minima of Young's modulus (GPa) for Al(OH)(1,4-NDC)·2H2O (RefCode: WOJJOV) Related SBU Rod Ligand wide aperture of channel narrow aperture of channel between rod and ligand Anisotropy Voigt βmin νmin

Al(OH)(1,4-NDC)·2H2O 50 78.9 9.1 9.1 29.8 (θ=42º) 8.661 41.934 7.8777 -0.0781

Table S9. Maxima and minima of Young's modulus (GPa) for CAU-8 (RefCode: ZESZEE) Related SBU Rod Ligand wide aperture of channel narrow aperture of channel between rod and ligand between rods Anisotropy Voigt βmin νmin

CAU-8 12.5, 12.5 23.9 12.5 23.9 9.4(θ=53º) 2.38 10.06 10.994 29.38 -0.24197

Table S10. Underlying topology of 23 metal-organic frameworks RefCode

Material

Metal

Ligand

CN link

Underlying net

WOJJOV

Al(OH)(1,4-ndc)

Al

naphthalene-1,4dicarboxylate

4

crb

PEYSUJ

CAU-10-Br

Al

5-bromoisophthalate

4

gis

CELZOK

CAU-10-CH3

Al

5-methylisophthalate

4

gis

CELZUQ

CAU-10-H

Al

isophthalate

4

gis

CELZIE

CAU-10-OCH3

Al

5-methoxyisophthalate

4

gis

ZESZEE

CAU-8

Al

4,4'-carbonyldibenzoate

4

4/5/t1

HAFVUH

CPF-1

Mg

biphenyl-3,3',5,5'-tetracarboxylate

8

cda

XOCROY

MIL-116(Al)

Al

1,4-dicarboxy-benzene2,3,5,6-tetracarboxylate

8

mog

GUKVEO

MIL-118(Al)

Al

benzene-1,2,4,5-tetracarboxylate

8

mog

RAWZIA

MIL-121(Al)

Al

dihydrogen pyromellitate

4

dia

NUFYAP

MIL-122(Al)

Al

1,4,5,8-naphthalenetetracarboxylate

8

mog

NUFYET

MIL-122(Ga)

Ga

1,4,5,8-naphthalenetetracarboxylate

8

mog

SABVUN

MIL-53(Al)

Al

benzene-1,4-dicarboxylate

4

dia

POJTOY

MIL-53(Fe)

Fe

terephthalate

4

dia

LOQLIN01

MIL-53(Ga)

Ga

terephthalate

4

dia

ASOHUL

MIL-53(V)

V

benzene-1,4-dicarboxylate

4

dia

GUXQAR

MIL-60(V)

V

1,2,4,5-benzenetetracarboxylate

8

mog

GUXQEV

MIL-61(V)

V

benzene-2,4,5-tricarboxylato-1-

4

dia

carboxylate XADCOW

MIL-68(Fe)

Fe

benzene-1,4dicarboxylate

4

bik

LOQLIN

MIL-68(Ga)

Ga

terephthalate

4

bik

ATOTIM

MIL-68(V)

V

terephthalate

4

bik

EXEQII

NOTT-400

Sc

biphenyl-3,3',5,5'tetracarboxylate

8

cda

EXEQEE

NOTT-401

Sc

thiophene-2,5dicarboxylate

4

gis

Table S11. Young’s modulus, shear modulus, linear compressibility, and Poisson’s ratio of 23 metal-organic frameworks Material

М

Young modulus, GPa

Shear modulus, GPa

Linear Poisson’s –1 compressibility, TPa ratio

min

max

max/ min min

max

min

max

min

max

Al(OH)(1 ,4-ndc)

Al

9.12

78.97

8.7

2.4

34.93

7.88

13.7

-0.08

0.91

CAU-10Br

Al

11.05

79.74

7.2

5.58

37.27

4.92

77.02

-0.23

0.77

CAU-10CH3

Al

5.13

78.38

15.3

3.72

36.11

2.87

177.49

-0.33

0.79

CAU-10H

Al

10.14

77.22

7.6

2.7

36.07

8.47

85.15

-0.21

0.88

CAU-10OCH3

Al

2.95

77.48

26.3

2.41

36.43

-3.78

307.54

-0.98

1.23

CAU-8

Al

2.38

23.95

10.1

0.66

7.46

29.38

78.43

-0.24

0.91

CPF-1

M g

5.61

72.44

12.9

1.47

19.67

5.44

12.13

-0.52

1.32

MIL116(Al)

Al

22.12

194.84

8.8

7.39

72.29

-2.63

24.33

-0.37

1.28

MIL118(Al)

Al

14.33

134.23

9.4

5.93

42.31

-6.19

51.03

-0.41

1.56

MIL121(Al)

Al

20.19

87.39

4.3

6.32

41.31

1.91

14.57

-0.16

0.91

MIL122(Al)

Al

27.43

212.14

7.7

15.4 9

61.52

-1.48

29.34

-0.16

0.98

MIL122(Ga)

Ga

24.82

184.97

7.5

16.5

50.8

-1.77

33.04

-0.11

0.98

MIL53(Al)

Al

0.84

79.58

94.7

0.35

32.24

-281.1

537.79

-2.42

3.1

MIL53(Fe)

Fe

2.21

93.83

42.5

0.74

45.31

-72.87

116.97

-1.06

2.06

MIL53(Ga)

Ga

0.81

67.16

82.9

0.29

31.99

-260.28

410.16

-1.96

2.87

MIL53(V)

V

1.43

71.18

49.8

0.7

24.34

-162.6

404.48

-1.31

2.79

MIL60(V)

V

13.22

116.71

8.8

4.6

42.85

-3.09

33.29

-0.36

1.26

MIL61(V)

V

14.54

86.65

6

4.18

33.98

5

13.24

-0.01

0.81

MIL68(Fe)

Fe

19.91

55.91

2.8

6.54

21.58

8.36

19.26

0.06

0.61

MIL68(Ga)

Ga

12.38

36.18

2.92

3.65

15.91

12.52

19.84

0.09

0.7

MIL68(V)

V

13.5

33.7

2.5

4.16

15.81

8.56

22.19

0.06

0.72

NOTT400

Sc

2.95

85.68

29

0.76

23.56

4.94

12.5

-1.5

2.26

NOTT401

Sc

5.51

55.08

10

1.52

26.43

-0.97

144.9

-0.32

1.01

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

Figure S3. Cartesian projections of shear modulus for (a) MIL-118, (b) MIL-116, (c) MIL-60.

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

Figure S4. Cartesian projections of linear compressibility for (a) MIL-118, (b) MIL-116, (c) MIL60.

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

Figure S5. Cartesian projections of Poisson's ratio for (a) MIL-118, (b) MIL-116, (c) MIL-60.

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S6. Cartesian projections of shear modulus for (a) NOTT-400 (EXEQII) and (b) CPF-1 (HAFVUH).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S7. Cartesian projections of linear compressibility for (a) NOTT-400 (EXEQII) and (b) CPF-1 (HAFVUH).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S8. Cartesian projections of Poisson's ratio for (a) NOTT-400 (EXEQII) and (b) CPF-1 (HAFVUH).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S9. Cartesian projections of shear modulus for (a) MIL-122(Al) (NUFYAP) and (b) MIL-122(Ga) (NUFYET).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S10. Cartesian projections of linear compressibility for (a) MIL-122(Al) (NUFYAP) and (b) MIL-122(Ga) (NUFYET).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S11. Cartesian projections of Poisson's ratio for (a) MIL-122(Al) (NUFYAP) and (b) MIL-122(Ga) (NUFYET).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

(d) (100)

(010)

(001)

(e) (100)

(010)

(001)

Figure S12. Cartesian projections of shear modulus for (a) NOTT-401 (CELZOK), (b) CAU10(Sc) (EXEQEE), (c) CAU-10(Al) (PEYSUJ), (d) CAU-10(Al) (CELZUQ), and (e) CAU10(Al) (CELZIE).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

(d) (100)

(010)

(001)

(e) (100)

(010)

(001)

Figure S13. Cartesian projections of linear compressibility for (a) NOTT-401 (CELZOK), (b) CAU-10(Sc) (EXEQEE), (c) CAU-10(Al) (PEYSUJ), (d) CAU-10(Al) (CELZUQ), and (e) CAU-10(Al) (CELZIE).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

(d) (100)

(010)

(001)

(e) (100)

(010)

(001)

Figure S14. Cartesian projections of Poisson's ratio for (a) NOTT-401 (CELZOK), (b) CAU10(Sc) (EXEQEE), (c) CAU-10(Al) (PEYSUJ), (d) CAU-10(Al) (CELZUQ), and (e) CAU10(Al) (CELZIE).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

(d) (100)

(010)

(001)

Figure S15. Cartesian projections of shear modulus for (a) MIL-53(Al) (SABVUN), (b) MIL53(Fe) (POJTOY), (c) MIL-53(Ga) (LOQLIN01), and (d) MIL-53(V) (ASOHUL).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

(d) (100)

(010)

(001)

Figure S16. Cartesian projections of linear compressibility for (a) MIL-53(Al) (SABVUN), (b) MIL-53(Fe) (POJTOY), (c) MIL-53(Ga) (LOQLIN01), and (d) MIL-53(V) (ASOHUL).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

(c) (100)

(010)

(001)

(d) (100)

(010)

(001)

Figure S17. Cartesian projections of Poisson's ratio for (a) MIL-53(Al) (SABVUN), (b) MIL53(Fe) (POJTOY), (c) MIL-53(Ga) (LOQLIN01), and (d) MIL-53(V) (ASOHUL).

(100)

(010)

(001)

Figure S18. Cartesian projections of shear modulus for MIL-121 (RAWZIA).

(100)

(010)

(001)

Figure S19. Cartesian projections of linear compressibility for MIL-121 (RAWZIA).

(100)

(010)

(001)

Figure S20. Cartesian projections of Poisson's ratio for MIL-121 (RAWZIA).

(100)

(010)

(001)

Figure S21. Cartesian projections of shear modulus for MIL-61 (GUXQEV).

(100)

(010)

(001)

Figure S22. Cartesian projections of linear compressibility for MIL-61 (GUXQEV).

(100)

(010)

(001)

Figure S23. Cartesian projections of Poisson's ratio for MIL-61 (GUXQEV).

(100)

(010)

(001)

Figure S24. Cartesian projections of shear modulus for Al(OH)(1,4-NDC)·2H2O (WOJJOV).

(100)

(010)

(001)

Figure S25. Cartesian projections of linear compressibility for Al(OH)(1,4-NDC)·2H2O (WOJJOV).

(100)

(010)

(001)

Figure S26. Cartesian projections of Poisson's ratio for Al(OH)(1,4-NDC)·2H2O (WOJJOV).

(100)

(010)

(001)

Figure S27. Cartesian projections of shear modulus for CAU-8 (ZESZEE).

(100)

(010)

(001)

Figure S28. Cartesian projections of linear compressibility for CAU-8 (ZESZEE).

(100)

(010)

(001)

Figure S29. Cartesian projections of Poisson's ratio for CAU-8 (ZESZEE).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S30. Cartesian projections of shear modulus for (a) MIL-68(Fe) (XADCOW) and (b) MIL-68(V) (ATOTIM).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S31. Cartesian projections of linear compressibility for (a) MIL-68(Fe) (XADCOW) and (b) MIL-68(V) (ATOTIM).

(a) (100)

(010)

(001)

(b) (100)

(010)

(001)

Figure S32. Cartesian projections of Poisson's ratio for (a) MIL-68(Fe) (XADCOW) and (b) MIL-68(V) (ATOTIM).