Synthesis and Photophysical Properties of 2-Styrylquinazolin-4-ones

0 downloads 0 Views 288KB Size Report
2-styryl-3-phenyl(naphthyl)-3Н-quinazolin-4-ones and examined the effect of substituents, among them fluorine atoms, on the photophysical properties.
ISSN 1070-4280, Russian Journal of Organic Chemistry, 2011, Vol. 47, No. 5, pp. 753−761. © Pleiades Publishing, Ltd., 2011. Original Russian Text © T.V. Trashakhova, E.V. Nosova, M.S. Valova, P.A. Slepukhin, G.N. Lipunova, V.N. Charushin, 2011, published in Zhurnal Organicheskoi Khimii, 2011, Vol. 47, No. 5, pp. 748−755.

Synthesis and Photophysical Properties of 2-Styrylquinazolin-4-ones T. V. Trashakhovaa, E. V. Nosovaa, M. S. Valovab, P. A. Slepukhinb, G. N. Lipunovab, and V. N. Charushinb aEl’tsin

Ural Federal University, Yekaterinburg, 620002 Russia e-mail: [email protected] bPostovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia Received August 9, 2010

Abstract—trans-2-Styryl-substituted 3Н-, 3-phenyl-, and 3-naphthylquinazolin-4-ones and their 6,7-difluoro derivatives were synthesized by condensation of appropriate 2-methylquinazolin-4-ones with aromatic aldehydes or by the transformation of the heterocycle of 2-methyl-3,1-benzoxazin-4-one under the action of benzylidenephenylamines. DOI: 10.1134/S1070428011050150

and other biologically active substances [5], but the data on luminescent properties of these quinazolinones were lacking. In this connection we synthesized a series of 2-styryl-3-phenyl(naphthyl)-3Н-quinazolin-4-ones and examined the effect of substituents, among them fluorine atoms, on the photophysical properties. Fluorine-containing quinazolinone IIa was obtained by heating benzoxazinone Ia with aniline. By the condensation of quinazolinone IIa and its unfluorinated analog IIb with benzaldehyde derivatives at heating in THF for 6 h in the presence of ZnCl2 and acetic anhydride we obtained new trans-2-(arylvinyl)-3Н-3-phenylquinazolin4-ones IIIа–IIIc (Scheme 1). The use of ZnCl2 in the condensation of 3-aryl-2-methyl-3Н-quinazolin-4-one with pyridine-2-carboxaldehyde was reported in [5].

Heterocyclic stilbene analogs underlie the structures of the promising class of fluorescent materials with pronounced photophysical and electrooptical properties [1]. The replacement in stilbenes of the phenyl group by heterocyclic azine (azinone) moiety essentially affects the photophysical and photochemical properties of stilbenes due to the contribution of the n,π* state [2]. In particular, recently promising luminophors were described in the series of 4,5-dichloro-trans-2-styrylpyridazin-3(2Н)-ones [3]. Besides the styryl fragment in the position 2 of 8-hydroxyquinolines provides a hole conductivity important for designing one-layer organic light-emitting diodes [4]. Some 2-styryl- and 2-pyridylvinyl-3-arylquinazolinones, in particular, their fluoroderivatives, were used as intermediates in the synthesis of inhibitors of AMPA-receptor

Scheme 1.

O Y Y

Iа, Ib

Y

O O

N

3'

PhNH2

CH3

Δ

Y Y

N N

Ph CH3

ArCHO THF, ZnCl2, Ac2O

Y

5

2'

O N

8

I, II, Y = F (а), Н (b); III, R = NO2, Y = F (а), H (b); R = Y = H (c).

753

5' 6'

N

IIIа_IIIc

IIа, IIb

4'

R

754

TRASHAKHOVA et al. Scheme 2. 3'

O O Y Y

PhN

IVа_IVе IVa–IVf

O N

CH

CH3

AcOH, AcONa

Y

O

R

Y Y

N N

Ph

ArCHO

Y

5

N 8

5' 6'

N

CH3 IIId_IIIn

IIа, IIb

Iа, Ib

4'

2'

R

IV, R = OMe (а), F (b), OAc (c), OBu (d), Et (e), NMe2 (f); III, Y = H, R = OMe (d), F (e), OН (f), OBu (g), Et (h), NMe2 (i); Y = F, R = NMe2 (j), F (k), Et (l), OMe (m), H (n).

Regretfully, the condensation of quinazolinones IIa, IIb with aromatic aldehydes under conditions of both basic and acidic catalysis has certain limitations, and this method cannot extend the series of 2-styryl-substituted quinazolinones III and to prepare them in good yields. In order to vary the substituents in the styryl moiety we performed an alternative approach to the synthesis of quinazolinones IIId–IIIn underlain by the reaction of 2-methyl-3,1-benzoxazin-4-ones Iа, Ib with benzylidenephenylamines IVа–IVf (Scheme 2) in acetic acid in the presence of sodium acetate. It should be noted that this method was formerly applied to the preparation of 6-bromo-2-styryl derivatives III [6], and also to the synthesis of 2-[β-(3,5-di-tert-butyl-4-hydroxyphenyl)vinyl]3-R-(3H)-quinazolin-4-ones [7]. Although compound IIIc formed in reaction of benzoxazinone Ib with the corresponding azomethine in a lower yield (25%) than in the condensation of quinazolinone IIb with benzaldehyde (74%) this approach made it possible to obtain a wider series of 2-styrylquinazolinones IIId–IIIn (Scheme 2). For instance, from (4-acetoxy)benzylidenephenylamine (IVc) under the mentioned conditions 4-hydroxy derivative IIIf was obtained because of the hydrolysis of the ester group. 1Н NMR spectra of quinazolinones III are characterized by the presence of doublets from the fragment СН=СН in the region 5.97–6.49 and 7.83–7.96 ppm with the coupling constant 15.4–15.6 Hz indicating its transconfiguration, and also the proton signals of the benzo fragment of quinazoline ring, of phenyl and aryl groups. To reveal the effect of the character of substituent in the position 3 on the photoluminescence 3Н- and 3-naphthylstyryl derivatives VI and VIII were synthesized. By heating 2-methyl derivative V with aromatic

aldehydes in THF in the presence of zinc chloride and acetic anhydride we succeeded in the preparation of styryl derivatives VIa, VIb. The synthesis of analogs of compounds VI by heating compound V with aromatic aldehydes in acetic acid with sodium acetate was described in [8]. O NH

O NH N V

ArCHO, ZnCl2

N

CH3 VIа, VIb

R

R = H (a), NO2 (b).

3-(1-Naphthyl)-2-styrylquinazolin-4-ones VIIIа, VIIIc, VIIId were prepared by condensation of 2-methyl3-(1-naphthyl)-3Н-quinazolin-4-one (VII) with appropriate aromatic aldehydes in THF in the presence of zinc chloride and acetic anhydride. The synthesis of para-methoxy derivative VIIIb was performed along the chemoselective reaction of benzoxazinone Ib with benzylidenenaphthylamine (IX) in acetic acid in the presence of sodium acetate (Scheme 3). The 1H NMR spectra of compounds VIII contained the signals of =СН– groups in the region 5.82–6.30 and 7.91–8.12 ppm, and also the signals of aromatic protons. The structure of quinazoline styryl derivatives was proved by the XRD analysis by an example of compound VIIIc. The general appearance of the molecule and the numeration of atoms used in the XRD experiment are presented in Fig. 1. Compound VIIIc crystallized in a centrosymmetric space group of symmetry P21/n in

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 5 2011

SYNTHESIS AND PHOTOPHYSICAL PROPERTIES OF 2-STYRYLQUINAZOLIN-4-ONES

755

Scheme 3. O O

N

N

IX

O N

N

OMe

Me

AcOH, AcONa

Ib

VIIIа_VIIIe

R

ArCHO O

ZnCl2 N

N

Me VII

VIII, R = H (a), OMe (b), NO2 (c), NMe2 (d).

monoclinic crystal system. The substituents at the ethylene fragment are located in the trans-positions. The С–Н distances in the aromatic rings are close to the standard values but have a fairly large spread: from 1.346(2) to 1.409(2) Å . The significant spread of bond lengths observed in the pyrimidine ring [from 1.2932(12) Å for the N1–C1 bond to 1.4513(15) Å for the C2–C3 bond] is obviously due to the infringement of the aromaticity of the system because of the introduction into pyrimidine of the carbonyl group [the bond length O1–C2 1.2195(13) Å is standard for the isolated С=О group]. The ethylene fragment lies virtually in the plane of the quinazolone

fragment (the deviation of atoms from the mean-square plane 2σ and wR2 0.0860, R1 0.1195 for all reflections at quality factor S 1.005. The maximum and minimum peaks of the residual electron density are 0.205 and –0.176 е Å–3. The whole set of crystallographic data on compound VIIIc was deposited in Cambridge Crystallographic Data Center (CCDC 823556). 2-Methyl-3-phenyl-6,7-difluoro-3Н-quinazolin-4one (IIа). A mixture of 1.7 g (8.5 mmol) of benzoxazinone Iа and 6.5 ml (69 mmol) of aniline was boiled for 4 h. On cooling the separated precipitate was filtered off and washed with ethanol. Yield 1.35 g (58%), mp 198–200°С. 1Н NMR spectrum, δ, ppm: 2.15 s (3Н, СН ), 7.36 d (2Н, 3 Ph, 3J 7.1 Hz), 7.52–7.59 m (4H, Ph, H5 or H8), 7.92 t (1H,

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 5 2011

758

TRASHAKHOVA et al.

H8 or H5, 3J 9.9 Hz). Found, %: C 66.23; H 3.75; N 10.25. C15H10F2N2O. Calculated, %: C 66.18; H 3.70; N 10.29. trans-2-[2-(4-Nitrophenyl)vinyl]-3-phenyl-6,7difluoro-3Н-quinazolin-4-one (IIIa). To a solution of 0.3 g (1.1 mmol) of reagent IIa in 7 ml of THF was added 0.5 ml of acetic anhydride, 0.28 g (1.9 mmol) of p-nitrobenzaldehyde, and 0.3 g (1.65 mmol) of zinc chloride. The reaction mixture was boiled for 6 h. On cooling the separated precipitate was filtered off, washed with water, and recrystallized from DMSO. Yield 0.26 g (59%), mp 257–259°С. 1Н NMR spectrum, δ, ppm: 6.47 d (1Н, СН=, 3J 15.5 Hz), 7.39 m (2Н, Н3',5'), 7.57 d (2Н, Н2'',6'', 3J 8.7 Hz), 7.60–7.70 m (4Н, Н8,2',4',6'), 7.94 d (1Н, СН=, 3J 15.6 Hz), 8.00 m (1Н, Н5), 8.16 d (2Н, Н3'',5'', 3J 8.7 Hz). Mass spectrum, m/z (Irel, %): 406 [M + H]+ (100). Found, %: C 65.15; H 3.17; N 10.42. C22H13F2N3O3. Calculated, %: C 65.19; H 3.23; N 10.37. M 405.36. Quinazolinones IIIb, IIIc were obtained similarly. trans-2-[2-(4-Nitrophenyl)vinyl]-3-phenyl-3Нquinazolin-4-one (IIIb). Yield 71%, mp 291–293°С. 1Н NMR spectrum, δ, ppm: 6.49 d (1Н, СН=, 3J 15.6 Hz), 7.39 m (2Н, Н3',5'), 7.53 m (1Н, Н8), 7.58 d (2Н, Н2'',6'', 3J 8.7 Hz), 7.61–7.65 m (3Н, Н2',4',6'), 7.75 m (1Н, Н6), 7.85 m (1Н, Н7), 7.96 d (1Н, СН=, 3J 15.6 Hz), 8.15 m (1Н, Н5), 8.16 d (2Н, Н3'',5'', 3J 8.7 Hz). Mass spectrum m/z (Irel, %): 370 [M + H]+ (100). Found, %: C 71.49; H 4.04; N 11.43. C22H15N3O3. Calculated, %: C 71.54; H 4.09; N 11.38. M 369.38. trans-2-Styryl-3-phenyl-3Н-quinazolin-4-one (IIIc). Yield 74%, mp 150–152°С. 1Н NMR spectrum, δ, ppm: 6.30 d (1Н, СН=, 3J 15.4 Hz), 7.30 m (5Н, Ph), 7.37 m (2Н, Н3',5'), 7.48 m (1Н, Н8), 7.62 m (3Н, Н2',4',6'), 7.72 m (1Н, Н6), 7.82 m (1Н, Н7), 7.89 d (1Н, СН=, 3J 15.4 Hz), 8.14 m (1Н, Н5). Mass spectrum, m/z (I , rel %): 325 [M + H]+ (100). Found, %: C 81.51; H 5.03; N 8.60. C22H16N2O. Calculated, %: C 81.46; H 4.97; N 8.64. M 324.39. trans-2-[2-(4-Methoxyphenyl)vinyl]-3-phenyl-3Нquinazolin-4-one (IIId). To a solution of 1.0 g (4.7 mmol) of amine IVа in 15 ml of glacial acetic acid was added 0.27 g (3.2 mmol) of sodium acetate and 0.5 g (3.16 mmol) of benzoxazinone Ib. The reaction mixture was boiled for 6 h and on cooling it was poured into 200 ml of ice water, the separated precipitate was filtered off and recrystallized from ethanol. Yield 0.84 g (75%), mp 178–180°С. 1Н NMR spectrum, δ, ppm: 3.78 s (3Н, ОСН ), 6.13 d 3 (1Н, СН=, 3J 15.4 Hz), 6.84 d (2Н, Н3'',5'', 3J 8.6 Hz), 7.24

d (2Н, Н2'',6'', 3J 8.6 Hz), 7.35 m (2Н, Н3',5'), 7.45 m (1Н, Н8), 7.61 m (3Н, Н2',4',6'), 7.69 m (1Н, Н6), 7.80 m (1Н, Н7), 7.86 d (1Н, СН=, 3J 15.4 Hz), 8.12 m (1Н, Н5). Mass spectrum, m/z (Irel, %): 355 [M + H]+ (100%). Found, %: C 78.01; H 5.17; N 7.84. C23H18N2O2. Calculated, %: C 77.95; H 5.12; N 7.90. M 354.41. Quinazolinones IIIe–IIIn were synthesized similarly. In the case of dimethylamino derivative IIIi after heating the reaction mixture was evaporated, the residue was washed with the mixture hexane–ethanol, 2 : 1, and recrystallized from ethanol. 3-Phenyl-trans-2-[2-(4-fluorophenyl)vinyl]-3Нquinazolin-4-one (IIIe). Yield 39%, mp 215–217°С. 1Н NMR spectrum, δ, ppm: 6.23 d (1Н, СН=, 3J 15.4 Hz), 7.09 d.d (2Н, Н2'',6'', 3JHH 8.5, 4JHF 8.8 Hz), 7.3–7.4 m (4Н, Н3',5',3'',5''), 7.48 m (1Н, Н8), 7.61 m (3Н, Н2',4',6'), 7.72 m (1Н, Н6), 7.82 m (1Н, Н7), 7.88 d (1Н, СН=, 3J 15.4 Hz), 8.13 m (1Н, Н5). Mass spectrum, m/z (I , rel %): 343 [M + H]+ (100). Found, %: C 77.15; H 4.38; N 8.23. C22H15FN2O. Calculated, %: C 77.18; H 4.42; N 8.18. M 342.38. trans-2-[2-(4-Hydroxyphenyl)vinyl]-3-phenyl-3Нquinazolin-4-one (IIIf). Yield 58%, mp 301–303°С. 1Н NMR spectrum, δ, ppm: 6.06 d (1Н, СН=, 3J 15.4 Hz), 6.69 d (2Н, Н 3'',5'', 3J 8.4 Hz), 7.12 d (2Н, Н 2'',6'', 3J 8.4 Hz), 7.35 m (2Н, Н3',5'), 7.60 m (1Н, Н8), 7.62 m (3Н, Н2',4',6'), 7.67 m (1Н, Н6), 7.80 m (1Н, Н7), 7.83 d (1Н, СН=, 3J 15.4 Hz), 8.11 m (1Н, Н5), 9.68 br.s (1Н, ОН). Mass spectrum, m/z (Irel, %): 341 [M + H]+ (100). Found, %: C 77.58; H 4.79; N 8.20. C22H16N2O2. Calculated, %: C 77.63; H 4.74; N 8.23. M 340.39. trans-2-[2-(4-Bytoxyphenyl)vinyl]-3-phenyl-3Нquinazolin-4-one (IIIg). Yield 53%, mp 162–164°С. 1Н NMR spectrum, δ, ppm: 0.96 t (3Н, СН , 3J 7.4 Hz), 3 1.46 m (2Н, СН2), 1.71 m (2Н, СН2), 3.94 t (2Н, ОСН2, 3J 6.4 Hz), 6.12 d (1Н, СН=, 3J 15.4 Hz), 6.81 d (2Н, Н3'',5'', 3J 8.6 Hz), 7.21 d (2Н, Н2'',6'', 3J 8.6 Hz), 7.35 m (2Н, Н3',5'), 7.44 m (1Н, Н8), 7.61 m (3Н, Н2',4',6'), 7.69 m (1Н, Н6), 7.79 m (1Н, Н7), 7.85 d (1Н, СН=, 3J 15.4 Hz), 8.11 m (1Н, Н5). Mass spectrum, m/z (I , rel %): 397 [M + H]+ (100). Found, %: C 78.69; H 6.19; N 7.01. C26H24N2O2. Calculated, %: C 78.76; H 6.10; N 7.07. M 396.49. 3-Phenyl-trans-2-[2-(4-ethylphenyl)vinyl]-3Нquinazolin-4-one (IIIh). Yield 49%, mp 156–158°С. 1Н NMR spectrum, δ, ppm: 1.19 t (3Н, СН , 3J 7.6 Hz), 3 2.60 q (2Н, СН2, 3J 7.6 Hz), 6.23 d (1Н, СН=, 3J 15.5 Hz), 7.13 d (2Н, Н 3'',5'', 3J 8.0 Hz), 7.20 d (2Н, Н 2'',6'',

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 5 2011

SYNTHESIS AND PHOTOPHYSICAL PROPERTIES OF 2-STYRYLQUINAZOLIN-4-ONES 3J

8.0 Hz), 7.36 m (2Н, Н3',5'), 7.47 m (1Н, Н8), 7.60 m (3Н, Н2',4',6'), 7.72 m (1Н, Н6), 7.81 m (1Н, Н7), 7.87 d (1Н, СН=, 3J 15.5 Hz), 8.13 m (1Н, Н5). Mass spectrum, m/z (Irel, %): 353 [M + H]+ (100%). Found, %: C 81.79; H 5.78; N 7.91. C24H20N2O. Calculated, %: C 81.79; H 5.72; N 7.95. M 352.44. trans-2-[2-(4-Dimethylaminophenyl)vinyl]-3phenyl-3Н-quinazolin-4-one (IIIi). Yield 47%, mp 195–197°С. 1Н NMR spectrum, δ, ppm: 2.96 s (6Н, 2NMe2), 5.97 d (1Н, СН=, 3J 15.3 Hz), 6.58 d (2Н, Н3'',5'', 3J 8.7 Hz), 7.11 d (2Н, Н2'',6'', 3J 8.7 Hz), 7.33 m (2Н, Н3',5'), 7.40 m (1Н, Н8), 7.60 m (3Н, Н2',4',6'), 7.66 m (1Н, Н6), 7.77 m (1Н, Н7), 7.83 d (1Н, СН=, 3J 15.3 Hz), 8.08 m (1Н, Н5). Mass spectrum, m/z (Irel, %): 368 [M + H]+ (100). Found, %: C 78.50; H 5.82; N 11.39. C24H21N3O. Calculated, %: C 78.45; H 5.76; N 11.44. M 367.45. trans-2-[2-(4-Dimethylaminophenyl)vinyl]-6,7difluoro-3-phenyl-3Н-quinazolin-4-one (IIIj). Yield 37%, mp 235–237°С. 1Н NMR spectrum, δ, ppm: 2.97 s (6H, 2NMe2), 5.94 d (1Н, СН=, 3J 15.3 Hz), 6.59 d (2Н, Н3'',5'', 3J 8.8 Hz), 7.11 d (2Н, Н2'',6'', 3J 8.8 Hz), 7.34 m (2Н, Н3',5'), 7.55 d.d (1Н, Н8, 3J 11.2, 4J 7.2 Hz), 7.61 m (3Н, Н2',4',6'), 7.81 d (1Н, СН=, 3J 15.3 Hz), 7.90 d.d (1Н, Н5, 3J 10.1, 4J 9.1 Hz). Mass spectrum, m/z (Irel, %): 404 [M + H]+ (100). Found, %: C 71.49; H 4.80; N 10.38. C24H19F2N3O. Calculated, %: C 71.45; H 4.75; N 10.42. M 403.44. trans-3-Phenyl-6,7-difluoro-2-[2-(4-fluorophenyl) vinyl]-3Н-quinazolin-4-one (IIIk). Yield 44%, mp 254– 256°С. 1Н NMR spectrum, δ, ppm: 6.20 d (1Н, СН=, 3J 15.4 Hz), 7.08 m (2Н, Н3',5'), 7.35 m (4Н, C H F), 6 4 7.63 m (4Н, Н2',4',6',8), 7.86 d (1Н, СН=, 3J 15.4 Hz), 7.96 m (1Н, Н5). Mass spectrum, m/z (Irel, %): 379 [M + H]+ (100). Found, %: C 69.80; H 3.41; N 7.43. С22H13F3N2O. Calculated, %: C 69.84; H 3.46; N 7.40. M 378.36. trans-3-Phenyl-6,7-difluoro-2-[2-(4-ethylphenyl)vinyl]-3Н-quinazolin-4-one (IIIl). Yield 61%, mp 198– 200°С. 1Н NMR spectrum, δ, ppm: 1.20 t (3Н, СН3, 3J 7.6 Hz), 2.62 q (2Н, СН , 3J 7.6 Hz), 6.22 d (1Н, 2 СН=, 3J 15.4 Hz), 7.14 d (2Н, Н3'',5'', 3J 8.1 Hz), 7.20 d (2Н, Н2'',6'', 3J 8.1 Hz), 7.38 m (2Н, Н3',5'), 7.63 m (4Н, Н2',4',6',8), 7.87 d (1Н, СН=, 3J 15.4 Hz), 7.96 m (1Н, Н5). Mass spectrum, m/z (Irel, %): 389 [M + H]+ (100). Found, %: C 74.20; H 4.63; N 7.25. С24H18F2N2O. Calculated, %: C 74.22; H 4.67; N 7.21. M 388.42. trans-2-[2-(4-Methoxyphenyl)vinyl]-3-phenyl6,7-difluoro-3Н-quinazolin-4-one (IIIm). Yield 50%,

759

mp 252–254°С. 1Н NMR spectrum, δ, ppm: 3.78 s (3Н, ОСН3), 6.11 d (1Н, СН=, 3J 15.4 Hz), 6.86 d (2Н, Н3'',5'', 3J 8.7 Hz), 7.24 d (2Н, Н2'',6'', 3J 8.7 Hz), 7.37 m (2Н, Н3',5'), 7.55–7.65 m (4Н, Н2',4',6',8), 7.86 d (1Н, СН=, 3J 15.4 Hz), 7.95 m (1Н, Н5). Mass spectrum, m/z (I , rel %): 391 [M + H]+ (100). Found, %: C 70.80; H 4.16; N 7.14. С23Н16F2N2O2. Calculated, %: C 70.76; H 4.13; N 7.18. M 390.39. trans-2-Styryl-3-phenyl-6,7-difluoro-3Нquinazolin-4-one (IIIn). Yield 46%, mp 205–207°С. 1Н NMR spectrum, δ, ppm: 6.27 d (1Н, СН=, 3J 15.5 Hz), 7.30 m (5Н, Ph), 7.38 m (2Н, Н3',5'), 7.60–7.70 m (4Н, Н2',4',6',8), 7.88 d (1Н, СН=, 3J 15.5 Hz), 7.95 m (1Н, Н5). Mass spectrum, m/z (Irel, %): 361 [M + H]+ (100). Found, %: C 72.29; H 3.88; N 7.80. С22H14F2N2O. Calculated, %: C 73.33; H 3.92; N 7.77. M 360.37. trans-2-Styryl-3Н-quinazolin-4-one (VIа). A mixture of 0.2 g (1.2 mmol) of quinazolinone V, 0.2 g (14 mmol) of ZnCl2, and 0.5 ml of acetic anhydride was dissolved in 15 ml of glacial acetic acid, 0.4 ml (4.4 mmol) of benzaldehyde was added, and the reaction mixture was boiled for 5 h, then evaporated, and the residue was recrystallized from ethanol. Yield 0.14 g (46%), mp 238–240°С. 1Н NMR spectrum, δ, ppm: 6.93 d (1Н, СН=, 3J 16.2 Hz), 7.37 m (1Н, Н8), 7.42 m (3Н, H3',4',5'), 7.61 m (3H, H2',6',6), 7.73 m (1Н, Н7), 7.94 d (1Н, СН=, 3J 16.2 Hz), 8.09 m (1Н, Н5), 12.2 br.s (1Н, NH). Mass spectrum, m/z (Irel, %): 249 [M + H]+ (100). Found, %: C 77.36; H 4.84; N 11.33. C16H12N2O. Calculated, %: C 77.40; H 4.87; N 11.28. M 248.29. Compound VIb was similarly prepared. trans-2-[2-(4-Nitrophenyl)vinyl]-3Н-quinolin-4one (VIb). Yield 60%, mp >300°С. 1Н NMR spectrum, δ, ppm: 7.15 d (1Н, СН=, 3J 16.3 Hz), 7.45 t (1Н, Н6, 3J 6.9 Hz), 7.64 m (1Н, Н8), 7.75 m (1Н, Н7), 7.87 d (2Н, H2',6', 3J 8.8 Hz), 8.03 d (1Н, СН=, 3J 16.3 Hz), 8.11 m (1Н, Н5), 8.27 d (2Н, H3',5', 3J 8.8 Hz), 12.3 уш.с (1Н, NH). Mass spectrum, m/z (Irel, %): 294 [M + H]+ (100). Found, %: C 65.56; H 3.82; N 14.29. C16H11N3O3. Calculated, %: C 65.53; H 3.78; N 14.33. M 293.28. trans-3-(1-Naphthyl)-2-styryl-3Н-quinazolin-4one (VIIIа). To 0.2 g (1.0 mmol) of quinazolinone VII was added 0.3 g (1.65 mmol) of ZnCl2 and 0.5 ml of acetic anhydride, the mixture was dissolved in 15 ml of glacial acetic acid, 0.4 ml (4.4 mmol) of benzaldehyde was added, and the reaction mixture was boiled for 5 h, then evaporated, ethanol was added to the residue, and the light-yellow precipitate was filtered off. Yield 0.23 g

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 5 2011

760

TRASHAKHOVA et al.

(63%), mp 191–193°С. 1Н NMR spectrum, δ, ppm: 6.12 d (1Н, СН=, 3J 15.5 Hz), 7.13 m (2Н, H2',6'), 7.21 m (3Н, H3',4',5'), 7.45 m (1Н, Н8), 7.51 m (2Н, Н3'',4''), 7.61 m (2Н, Н6'',7''), 7.73 m (1Н, Н6), 7.80 m (1Н, Н2''), 7.87 m (1Н, Н7), 7.94 d (1Н, СН=, 3J 15.6 Hz), 8.10 m (1Н, Н5), 8.16 m (2Н, Н5'',8''). Mass spectrum, m/z (Irel, %): 375 [M + H]+ (100). Found, %: C 83.39; H 4.80; N 7.52. C26H18N2O. Calculated, %: C 83.42; H 4.85; N 7.48. M 374.45. Compounds VIIIc, VIIId were similarly prepared. trans-3-(1-Naphthyl)-2-[2-(4-nitrophenyl)vinyl]3Н-quinazolin-4-one (VIIIc). Yield 68%, mp 236– 238°С. 1Н NMR spectrum, δ, ppm: 6.30 d (1Н, СН=, 3J 15.5 Hz), 7.41 d (2Н, H2',6', 3J 8.8 Hz), 7.45 m (1Н, Н8), 7.49–7.63 m (4Н, Н3'',4'',7'',6''), 7.73 m (1Н, Н6), 7.83 m (1Н, Н2''), 7.90 m (1Н, Н7), 8.01 d (1Н, СН=, 3J 15.6 Hz), 8.08 d (2Н, H3',5', 3J 8.8 Hz), 8.10 m (1Н, Н5), 8.17 m (2Н, Н5'',8''). Mass spectrum, m/z (Irel, %): 420 [M + H]+ (100). Found, %: C 74.48; H 4.12; N 9.98. C26H17N3O3. Calculated, %: C 74.45; H 4.09; N 10.02. M 419.44. trans-2-[2-(4-Dimethylaminophenyl)vinyl]-3-(1naphthyl)-3Н-quinazolin-4-one (VIIId). Yield 57%, mp 230–232°С. 1Н NMR spectrum, δ, ppm: 3.92 s (3Н, СН3), 5.82 d (1Н, СН=, 3J 15.3 Hz), 6.51 d (2Н, H3',5', 3J 7.8 Hz), 7.07 d (2Н, H2',6', 3J 7.8 Hz), 7.44–7.51 m (2Н, Н8,3'',4''), 7.60 m (2Н, Н7'',6''), 7.73 m (2Н, Н6,2''), 7.83 m (1Н, Н7), 7.86 m (1Н, Н5), 8.12 d (1Н, СН=, 3J 15.4 Hz), 8.14 m (2Н, Н5'',8''). Mass spectrum, m/z (Irel, %): 418 [M + H]+ (100). Found, %: C 80.51; H 5.50; N 10.10. C28H23N3O. Calculated, %: C 80.55; H 5.55; N 10.06. M 417.52. trans-2-[2-(4-Methoxyphenyl)vinyl]-3-(1naphthyl)-3Н-quinazolin-4-one (VIIIb). To a mixture of 0.8 g (3.06 mmol) of azomethine IX and 15 ml of glacial acetic acid was added 0.4 g (2.48 mmol) of benzoxazinone Ib and 0.21 g (1.2 mmol) of molten sodium acetate; the mixture was boiled for 6 h. On cooling the reaction mixture was poured into 50 ml of cold water, the separated precipitate was filtered off and recrystallized from ethanol. Yield 0.6 g (60%), mp 188–190°С. 1Н NMR spectrum, δ, ppm: 3.72 s (3Н, СН3), 5.94 d (1Н, СН=, 3J 15.4 Hz), 6.75 d (2Н, H3',5', 3J 8.6 Hz), 7.07 d (2Н, H2',6', 3J 8.6 Hz), 7.46 m (1Н, Н8), 7.52 m (2Н, Н3'',4''), 7.58 m (2Н, Н7'',6''), 7.72 m (1Н, Н6), 7.78 m (1Н, Н2''), 7.85 m (1Н, Н7), 7.91 d (1Н, СН=, 3J 15.4 Hz), 8.09 m (1Н, Н5), 8.15 m (2Н, Н5'',8''). Mass spectrum, m/z (Irel, %): 405 [M + H]+ (100). Found, %: C 80.22; H 5.03;

N 6.90. C27H20N2O2. Calculated, %: C 80.18; H 4.98; N 6.93. M 404.47. ACNOWLEDGMENTS The study was carried out under the financial support of the Ministry of Education and Science (State contract GK-02.740.11.0260), of the Council on grants of the President of the Russian Federation (Program of support of scientific schools, grant NSh-65261.2010.3), and of the Russian Foundation for Basic Research (grant no. 11-03-00718а). REFERENCES 1. De Silva, A.P., Gurarantane, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., and Rice, T.E., Chem. Rev., 1997, vol. 97, p. 1515; Yang, J.S., Liau, K.L., Wang, C.M., and Hwang, C.Y., J. Am. Chem. Soc., 2004, vol. 126, p. 12325; Yang, J.S., Hwang, C.Y., Hsieh, C.C., and Chiou, S.Y., J. Org. Chem., 2004, vol. 69, p. 719; Saito, H., Mori, T., Wada, T., and Inoue, Y., J. Am. Chem. Soc., 2004, vol. 126, p. 1900. 2. Haroutounian, S.A. and Katzenellenbogen, J.A., Tetrahedron, 1995, vol. 51, p. 1585. 3. Kim, B.R., Cho, S.D., Lee, H.G., Yim, H.S., Kim, M.J., Hwang, J., Park, S.E., Kim, J.J., Jung, K.J., and Yoon, Y.J., J. Heterocycl. Chem., 2009, vol. 46, p. 691. 4. Wang, T.T., Zeng, G.C., Zeng, H.P., Liu, P.Y., Wang, R.X., Zhang, Z.J., and Xiong, Y.L., Tetrahedron, 2009, vol. 65, p. 6325; Barberis, V.P. and Mikroyannidis, J.A., Synthetic Metals, 2006, vol. 156, p. 865. 5. Welch, W.M., Ewing, F.E., Huang, J., Menniti, F.S., Pagnozzi, M.J., Kelly, K., Seymour, P.A., Guanowsky, V., Guhan, S., Guinn, M.R., Critchett, D., Lazzaro, J., Ganong, A.H., DeVries, K.M., Staigers, T.L., and Chenard, B.L., Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 177. 6. Derbala, H.A., Monatsh. Chem., 1996, vol. 127, p. 103. 7. Kelarev, V.I., Silin, M.A., Koshelev, V.N., and Borisova, O.A., Kh. Geterotsikl. Soedin., 2004, p. 616. 8. Kovalenko, S., Belenichev, I., Nikitin, V., and Karpenko, A., Acta Polon. Pharm., 2003, vol. 60, p. 275. 9. Bakalova, S.M., Santos, A.G., Timcheva, I., Kaneti, J., Filipova, I.L., Dobrikov, G.M., and Dimitrov, V.D., J. Mol. Struct. THEOCHEM., 2004, vol. 710, p. 229. 10. L a e v a , A . A . , N o s o v a , E . V. , L i p u n o v a , G . N . , Golovchenko, A.V., Adonin, N.Yu., Parmon, V.N., and Charushin, V.N. Zh. Org. Khim., 2009, vol. 45, p. 925. 11. Chong, J.A., Fanger, C., Larsen, G.R., Lumma, W.C., Moran, M.M., Ripka, A., Underwood, D.J., Weigele, M.,

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 5 2011

SYNTHESIS AND PHOTOPHYSICAL PROPERTIES OF 2-STYRYLQUINAZOLIN-4-ONES and Zhen, X., US Patent 2007179164, 2007. Chem. Abstr., 2007, vol. 147, p. 422361. 12. McKittrick, B.A., Ma, K., Huie, K., Yumibe, N., Davis, H., Clader, J.W., Czarniecki, M., and McPhail, A.T., J. Med. Chem., 1998, vol. 41, p. 752. 13. Rajendra, S.V., Suerendra, B., Anil, K., and Agnihotri, J. Chem. Eng. Data, 1981, vol. 26, p. 103.

761

14. Sammour, E., J. Chem. United, Arab Republic, 1971, vol. 14, p. 197. 15. Sheldrick, G.M., SHELXS97. Program for the Solution of Crystal, Structure, University of Göttingen, Germany, 1997. 16. Sheldrick, G.M., SHELXS97. Program for the Refinement of Crystal, Structure, University of Göttingen, Germany, 1997.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 5 2011