Synthesis of Fluorescent Alkoxybenzylidene ... - Springer Link

1 downloads 0 Views 307KB Size Report
15, Cheboksary, 428015 Russia. *e-mail: [email protected]. Received May 10, 2017. Abstract—An efficient procedure has been developed for the synthesis ...
ISSN 1070-4280, Russian Journal of Organic Chemistry, 2017, Vol. 53, No. 7, pp. 1025–1029. © Pleiades Publishing, Ltd., 2017. Original Russian Text © O.V. Ershov, I.N. Bardasov, A.Yu. Alekseeva, M.Yu. Ievlev, M.Yu. Belikov, 2017, published in Zhurnal Organicheskoi Khimii, 2017, Vol. 53, No. 7, pp. 1014–1018.

Synthesis of Fluorescent Alkoxybenzylidene Derivatives of Malononitrile Dimer in Water in the Presence of Triton X-100 O. V. Ershov,* I. N. Bardasov, A. Yu. Alekseeva, M. Yu. Ievlev, and M. Yu. Belikov I. N. Ul’yanov Chuvash State University, Moskovskii pr. 15, Cheboksary, 428015 Russia *e-mail: [email protected] Received May 10, 2017

Abstract—An efficient procedure has been developed for the synthesis of alkoxybenzylidene derivatives of malononitrile dimer in water in the presence of nonionic surfactant (Triton X-100). Depending on the number and position of alkoxy groups, the products showed solid-state fluorescence with the emission maximum in the range λ 491–560 nm.

DOI: 10.1134/S1070428017070107 Arylmethylidene derivatives of malononitrile dimer (2-amino-4-arylbuta-1,3-diene-1,1,3-tricarbonitriles) are polyfunctional compounds that are used to obtain various heterocyclic systems, including oxiranes [1], thiophenes [2], quinolines [2], thieno[2,3-b]pyridines [3], pyridines [4–8], chromeno[2,3-b]pyridines [9, 10], 1,8-naphthyridines [7, 11, 12], furo[3,2-c][1,2]selenazoles [13], 2,6-diazabicyclo[2.2.2]octanes [8], and 3-azabicyclo[3.1.0]hexanes [14, 15]. Some ylidene derivatives of malononitrile dimer containing electrondonating groups in the substituent possess an extended polarized conjugation system which endows them with practically important properties [16–18], e.g., nonlinear optical properties [16, 17]. Arylmethylidene derivatives of malononitrile dimer are generally synthesized by Knoevenagel condensation with carbonyl compounds [1, 7, 11, 16–22]. These reactions are catalyzed by piperidinium acetate in alcohol [1, 7, 11, 19] or benzene [20], ammonium acetate [2, 21], piperidine [16–18], cadmium(II) iodide [18], and β-alanine in alcohol [22]. In addition, synthetic procedures have been reported on the basis of decyclization of 1-amino-3,5-diarylcyclohexa-1,3-diene-2,6,6-tricarbonitriles [4] and rearrangement accompanying the reaction of tetracyanoethylene with carbonyl compounds [23]. All the procedures listed above utilize organic solvents. A good alternative to the latter is water which provides an accessible, cheap, and environmentally safe reaction medium, so that syntheses in water are more environmentally benign [24–27]. However, the use of water as solvent is often

restricted by poor solubility of many organic compounds therein. Transformations in aqueous medium can be accomplished, e.g., with the aid of surfactants capable of aggregating the reacting species in micelles [27, 28]. Nonionic surfactants are much less sensitive to electrolytes, and they can be used under conditions of high water salinity and hardness [29]. In some cases, only nonionic surfactants, in particular Triton X-100, form aggregates which ensure high catalytic activity exceeding the activity of charged cationic or anionic surfactants [30, 31]. Taking into account practical importance of arylmethylidene malononitrile dimer derivatives 1 [1–18], herein we describe a new simple procedure for their preparation in water in the presence of a nonionic surfactant (Triton X-100). The developed procedure avoids the use of organic solvents and makes it possible to isolate 2-amino-4-arylbuta-1,3-diene-1,1,3tricarbonitriles 1a–1n in 62–93% yield (Scheme 1). Compounds 1b, 1d–1g, and 1i–1n were not described previously, and their structure was confirmed by a combination of spectral data. Compounds 1 possess electron-withdrawing cyano groups; if electron-donating groups are present in the aryl substituent, such structures may be regarded as push–pull systems which can be used, e.g., as materials for dye-sensitized solar cells. Therefore, our study was aimed at synthesizing mono- and polyalkoxy-substituted benzylidene derivatives 1a–1n. The described procedure is also applicable to the synthesis of compounds 1 with other substituents. The reaction can be accomplished in the

1025

ERSHOV et al.

1026

Scheme 1.

ArCHO +

CN

NC

NH2

Triton X-100 CN

CN

Ar

–H2O

CN

NH2

CN

1a–1n

Ar = 2-MeOC6H4 (a), 3-MeOC6H4 (b), 4-MeOC6H4 (c), 2-EtOC6H4 (d), 2-EtOC6H4 (e), 2,4-(MeO)2C6H3 (f), 2,5-(MeO)2C6H3 (g), 3,4-(MeO)2C6H3 (h), 3-MeO-4-EtOC6H3 (i), OMe

OMe

O

MeO

(j),

(k),

O

MeO

(l), O

OMe

OMe

Compounds 1a–1n are light yellow or orange crystalline solids exhibiting solid-state fluorescence. Depending on the number and position of alkoxy substituents on the benzene ring, the emission maxima of 1a–1n are located in the range from blue–green to yellow (λ 491–560 nm; see table). Compounds with a methoxy group in the 2-position showed the highest fluorescence intensity. This may be due to restricted rotation of the aryl fragment for steric reasons or n,π*-interaction between the lone electron pair on the oxygen atom of the methoxy group and antibonding orbital of the nearest cyano group, which also stabilizes favorable conformation. Conformational rigidity

(m), O

OMe

absence of base catalyst; however, addition of a catalytic amount of triethylamine considerably shortens the reaction time (from 10 to 2 h).

O

O

O

(n).

O OMe

reduces the probability of radiationless conversion of the excitation energy. Compound 1g with a 2,5-dimethoxyphenyl substituent showed the highest fluorescence intensity which exceeded the emission intensity of compound 1a (taken as reference) by a factor of 1.5 (see figure). Furthermore, the emission maximum of 1g was located at the longest wavelength, λ 560 nm. In summary, 2-amino-4-arylbuta-1,3-diene-1,1,3tricarbonitriles synthesized in aqueous medium in the presence of a nonionic surfactant show fluorescence in the solid state. The emission maxima of compounds possessing a conjugated donor–acceptor fragment are located in the blue–green and yellow regions (λ 491–560 nm). EXPERIMENTAL

Solid-state fluorescence of compounds 1a–1n Comp. λfl, nm no.

a

Relative intensity,a

Relative Comp. λfl, nm intensity,a no.

1a

520

1.00

1h

524

0.46

1b

524

0.14

1i

510

0.50

1c

529

0.15

1j

518

0.66

1d

491

0.37

1k

536

0.54

1e

530

0.36

1l

524

0.67

1f

497

0.81

1m

551

0.38

1g

560

1.49

1n

528

0.45

Relative to 1a, λexcit 350 nm.

The IR spectra were recorded on an FSM-1202 spectrometer with Fourier transform from samples dispersed in mineral oil. The 1H NMR spectra were measured on a Bruker DRX-500 spectrometer at 500.13 MHz using DMSO-d 6 as solvent and tetramethylsilane as internal standard. The mass spectra (electron impact, 70 eV) were obtained on a Shimadzu GCMS-QP 2010 SE instrument. The elemental compositions were determined with a Vario Micro cube CHN analyzer. The purity of the isolated compounds was checked by TLC on Sorbfil PTSKh-AF-A-UF plates; spots were visualized under UV light, by treatment with iodine vapor, or by thermal decomposition.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 53 No. 7 2017

SYNTHESIS OF FLUORESCENT ALKOXYBENZYLIDENE DERIVATIVES

The solid-phase fluorescence spectra were measured on a Flyuorat-02-Panorama fluorescence spectrometer equipped with a “Frog” accessory. The melting points were determined on an OptiMelt MPA100 melting point apparatus. Compounds 1a–1n (general procedure). A mixture of 1 mmol of the corresponding aromatic aldehyde, 0.132 g (1 mmol) of malononitrile dimer, 0.125 g (0.2 mmol) of Triton X-100, and one drop of triethylamine in 5 mL of water was stirred at room temperature until the reaction was complete (TLC). The precipitate was ground with water, filtered off, washed with water, and recrystallized from propan-2-ol. 2-Amino-4-(2-methoxyphenyl)buta-1,3-diene1,1,3-tricarbonitrile (1a). Yield 73%, mp 204–205°C (decomp.). IR spectrum, ν, cm–1: 3332, 3221 (NH2), 2217, 2210 (C≡N). 1H NMR spectrum, δ, ppm: 3.90 s (3H, OCH3), 7.15 t (1H, C6H4, J = 7.6 Hz), 7.22 d (1H, C6H4, J = 8.4 Hz), 7.63 t.d (1H, C6H4, J = 1.6, 8.7 Hz), 8.00 d.d (1H, C6H4, J = 1.5, 7.7 Hz), 8.07 s (1H, CH), 9.03 s and 9.12 s (1H each, NH 2 ). Mass spectrum: m/z 250 (Irel 48%) [M]+. Found, %: C 67.08; H 4.03; N 22.42. C14H10N4O. Calculated, %: C 67.19; H 4.03; N 22.39. M 250.26. 2-Amino-4-(3-methoxyphenyl)buta-1,3-diene1,1,3-tricarbonitrile (1b). Yield 85%, mp 164–165°C (decomp.). IR spectrum, ν, cm–1: 3342, 3228 (NH2), 2218, 2212 (C≡N). 1H NMR spectrum, δ, ppm: 3.82 s (3H, OCH 3 ), 7.21–7.24 m (1H, C 6 H 4 , J = 7.6 Hz), 7.50–7.54 m (3H, C6H4), 8.04 s (1H, CH), 9.10 s and 9.15 s (1H each, NH 2 ). Mass spectrum: m/z 250 (Irel 67%) [M]+. Found, %: C 67.12; H 4.05; N 22.47. C14H10N4O. Calculated, %: C 67.19; H 4.03; N 22.39. M 250.26. 2-Amino-4-(4-methoxyphenyl)buta-1,3-diene1,1,3-tricarbonitrile (1c). Yield 82%, mp 194–195°C (decomp.). IR spectrum, ν, cm–1: 3349, 3210 (NH2), 2225, 2207 (C≡N). 1H NMR spectrum, δ, ppm: 3.87 s (3H, OCH3), 7.17 d (2H, C6H4, J = 9.0 Hz), 7.97 s (1H, CH), 7.98 d (2H, C6H4, J = 9.0 Hz), 9.00 s and 9.06 s (1H each, NH2). Mass spectrum: m/z 250 (Irel 65%) [M]+. Found, %: C 67.07; H 4.01; N 22.48. C14H10N4O. Calculated, %: C 67.19; H 4.03; N 22.39. M 250.26. 2-Amino-4-(2-ethoxyphenyl)buta-1,3-diene1,1,3-tricarbonitrile (1d). Yield 62%, mp 198–199°C (decomp.). IR spectrum, ν, cm–1: 3348, 3232 (NH2), 2217, 2215 (C≡N). 1H NMR spectrum, δ, ppm: 1.38 t (3H, CH3, J = 7.0 Hz), 4.16 s (2H, OCH2, J = 7.0 Hz), 7.13 t (1H, C6H4, J = 7.6 Hz), 7.20 d (1H, C6H4, J = 8.4 Hz), 7.60 t.d (1H, C6H4, J = 1.5, 8.0 Hz), 8.00 d.d

Intensity, relative units

1027

1g

1.5

1a

1.0

1j 0.5

0.0 470

510

550 λ, nm

590

630

Solid-state fluorescence spectra of compounds 1a, 1g, and 1j; λexcit 350 nm.

(1H, C6H4, J = 1.2, 7.8 Hz), 8.08 s (1H, CH), 9.02 s and 9.12 s (1H each, NH2). Mass spectrum: m/z 264 (Irel 12%) [M]+. Found, %: C 68.09; H 4.57; N 21.18. C15H12N4O. Calculated, %: C 68.17; H 4.58; N 21.20. M 264.29. 2-Amino-4-(4-ethoxyphenyl)buta-1,3-diene1,1,3-tricarbonitrile (1e). Yield 77%, mp 214–215°C (decomp.). IR spectrum, ν, cm–1: 3312, 3246 (NH2), 2215, 2211 (C≡N). 1H NMR spectrum, δ, ppm: 1.36 t (3H, CH3, J = 7.0 Hz), 4.15 s (2H, OCH2, J = 7.0 Hz), 7.15 d (2H, C6H4, J = 9.0 Hz), 7.95–7.98 m (3H, C6H4, CH), 8.98 s and 9.04 s (1H each, NH2). Mass spectrum: m/z 264 (I rel 37%) [M] +. Found, %: C 68.13; H 4.60; N 21.24. C15H12N4O. Calculated, %: C 68.17; H 4.58; N 21.20. M 264.29. 2-Amino-4-(2,4-dimethoxyphenyl)buta-1,3diene-1,1,3-tricarbonitrile (1f). Yield 83%, mp 209– 210°C (decomp.). IR spectrum, ν, cm–1: 3326, 3217 (NH2), 2217, 2208 (C≡N). 1H NMR spectrum, δ, ppm: 3.89 s (3H, OCH3), 3.91 s (3H, OCH3), 6.73 d (1H, C6H3, J = 2.4 Hz), 6.78 d.d (1H, C6H3, J = 2.4, 8.9 Hz), 7.98 s (1H, CH), 8.12 d (1H, C6H3, J = 8.8 Hz), 8.90 s and 9.01 s (1H each, NH2). Mass spectrum: m/z 280 (Irel 100%) [M]+. Found, %: C 64.26; H 4.31; N 20.05. C15H12N4O2. Calculated, %: C 64.28; H 4.32; N 19.99. M 280.29. 2-Amino-4-(2,5-dimethoxyphenyl)buta-1,3diene-1,1,3-tricarbonitrile (1g). Yield 70%, mp 220– 221°C (decomp.). IR spectrum, ν, cm–1: 3331, 3222

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 53 No. 7 2017

1028

ERSHOV et al.

(NH2), 2215, 2212 (C≡N). 1H NMR spectrum, δ, ppm: 3.77 s (3H, OCH3), 3.85 s (3H, OCH3), 7.17 d (1H, C6H3, J = 9.2 Hz), 7.24 d.d (1H, C6H3, J = 3.0, 9.1 Hz), 7.59 d (1H, C6H3, J = 8.8 Hz), 8.05 s (1H, CH), 9.03 s and 9.11 s (1H each, NH2). Mass spectrum: m/z 280 (Irel 100%) [M]+. Found, %: C 64.19; H 4.29; N 20.12. C15H12N4O2. Calculated, %: C 64.28; H 4.32; N 19.99. M 280.29. 2-Amino-4-(3,4-dimethoxyphenyl)buta-1,3diene-1,1,3-tricarbonitrile (1h). Yield 92%, mp 198– 199°C (decomp.). IR spectrum, ν, cm–1: 3326, 3205 (NH2), 2218, 2204 (C≡N). 1H NMR spectrum, δ, ppm: 3.81 s (3H, OCH3), 3.88 s (3H, OCH3), 7.19 d (1H, C6H3, J = 8.2 Hz), 7.58 d.d (1H, C6H3, J = 1.8, 8.2 Hz), 7.66 d (1H, C6H3, J = 1.9 Hz), 7.91 s (1H, CH), 8.88– 9.01 br.s (2H, NH 2 ). Mass spectrum: m/z 280 (Irel 100%) [M]+. Found, %: C 64.39; H 4.34; N 19.97. C15H12N4O2. Calculated, %: C 64.28; H 4.32; N 19.99. M 280.29. 2-Amino-4-(4-ethoxy-3-methoxyphenyl)buta-1,3diene-1,1,3-tricarbonitrile (1i). Yield 66%, mp 222– 223°C (decomp.). IR spectrum, ν, cm–1: 3348, 3211 (NH2), 2215, 2212 (C≡N). 1H NMR spectrum, δ, ppm: 1.37 t (3H, CH3, J = 7.0 Hz), 3.81 s (3H, OCH3), 4.15 s (2H, OCH2, J = 7.0 Hz), 7.18 d (1H, C6H3, J = 8.5 Hz), 7.58 d.d (1H, C6H3, J = 2.1, 8.5 Hz), 7.68 d (1H, C6H3, J = 2.1 Hz), 7.94 s (1H, CH), 8.98 s and 9.04 s (1H each, NH2). Mass spectrum: m/z 294 (Irel 41%) [M]+. Found, %: C 65.26; H 4.81; N 19.04. C 16 H 14 N 4O 2. Calculated, %: C 65.30; H 4.79; N 19.04. M 294.31. 2-Amino-4-(2,3,4,5-tetramethoxyphenyl)buta1,3-diene-1,1,3-tricarbonitrile (1j). Yield 71%, mp 163–164°C (decomp.). IR spectrum, ν, cm–1: 3341, 3215 (NH2), 2214, 2210 (C≡N). 1H NMR spectrum, δ, ppm: 3.82 s (3H, OCH3), 3.83 s (3H, OCH3), 3.85 s (3H, OCH 3 ), 3.90 s (3H, OCH 3 ), 7.55 s (1H, C 6 H), 7.98 s (1H, CH), 9.02 s and 9.12 s (1H each, NH2). Mass spectrum: m/z 340 (Irel 63%) [M]+. Found, %: C 59.95; H 4.74; N 16.49. C17H16N4O4. Calculated, %: C 60.00; H 4.74; N 16.46. M 340.34. 2-Amino-4-(7-methoxy-1,3-benzodioxol-5-yl)buta-1,3-diene-1,1,3-tricarbonitrile (1k). Yield 78%, mp 214–215°C (decomp.). IR spectrum, ν, cm–1: 3342, 3218 (NH2), 2212, 2210 (C≡N). 1H NMR spectrum, δ, ppm: 3.88 s (3H, OCH3), 6.18 s (2H, CH2), 7.29 d (1H, C 6 H 2 , J = 1.6 Hz), 7.37 d (1H, C 6 H 2 , J = 1.6 Hz), 7.92 s (1H, CH), 9.02 s and 9.08 s (1H each, NH2). Mass spectrum: m/z 294 (Irel 27%) [M]+. Found, %: C 61.18; H 3.45; N 19.10. C15H10N4O3. Calculated, %: C 61.22; H 3.43; N 19.04. M 294.27.

2-Amino-4-(4,7-dimethoxy-1,3-benzodioxol-5yl)buta-1,3-diene-1,1,3-tricarbonitrile (1l). Yield 64%, mp 211–212°C (decomp.). IR spectrum, ν, cm–1: 3350, 3222 (NH2), 2215, 2212 (C≡N). 1H NMR spectrum, δ, ppm: 3.84 s (3H, OCH3), 3.94 s (3H, OCH3), 6.19 s (2H, CH2), 7.51 s (1H, C6H), 7.95 s (1H, CH), 8.96 s and 9.07 s (1H each, NH 2 ). Mass spectrum: m/z 324 (Irel 25%) [M]+. Found, %: C 59.25; H 3.72; N 17.28. C16H12N4O4. Calculated, %: C 59.26; H 3.73; N 17.28. M 324.29. 2-Amino-4-(2,3-dihydro-1,4-benzodioxin-6-yl)buta-1,3-diene-1,1,3-tricarbonitrile (1m). Yield 67%, mp 208–209°C (decomp.). IR spectrum, ν, cm–1: 3336, 3221 (NH2), 2210, 2207 (C≡N). 1H NMR spectrum, δ, ppm: 4.30–4.32 m (2H, CH2), 4.34–4.37 m (2H, CH2), 7.08 d (1H, C6H3, J = 8.5 Hz), 7.50 d.d (1H, C6H3, J = 8.6, 2.2 Hz), 7.56 d (1H, C6H3, J = 2.2 Hz), 7.91 s (1H, CH), 9.00 s and 9.06 s (1H each, NH2). Mass spectrum: m/z 278 (I rel 12%) [M] +. Found, %: C 64.68; H 3.60; N 20.11. C15H10N4O2. Calculated, %: C 64.74; H 3.62; N 20.13. M 278.27. 2-Amino-4-(8-methoxy-2,3-dihydro-1,4-benzodioxin-6-yl)buta-1,3-diene-1,1,3-tricarbonitrile (1n). Yield 63%, mp 268–269°C (decomp.). IR spectrum, ν, cm–1: 3331, 3212 (NH2), 2215, 2212 (C≡N). 1H NMR spectrum, δ, ppm: 3.81 s (3H, OCH3), 4.28–4.31 m (2H, CH2), 4.33–4.36 m (2H, CH2), 7.22 d (1H, C6H2, J = 2.0 Hz), 7.29 d (1H, C6H3, J = 2.1 Hz), 7.88 s (1H, CH), 9.00 s and 9.06 s (1H each, NH2). Mass spectrum: m/z 308 (I rel 8%) [M] +. Found, %: C 62.27; H 3.88; N 18.20. C16H12N4O3. Calculated, %: C 62.33; H 3.92; N 18.17. M 308.30. This study was performed under financial support by the Russian Science Foundation (project no. 1713-01 237). REFERENCES 1. Golubev, R.V., Belikov, M.Yu., Bardasov, I.N., Ershov, O.V., and Nasakin, O.E., Russ. J. Org. Chem., 2010, vol. 46, p. 1830. 2. Mohareb, R.M., Fleita, D.H., and Sakka, O.K., Heterocycl. Commun., 2011, vol. 17, p. 25. 3. Junek, H., Thierrichter, B., and Wibmer, P., Monatsh. Chem., 1979, vol. 110, p. 483. 4. Abramenko, Yu.T., Ivashchenko, A.V., Nogaeva, K.A., and Sharanin, Yu.A., Chem. Heterocycl. Compd., 1986, vol. 22, p. 508. 5. Bardasov, I.N., Mihailov, D.L., Alekseeva, A.U., Ershov, O.V., and Nasakin, O.E., Tetrahedron Lett., 2013, vol. 54, p. 21.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 53 No. 7 2017

SYNTHESIS OF FLUORESCENT ALKOXYBENZYLIDENE DERIVATIVES 6. Bardasov, I.N., Mikhailov, D.L., Belikov, M.Yu., Alekseeva, A.Yu., and Ershov, O.V., Russ. J. Org. Chem., 2016, vol. 52, p. 1600. 7. Alekseeva, A.Yu., Mikhailov, D.L., Bardasov, I.N., Ershov, O.V., Nasakin, O.E., and Lyshchikov, A.N., Russ. J. Org. Chem., 2014, vol. 50, p. 244. 8. Bardasov, I.N., Alekseeva, A.Yu., Mikhailov, D.L., Ershov, O.V., Nasakin, O.E., and Tafeenko, V.A., Tetrahedron Lett., 2014, vol. 55, p. 2730. 9. Bardasov, I.N., Alekseeva, A.Yu., Mikhailov, D.L., Ershov, O.V., and Grishanov, D.A., Tetrahedron Lett., 2015, vol. 56, p. 1830. 10. Melekhin, E.A., Bardasov, I.N., Ershov, O.V., Eremkin, A.V., Kayukov, Ya.S., and Nasakin, O.E., Russ. J. Org. Chem., 2006, vol. 42, p. 622. 11. Bardasov, I.N., Alekseeva, A.Yu., Ershov, O.V., and Belikov, M.Yu., Tetrahedron Lett., 2015, vol. 56, p. 5434. 12. Alekseeva, A.Yu., Mikhailov, D.L., Bardasov, I.N., Ershov, O.V., and Nasakin, O.E., Russ. J. Org. Chem., 2013, vol. 49, p. 1715. 13. Bardasov, I.N., Mikhailov, D.L., Alekseeva, A.U., Ershov, O.V., and Tafeenko, V.A., Tetrahedron Lett., 2016, vol. 57, p. 2772. 14. Bardasov, I.N., Alekseeva, A.Yu., Mikhailov, D.L., Ershov, O.V., and Kayukov, Ya.S., Russ. J. Org. Chem., 2016, vol. 52, p. 1365. 15. Ershov, O.V. and Bardasov, I.N., Chem. Heterocycl. Compd., 2016, vol. 52, p. 447. 16. Andreu, R., Carrasquer, L., Franco, S., Garın, J., Orduna, J., Baroja, N.M., Alicante, R., Villacampa, B., and Allain, M., J. Org. Chem., 2009, vol. 74, p. 6647.

1029

17. Alıas, S., Andreu, R., Cerdan, M.A., Franco, S., Garın, J., Orduna, J., Pilar Romero, P., and Villacampa, B., Tetrahedron Lett., 2007, vol. 48, p. 6539. 18. Boila-Göckel, A. and Junek, H., J. Prakt. Chem., 1999, vol. 341, p. 20. 19. Davis, M.S., Groshens, T.J., and Parrish, D.A., Synth. Commun., 2010, vol. 40, p. 3008. 20. Junek, H. and Wolny, B., Monatsh. Chem., 1976, vol. 107, p. 999. 21. Mohareb, R.F., El-Sayed, N.N.E., and Abdelaziz, M.A., Steroids, 2013, vol. 78, p. 1209. 22. Gazit, A., Yaish, P., Gilon, C., and Levitzki, A., J. Med. Chem., 1989, vol. 32, p. 2344. 23. Dworczak, R., Sterk, H., and Junek, H., Monatsh. Chem., 1990, vol. 121, p. 189. 24. Organic Synthesis in Water, Grieco, P.A., Ed., London: Blacky Academic & Professional, 1998. 25. Chanda, A. and Fokin, V.V., Chem. Rev., 2009, vol. 109, p. 725. 26. Ershov, O.V., Ievlev, M.Yu., Tafeenko, V.A., and Nasakin, O.E., Green Chem., 2015, vol. 17, p. 4234. 27. Sorella, G., Strukul, G., and Scarso, A., Green Chem., 2015, vol. 17, p. 644. 28. Dwars, T., Paetzold, E., and Oehme, G., Angew. Chem., Int. Ed., 2005, vol. 44, p. 7174. 29. Tadros, T.F., Applied Surfactants, Weinheim; WileyVCH, 2005. 30. Ghosh, P.P., Mukherjee, P., and Das, A.R., RSC Adv., 2013, vol. 3, p. 8220. 31. Kumar, D., Seth, K., Kommi, D.N., Bhagat, S., and Chakraborti, A.K., RSC Adv., 2013, vol. 3, p. 15 157.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 53 No. 7 2017