Synthesis and complexes of an N4 Schiff-base macrocycle derived

1 downloads 0 Views 1MB Size Report
5.5. 6.0. 6.5. 7.0. 7.5. 8.0. 8.5. 9.0. 9.5. 10.0. 10.5. 11.0. 11.5. 12.0. 2.27. 2.28 .... 5 (blue line) as 1 mmol L-1 solutions in MeCN (100 mV.s-1, 0.1 mol. ..... 0.02. 50. +0.35. +0.31. 0.04. 100. +0.36. +0.31. 0.05. 200. +0.37. +0.32. 0.05 ... +0.18 to 0 V, after conducting a controlled coulometry experiment at +0.48 V which transferred ...
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Supplementary Information

Synthesis and complexes of an N4 Schiff-base macrocycle derived from 2,2’iminobisbenzaldehyde Rajni Sanyal, Scott A. Cameron and Sally Brooker*[a] [a]

Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand. Fax: +64 3 479 7906. Email: [email protected]

1   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5

7.0

2   

6.5

6.0

5.5

5.0

4.5

4.0

3.00 2.99 2.99 2.98 2.98 2.27

3.76 3.75 3.74 2.28

0.88

7.31 6.96 6.94 6.92

7.5

0.93

7.66 7.64

8.0

0.77

0.98

1.00

0.49

8.43

11.70

Figure S1. 1H NMR and 13C NMR Spectra of HL in CDCl3

3.5

3.0

2.5

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

170

165

160

155

150

145

140

135

130

125

6.0

5.8

5.6

120

115

110

3   

5.4

5.2

5.0

4.8

4.6

4.4

4.2

4.0

3.8

2.91 2.90 2.89 2.88 2.86 2.85 1.28

1.36

3.6

3.4

3.2

3.0

105

100

95

90

85

80

75

70

65

60

2.8

2.6

50.16

6.2

1.19

3.99 3.98 3.96 3.94 3.93 3.86 3.83 3.62 3.61 3.59

6.4

56.85

6.6

118.39

6.8

121.99

7.0

1.20

6.72 6.70 6.69 0.86

7.15 7.14 7.12

7.2

125.87

7.4

1.03

7.46 7.45 7.45 7.44 7.39

7.6

133.14

7.8

139.09 137.40

8.0

150.56

8.2

155.47

8.4

0.99 1.57 1.00

7.90 7.89 7.87 0.82

8.49 8.48

8.6

170.02

8.8

1.91

0.98

8.69

Figure S2. 1H NMR and 13C NMR Spectra of [ZnL(py)](BF4) 2 (CD3)2CO

55

50

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

165

160

155

150

145

140

135

130

125

5.4

5.2

120

115

110

105

4   

5.0

4.8

4.6

4.4

4.2

4.0

3.6

1.24

3.4

3.2

100

95

90

85

80

75

70

65

3.0

2.61 2.59 2.58 2.54

3.71 3.68 3.67 3.57 3.23 3.20 3.18 3.17 3.15 3.14 2.77 2.75 2.74 1.12

1.11

3.8

2.88

5.6

2.8

2.6

60

2.4

50.83 49.70

5.8

1.74

6.0

60.53

6.2

64.92

6.4

2.17

3.88 3.86 3.84 3.83

6.6

120.30 119.81

6.8

125.30 124.47 124.07 123.59

7.0

0.99

6.81 6.80 6.78 6.76 1.93

7.09 7.07 7.05

7.2

134.29 133.69 132.83 132.34

7.4

1.95

7.44 7.42 7.39 7.35 7.33

7.6

1.08

2.94

7.8

149.80 148.91

8.0

162.83 161.84

8.2

1.00

0.97

8.00 7.93

Figure S3. 1H NMR and 13C NMR Spectra of [NiL](BF4)•H2O 4 in CD3CN

55

50

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

170

165

160

155

150

145

140

135

130

125

120

115

110

105

5   

100

95

90

85

80

75

70

65

50.62 50.39

62.17

66.29

120.01 119.54

126.60 126.20 125.59 125.03

134.19 133.77

136.74 136.31

152.44 151.51

168.02 166.62

Figure S4. 1H NMR and 13C NMR Spectra of [CoL(NCS)2]•0.3py 7 in CD3CN

60

55

50

45

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S5. Cyclic voltammograms of complexes before conducting controlled potentiostatic coulometry experiment over the potential range of interest for, from bottom to top: [ZnIIL(py)](BF4) 2 (brown line), [CuIIL](BF4)•H2O 3 (green line), [NiIIL](BF4)•H2O 4 (purple line) and [CoIIL](BF4)•H2O 5 (blue line) as 1 mmol L-1 solutions in MeCN (100 mV.s-1, 0.1 mol.L-1 NBu4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3/Ag).

6   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

    Electrochemical study of [ZnLPy](BF4) in MeCN

Figure S6. Cyclic voltammogram of [ZnL(py)](BF4) before carrying out a controlled potential coulometry experiment at +0.48 V as 1mmol L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3-Ag).

1. First bulk electrolysis experiment, at +0.48 V Mass of [ZnLPy](BF4) used = 5.2346 mg = 1.002 x 10-5 mol L-1

Concentration of [ZnLPy](BF4) =

The expected number of electrons to be transferred provided that this particular process was a one electron process was calculated to be 0.97 coulombs. This was calculated as follows. No. of moles of [ZnLPy](BF4) = Concentration of [ZnLPy](BF4) x Volume = 0.001002 Mol L-1 x 0.010 L = 1.002 x 10-5 mol No. of electrons transferred

= ne x No. of moles of [ZnLPy](BF4) x Faraday’s constant = 1 x 1.002 x 10-5 mol x 96500 C mol-1 = 0.967 C if one electron process

Figure S7. Controlled potentiostatic coulometry experiment conducted at +0.48 V led to 1.16 coulombs of electrons transferred which corresponds to 1.2 electron equivalents per complex.

7   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

    Second run at +0.41 V A controlled potentiostatic coulometry experiment was also carried out, on a fresh sample, at +0.41 V, about 60 mV less than the previous potential used. Mass of [ZnLPy](BF4) used = 5.2305 mg = 1.001 x 10-5 mol L-1

Concentration of [ZnLPy](BF4) =

No. of moles of [ZnLPy](BF4) = Concentration of [ZnLPy](BF4) x Volume = 0.001001 Mol L-1 x 0.010 L = 1.001 x 10-5 mol No. of electrons transferred

= ne x No. of moles of [ZnLPy](BF4) x Faraday’s constant = 1 x 1.001 x 10-5 mol x 96500 C mol-1 = 0.966 C

Figure S8. Controlled potentiostatic coulometry experiment conducted at +0.41 V led to 1.2 coulombs of electrons transferred which corresponds to 1.2 electron equivalents per complex.

Figure S9. Cyclic voltammogram of [ZnL(py)](BF4) (oxidation process) at different scan rates (mV.s-1) before conducting a controlled coulometry experiment.

8   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S10. Cyclic voltammogram of [ZnL(py)](BF4) (oxidation process) at different scan rates (mV.s-1) before conducting a controlled coulometry experiment.

Figure S11. Cyclic voltammogram of [ZnL(py)](BF4) after carrying out a controlled potential coulometry experiment at 0.47 V as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3-Ag).

Figure S12. Cyclic voltammogram of [ZnL(py)](BF4) (oxidation process) at different scan rates (mVs1 ) after conducting a controlled coulometry experiment.

9   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S13. Cyclic voltammogram, from the bottom of [ZnLPy](BF4) before (blue) and after (red) carrying out a controlled potential coulometry experiment at 0.47 V as 1mmol L-1 solutions in MeCN (200 mV.s-1, 0.1 M NEt4PF6, platinum electrode, versus 0.01 M AgNO3/Ag).

10   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Electrochemical study of [CuL](BF4)•H2O in MeCN

Figure S14. Cyclic voltammogram of [CuL](BF4)•H2O before carrying out a controlled potential coulometry experiment at +0.61 V as 1mmol L-1 solutions in MeCN (200 mV.s-1, 0.1 M NEt4PF6, platinum electrode, versus 0.01 M AgNO3-Ag). Mass of [CuL](BF4)•H2O used = 5.2346 mg = 1.002 x 10-5 mol L-1

Concentration of [CuL](BF4)•H2O =

The expected number of electrons to be transferred provided that this particular process was a one electron process was calculated to be 0.97 coulombs. This was calculated from the following equation. No. of moles of [CuL](BF4)•H2O = Concentration of [CuL](BF4)•H2O x Volume = 0.00100 Mol L-1 x 0.010 L = 0.00001 mol No. of electrons transferred

= ne x No. of moles of [CuL](BF4)•H2O x Faraday’s constant = 1 x 0.00001 mol x 96500 C mol-1 = 0.966 C if one electron process

Figure S15. Controlled potentiostatic coulometry experiment conducted at +0.61 V led to 0.92 coulombs of electrons transferred which corresponds to 0.95 electron equivalents per complex

11   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S16. Cyclic voltammogram of [CuL](BF4)•H2O (oxidation process) at different scan rates (mV.s-1) before conducting a controlled coulometry experiment.

Figure S17. Cyclic voltammogram of [CuL](BF4)•H2O after carrying out a controlled potential coulometry experiment at +0.61 V as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3-Ag).

Figure S18. Cyclic voltammogram of [CuL](BF4)•H2O (oxidation process) at different scan rates (mV.s-1) after conducting a controlled coulometry experiment.

12   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S19. Cyclic voltammogram, from the bottom of [CuL](BF4)•H2O before (purple) and after (red) carrying out a controlled potential coulometry experiment at 0.61 V as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3/Ag).

13   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Electrochemical study of [NiL](BF4)•H2O in MeCN

Figure S20. Cyclic voltammogram of [NiL](BF4)•H2O before carrying out a controlled potential coulometry experiment at +0.71 V as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3-Ag). 1. First run at +0.71 V Mass of [NiL](BF4)•H2O used = 4.500 mg = 1.030 x 10-3 mol L-1

Concentration of [NiL](BF4)•H2O =

The expected number of electrons to be transferred provided that this particular process was a one electron process was 0.97 coulombs. This was calculated as follows. No. of moles of [NiL](BF4)•H2O = Concentration of [NiL](BF4)•H2O x Volume = 0.00103 mol L-1 x 0.010 L = 0.00001 mol No. of electrons transferred

= ne x No. of moles of [NiL](BF4)•H2O x Faraday’s constant = 1 x 0.00001 mol x 96500 C mol-1 = 0.966 C if one electron process

Figure S21. Controlled potentiostatic coulometry experiment conducted at +0.71 V led to 1.50 coulombs of electrons transferred which corresponds to 1.6 electron equivalents per complex.

14   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

    Second run at +0.65 V A controlled potentiostatic coulometry experiment was also carried out on a fresh sample at +0.65 V, about 60 mV less than the previous potential used. Mass of [NiL](BF4)•H2O used = 4.5417 mg = 1.046 x 10-3 mol L-1

Concentration of [NiL](BF4)•H2O =

No. of moles of [NiL](BF4)•H2O = Concentration of [NiL](BF4)•H2O x Volume = 0.001046 Mol L-1 x 0.010 L = 1.05 x 10-5 mol No. of electrons transferred

= ne x No. of moles of [NiL](BF4)•H2O x Faraday’s constant = 1 x 1.05 mol x 96500 C mol-1 = 1.013 C if one electron process

Figure S22. Controlled potentiostatic coulometry experiment conducted at +0.65 V led to 1.85 coulombs of electrons transferred which corresponds to 1.8 electron equivalents per complex.

Figure S23. Cyclic voltammogram of [NiL](BF4)•H2O (oxidation process) at different scan rates (mV.s-1) before conducting a controlled coulometry experiment.

15   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S24. Cyclic voltammogram of [NiL](BF4)•H2O (oxidation process) at different scan rates (mV.s-1) before conducting a controlled coulometry experiment.

Figure S25. Cyclic voltammogram of [NiL](BF4)•H2O after carrying out a controlled potential coulometry experiment at +0.71 V as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3-Ag).

Figure S26. Cyclic voltammogram of [NiL](BF4)•H2O (oxidation process) at different scan rates (mVs-1) after conducting a controlled coulometry experiment.

16   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S27. Cyclic voltammogram, from the bottom of [NiL](BF4)•H2O before (red) and after (green) carrying out a controlled potential coulometry experiment at 0.61 V as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3-Ag).

Figure S28. Cyclic voltammograms of the three BF4 complexes from the bottom [ZnL(py)](BF4) 2 (blue), [CuL](BF4)•H2O 3 (green) and [NiL](BF4)•H2O 4 (red) after carrying out a controlled coulometry experiment as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NEt4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3/Ag). All of these complexes show the emergence of a reversible redox process in close proximity to 0 V.

17   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S29. Cyclic voltammograms of [CoIIL](BF4)•H2O (oxidation process) at different scan rate (mV.s-1).

Figure S30. Cyclic voltammograms of complexes after a controlled potential coulometry experiment at the appropriate redox potential (Table 4), over the potential range of interest for, from bottom to top: [ZnIILPy](BF4) 2 (blue line), [CuIIL](BF4)•H2O 3 (red line) and [NiIIL](BF4)•H2O 4 (pale blue line) as 1 mmol.L-1 solutions in MeCN (200 mV.s-1, 0.1 mol.L-1 NBu4PF6, platinum electrode, versus 0.01 mol.L-1 AgNO3/Ag).

18   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Table S1. Scan rate study of the process at approximately +0.37 V, for [ZnL(py)](BF4), from 0 to +0.37 to 0 V, before conducting a controlled coulometry experiment. Epc Epa ΔE 25 50 100 200 300 400

+0.32 +0.35 +0.36 +0.37 +0.38 +0.39

+0.30 +0.31 +0.31 +0.32 +0.32 +0.33

0.02 0.04 0.05 0.05 0.06 0.06

Table S2. Scan rate study of the process at approximately +0.82 V, for [ZnL(py)](BF4) ), from 0 to +0.82 to 0 V, before conducting a controlled coulometry experiment. Epc Epa ΔE 25 50 100 200 300 400

+0.79 +0.80 +0.81 +0.82 +0.83 +0.85

+0.79 +0.78 +0.78 +0.77 +0.78 +0.78

0.00 0.02 0.03 0.05 0.05 0.07

Table S3. Scan rate study of the process at approximately +0.18 V, for [ZnL(py)](BF4), from 0 to +0.18 to 0 V, after conducting a controlled coulometry experiment at +0.48 V which transferred 1.2 é equivalents per complex. Epc Epa ΔE 25 50 100 200 300 400

+0.18 +0.19 +0.20 +0.20 +0.21 +0.21

+0.13 +0.13 +0.13 +0.12 +0.11 +0.11

0.05 0.06 0.07 0.08 0.10 0.10

Table S4. Scan rate study of the process at approximately +0.50 V, for [CuL)](BF4)•H2O, from 0 to +0.50 to 0 V, before conducting a controlled coulometry experiment. Epc Epa ΔE 25 50 100 200 300 400

+0.50 +0.50 +0.51 +0.50 +0.50 +0.50

+0.44 +0.44 +0.45 +0.45 +0.44 +0.44

19   

0.06 0.06 0.06 0.05 0.06 0.06

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

    Table S5. Scan rate study of the process at approximately +0.36 V, for [CuL)](BF4)•H2O, from 0 to +0.36 to 0 V, after conducting a controlled coulometry experiment at +0.61 V which transferred 1 é equivalents per complex. Epc Epa ΔE 25 50 100 200 300 400

+0.36 +0.36 +0.37 +0.37 +0.38 +0.39

+0.25 +0.25 +0.24 +0.24 +0.24 +0.23

0.11 0.11 0.13 0.13 0.14 0.16

Table S6. Scan rate study of the process at approximately +0.59 V, for [NiL)](BF4)•H2O, from 0 to +0.59 to 0 V, before conducting a controlled coulometry experiment. Epc Epa ΔE 25 50 100 200 300 400

+0.59 +0.58 +0.58 +0.59 +0.59 +0.59

+0.54 +0.54 +0.54 +0.54 +0.53 +0.53

0.05 0.04 0.04 0.05 0.05 0.06

Table S7. Scan rate study of the process at approximately +1.37 V, for [NiL)](BF4)•H2O, from 0 to +1.37 to 0 V, before conducting a controlled coulometry experiment. Epc Epa ΔE 25 50 100 200 300 400

+1.30 +1.32 +1.33 +1.37 +1.36 +1.35

+1.28 +1.30 +1.30 +1.30 +1.25 +1.23

0.02 0.02 0.03 0.07 0.11 0.12

Table S8. Scan rate study of the process at approximately +0.48 V, for [NiL)](BF4)•H2O, from 0 to +0.50 to 0 V, after conducting a controlled coulometry experiment at +0.71 V which transferred 1.6 é equivalents per complex. Epc Epa ΔE 25 50 100 200 300 400

+0.50 +0.50 +0.50 +0.50 +0.50 +0.50

+0.39 +0.38 +0.38 +0.39 +0.38 +0.38

20   

0.11 0.12 0.12 0.11 0.12 0.12

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

 

Table S9. Summary and comparison of the frequency and structural features of combinations of different   ring sizes in 4-coordinate CuII and NiII complexes and 6-coordinate FeIII complexes of 12- to 16chelate membered N4 macrocycles. Data obtained from searches of the CSD (version 5.31), analysed by Vista. Complex Any 3d

Any 3d NOT porphyrin/corr in M-N(66) range (average) [Å]

6666 All-2283 Cu-160 Ni-355 Fe-321 All-183 Cu-13 Ni-23 Fe-0 Cu 1.93-2.08 (1.99) Ni 1.85-1.97 (1.89) Fe-none

M-N(65) range (average) [Å]

6665 All- 272 Cu-42 Ni-37 Fe-1 All-150 Cu-2 Ni-8 Fe-0 Cu 1.92-2.06 (1.95) Ni 1.88-1.98 (1.91) Fe-none Cu 1.91-2.06 (1.96) Ni 1.85-1.99 (1.90) Fe-none

Cu 85.95-100.67 (92.73) Ni 89.57-93.75 (91.74) Fe-none

6655 All-104 Cu-3 Ni-15 Fe-3 All-104 Cu-3 Ni-15 Fe-1 Cu 1.93-1.97 (1.95) Ni 1.93-2.00 (1.97) Fe-2.15 Cu 1.99-2.05 (2.03) Ni 1.86-1.99 (1.92) Fe 2.11-2.15 (2.14) Cu 1.88-1.92 (1.90) Ni 1.82-1.90 (1.85) Fe 2.11 Cu 98.14-99.68 (98.78) Ni 93.66-98.50 (96.36) Fe-89.95

Cu 81.25-87.76 (85.28) Ni 82.73-89.89 (89.46) Fe-none

Cu 79.40-82.72 (81.21) Ni 80.37-86.60 (83.49) Fe-77.26

Cu 160.03165.15 (163.49) Ni 163.42172.99 (170.11) Fe-none Cu 160.03172.09 (169.07) Ni 162.90172.99 (167.96) Fe-none

Cu 157.31162.89 (160.18) Ni 171.49179.52 (176.31) Fe 154.49 Cu 170.45179.27 (175.77) Ni 161.25169.45 (163.58) Fe 87.11

M-N(55) range (average) [Å]

Cis N-M-N range within 66, 65 and 55 chelate rings(average) [°] Cis N-M-N range within 66, 65 and 55 chelate rings (average) [°]

Cu 83.95-98.66 (90.48) Ni 86.98-93.78 (90.06) Fe-none

Trans N1-MN4 range (average) [°]

Cu 146.61178.40 (170.77) Ni 155.84179.46 (174.69) Fe-none Cu 135.02178.32 (168.42) Ni 163.62179.46 (174.90) Fe-none

Trans N3-MN2 range (average) [°]

21   

6565 All-1871 Cu-132 Ni-292 Fe-65 All-1827 Cu-77 Ni-162 Fe-4

6555 All-79 Cu-5 Ni-12 Fe All-78 Cu-1 Ni-5 Fe-0

Cu 1.86-2.16 (1.98) Ni 1.80-2.10 (1.94) Fe 1.95-2.03 (1.97)

Cu 1.81-2.01 (1.95) Ni 1.85-1.90 (1.88) Fe-none

Cu 87.76103.18 (95.38) Ni 87.85-97.81 (93.46) Fe-90.42-99.51 (94.31) Cu 75.82-92.23 (85.12) Ni 82.05-90.65 (86.33) Fe-80.49-88.07 (84.77) Cu 150.06180.00 (176.18) Ni 160.45180.00 (177.15) Fe 97-180 (166) Cu 155.68180.00 (175.97) Ni 162.40180.00 (176.90) Fe 172.39-180 (179)

Cu 1.84-1.99 (1.92) Ni 1.86-2.01 (1.92) Fe-none Cu 86.18-89.47 (86.95) Ni 86.67-90.52 (89.19) Fe-none

5555 All-310 Cu Ni-6 Fe-16 All-308 Cu-0 Ni-2 Fe-0

Cu-none Ni 1.87-1.94 (1.89) Fe-none

Cu 88.95-93.57 (90.83) Ni 86.40-93.36 (90.23) Fe-none

Cu-none Ni 86.74-91.60 (89.34) Fe-none

169.79

Cu-none

Ni 167.16176.84 (173.14) Fe-none Cu-169.79

Ni 161.83170.77 (167.79) Fe-none Cu-none

Ni 165.94176.84 (172.18) Fe-none

Ni 162.98167.37 (165.91) Fe-none

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S31. Summary of the cis (in diagram) and trans (in table) angles within different chelate ring sizes in 4-coordinate CuII complexes of 12- to 16- membered N4 macrocycles. Data obtained from searches, with all bonds as any bond type, of the CSD (version 5.31), analyzed by Vista. 6665

6666

1

N

84 - 99 (90)

N

1

2

N

86 - 101 (93)

Cu N

3

4

N

2

1

N

N

N

4

2

6555

6565

98 - 100 (99)

81 - 88 (85)

Cu N

3

6655

N

2

1

N

88 - 103 (95)

79 - 83 (81)

Cu N

N

4

3

Cu 3

3

N

N

1

Cu

76 - 92 (85)

N

86 - 89

N (87)

2

N

77

N

1

2

N N

13

N1-Cu-N4 (average) [°]

147 – 178* (171)

160 – 165 (163)

157 – 163 (160)

150 – 180 (176)

169.79

N3-Cu-N2 (average) [°]

135 – 178* (168)

160 – 173 (169)

170 – 179 (176)

155 – 180 (176)

169.79

2

N

4

3

4

Hits

N

Cu

89 - 94 (91)

N

3

4

5555

1

0

*A few them are outliers due to the buckled nature of the structures.

Figure S32. Summary of the cis (in diagram) and trans (in table) angles within different chelate ring sizes in 4-coordinate NiII complexes of 12- to 16- membered N4 macrocycles. Data obtained from searches, with all bonds as any bond type, of the CSD (version 5.31), analyzed by Vista. 6665

6666

1

N

87 - 94 (90)

N

1

2

N

Ni N

3

90 - 94 (92)

4

3

N

2

1

N

81 - 90 (86)

Ni N

6565

6655

N

N4

94 - 99 (96)

N

Ni N

3

2

1

N

88 - 98 (94)

80 - 87 (83)

N

4

Ni 3

N

6555

N

1

2

N

82 - 91 (86)

87 - 91 (89)

Ni N

N4

3

5555

N

1

2

87 - 92

N (89) N

2

Ni

86 - 94 (91)

N

N

3

4

N

4

  Hits

23

8

15

162

N1-Ni-N4 (average) [°]

156 – 180* (175)

163 – 173 (170)

171 – 180 (176)

160 – 180 (177)

167 – 177 (173)

162 – 171 (168)

N3-Ni-N2 (average) [°]

164 – 179 (175)

162 – 173 (168)

161 – 169 (164)

162 – 180 (177)

166 – 177 (172)

163 – 167 (166)

*A few them are outliers due to the buckled nature of the structures.

22   

5

2

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S33. Summary of the cis and trans angles within different chelate ring sizes in 6-coordinate FeIII complexes of 12- to 16- membered N4 macrocycles. Data obtained from searches, with all bonds as any bond type, of the CSD (version 5.31), analyzed by Vista. 6665

6666

1

N

2

N

1

N

Fe 3

N

6655

N

89.95

1

2

N

Fe N

N

4

N

Fe N4

3

6565

N

1

2

90 - 100 (94)

Fe

77.26

N

N

4

3

N

N

2

1

N

N

81 - 88 (85)

N

4

3

5555

6555

2

N

N

N

N

2

Fe

Fe 3

1

N

4

N

4

3

  Hits

0

0

1

4

N1-Fe-N4 (average) [°]

154.49 °

N3-Fe-N2 (average) [°]

87.11 °

0

0

97 – 180 (166) 172 – 180 (179)

Figure S34. Summary of the bond lengths of different chelate ring sizes in 4-coordinate CuII complexes of 12- to 16- membered N4 macrocycles. Data obtained from searches as any bond type of the CSD (version 5.31) and analyzed by Vista. 6665

6666

1

N

N

1

2

N

Cu N

3

6655

N

2

1

N

Cu N

3

4

N

N

2

1

N

Cu N

4

N

3

6555

6565

N

2

1

N

4

3

N

N

N

2

1

N

N

4

N

3

N

2

Cu

Cu

Cu N

5555

N

4

N

4

3

  Hits

13

2

Cu-N 66 [Å]

1.93 – 2.08 (1.99)

1.92 – 2.06 (1.95)

1.93 – 1.97 (1.95)

1.91 – 2.06 (1.96)

1.99 – 2.05 (2.03)

Cu-N 65 [Å] Cu-N 55 [Å]

3

77

1.88 – 1.92 (1.90)

    23   

1.86 – 2.16 (1.98)

1

1.81 – 2.01 (1.95) 1.84 – 1.99 (1.92)

0

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

      Figure S35. Summary of the bond lengths of different chelate ring sizes in 4-coordinate NiII complexes of 12- to 16- membered N4 macrocycles. Data obtained from searches as any bond type of the CSD (version 5.31) and analyzed by Vista. 6665

6666

1

N

N

1

2

N

Ni N

N

3

N

4

3

1

2

N

81 - 90 (86)

Ni N

6565

6655

Ni

N4

N

N

80 - 87 (83)

N

3

1

2

N

N

Ni

4

3

6555

N

2

1

N

82 - 91 (86)

N4

5555

Ni N

1

2

N

N

2

Ni

86 - 94 (91)

N

N

N

3

4

3

N

4

  Hits

23

Ni-N 66 [Å]

8

15

1.88 – 1.98 (1.91)

1.93 – 2.00 (1.97)

1.85 – 1.99 (1.90)

1.86 – 1.99 (1.92)

1.85 – 1.97 (1.89)

Ni-N 65 [Å] Ni-N 55 [Å]

162

5

1.80 – 2.10 (1.94)

1.85 – 1.90 (1.88)

1.82 – 1.90 (1.85)

2

1.86 – 2.01 (1.92)

1.87 – 1.94 (1.89)

    Figure S36. Summary of the bond lengths of different chelate ring sizes in 6-coordinate FeIII complexes of 12- to 16- membered N4 macrocycles. Data obtained from searches as any bond type of the CSD (version 5.31) and analyzed by Vista. 6665

6666

1

N

N

2

1

N

Fe 3

N

6655

N

2

1

N

Fe N

N

4

3

N

Fe N4

6565

N

1

2

N

2

1

N

N

4

3

N

1

2

N

N

N

3

4

N

N

2

Fe

Fe

Fe

77.26

N

3

N

5555

6555

N

3

4

N

4

  Hits

0

0

1

4

Fe-N 66 [Å]

2.15

Fe-N 65 [Å]

2.11 – 2.15 (2.14)

Fe-N 55 [Å]

2.11

24   

0

1.95 – 2.03 (1.97)

0

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

    Table S10 Structures of all 4-coordinate NiII complexes of N4 macrocycles with 6655 chelate rings in the CSD. See the following page for the general structure of these complexes (including R groups).

CCDC Codes for 4- R groups/Structure coordinate NiII CEQVEA

NH NH

Ni

N

N

Ni

H2 C

Counter ion

References in paper

I

1

ClO4

2

ClO4

3

ClO4

4

ClO4

5

N

N NH

NH

DOCDUU

NH

NH

NH Ni

N

Ni NH

N

NH

DOCVEW

NH

R1 = H R2 = R3 = CH3

DOGCOR NH

Ni

NH

NH

N CH3

EFAHOJ

R1 = R2 = R3 = H

FEJMOW

ClO4

6

GEWPUT

R1 = H R2 = R3 =CH3 R1 = R2 = R3 = CH3

ClO4

7

IBOKUG

R1 = R2 = H

BF4

8

MAZNIP

R1 = CH3 R2 = H R3 = H R1 = CH3 R2 = H

ClO4

9

ClO4

10

ClO4

10

ClO4

10

ClO4

11

ClO4

12

R3 = Ph

OGIRIG

Et N Et

R3 = OGIROM

CH3

R1 = CH3 R2 = H

Et NH

R3 = OGIRUS

Et

R1 =CH3 R2 = H R3 =

REDYII TUWQUX

HOOC

R1 = R2 = H R3 = CH3 R1 = R2 = H MeOC

R3 =

N H

25   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

    VAYGAD

H3C

ClO4

CH3 N

N

N

N

Ni

(CH2)4 N

Ni

N

13

N

N

H3C

CH3

General structure of the dication in all of the above 4-coordinate NiII complexes (bonds “any type”):

R1

R1 N

R2

Ni

N

N

R2

N

 

R3

Table S11 Structures of all 4-coordinate CuII complexes of N4 macrocycles with 6655 chelate rings in the CSD.

CCDC Codes for 4coordinate CuII

Structure

Counter ion

INABOO

References in the paper

ClO4

14

ClO4

14

PF6

11

N

Cu

N

N

NH

INABUU N

Cu

N

N

NH

REDYEE N

Cu

NH

NH

NH

   

Table S12 Structure of the only 6-coordinate FeIII complex of an N4 macrocycle with 6655 chelate rings in the CSD.

CCDC Code for 6coordinate FeIII

Structure

FOLDIT N NH

Cl

Fe

NH

Cl NH

26   

Coordinated Counter ion ion

Reference in the paper

Cl

15

BF4

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S37. Infrared Spectra (KBr disks) from bottom to top: [ZnIIL(py)](BF4) 2 (navy blue line), [CuIIL](BF4)•H2O 3 (black line), [NiIIL](BF4)•H2O 4 (red line), [CoIIL](BF4)•H2O 5 (green line), FeIIIL(BF4)2•2H2O•MeCN 6 (blue line), [CoIIIL(NCS)2]•0.3py 7 (purple line), [FeIIIL(NCS)2] 8 (orange line).

27   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

   

Figure S38. Perspective view of the cation of [CuIIL](BF4). Hydrogen atoms and tetrafluoroborate anion omitted for clarity.

Figure S39. UV-vis spectrum of [CoIIL](BF4)•H2O 5 in MeCN, scaled so as to highlight the intense band tailing across the visible.

28   

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

 

Table S13 structure determination details for the complexes 2{[ZnL(py)](BF4)}•py, [NiL](BF4), [CuL](BF4),   Crystal and [FeL(NCS) 2]•NO2Me 2{[ZnIILPy](BF4)}• py Emprical formula C51H53N11B2F8Zn2 1124.40 Mr Crystal system Triclinic Space group P1 (twinned) a [Å] 10.3702(16) b [Å] 10.6201(18) c [Å] 12.6948(19) α [°] 96.434(8) β [°] 98.583(8) γ [°] 116.065(7) V [Å3] 1216.8(3) Z 1 T [K] 90(2) ρcalcd. [gcm-3] 1.534 μ [mm-1] 1.067 F(000) 578 Crystal size [mm] 0.20 x 0.20 x 0.04 Θ range for data collection 2.18 to 26.55 [°] Reflections collected 19349 Independent reflections 9848 R(int) 0.0595 Max. and min. transmission 0.9586 and 0.8150 Data/ restraints/ parameters 9848 / 3 / 650 Goof (F2) 1.040 R1 [I > 2σ(I)] 0.0819 wR2 [all data] 0.2265

[CuIIL](BF4)

[NiIIL](BF4)

C18H19N4 BF4Cu 441.72 Monoclinic P21/n (twinned) 12.058(3) 7.4261(18) 19.403(4) 90 94.651(15) 90 1731.6(7) 4 90(2) 1.694 1.314 900 0.30 x 0.08 x 0.08 1.92 to 25.50

C18H19N4 BF4Ni 436.89 Monoclinic Pn 7.2737(15) 10.6471(18) 11.3778(15) 90 94.181(3) 90 878.8(3) 2 90(2) 1.651 1.156 448 0.20 x 0.10 x 0.08 1.79 to 26.02

[FeIIIL(NCS)2] •NO2Me C21H22N7 O2S2Fe 524.43 Orthorhombic P212121 8.894(8) 13.097(12) 19.980(15) 90 90 90 2327(3) 4 90(2) 1.497 0.861 1084 0.27 x 0.12 x 0.11 3.07 to 25.34

4205 4318 0.0000 0.9021 and 0.6939 4318 / 0 / 254 1.180 0.0767 0.2081

11732 3339 0.0574 0.9132 and 0.6614 3339 / 2 / 257 1.014 0.0504 0.1169

19217 4241 0.1131 0.9112 and 0.5840 4241 / 0 / 299 1.038 0.0652 0.1484

29