Testing Protocol

1 downloads 0 Views 5MB Size Report
steering console for use by the coxswain once the lifeboat is waterborne. ... located inside the lifeboat next to the coxswain position for activation after the lifeboat ...
National Research Council Canada

Conseil national de recherches Canada

Institute for Ocean Technology

Institut des technologies océaniques

LIFEBOAT RELEASE MECHANISM TESTS TR-2009-23

António J. Simões Ré and Leslie Oxford

November 2009

DOCUMENTATION PAGE REPORT NUMBER

NRC REPORT NUMBER

DATE

TR-2009-23

November 2009

REPORT SECURITY CLASSIFICATION

DISTRIBUTION

Unclassified

Unlimited

TITLE

Lifeboat Release Mechanism Tests AUTHOR(S)

António J. Simões Ré, Leslie Oxford CORPORATE AUTHOR(S)/PERFORMING AGENCY(S)

National Research Council – Institute for Ocean Technology PUBLICATION

SPONSORING AGENCY(S)

Petroleum Research Atlantic-Canada, Transport Canada –Marine Safety IOT PROJECT NUMBER

NRC FILE NUMBER

42_2373_26 KEY WORDS

On-load, off-load, release mechanism, hooks, static, dynamic, inline, offline, cyclic SUMMARY

PAGES

FIGS.

TABLES

vi,44, App. A-C

55

24

The capabilities of three on-load and one off-load release mechanisms were investigated for normal, extreme and failure type release operations at the Institute for Ocean Technology. The failure of release mechanisms during maintenance and exercise drills is a welldocumented occurrence. However, until very recently the possible causes of the failures have only been postulated but never tested in a systematic way. The current study aims for a better understanding of the operational performance of lifeboat release mechanisms with respect to normal, extreme and failure operational situations.. Thus far all the results from in-line to offline, and from dynamic to static indicate that Hook C, the next generation design, appears to have a higher degree of stability than the other two sample hooks. ADDRESS National Research Council Institute for Ocean Technology Arctic Avenue, P. O. Box 12093 St. John's, NL A1B 3T5 Tel.: (709) 772-5185, Fax: (709) 772-2462

EXECUTIVE SUMMARY The capabilities of three on-load and one off-load release mechanisms were investigated for normal, extreme and failure type release operations at the Institute for Ocean Technology. The failure of release mechanisms during maintenance and exercise drills is a welldocumented occurrence. However, until very recently the possible causes of the failures have only been postulated but never tested in a systematic way. The current study aims for a better understanding of the operational performance of lifeboat release mechanisms with respect to normal, extreme and failure operational situations. Three twin fall davit on-load release mechanisms and one off-load release mechanism were tested in the experimental study. All the release mechanism design types are fully certified by the regulatory bodies. Of the three on-load release mechanisms, two were of older existing design types while the third was of a newer (next generation) design. Of the four release mechanisms tested, two of the mechanisms were new and never used outside of this study. Also, one of the never used new mechanisms was of an older design while the other was the next generation design. The never used mechanisms had a loading capacity of 6 tonnes, while the third on-load release mechanism had been in operation for some time and had a capacity of 3 tonnes. The off-load mechanism had also been in use and had a capacity of 12 tonnes. The experiments were conducted in the material testing facility of the Institute for Ocean Technology of the National Research Council of Canada and encompassed the following tests: Inline/offline on-load tests Inline/offline static tests Offline cyclic loading Offline damage release cable Inline off-load tests Results for the above mentioned tests will be presented in this report. Thus far all the results from in-line to offline, and from dynamic to static indicate that hook C, the next generation design, appears to have a higher degree of stability than the other two sample hooks. The off-load release mechanism was limited to inline tests and followed a different testing procedure as the on-load mechanisms. The off-load release mechanism worked as intended in the limited test conditions.

ii

TABLE OF CONTENTS EXECUTIVE SUMMARY..................................................................................................II LIST OF FIGURES ...............................................................................................................IV LIST OF TABLES .................................................................................................................VI 1.0

INTRODUCTION .................................................................................................. 1 1.1 Definitions .................................................................................................. 1

2.0

RELEASE SYSTEM ............................................................................................. 2 2.1 Release Mechanisms................................................................................. 3

3.0

TEST SET-UP ...................................................................................................... 4 3.1 Test Procedures ........................................................................................ 7

4.0

TEST MATRIX...................................................................................................... 8 4.1 On-Load Inline Test Series ........................................................................ 8 4.1.1 Normal on-load release tests .......................................................... 8 4.1.2 Static load tests............................................................................... 9 4.2 On-Load Offline Test Series ...................................................................... 9 4.2.1 On-load release tests .................................................................... 10 4.2.2 Static release tests........................................................................ 10 4.2.3 Damaged cable tests .................................................................... 12 4.2.4 Wave loading tests........................................................................ 13 4.3 Off-Load Test Series................................................................................ 14

5.0

RESULTS ........................................................................................................... 15 5.1 On-Load Inline Test Series Results ......................................................... 15 5.1.1 Normal on-load release tests results............................................. 15 5.1.2 Static load tests results ................................................................. 16 5.2 On-Load Offline Test Series Results ....................................................... 17 5.2.1 On-load release tests results ........................................................ 17 5.2.2 Static release tests results ............................................................ 22 5.2.3 Damaged cable tests results ......................................................... 24 5.2.4 Wave loading tests results ............................................................ 34 5.3 Off-Load Test Series Results................................................................... 42

6.0

CONCLUSIONS ................................................................................................. 43

7.0

REFERENCES ................................................................................................... 44

iii

LIST OF FIGURES Figure 2-1: On-Load Release System ............................................................................. 2 Figure 2-2: Hook A .......................................................................................................... 3 Figure 2-3: Hook B .......................................................................................................... 3 Figure 2-4: Hook C .......................................................................................................... 3 Figure 2-5: Hook D .......................................................................................................... 3 Figure 3-1: Hook A Set up for Inline Tests ...................................................................... 4 Figure 3-2: Hook B Set Up for Inline Tests...................................................................... 4 Figure 3-3: Hook C Set Up for Inline Tests...................................................................... 5 Figure 3-4: Hook A Set Up for Forward Pull Offline Tests ............................................... 5 Figure 3-5: Hook B Set Up for Forward Pull Offline Tests ............................................... 6 Figure 3-6: Hook C Set Up for Forward Pull Offline Tests............................................... 6 Figure 3-7: Hook D set up for Loading ............................................................................ 6 Figure 4-1: Torque Wrench and 10:1 Torque Multiplier................................................. 14 Figure 5-1: Hook A - Inline On-load Release Test - 1500 kg Load................................ 15 Figure 5-2: Hook B: Inline On-load Release Test - 3000 kg Load ................................. 16 Figure 5-3: Hook C: Inline On-load Release Test - 3000 kg Load................................. 16 Figure 5-4: Hook A - Offline On-load Release Test Aft Pull - 1500 kg Load.................. 18 Figure 5-5: Hook B - Offline On-load Release Test Aft Pull - 3000 kg Load.................. 18 Figure 5-6: Hook C - Offline On-load Release Test Aft Pull - 3000 kg Load.................. 19 Figure 5-7: Hook A - Offline On-load Release Test Forward Pull - 1500 kg Load ......... 19 Figure 5-8: Hook B - Offline On-load Release Test Forward Pull - 3000 kg Load ......... 20 Figure 5-9: Hook C - Offline On-load Release Test Forward Pull - 3000 kg Load......... 20 Figure 5-10: Hook A - Offline On-load Release Test Side Pull - 1500 kg Load ............. 21 Figure 5-11: Hook B - Offline On-load Release Test Side Pull - 3000 kg Load ............. 21 Figure 5-12: Hook B - Offline On-load Release Test Side Pull - 3000 kg Load ............. 22 Figure 5-13: Aft Pulls at 2/3 of Total Load ..................................................................... 23 Figure 5-14: Forward Pulls at 2/3 of Total Load ............................................................ 23 Figure 5-15: Side Pulls at 2/3 of Total Load .................................................................. 24 Figure 5-16: Hook A Change in Cam Angle Aft Pull ...................................................... 26 Figure 5-17: Hook B Change in Cam Angle Aft Pull ...................................................... 27 Figure 5-18: Hook C Change in Cam Angle Aft Pull...................................................... 28

iv

LIST OF FIGURES (CONT’D) Figure 5-19: Hook A Change in Cam Angle Forward Pull ............................................. 29 Figure 5-20: Hook C Change in Cam Angle Forward Pull ............................................. 30 Figure 5-21: Hook A Change in Cam Angle Side Pull ................................................... 31 Figure 5-22: Hook B Change in Cam Angle Side Pull ................................................... 32 Figure 5-23: Hook C Change in Cam Angle Side Pull ................................................... 33 Figure 5-24: Hook A Aft Pull.......................................................................................... 34 Figure 5-25: Hook A Forward Pull ................................................................................. 35 Figure 5-26: Hook A Side Pull ....................................................................................... 35 Figure 5-27: Hook B Aft Pull.......................................................................................... 35 Figure 5-28: Hook B Forward Pull ................................................................................. 36 Figure 5-29: Hook B Side Pull ....................................................................................... 36 Figure 5-30: Hook C Aft Pull.......................................................................................... 37 Figure 5-31: Hook C Forward Pull ................................................................................. 37 Figure 5-32: Hook C Side Pull....................................................................................... 37 Figure 5-33: Hook A Aft Pull .......................................................................................... 38 Figure 5-34: Hook A Forward Pull ................................................................................. 38 Figure 5-35: Hook A Side Pull ....................................................................................... 39 Figure 5-36: Hook B Aft Pull.......................................................................................... 39 Figure 5-37: Hook B Forward Pull ................................................................................. 39 Figure 5-38: Hook B Side Pull ....................................................................................... 40 Figure 5-39: Hook C Aft Pull.......................................................................................... 40 Figure 5-40: Hook C Forward Pull ................................................................................. 41 Figure 5-41: Hook C Aft Pull.......................................................................................... 41 Figure 5-42: Hook D Results ......................................................................................... 42

v

LIST OF TABLES Table 4-1: On-load Inline Tests ....................................................................................... 8 Table 4-2: Static Tests for Hook A .................................................................................. 9 Table 4-3: Static Tests for Hook B .................................................................................. 9 Table 4-4: Static Tests for Hook C .................................................................................. 9 Table 4-5: On-load Offline Tests ................................................................................... 10 Table 4-6: Static Offline Tests for Hook A ..................................................................... 10 Table 4-7: Static Offline Tests for Hook B ..................................................................... 11 Table 4-8: Static Offline Tests for Hook B ..................................................................... 11 Table 4-9: Damaged Cable Tests for Hook A................................................................ 12 Table 4-10: Damaged Cable Tests for Hook B.............................................................. 12 Table 4-11: Damaged Cable Tests for Hook C ............................................................. 13 Table 4-12: Wave Loading Tests for Hook A................................................................. 13 Table 4-13: Wave Loading Tests for Hooks B and C .................................................... 13 Table 4-14 Applied Loads for Hook D ........................................................................... 14 Table 5-1: Static Tests Results at 50% of Total Load ................................................... 17 Table 5-2: Change in Cam Angle for Hook A Aft Pull .................................................... 25 Table 5-3: Change in Cam Angle for Hook B Aft Pull .................................................... 26 Table 5-4: Change in Cam Angle for Hook C Aft Pull.................................................... 27 Table 5-5: Change in Cam Angle for Hook A Forward Pull ........................................... 28 Table 5-6: Change in Cam Angle for Hook C Forward Pull ........................................... 29 Table 5-7: Change in Cam Angle for Hook A Side Pull ................................................. 30 Table 5-8: Change in Cam Angle for Hook B Side Pull ................................................. 31 Table 5-9: Change in Cam Angle for Hook C Side Pull ................................................. 33 Table 5-10: Summary of Wave Loading Hook Stability ................................................. 41 Appendices Appendix A: Test Set-up Drawings Appendix B: Calibrated Sensors Appendix C: Test Log

vi

1.0 INTRODUCTION The release mechanisms of davit-launched lifeboats have been the cause of many accidents during regular maintenance and drills. Transport Canada, the shipping industry and the oil industry have placed a high priority on the acceptance process of lifeboat release mechanisms and the possible causes for failure. In 2006 Transport Canada, Petroleum Research Atlantic-Canada, Transportation Safety Board and the Institute for Ocean Technology of the National Research Council of Canada entered into a collaborative agreement aiming at establishing the operational performance of lifeboat release mechanisms. The project involved a systematic study of three on-load release mechanisms and one off-load release mechanism. The on-load release mechanisms were tested for normal release operations, static loading at various cam angles and abnormal operations (failures or extreme) such as malfunctioning release cables, or cyclic wave loading. The study also aimed at gaining a better understanding of the effects of offline loads versus online. The off-load release mechanism was tested for determining the torque necessary to release the mechanism when the load is on. These tests were limited to the inline operation condition. In the inline portion of the study a total of 229 tests were performed with 56 for normal release operations and 173 for the investigation of static loading at various cam angles. In the offline study a total of 968 tests were performed with 106 looking into the effect of off-axis loading in the fore and aft axis as well as the side axis for normal operations and 862 evaluating the effect of off-axis loading combined with wave loading, release cable failure and static loading at various cam angles. A total of 26 tests were done on the off-load hook, investigating the torque that would be required to release the hooks, given that the cables are still loaded. 1.1 DEFINITIONS On-load Release not a normal operating procedure and occurs when the coxswain releases the lifeboat from the hooks while the lifeboat is still suspended above the water (i.e. weight of lifeboat on the fall wires and hooks). This is a regulatory requirement. Off-load Release normal operating procedure for lifeboat launching and occurs when the lifeboat is fully water borne and its entire weight is off the fall wires and hooks. Pre-mature Release

the release mechanism opens without a deliberate action from the coxswain to release the hook

Dynamic

on-load functional tests

Static

The load on the cam will be tested at various cam angles. The intention here is to investigate how an incorrectly reset cam affects the load on the whole release system.

1

Cyclic

to simulate wind and wave action on the boat various cyclic loads will be applied to the hook system

Damaged Cable

to simulate a damaged or broken release cable the hook will be loaded with the release cable detached from the cam.

2.0 RELEASE SYSTEM The on-load twin fall release mechanisms tested consist of two hooks located opposite each other on the forward and aft sections of the lifeboat. A release control unit is attached to the hooks via telescopic cables, and is located inside the lifeboat near the steering console for use by the coxswain once the lifeboat is waterborne. The release control unit has a hydrostatic interlock, preventing the hook from releasing until it is waterborne, but this interlock can be overridden if necessary. The arrangement can be seen below in Figure 2.1. The off-load release mechanism tested consists of one hook located at the mid-ship location of the lifeboat. A release control unit is attached to the hook via a cable and is located inside the lifeboat next to the coxswain position for activation after the lifeboat is waterborne.

Figure 2-1: On-Load Release System

2

2.1 Release Mechanisms Each release mechanism has a unique size and shape. Shown below are dimensioned drawings of each hook. Hooks A and B are shown in Figures 2-2 and 2-3 respectively. These hooks along with hook C in Figure 2-4 are on-load release mechanisms. Figure 2-5 shows the only off-load release hook, hook D.

Figure 2-2: Hook A

Figure 2-3: Hook B

Figure 2-4: Hook C

Figure 2-5: Hook D

3

3.0 TEST SET-UP The release mechanisms were tested in the Material Testing Apparatus (MTA) at the Institute for Ocean Technology. The apparatus is a standardized hydraulic testing machine that allows for a uniaxial force to be applied to the test sample or in this case to the release mechanisms. The apparatus was used normally for the inline tests, however a special apparatus was designed to permit the use of the same testing machine for the offline testing. The technical drawings for this apparatus are located in Appendix A. The MTA applies a load to the hook in a controlled, repetitive and safe manner. Figures 3-1 to 3-6 illustrate the different release mechanisms set-up in the MTA for both inline and offline tests, while Figure 3-7 shows the set-up for the off-load hook tests.

Figure 3-2: Hook B Set Up for Inline Tests

Figure 3-1: Hook A Set up for Inline Tests

4

Figure 3-3: Hook C Set Up for Inline Tests

Figure 3-4: Hook A Set Up for Forward Pull Offline Tests

5

Figure 3-5: Hook B Set Up for Forward Pull Offline Tests

Figure 3-6: Hook C Set Up for Forward Pull Offline Tests

Figure 3-7: Hook D set up for Loading

6

In addition to the MTA and the offline testing frame the following equipment was also used during the experiments: Inline – bullring and shackle, electric actuator (activate hook opening), two load cells (MTA and release cable), two linear displacement transducers (MTA and hook) and an angular displacement transducer (cam angle) Offline – bullring and shackle, electric actuator (activate hook opening), three load cells (MTA, release cable, deck and pin), one linear displacement transducer (MTA), and an angular displacement transducer (cam angle) To apply a load the bullring and shackle were used to connect the MTA to the release mechanism’s hook. The electric actuator enabled the rotation of the cam in a controlled and repetitive manner. An inline load cell was connected between the actuator and the hook cam lever. The angular displacement transducer recorded the cam angles. In the offline condition two additional load cells were used to measure the compressive load at the hook-canopy interface and at the hook –lifeboat attachment pin. For the inline off-load experiments, the load was applied through the bullring and shackle connecting the MTA to the release mechanism. A manual torque wrench was used to rotate and force the cam open. 3.1 Test Procedures The three on-load release mechanisms were tested according to the following procedure: With no load connect the bullring to the hook Rotate the cam to the specified angle with the electric actuator Start the data acquisition Let the system settle for 20-30 seconds and then apply the required load to the hook using the MTA. For Dynamic tests – rotate the cam until the hook releases For Static tests – rotate the cam to the desired position, slowly bring the load on and record loads, angles, etc, for 30 seconds. Stop data acquisition Unload the applied load from the hook. After each test the data is checked for integrity by plotting each individual channel time series and performing basic stats on the data. The single off-load release mechanism is a different type of hook and therefore had to be tested using an alternate procedure which is as follows: With no load connect the bullring to the hook Close the release mechanism Start the data acquisition

7

Let the system settle for 20-30 seconds and then apply the required load to the hook using the MTA. With the torque wrench attempt to rotate the cam Stop data acquisition Read the torque wrench value and record. After each test the data is checked for integrity by plotting each individual channel time series and performing basic stats on the data. 4.0 TEST MATRIX The experiments for the three on-load hooks were divided into inline and offline pulls and also into two categories, normal on-load release operations and static load at various cam angles. The offline tests covered the same tests as the inline condition but also looked into extreme and operational conditions such as cyclic loading and cable malfunction or a combination of both. The normal on-load tests measured the functional design load characteristics of the individual release mechanisms while the static tests gave insight into the cam and release cable loading for improperly reset cam angles. The failure and extreme operational experiments investigated scenarios such as severed release cable and cyclic loading due to wind and waves. The testing for the off-load hook was inline, in order to investigate whether or not the hook could be manually opened while loaded. 4.1 On-Load Inline Test Series The inline test series involved loading the three on-load hooks along their vertical axes, and were divided into normal on-load release tests and static load tests. The set-up for this was previously seen in figures 6 through 8. The hooks were placed in the MTA allowing for normal operation of the apparatus, that is, the loads were applied straight up along the vertical axis of the hook for on-load and static conditions. 4.1.1 Normal on-load release tests These experiments were performed to confirm that the hook was operating as required by regulation, to establish the cam angle at which the hook releases under load and to measure the force required to rotate the cam enough to open and release the hook. Table 1 shows the on-load release test matrix developed for the three hooks. The table consists of the range of loads applied for which the hook is certified and the range of cam angles possible. In this case, the cam was rotated until the hook opened. Table 4-1: On-load Inline Tests

Applied Load (kg) Hook A Hook B Hook C 0 0 0 500 1000 1000

8

Cam Angle (degrees) 0 → open 0 → open

(Table 4-1 continued)

1000 1500 2000 2500 3000

2000 3000 4000 5000 6000

2000 3000 4000 5000 6000

0 → open 0 → open 0 → open 0 → open 0 → open

4.1.2 Static load tests In this series of experiments, tests were performed for each of the loadings specified previously in Table 4-1 at a pre-assigned cam angle. Once the release point was established, additional tests were performed around it in order to properly bracket the release. The increments for these experiments were on the order of half to one degree. This establishes the actual static release point for the hook at different levels of loading. Tables 4-2 to 4-4 show the static test matrix employed for hooks A, B and C respectively. Table 4-2: Static Tests for Hook A

Applied Load (kg) 500 1000 1500 2000 2500 3000

Cam Angles (degrees) 0, 10, 20, 30, 40, 45, 47, 48, 48.5, 49 0, 10, 20, 30, 40, 45, 48, 48.5 0, 10, 20, 30, 40, 45, 48, 48.5 0, 10, 20, 30, 40, 45, 48, 48.5 10, 20, 30, 40, 45, 48 10, 20, 30, 40, 45, 48

Table 4-3: Static Tests for Hook B

Applied Load (kg) 1000 2000 3000 4000 5000 6000

Cam Angles (degrees) 0, 10, 20, 30, 40, 50, 60, 65, 70 0, 10, 20, 30, 40, 50, 60 0, 10, 20, 30, 40, 50, 60 0, 10, 20, 30, 40, 50, 60 0, 10, 20, 30, 40, 50, 60 0, 1, 10, 20, 30, 40, 50, 60, 65

Table 4-4: Static Tests for Hook C

Applied Load (kg) 1000 2000 3000 4000 5000 6000

Cam Angles (Degrees) 0, 10, 20, 30, 40, 50, 60, 69, 70, 71, 72, 73, 74, 75, 80 10, 20, 30, 40, 50, 60 10, 20, 30, 40, 50, 60, 66, 67, 68, 69, 70 10, 20, 30, 40, 50, 60 10, 20, 30, 40, 50, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 10, 20, 30, 40, 50, 60, 61, 63, 64, 65

4.2 On-Load Offline Test Series This test series was comprised of on-load, static, extreme and failure tests. The on-load and static tests were similar to the inline test series in that the loads were applied and

9

the cam angle was either adjusted until the hook opened, or the cam angle was previously determined. For these tests however, the hooks were loaded from aft, forward and side directions at nominal angles of 50, 50 and 20 degrees respectively. This set-up was previously seen in Figures 3-1 to 3-6. The additional tests simulated damaged cable and wave loading scenarios. The wave loading scenario examines the forces experienced by the release mechanisms in the event of wind and/or wave loading on the lifeboat during its descent to the water surface. The damaged cable scenario explores the hook function in the event of a severed or damaged release cable. 4.2.1 On-load release tests The on-load release tests were performed at various loadings for each load direction. This can be seen for all three hooks in Table 4-5. Table 4-5: On-load Offline Tests

Applied Load (kg) Hook A Hook B, Hook C 0, 500, 1000, 1500, 0, 1000, 2000, 3000, 2000, 2500, 3000 4000, 5000, 6000, 6600 0, 500, 1000, 1500, 0, 1000, 2000, 3000, 2000, 2500, 3000, 3300 4000, 5000, 6000, 6600 0, 500, 1000, 1500, 0, 1000, 2000, 3000, 2000, 2500, 3000, 3300 4000, 5000, 6000

Direction of Pull Aft 50° Fwd 50° Side 20°

4.2.2 Static release tests As with the on-load release tests, these loads were applied in a specific direction. The cam however, was set to predetermined angles for each loading within each pull direction. Tables 4-6 though 4-8 illustrate this process. Table 4-6: Static Offline Tests for Hook A

Applied Load (kg)

Direction of Pull

500 1000 1500 2000 2500 3000

Aft 50°

3300 500

Fwd 50°

1000 1500 2000

Cam Angles (degrees) 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 51, 55, 60, 65, 70, 71, 71.5, 71.9, 72, 72.4, 72.8, 73, 74, 75, 78 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60

10

(Table 4-6 continued)

2500 3000 1000 2000 3000 500 1000 1500 2000 2500 3000 3300

2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 2, 10, 20, 30, 40, 50, 60 11, 20, 30, 40, 50, 60, 70, 80, 90 11, 20, 30, 40, 50, 60, 70, 80, 90 11, 20, 30, 40, 50, 60, 70, 80, 90 11, 20, 30, 40, 50, 60, 70, 80, 90 11, 20, 30, 40, 50, 60, 70, 80, 90 11, 20, 30, 40, 50, 60, 70, 80, 90 11, 20, 30, 40, 50, 60, 70, 80, 90

Side 20°

Side 21°

Table 4-7: Static Offline Tests for Hook B

Applied Load (kg)

Direction of Pull

1000 2000 3000 4000 5000 6000 6600 500 1000

Aft 49°

Fwd 50°

1500 2000 3000 4000 5000 6000 4000 5000 6000

Side 23°

Cam Angles (degrees) 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70, 80 90 2, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90 2 10, 20, 30, 40, 50, 60, 70, 79, 80, 81, 82, 85, 90 10, 20, 30, 40, 50, 60, 70, 80, 85 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70, 80 2, 10, 20, 30, 40, 50, 60, 70, 80 10, 20, 30, 40, 50, 60, 70 10, 20, 30, 40, 50, 60, 70 10, 20, 30, 40, 50, 60, 70

Table 4-8: Static Offline Tests for Hook B

Applied Load (kg)

Direction of Pull

2000

Aft 46°

4000

11

Cam Angles (degrees) 2, 10, 20, 30, 40, 50, 60, 65, 66, 68, 70 2, 10, 20, 30, 40, 50, 60, 65, 67, 70

(Table 4-8 continued)

6000 2000

2, 10, 20, 30, 40, 50, 60, 63, 65, 66, 70 2, 10, 20, 30, 40, 50, 60, 70, 71, 73, 75, 80 2, 10, 20, 30, 40, 50, 60, 65, 68, 69, 70 2, 20, 30, 40, 50, 60, 65, 68, 69, 70, 71 2, 10, 20, 30, 40, 50, 60, 70 2, 10, 20, 30, 40, 50, 60, 65, 70 2, 10, 20, 30, 40, 50, 60, 70 2, 10, 20, 30, 40, 50, 60, 65, 70 2, 10, 20, 60, 65

Fwd 43°

4000 6000 1000 2000 3000 4000 6000

Side 22°

4.2.3 Damaged cable tests The methodology for the damaged cable tests was the same as used in the static tests with the exception of the disconnected release cable. The removal of the release cable allows the cam to rotate if enough force is applied to it. Tables 4-9 to 4-11 below illustrate the series of tests performed on hooks A, B and C. Table 4-9: Damaged Cable Tests for Hook A

Applied Load (kg)

Direction of Pull

1000

Aft 50°

1000

Fwd 50°

3000 1000

Side 21°

3000

Cam Angles (degrees) 10, 20, 30, 40, 50, 60, 71, 72, 74, 75, 76 10, 20, 30, 40, 50, 60, 70, 71, 72 0, 10, 20, 30, 40, 50, 60, 70, 71 0, 10, 20, 30, 40, 50, 60, 70, 80, 86, 88, 89 0, 10, 20, 30, 40, 50, 60, 70, 80, 86

Table 4-10: Damaged Cable Tests for Hook B

Applied Load (kg)

Direction of Pull

2000

Aft 50°

6000 2000

Fwd 50°

12

Cam Angles (degrees) 10, 20, 30, 40, 50, 60, 71, 72, 75, 80 10, 20, 30, 40, 50, 60, 72, 73, 75 0

(Table 4-10 continued)

2000

6, 10, 20, 30, 40, 50, 60, 70, 74, 75, 77, 79, 80, 81 8, 20, 30, 40, 50, 60, 70, 71, 73, 75, 80

Side 21°

6000

Table 4-11: Damaged Cable Tests for Hook C

Applied Load (kg)

Direction of Pull

2000

Aft 46°

6000 2000

Fwd 43°

6000 2000

Side 22°

4000

Cam Angles (degrees) 0, 10, 20, 30, 40, 50, 60, 70 0, 10, 20, 30, 40, 50, 60, 70 0, 10, 20, 30, 40, 50, 60, 70 0, 10, 20, 30, 40, 50, 60, 70 0, 10, 20, 30, 40, 50, 60, 66, 68, 69, 70 0, 10, 20, 30, 40, 50, 60, 64, 65, 68, 70

4.2.4 Wave loading tests In this series of experiments, tests were performed to simulate the release mechanism experiencing cyclic loading forces. Wind or waves or excessive ship/installation motions can cause these types of forces. This test series was run first with the release cable in place then again with the cable removed. Tables 4-12 and 4-13 illustrate the variety of tests run for this condition. Table 4-12: Wave Loading Tests for Hook A Mean Load (kg)

Direction of Pull

1500 1500 2000 2000

Fwd 50° Fwd 50° Fwd 50° Fwd 50°

Cyclic Load Amplitude (kg) Period (sec)

1500 1500 1000 1000

5 10 5 10

Release cable Connected Disconnected

Y Y Y Y

-

Table 4-13: Wave Loading Tests for Hooks B and C Mean Load (kg)

Direction of Pull

3000 3000 4000 4000

Fwd 50° Fwd 50° Fwd 50° Fwd 50°

Cyclic Load Amplitude (kg) Period (sec)

3000 3000 2000 2000

5 10 5 10

13

Release cable Connected Disconnected

Y Y Y Y

-

These tests were repeated for aft pulls at 50°, side pulls at 20° and with the release cable disconnected. 4.3 Off-Load Test Series Similar to the Inline Test Series, the off-load tests were done using the MTA to load the hook along its vertical axis. Unlike the inline series however, there were no cam angle variations. Since the off-load hook is designed to release only when the load is off, the mechanism was tested to measure the torque required to release when the load is being applied. A preset load amount was applied to the hook, at which point a torque wrench was used to open the release mechanism. Initially, the torque was applied with a torque wrench. For the latter tests, a 10-1 torque multiplier was used, and can be seen along with the torque wrench in Figure 4-1. The loads applied are listed in Table 414. The top row lists the tests that used the torque wrench, and the bottom row applied the 10-1 torque multiplier. Table 4-14 Applied Loads for Hook D

Torque Wrench 10:1 Torque Multiplier

Applied Load (kg) 200, 400, 600, 800, 1000, 1500, 2000, 2500, 3000, 3500 1000, 2000, 2500, 3000, 4000, 5000

Figure 4-1: Torque Wrench and 10:1 Torque Multiplier

14

5.0 RELEASE MECHANISMS TEST RESULTS 5.1 On-Load Inline Test Series Results In the following sections, the results for the on-load release mechanisms in the inline configuration will be presented. 5.1.1 Normal on-load release test results The on-load release mechanism tests series was conducted to ensure the hook was operating as prescribed by regulation, to determine the cam angle at which the hook would open while under load and to record the force required to rotate the cam so the hook would open. The test data for hooks A, B and C was plotted as a moment of the applied load resisting the opening movement and is shown in Figures 5-1 to 5-3, respectively. In all three cases the force induced by the hook is resisting the opening force, until the cam reaches approximately 45° for hook A, 58° for hook B and 62° for hook C. After the cam moves past these values the moment to resist opening starts to decrease until the cam is at 49° for hook A, 71° for hook B and 74° for hook C, when the hook finally releases. Until opening neither the hooks nor the cams move a measurable amount, only the applied forces change. One may conclude that the hooks are stable. The cam-opening rate for hook C at 5.03 deg/s is more gradual than for hooks A and B, 5.95 deg/s and 6.19 deg/s, respectively. One may infer from these results that hook C has a higher degree of stability than the other two sample hooks. Hook Load = 1500 kg

20

Moment Required to Rotate the Cam Inline Pull Cam Opening Rate = 5.95 deg/s

15

Closing Moment Start of Rotation of Cam

Moment (N-m)

10

Hook Beginning to Release

5 0 -5 Hook Released -10 Opening Moment

-15 -20 0

10

20

30

40

50

60

70

Angle (deg)

Figure 5-1: Hook A - Inline On-load Release Test - 1500 kg Load

15

80

Hook Load = 3000 kg

50

Moment Required to Rotate the Cam Inline Pull Cam Opening Rate = 6.19 deg/s

40

Closing Moment

Start of Rotation of Cam

30

Hook Beginning to Release

Moment (N-m)

20 10 0 -10 Opening Moment

-20 -30

Hook Released

-40 -50 -60 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-2: Hook B: Inline On-load Release Test - 3000 kg Load

Hook Load = 3000 kg

80

Moment Required to Rotate the Cam Inline Pull Cam Opening Rate = 5.03 deg/s

70 60

Hook Beginning to Release Closing Moment

50

Moment (N-m)

40 30

Start of Rotation of Cam

20 10 0 -10 -20

Opening Moment

-30

Hook Released

-40 -50 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-3: Hook C: Inline On-load Release Test - 3000 kg Load

5.1.2 Static load tests results The results of this test series determined the load on the cam from applying a known force to the hook at a specific cam angle setting. Table 5-1 shows the results for the three hooks at 50% of total load and a full range of cam settings, that is, 1500 kg for hook A and 3000 kg for hooks B and C.

16

Table 5-1: Static Tests Results at 50% of Total Load

Hook A Cam Setting (degrees) 0 10 20 30 40 45 48 48.5

Force (N) -5.12 -13.52 -8.03 -8.67 -119.28 -474.07 -685.58

Hook B Cam Setting Force (degrees) (N) 0 -26.78 10 -39.07 20 -18.38 30 -24.52 40 -23.23 50 -55.25 60 -88.56

Hook C Cam Setting Force (degrees) (N) 0 10 -30.34 20 -16.44 30 -21.93 40 -8.03 50 -30.02 60 -24.52 66 -28.73 67 -247.03 69 -876.72 70 -1069.47

Note: positive force = closing, negative force = opening

The release cable load remains low until 45°, for hook A, 60° for hook B and 66° for hook C. After these thresholds the force in hooks A, and C increase rapidly. No results are available for hook B, beyond the 60° cam angle setting. These results show that the cam has low opening forces induced on it through its equivalent dynamic operating region. 5.2 On-Load Offline Test Series Results In the following sections, the results for the on-load release mechanisms in the offline configuration will be presented. 5.2.1 On-load release tests results The offline on-load release mechanism tests series was similar to the inline test series with the exception that pulls were performed from the forward, aft and side sections of the hook. These tests were conducted to ensure the hook could still operate when the hook load was acting at approximately 50° in a forward and aft orientation and 20°, in a side orientation. The test data for hooks A, B and C was plotted again as a moment of the applied load resisting the opening movement and is shown in Figures 5-4 to 5-6, for the aft pulls, Figures 5-7 to 5-9 for the forward pulls, and Figures 5-10 to 5-12 for the side pulls. All the examples will again show results at 50% of the total hook load. In the aft pulls the cam opening rate reaches a high of almost 30 degrees per second for hook A, and down to about 20 degrees per second for hook C, with hook B having a rate halfway in between at about 25 degrees per second. Worth noting that in this configuration, hook A has a small negative moment as the hook is released while hook B has a large negative moment and hook C a small positive moment. Also, the moment resisting opening for hooks A through C is in the range of 60° to 70°.

17

Hook Load = 1500 kg

20 15

Moment Required to Rotate the Cam Offline - Aft Pull Cam Opening Rate = 28.64 deg/s Hook Beginning to Release

Start of Rotation of Cam

10 Closing Moment

Moment (N-m)

5 0 -5 -10 -15

Opening Moment

-20

Hook Released

-25 -30 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-4: Hook A - Offline On-load Release Test Aft Pull - 1500 kg Load

Hook Load = 3000 kg

50

Moment Required to Rotate the Cam Offline - Aft Pull Cam Opening Rate = 24.25 deg/s

40 30

Closing Moment

Start of Rotation of Cam

Hook Beginning to Release

20

Moment (N-m)

10 0 -10 -20 Opening Moment

-30 -40 -50

Hook Released

-60 -70 -80 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-5: Hook B - Offline On-load Release Test Aft Pull - 3000 kg Load

18

Moment Required to Rotate the Cam Offline - Aft Pull Cam Opening Rate = 19.16 deg/s

Hook Load = 3000 kg

80 70 60

Start of Rotation of Cam

50

Hook Beginning to Release

Moment (N-m)

40 30

Closing Moment

20 10 0 -10 -20

Opening Moment

-30

Hook Released

-40 -50 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-6: Hook C - Offline On-load Release Test Aft Pull - 3000 kg Load

The forward pulls show a slightly different cam opening range and opening rate. Hook C again has the largest range and the lowest cam-opening rate. Hooks A and B have a negative release moment while hook C maintains a positive hook moment through out the test. Moment Required to Rotate the Cam Offline - Fwd Pull Cam Opening Rate = 29.28 deg/s

Hook Load = 1500 kg

20 15

Closing Moment

Start of Rotation of Cam

Hook Beginning to Release

Moment (N-m)

10 5 0 -5

Hook Released -10 Opening Moment

-15 -20 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-7: Hook A - Offline On-load Release Test Forward Pull - 1500 kg Load

19

Moment Required to Rotate the Cam Offline - Forward Pull Cam Opening Rate = 21.54 deg/s

Hook Load = 3000 kg

50 40

Start of Rotation of Cam

30

Closing Moment

Hook Beginning to Release

20

Moment (N-m)

10 0 -10 -20 Opening Moment

-30 -40

Hook Released

-50 -60 -70 -80 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-8: Hook B - Offline On-load Release Test Forward Pull - 3000 kg Load

Hook Load = 3000 kg

50

Moment Required to Rotate the Cam Offline - Forward Pull Cam Opening Rate = 19.02 deg/s

40

Hook Beginning to Release

30

Moment (N-m)

20

Closing Moment

Start of Rotation of Cam

10 0 -10 -20

Opening Moment

-30

Hook Released

-40 -50 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-9: Hook C - Offline On-load Release Test Forward Pull - 3000 kg Load

In the side pulls the opening range for hooks A and B drop to about 50° and 65° down from 60°, 70°, respectively. Hook C maintains a closing moment through the entire process and the range remains the same as for the two previous pulls, aft and forward.

20

As in the previous pulls the cam-opening rate varies from about 30° for hook A down to about 20° with hook B attaining an intermediate cam-opening rate of approximately 25°. Hook Load = 1500 kg

20

Moment Required to Rotate the Cam Offline - Side Pull Cam Opening Rate = 28.17 deg/s

15 Closing Moment

Moment (N-m)

10

Start of Rotation of Cam

Hook Beginning to Release

5 0 -5 Hook Released

-10

Opening Moment -15 -20 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-10: Hook A - Offline On-load Release Test Side Pull - 1500 kg Load

Hook Load = 3000 kg

50

Moment Required to Rotate the Cam Offline - Forward Pull Cam Opening Rate = 24.93 deg/s

40 30

Closing Moment

Hook Beginning to Release

20

Moment (N-m)

10 0 -10 -20

Opening Moment

Start of Rotation of Cam

-30 -40 -50

Hook Released

-60 -70 -80 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-11: Hook B - Offline On-load Release Test Side Pull - 3000 kg Load

21

Moment Required to Rotate the Cam Offline - Side Pull Cam Opening Rate = 18.21 deg/s

Hook Load = 3000 kg

80 70

Hook Beginning to Release

60 50

Moment (N-m)

40

Start of Rotation of Cam

30

Closing Moment

20 10 0 -10

Hook Released

-20 Opening Moment

-30 -40 -50 0

10

20

30

40

50

60

70

80

Angle (deg)

Figure 5-12: Hook B - Offline On-load Release Test Side Pull - 3000 kg Load

In all three pulling direction cases and hook designs the force induced by the hook is resisting the opening force, until the cam reaches some nominal value after which it will start opening. The cam opening rate for hook A is the highest followed by hook B and finally hook C. The cam opening rates for offline pulls are 6 times those of the inline pulls for hook A, five times for hook B and 4 times for hook C. As from the inline on-load tests, one may infer from the results for offline on-load test for aft/forward and side pulls that hook C appears to have higher degree of stability than the other two sample hooks. 5.2.2 Static release tests results These tests were completed at various loading angles (aft, forward and side) and at predetermined cam angles. Figures 5-13 to 5-15 show the aft, forward and side loading at two-thirds (66.7%) of the total load. This means that hook A shows a 2000 kg load, while hooks B and C show a 4000 kg load. Note that the positive release moment indicates a closing moment and a negative release moment indicates opening. In Figure 5-13, it can be seen that for the aft pulls, hooks B and C initially have a positive moment through various cam angles. Hook B does not cross into the negative area, indicating that it remains in a closing moment throughout this testing. Hook C crosses into the negative (opening) area with a 60° cam angle, and stays negative for the remainder of the tested cam angles. Hook A has an opening moment for the entirety of the aft testing, however these values are very close to zero.

22

Release Moment vs. Cam Angle 4

Release Moment (N-m)

3 2 1 0 -1 0

5

10 15 20 25 30 35 40 45 50 55 60 65 70

Hook A Hook B Hook C

-2 -3 -4 Cam Angle (degrees)

Figure 5-13: Aft Pulls at 2/3 of Total Load

For the forward pulls in Figure 5-14, each hook experienced an opening moment throughout the testing, with the exception of hook B that had a slight closing moment at 70°. Release Moment vs. Cam Angle 4

Release Moment (N-m)

3 2 1 0 -1 0

5

10 15 20 25 30 35 40 45 50 55 60 65 70

-2 -3 -4 Cam Angle (degrees)

Figure 5-14: Forward Pulls at 2/3 of Total Load

23

Hook A Hook B Hook C

With the exception of hook C, a negative moment was seen on the hooks during the side pulls in Figure 5-15. The moments recorded for hook A however, tended to oscillate from near zero to just after 1°. Hook C initially saw an opening moment, but experienced a closing moment for the majority of the testing, crossing into the negative area at 60° and remaining negative for the rest of the testing. Note that due to the instability of hook B, the scale for the release moment in Figure 5-15 had to be lengthened to accommodate the data.

Release Moment (N-m)

Release Moment vs. Cam Angle 4 3 2 1 0 -1 0 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

5

10 15 20 25 30 35 40 45 50 55 60 65 70

Hook A Hook B Hook C

Cam Angle (degrees)

Figure 5-15: Side Pulls at 2/3 of Total Load

For the aft pulls, the highest positive and therefore closing moment seen was that of hook C. It can therefore be said that hook C would be the most stable in an aft loading situation, followed by hook B and then hook A. Although all three hooks had negative moments during the majority of the forward pulls, hook A had negative moments that were closest to zero, indicating that it would be more stable than the other two hooks during forward loading. Hook C again had positive moments for the side pulls, while the other hooks had negative moments. This shows that hook C has a higher degree of stability during side as well as aft loading. 5.2.3 Damaged cable tests results The results from this series of tests simulate a broken or detached release cable and the effect on the hook as a load is applied. The tests were performed on the three hook types for the aft, forward and side offline pulls at angles of 50°, 50° and 20°, respectively. Tables 5-2 to 5-4 show the aft pulls for hooks A, B and C, while tables 5-5 to 5-7 show forward pull results and tables 5-8 to 5-10 show side pull results. The tables present the initial and final cam angles (columns 1 & 2) as the load is applied and the difference

24

between the two (column 3). Also on the tables a horizontal red line separates the range of stable cam angles beyond which the hook begins to open, i.e. cam rotation starts. Figures 5-16 to 5-23 show the release of the hook with the associated cam angle change at the stable threshold limit and the force experienced at that point. The tables present results for the one-third and full load, i.e. 1000 kg and 3000 kg for hook A and 2000 kg and 6000 kg for hooks B and C, while the figures only present the results for the one-third of total load. The aft pull cam angle for Hook A had minimal change until a cam angle of 74°-75°, after which the cam moved 9°-11°. This is a significant change in cam angle given that the changes previous to this were minimal, i.e. all less than 0.5°. Figure 5-16 shows the applied load (blue line) drops after reaching only about 750 N, coinciding with the significant change in cam angle, indicating a release. Table 5-2: Change in Cam Angle for Hook A Aft Pull

Applied Load of 2000 kg Cam Angle Final Angle (degrees) (degrees) Delta 10 9.96 -0.04 10 10.45 0.45 20 20.14 0.14 30 30.07 0.07 40 40.50 0.50 50 49.99 -0.01 60 59.99 -0.01 71 71.45 0.45 72 71.94 -0.06 74 74.18 0.18 75 84.03 9.03 75 86.57 11.57 76 85.32 9.32

25

Applied Load of 6000 kg Cam Angle Final Angle (degrees) (degrees) Delta No data Available

Figure 5-16: Hook A Change in Cam Angle Aft Pull

Hook B shows a large change in cam angle of 10°-13° at the low end (cam angle 10°) for both applied loads (i.e. 2000 kg and 6000 kg) and then stabilizes at 2.5° to 5.0°. The graphical data in Figure 5-17 shows a cam angle change of 22° from an initial cam angle of 71°, with release at an applied load of approximately 2700 N. Table 5-3: Change in Cam Angle for Hook B Aft Pull

Applied Load of 2000 kg Cam Angle Final Angle (degrees) (degrees) Delta 10 20.69 10.69 20 22.52 2.52 30 32.77 2.78 40 42.82 2.82 50 52.95 2.95 60 63.51 3.51 70 73.81 3.81 70 73.75 3.75 71 76.65 5.65 72 75.80 3.80 75 79.34 4.34 80 84.23 4.23 80 83.52 3.52

26

Applied Load of 6000 kg Cam Angle Final Angle (degrees) (degrees) Delta 10 23.43 13.43 20 23.37 3.37 30 33.16 3.16 40 44.08 4.08 50 52.55 2.55 60 63.17 3.17 70 73.76 3.76 72 75.08 3.08 73 77.36 4.36 75 79.78 4.78

Figure 5-17: Hook B Change in Cam Angle Aft Pull

Hook C aft pull results show a similar patter to those of hook A. Up to a cam angle of 60°, the change from initial to final cam angle variation is around 0.5°. Beyond this point however, the change in cam angle increases to 2°-3°. The cam angle changes are similar for the two applied loads (i.e. 1/3 and full load capacity). The increase in cam angle is much smaller than that observed in the previous two cases. After the 60° cam angle threshold, the load drops after reaching a maximum of 1600 N in Figure 5-18. Table 5-4: Change in Cam Angle for Hook C Aft Pull

Applied Load of 6000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 0.34 0.34 10 10.09 0.09 20 20.13 0.13 30 30.60 0.60 40 40.24 0.24 50 50.42 0.42 60 60.10 0.10 70 72.48 2.48

Applied Load of 2000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 0.16 0.16 10 10.26 0.26 20 20.33 0.33 30 30.45 0.45 40 40.01 0.01 50 50.01 0.01 60 59.95 -0.05 70 72.83 2.83

27

Figure 5-18: Hook C Change in Cam Angle Aft Pull

The forward pull tests started with hook A that lost its stable cam angle threshold about 4°-5° earlier than in the aft pull tests. In these tests the threshold was crossed between 70° and 71°, corresponding to the applied loads of 1000 kg and 3000 kg. The change in cam angle registered values between 33° and 38°. These values are shown in tabular form in Table 5.5 and graphically in Figure 5-19. From the figure we can also estimate that an applied load of 2600 N was registered before the hook released. Table 5-5: Change in Cam Angle for Hook A Forward Pull

Applied Load of 1000 kg Cam Angle Final Angle (degrees) (degrees) Delta 10 10.23 0.23 20 20.30 0.30 30 29.91 -0.09 40 40.51 0.51 50 50.23 0.23 60 60.43 0.43 70 70.06 0.06 71 104.60 33.60 71 86.76 15.76 72 82.90 10.90

28

Applied Load of 3000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 1.68 1.68 10 11.01 1.01 20 20.20 0.20 30 29.87 -0.13 40 39.97 -0.03 50 50.65 0.65 60 60.61 0.61 70 70.73 0.73 71 108.99 37.99 71 71.29 0.29

Figure 5-19: Hook A Change in Cam Angle Forward Pull

There is no forward pull data for hook B. At the time of the testing there were several technical problems with the testing apparatus and this series of tests were delayed and eventually never completed. The forward pull tests confirmed the observations made earlier on the aft pull tests in which there was very little change in the cam angle (refer to Table 5-6). It is worth noting the fact that for the maximum allowable load (i.e. 6000 kg) at the initial angle of 0°, a large change of approximately 25° is observed however in subsequent cam angles the difference is minimal and around 1° or less until after 60°. In other applied load conditions the change in cam angle remains small until after the 60° threshold. Figure 620 shows the hook C forward pull release load of just over 4000 N for a cam angle of 70°. Table 5-6: Change in Cam Angle for Hook C Forward Pull

Applied Load of 6000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 24.56 24.56 10 11.18 1.18 20 20.45 0.45 30 30.95 0.95 40 40.37 0.37 50 50.14 0.14

Applied Load of 2000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 1.46 1.46 10 10.57 0.57 20 20.24 0.24 30 30.26 0.26 40 40.32 0.32 50 50.32 0.32

29

(Table 5-6 continued)

60 70

59.81 74.64

-0.19 4.64

60 70

59.89 74.66

-0.11 4.66

Figure 5-20: Hook C Change in Cam Angle Forward Pull

In general, the side pulls cam angle stable threshold was larger for all hooks tested. For hook A the stable threshold reached 86° for the 1000 kg applied load. For the 3000 kg applied load case, the hook seemed to stay stable throughout with a change in angle of less than 1°. Figure 5-21 illustrates graphically the cam rotation after the 88° level to approximately 16° after which the hook releases. The force attained before release was 9300 N. Table 5-7: Change in Cam Angle for Hook A Side Pull

Applied Load of 3000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 0.28 0.28 10 9.90 -0.10 20 19.60 -0.40 30 29.45 -0.55 40 39.76 -0.24 50 49.89 -0.11 60 60.11 0.11 70 70.24 0.24

Applied Load of 1000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 -1.17 -1.17 10 10.28 0.28 20 19.59 -0.41 30 30.52 0.52 40 40.44 0.44 50 50.03 0.03 60 60.13 0.13 70 70.37 0.37

30

(Table 5-7 continued)

80 86 88 89

79.20 85.46 105.02 98.94

-0.80 -0.54 17.02 9.94

80 86

80.28 85.51

0.28 -0.49

Figure 5-21: Hook A Change in Cam Angle Side Pull

Hook B showed a considerable change in cam angle (initial to final) at cam angles of less than 20° but seemed to stabilize to less than 2° in the range 20° to 70°, after which the change in cam angle started to increase again. These results are representative of the 2000 and 4000 kg applied loads and are presented in tabular form in Table 5-8. The corresponding graphical presentation is illustrated in Figure 5-22, in which a cam angle change of 18° at an applied load of 1100 N represents the cam rotation leading to hook release. Table 5-8: Change in Cam Angle for Hook B Side Pull

Applied Load of 2000 kg Cam Angle Final Angle (degrees) (degrees) Delta 6 20.15 14.15 10 20.13 10.13 20 22.44 2.44 30 31.56 1.56 40 41.88 1.88

31

Applied Load of 6000 kg Cam Angle Final Angle (degrees) (degrees) Delta 8 20.92 12.92 8 21.35 13.35 20 22.76 2.76 30 32.95 2.95 40 43.13 3.13

(Table 5-8 continued)

50 60 70 74 75 77 77 79 79 80 81

51.61 61.30 71.96 77.27 79.77 81.80 80.55 92.93 92.77 82.94 93.75

1.61 1.30 1.95 3.27 4.77 4.80 3.55 13.93 13.77 2.94 12.75

50 60 70 71 73 75 80

52.367 62.2512 72.6417 73.4956 79.8054 83.3646 84.7324

2.37 2.25 2.64 2.50 6.81 8.36 4.73

Figure 5-22: Hook B Change in Cam Angle Side Pull

Hook C like hook A experienced a wider stable threshold range in the side pull tests (i.e. ≈ 5° over the aft and forward pulls. The cam angle threshold after which the cam started to rotate was 68° for the 2000 kg applied load and about 68° for the 4000 kg applied load from Table 5.9. The data for this trial only extended as far as 4000 kg rather than 6000 kg as the technical staff advised not to exceed 4000 kg during this test due to limitations of the machine. Illustrated in Figure 5-23 is the 2000 kg applied load example in which the cam started to rotate at 69° (i.e. 12° change) at a load of 9700 N.

32

Table 5-9: Change in Cam Angle for Hook C Side Pull

Applied Load of 2000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 0.55 0.55 10 9.16 -0.84 20 20.09 0.09 30 29.26 -0.74 40 41.00 1.00 50 51.44 1.44 60 60.67 0.67 66 66.58 0.58 68 68.02 0.02 69 81.90 12.90 70 76.67 6.67

Applied Load of 4000 kg Cam Angle Final Angle (degrees) (degrees) Delta 0 -1.13 -1.13 10 9.22 -0.78 20 21.16 1.16 30 29.09 -0.91 40 40.37 0.37 50 50.31 0.31 60 60.97 0.97 64 64.68 0.68 65 82.83 17.83 68 82.25 14.25 70 77.45 7.45

Figure 5-23: Hook C Change in Cam Angle Side Pull

The results for the damage cable offline pulls (i.e. aft, forward and side) indicate that hook B exhibits the lowest degree of stability of the three on-load hooks tested. Hook C showed the greatest degree of stability (i.e. smallest cam angle changes from initial to final angle) even though hook A had a wider threshold range. In summary, with the release cable disconnected hook C is the least likely to open followed by hook A and finally hook B.

33

5.2.4 Wave loading tests results In order to simulate real life conditions all the on-load hooks were subjected to an oscillating load, representing a forward and aft rocking motion, a side to side rolling motion, or an up and down heave motion. The tests attempt to capture the effects of oscillating applied load (i.e. wave loading) on the cam stability and the possibility of an unexpected hook release during lifeboat descent to the water surface. The tests were conducted for the normal operation (i.e. release cable in place) and for damage operation (i.e. release cable removed). Generally speaking, during wave loading for normal operation, the cam tended to gradually slip or “creep” in small increments thus increasing the likelihood of hook opening and a possibility of premature release. Figures 5-24 through 5-32 show aft, forward and side pulls for hooks A, B and C at 50% total loading (i.e. 1500 kg for hook A, and 3000 kg for hooks B and C). In the figures the cam angle is shown in red and the cyclic applied hook load in blue. Figures 5-24 and 5-25 show the hook A cam angle oscillating between a 0.5° and 1.0° (i.e. ±0.25° single amplitude) as a result of the ±1500 kg applied hook load. In Figure 5-26, the side cyclic applied load induces the cam angle to increase to just less than 1.0°, doubling the amplitude after 40 seconds (i.e. four cycles). The first two figures represent a stable hook (i.e. cam angle oscillation amplitude remains constant) while the last one corresponds to an unstable one (i.e. cam angle oscillation changes amplitude.)

Figure 5-24: Hook A Aft Pull

34

Figure 5-25: Hook A Forward Pull

Figure 5-26: Hook A Side Pull

Hook B aft and forward cyclic applied loads induce little or no cam angle oscillation around 0°, shown in Figures 5-27 and 5-28. In side pull cyclic loading, in Figure 5-29, the applied load induces a 0.5° single amplitude oscillation, which increases to a 1.0° single amplitude over the ten loading cycles.

Figure 5-27: Hook B Aft Pull

35

Figure 5-28: Hook B Forward Pull

Figure 5-29: Hook B Side Pull

Hook C in Figure 5-30 shows an oscillation of approximately 0.25° with some creep in the cam angle as the initial value of 0° decreases to approximately -0.5°. It is important to note here that a negative cam angle represents a movement towards hook closure, so even though it slips slightly over the five load cycles it remains stable. In Figure 5-31 the cam angle level drops just before the 20 seconds mark, and then stabilizes for the remainder of the run, showing a single amplitude oscillation of just under ±0.25°. Figure 5-31 represents a stable condition as well but with slightly higher oscillation amplitude of ±1.5°.

36

Figure 5-30: Hook C Aft Pull

Figure 5-31: Hook C Forward Pull

Figure 5-32: Hook C Side Pull

Once the normal operation wave loading tests were completed, the release cable was removed (i.e. simulated damage condition) in an effort to observe whether the cam

37

instability would increase (i.e. slip or “creep”) under the applied cycle wave loading conditions, given that the cam could now move more freely. As in the previous series of tests the results are presented for hooks A, B and C in an aft, forward and side pull orientation in Figures 5-33 to 5-41. Figure 5-33 shows a ±0.5° single amplitude oscillation, as well as an increasing overall cam angle, indicating cam slippage, which is also seen in the forward, and side pulls. In Figure 5-34, there is a small initial oscillation that becomes larger as the testing progresses. An increase in oscillation is also seen in Figure 5-35. In all three figures there is an upward trend in the cam angle mean value, which represents cam “creep”.

Figure 5-33: Hook A Aft Pull

Figure 5-34: Hook A Forward Pull

38

Figure 5-35: Hook A Side Pull

In Figures 5-36 and 5-37 hook B cam angle oscillations of approximately 0.2°, and just under 1° are recorded. In these two figures a cam angle upward trend is observed indicating the presence of “creep”. In Figure 5-38 a steeper upward trend coupled with larger single amplitude cam angles is observed, going from about ±1.0° at the start of the run to ±1.5° near the end.

Figure 5-36: Hook B Aft Pull

Figure 5-37: Hook B Forward Pull

39

Figure 5-38: Hook B Side Pull

In Figure 5-39, the cam angle moves about 0.25° but exhibits no creep. Figure 5-40 shows some slipping in the cam angle as it doesn’t oscillate but moves gradually overtime downward, representing a hook closure. Figure 5-41 shows a small amount of creep as well as a large oscillation of ±1.5° to ±2.0°.

Figure 5-39: Hook C Aft Pull

40

Figure 5-40: Hook C Forward Pull

Figure 5-41: Hook C Aft Pull

The wave loading testing has shown that the hook cam can slip open during extreme weather conditions over time. It can be also be said that if the release cable is disconnected, the cam is able to move more freely and thus the hook has a higher probability of slipping and opening (i.e. releasing) during extreme weather conditions. This is illustrated in Table 5-10, which summarizes the hook stability/instability seen in the graphs presented for the cyclic applied load tests. Table 5-10: Summary of Wave Loading Hook Stability

Aft Fwd Side

Hook A Stable Stable Unstable

With Cable Hook B Stable Stable Unstable

Hook C Stable Stable Stable

Hook A Unstable Unstable Unstable

Without Cable Hook B Hook C Unstable Stable Unstable Stable Unstable Unstable

From this it can be concluded that Hook C shows the highest degree of stability of the three hooks tested for both the normal and damage operation conditions (i.e. release cable connected, release cable disconnected) and for the aft forward and side cyclic applied load. Hooks A and B show the same degree of stability between them, but are

41

unstable for normal side loading and unstable for all pull directions when the cable is removed. 5.3 Off-Load Test Series Results The analysis of hook D required a different approach since it is of a different type and was therefore tested separately. The following graph, Figure 5-42, shows a plot of the loads placed on the hook before attempting to force the cam open with a torque wrench and with the same wrench fitted with a 10:1 torque multiplier. Each point represents the torque value measured in N-m that was recorded as a result. Required Torque vs. Hook Load

Override Manual Release Torque (N-m)

600 500 400

Torque Wrench With 10:1 Mult.

300 200 100 0 0

1000

2000

3000

4000

5000

6000

Approxim ate Initial Hook Load (kg)

Figure 5-42: Hook D Results

There is a direct relationship between the load applied and the torque needed to open the cam, which can be seen in the above graph. As the load increases, so does the required torque. At a load of 3500 kg, a torque of approximately 330 N-m needed to be applied with the torque wrench in order to rotate the cam and open the hook. After this value, only the 10:1 torque multiplier was used to rotate the cam as it required approximately 430-490 N-m to open at the 4000 kg and 5000 kg loadings, respectively. Note that these loads only make up 33-42% of the total 12 tonne hook capacity. The results indicate the hook works as designed, i.e. offload. The graph is representative of a marine craft splashing down on the water surface and gaining buoyancy thus decreasing the load on the hook and the moment required to rotate the cam and open the hook. The results also indicate that in an emergency, and in the event of the craft not being fully water borne, there would be difficulty in forcing the hook open.

42

6.0 CONCLUSIONS As stated in the introduction, the purpose of this experimental study was to determine the inherent stability of three on-load release mechanisms through various conditions. For the inline normal on-load release tests, it was shown that hook C has a higher degree of stability through its more gradual cam opening rate of 5.03 deg/s compared to 5.95 deg/s and 6.19 deg/s for hooks A and B respectively. The cam angle threshold for hook C was also higher then that of hooks A and B, reaching 74° before releasing. The inline static load tests showed hook C reach a cam angle of 66° before a rapid increase in force, which is higher then that of both hooks A and B. These results also show that the induced forces on the cam are low through it’s operating region. Similar to the inline on-load release tests results, the offline on-load release tests results show hook C with the lowest cam opening rate, as well as the lowest cam opening rate when compared to the inline on-load release tests at 4 times the rate of the inline tests. This implies a higher degree of stability for hook C than hooks A and B. The offline static release tests have shown that hook C experiences the highest positive (closing) moment during aft and side pulls. Hook A was seen to have moments closest to zero for the forward pulls, indicating that it would be the most stable in that situation. Overall however, hook C would have a higher degree of stability. With the release cable disconnected in the damaged cable tests, hook C was shown to have the highest degree of stability as it experienced the smallest change in cam angle from initial to final loading despite the higher threshold seen in hook A. This indicates the hook C would be least likely to open given that the release cable is damaged or disconnected. For both the normal and damage operation conditions during the applied cyclic loading, hook C showed the most stability through the aft, forward and side loading conditions. Both hooks A and B show the same degree of stability, showing instability with side loading and with the release cable removed. Hook D was found to operate as designed, as it opens when the craft is fully water borne, that is, when there is no load on the hook. It was shown that if the hook remains loaded, it requires a substantial amount of torque to open. This implies that in the event of an emergency with the craft out of the water, the hook would be very difficult to open. It has been seen throughout this report that hook C, the next generation design, possesses a higher degree of stability than both hooks A and B. This was illustrated through the closing moment experienced in the on-load release test results for both the inline and offline conditions, as well as in the offline static release tests. Hook C was also the most stable during static load tests and wave loading tests, and also when the release cables are disconnected as shown with the offline and wave loading damaged cable tests.

43

7.0 REFERENCES Guidelines for Developing of Operation and Maintenance Manuals for Lifeboat Systems, IMO MSC 1/Circ. 1205, May 2006, 46 pp. Lang, S. J., 2001 Review of Lifeboat and Launching Systems’ Accidents. Safety Study 1/2001 Marine Accident Investigation Branch, 48 pp. Pechey, J., Pollard, S. 2006. Development of Lifeboat Design, Maritime and Coastguard Agency, Research Project 555, 84 pp. OCIMF, INTERTANKO and SIGITTO, 2000. Lifeboat Incident Survey 2000, Results from a Joint Industry Survey, 23 pp. OCIMF, 1994. Results of a Survey into Lifeboat Safety, 18 pp. P&I Club UK, D. 2002. Bulletin 489 - 09/06 - Another Lifeboat Drill; Another Death Worldwide, Loss Prevention Department, 1 pp. Report to Correspondence Group Part 1, Submitted by United States and Japan 2005. Measures to Prevent Accidents with Lifeboats: Draft Guidelines for the Development of Operation and Maintenance Manuals for Lifeboats, IMO Sub-Committee on Fire & Protection, 50th Session, Agenda Item 13, 47 pp. Report of the Working Group Part 1, 2006. Measures to Prevent Accidents with Lifeboats – Inconsistencies in IMO Instruments Regards Requirements for Life-Saving Appliances, IMO Sub-Committee on Fire & Protection, 50th Session, Agenda Item 13 and 15, 36 pp. Withington, S., 2009. Marine Accident investigation: Improving Evacuation Safety, Marine Accident Investigation Branch, 10 pp. .

44

Appendix A Test Set-up Drawings

A-1

Appendix B Calibrated Sensors

Evaluation of Davit Launched Lifeboats Mechanism Calibration of MTS Load (250kN Range) Calibrated 2006-12-14 15:08 Test Facility: Large Cold Room Data Source: PC002151 Channel 1 Sensor Model: MTS 661-23B-01 Data Point # 1 2 3 4 5

Physical Value (N) 10043. 29429. 49060. 59181. 68695.

Serial #: 2133 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (N) 0.44894 10028. 1.2318 29444. 2.0234 49079. 2.4304 59175. 2.8137 68683.

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) -15.770 15.516 19.305 -6.5380 -12.505

National Research Council Canada Institute for Ocean Technology B-1

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = -1107.6 N, C1 = 24803 N/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of MTS LVDT (100mm Range) Calibrated 2006-12-15 14:06 Test Facility: Large Cold Room Data Source: PC002151 Channel 2 Sensor Model: 244.31 Data Point # 1 2 3 4 5

Physical Value (mm) -79.990 -33.460 2.1400 16.250 64.830

Serial #: 246 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (mm) -7.9888 -79.985 -3.3406 -33.482 0.22126 2.1518 1.6320 16.265 6.4853 64.820

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (mm) 0.0049261 -0.022379 0.011793 0.015397 -0.0097372

National Research Council Canada Institute for Ocean Technology B-2

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Displacement (mm), V(t) = measured value (volts), C0 = -0.061785 mm, C1 = 10.004 mm/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Main Hook Position Calibrated 2006-12-15 11:29 Test Facility: Large Cold Room Data Source: PC002151 Channel 3 Sensor Model: Schaevitz GCD-121-500 Data Point # 1 2 3 4 5 6 7 8 9

Physical Value (mm) 0.00000 4.0010 7.9910 12.062 18.115 22.004 25.027 27.008 29.498

Serial #: 3708 /A11212 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (mm) 6.1260 -0.024867 4.4460 4.0328 2.7948 8.0206 1.1162 12.075 -1.3763 18.095 -2.9765 21.960 -4.2234 24.971 -5.0487 26.965 -6.1446 29.612

Filter Frequency: 10.0 Excitation Voltage: +/-15

Error Definition of Calibration Curve (mm) -0.024867 0.031771 0.029621 0.012871 -0.020069 -0.044077 -0.055584 -0.043323 0.11366

National Research Council Canada Institute for Ocean Technology B-3

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Displacement (mm), V(t) = measured value (volts), C0 = 14.771 mm, C1 = -2.4152 mm/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Release Position Calibrated 2006-12-18 13:04 Test Facility: Large Cold Room Data Source: PC002151 Channel 4 Sensor Model: 25 kOhm/270 deg Pot Data Point # 1 2 3 4 5

Physical Value (deg) 45.000 60.000 90.000 120.00 135.00

Serial #: Programmable Gain: Plug-In Gain: 2

Measured Fitted Curve Value Value (volts) (deg) 0.61934 47.061 1.1967 58.694 2.6490 87.960 4.2904 121.03 4.9958 135.25

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (deg) 2.0609 -1.3059 -2.0403 1.0349 0.25037

National Research Council Canada Institute for Ocean Technology B-4

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Angle (deg), V(t) = measured value (volts), C0 = 34.581 deg, C1 = 20.151 deg/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Release Cable Calibrated 2006-12-18 15:49 Test Facility: Large Cold Room Data Source: PC002151 Channel 5 Sensor Model: Intertechnology 363-D3-2K-20P3 Data Point # 1 2 3 4 5 6

Physical Value (N) 0.00000 196.16 392.32 588.48 784.64 980.80

Serial #: 111045/ NRC A11174 Programmable Gain: Plug-In Gain: 500

Measured Fitted Curve Value Value (volts) (N) 0.045834 0.60086 0.23024 196.03 0.41393 390.69 0.60210 590.10 0.78493 783.86 0.97107 981.12

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) 0.60086 -0.13427 -1.6326 1.6205 -0.77754 0.32326

National Research Council Canada Institute for Ocean Technology B-5

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = -47.972 N, C1 = 1059.8 N/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Load (250kN Range) Calibrated 2007-12-10 15:53 Test Facility: Large Cold Room Data Source: PC002151 Channel 1 Sensor Model: MTS 661-23B-01 Data Point # 1 2 3 4

Physical Value (kN) 0.00000 9.8080 58.848 117.70

Serial #: 2133 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (kN) -0.0033899 0.0032165 0.38868 9.8056 2.3501 58.846 4.7040 117.70

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (kN) 0.0032165 -0.0023760 -0.0020750 0.0012384

National Research Council Canada Institute for Ocean Technology B-6

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (kN), V(t) = measured value (volts), C0 = 0.087971 kN, C1 = 25.002 kN/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Disp (100mm Range) Calibrated 2007-12-10 15:55 Test Facility: Large Cold Room Data Source: PC002151 Channel 2 Sensor Model: 244.31 Data Point # 1 2 3

Physical Value (mm) -80.000 0.00000 80.000

Serial #: 246 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (mm) -8.0030 -80.001 -0.0033639 0.0014080 7.9958 79.999

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (mm) -0.00070597 0.0014080 -0.00070206

National Research Council Canada Institute for Ocean Technology B-7

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Displacement (mm), V(t) = measured value (volts), C0 = 0.035049 mm, C1 = 10.001 mm/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Load (25kN Range) Calibrated 2007-12-11 10:00 Test Facility: Large Cold Room Data Source: PC002151 Channel 1 Sensor Model: MTS 661-23B-01 Data Point # 1 2 3 4

Physical Value (kN) -23.750 0.00000 2.5000 23.750

Serial #: 2133 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (kN) -9.5035 -23.750 -0.0034354 0.00050955 0.99634 2.5000 9.4960 23.750

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (kN) -0.00026322 0.00050955 1.7710e-05 -0.00026398

National Research Council Canada Institute for Ocean Technology B-8

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (kN), V(t) = measured value (volts), C0 = 0.0090982 kN, C1 = 2.5001 kN/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Disp (100mm Range) Calibrated 2007-12-10 15:55 Test Facility: Large Cold Room Data Source: PC002151 Channel 2 Sensor Model: 244.31 Data Point # 1 2 3

Physical Value (mm) -80.000 0.00000 80.000

Serial #: 246 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (mm) -8.0030 -80.001 -0.0033639 0.0014080 7.9958 79.999

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (mm) -0.00070597 0.0014080 -0.00070206

National Research Council Canada Institute for Ocean Technology B-9

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Displacement (mm), V(t) = measured value (volts), C0 = 0.035049 mm, C1 = 10.001 mm/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Hook Tension Calibrated 2007-04-24 11:22 Test Facility: Large Cold Room Data Source: PC002151 Channel 1 Sensor Model: StrainSert FL25U(c)-3SPKT Data Point # 1 2 3 4 5 6

Physical Value (N) 11360. 18860. 27360. 37870. 45800. 50260.

Serial #: 018449-1/ NRC 200380 Programmable Gain: Plug-In Gain: 200

Measured Fitted Curve Value Value (volts) (N) 1.0148 11353. 1.6892 18863. 2.4525 27364. 3.3960 37871. 4.1100 45822. 4.5064 50237.

Filter Frequency: 300.0 Excitation Voltage: 6

Error Definition of Calibration Curve (N) -7.3779 2.5512 3.9143 1.4842 22.429 -22.996

National Research Council Canada Institute for Ocean Technology B-10

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = 51.152 N, C1 = 11137 N/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of MTS LVDT (100mm Range) Calibrated 2006-12-15 14:06 Test Facility: Large Cold Room Data Source: PC002151 Channel 2 Sensor Model: 244.31 Data Point # 1 2 3 4 5

Physical Value (mm) -79.990 -33.460 2.1400 16.250 64.830

Serial #: 246 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (mm) -7.9888 -79.985 -3.3406 -33.482 0.22126 2.1518 1.6320 16.265 6.4853 64.820

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (mm) 0.0049261 -0.022379 0.011793 0.015397 -0.0097372

National Research Council Canada Institute for Ocean Technology B-11

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Displacement (mm), V(t) = measured value (volts), C0 = -0.061785 mm, C1 = 10.004 mm/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Deck Load Calibrated 2007-04-21 09:07 Test Facility: Large Cold Room Data Source: PC002151 Channel 3 Sensor Model: Transdeucer,Inc , c92-20k-10p1 Data Point # 1 2 3 4 5

Physical Value (N) -62663. -50050. -37663. -25075. -12550.

Serial #: 19285/ nrc 166921 Programmable Gain: Plug-In Gain: 500

Measured Fitted Curve Value Value (volts) (N) -2.8570 -62667. -2.2883 -50047. -1.7303 -37664. -1.1624 -25063. -0.59890 -12559.

Filter Frequency: 300.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) -4.5129 2.9284 -1.3978 12.096 -9.1194

National Research Council Canada Institute for Ocean Technology B-12

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = 730.5 N, C1 = 22190 N/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Pin Load Calibrated 2007-04-21 08:51 Test Facility: Large Cold Room Data Source: PC002151 Channel 4 Sensor Model: StrainSert CBA-1.25(SS) X Data Point # 1 2 3 4 5 6 7 8

Physical Value (N) -37650. -25100. -12650. 12650. 25000. 37538. 50050. 62500.

Serial #: 018449-2/ NRC 200381 Programmable Gain: Plug-In Gain: 500

Measured Fitted Curve Value Value (volts) (N) -4.4843 -37525. -3.0032 -25141. -1.5340 -12856. 1.5260 12731. 2.9996 25053. 4.4954 37560. 5.9890 50049. 7.4740 62466.

Filter Frequency: 300.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) 125.03 -40.707 -205.84 81.314 52.595 22.948 -1.1768 -34.163

National Research Council Canada Institute for Ocean Technology B-13

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = -28.706 N, C1 = 8361.6 N/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Cam Position Calibrated 2007-07-25 11:01 Test Facility: Large Cold Room Data Source: PC002151 Channel 5 Sensor Model: Data Point # 1 2 3 4 5

Physical Value (deg) -35.000 0.00000 45.000 90.000 110.00

Serial #: Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (deg) 1.1879 -34.967 2.6005 0.010144 4.4137 44.907 6.2351 90.008 7.0442 110.04

Filter Frequency: Excitation Voltage: 10

Error Definition of Calibration Curve (deg) 0.032990 0.010144 -0.092891 0.0075357 0.042231

National Research Council Canada Institute for Ocean Technology B-14

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Angle (deg), V(t) = measured value (volts), C0 = -64.382 deg, C1 = 24.761 deg/volt.

Evaluation of Davit Launched Lifeboats Mechanism Calibration of Release Cable Calibrated 2007-04-25 12:13 Test Facility: Large Cold Room Data Source: PC002151 Channel 6 Sensor Model: Intertechnology 363-D3-2K-20P3 Data Point # 1 2 3 4 5 6 7 8

Physical Value (N) 0.00000 49.040 245.20 441.36 637.52 784.64 1226.0 1422.2

Serial #: 111045/ NRC A11174 Programmable Gain: Plug-In Gain: 500

Measured Fitted Curve Value Value (volts) (N) 0.022909 0.89837 0.068090 48.789 0.25354 245.36 0.43881 441.73 0.62201 635.92 0.76187 784.17 1.1791 1226.4 1.3643 1422.7

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) 0.89837 -0.25066 0.15881 0.37180 -1.5999 -0.47076 0.38069 0.51166

National Research Council Canada Institute for Ocean Technology B-15

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = -23.384 N, C1 = 1060 N/volt.

LIFEBOAT RELEASE MECHANISMS Calibration of MTS Load (250kN Range) Calibrated 2006-12-14 15:08 Test Facility: LARGE COLD ROOM Data Source: PC002151 Channel 1 Sensor Model: MTS 661-23B-01 Data Point # 1 2 3 4 5

Physical Value (N) 10043. 29429. 49060. 59181. 68695.

Serial #: 2133 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (N) 0.44894 10028. 1.2318 29444. 2.0234 49079. 2.4304 59175. 2.8137 68683.

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) -15.770 15.516 19.305 -6.5380 -12.505

National Research Council Canada Institute for Ocean Technology B-16

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = -1107.6 N, C1 = 24803 N/volt.

LIFEBOAT RELEASE MECHANISMS Calibration of MTS LVDT (100mm Range) Calibrated 2006-12-15 14:06 Test Facility: LARGE COLD ROOM Data Source: PC002151 Channel 2 Sensor Model: 244.31 Data Point # 1 2 3 4 5

Physical Value (mm) -79.990 -33.460 2.1400 16.250 64.830

Serial #: 246 Programmable Gain: Plug-In Gain:

Measured Fitted Curve Value Value (volts) (mm) -7.9888 -79.985 -3.3406 -33.482 0.22126 2.1518 1.6320 16.265 6.4853 64.820

Filter Frequency: 10.0 Excitation Voltage: 10

Error Definition of Calibration Curve (mm) 0.0049261 -0.022379 0.011793 0.015397 -0.0097372

National Research Council Canada Institute for Ocean Technology B-17

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Displacement (mm), V(t) = measured value (volts), C0 = -0.061785 mm, C1 = 10.004 mm/volt.

LIFEBOAT RELEASE MECHANISMS Calibration of Deck Load Calibrated 2007-04-21 09:07 Test Facility: LARGE COLD ROOM Data Source: PC002151 Channel 3 Sensor Model: Transdeucer,Inc , c92-20k-10p1 Data Point # 1 2 3 4 5

Physical Value (N) -62663. -50050. -37663. -25075. -12550.

Serial #: 19285/ nrc 166921 Programmable Gain: Plug-In Gain: 500

Measured Fitted Curve Value Value (volts) (N) -2.8570 -62667. -2.2883 -50047. -1.7303 -37664. -1.1624 -25063. -0.59890 -12559.

Filter Frequency: 300.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) -4.5129 2.9284 -1.3978 12.096 -9.1194

National Research Council Canada Institute for Ocean Technology B-18

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = 730.5 N, C1 = 22190 N/volt.

LIFEBOAT RELEASE MECHANISMS Calibration of Pin Load Calibrated 2007-04-21 08:51 Test Facility: LARGE COLD ROOM Data Source: PC002151 Channel 4 Sensor Model: StrainSert CBA-1.25(SS) X Data Point # 1 2 3 4 5 6 7 8

Physical Value (N) -37650. -25100. -12650. 12650. 25000. 37538. 50050. 62500.

Serial #: 018449-2/ NRC 200381 Programmable Gain: Plug-In Gain: 500

Measured Fitted Curve Value Value (volts) (N) -4.4843 -37525. -3.0032 -25141. -1.5340 -12856. 1.5260 12731. 2.9996 25053. 4.4954 37560. 5.9890 50049. 7.4740 62466.

Filter Frequency: 300.0 Excitation Voltage: 10

Error Definition of Calibration Curve (N) 125.03 -40.707 -205.84 81.314 52.595 22.948 -1.1768 -34.163

National Research Council Canada Institute for Ocean Technology B-19

Polynomial Degree = 1 (Linear Fit) Y = C0 + C1 · V where Y(t) = Force (N), V(t) = measured value (volts), C0 = -28.706 N, C1 = 8361.6 N/volt.

Appendix C Test Log

Date Das Time File 19-Dec-06 19-Dec-06 19-Dec-06 14:38 19-Dec-06 14:42 TSB_L0P0_DYN_01_001 19-Dec-06 15:06 TSB_L0P5_DYN_01_002 19-Dec-06 TSB_L1P0_DYN_01_003 19-Dec-06 15:18 TSB_L1P5_DYN_01_004 19-Dec-06 15:13 TSB_L2P0_DYN_01_005 19-Dec-06 15:35 TSB_L2P5_DYN_01_006 19-Dec-06 15:41 TSB_L3P0_DYN_01_007 19-Dec-06 15:46 TSB_L0P0_DYN_02_008 19-Dec-06 15:49 TSB_L0P5_DYN_02_009 19-Dec-06 15:52 TSB_L1P0_DYN_02_010 19-Dec-06 15:56 TSB_L1P5_DYN_02_011 19-Dec-06 15:59 TSB_L2P0_DYN_02_012 19-Dec-06 16:01 TSB_L2P0_DYN_02_013 19-Dec-06 16:06 TSB_L3P0_DYN_02_014 19-Dec-06 16:09:28 TSB_L0P0_DYN_03_015 19-Dec-06 16:11:02 TSB_L0P5_DYN_03_016 19-Dec-06 16:13:36 TSB_L1P0_DYN_03_017 19-Dec-06 16:17:52 TSB_L1P5_DYN_03_018 19-Dec-06 16:21:51 TSB_L2P0_DYN_03_019 19-Dec-06 16:27:16 TSB_L2P0_DYN_03_020 19-Dec-06 16:29:45 TSB_L2P5_DYN_03_021 19-Dec-06 17:07:17 TSB_L0P5_a00_01_022 19-Dec-06 17:11:16 TSB_L0P5_a20_01_023 19-Dec-06 17:15:16 TSB_L0P5_a40_01_024 19-Dec-06 17:20:40 TSB_L0P5_a45_01_025 19-Dec-06 17:28:23 TSB_L0P5_a47_01_026 19-Dec-06 17:34:29 TSB_L0P5_a48_01_027 19-Dec-06 17:41:34 TSB_L0P5_a49_01_028 19-Dec-06 17:47:00 TSB_L0P5_a485_01_029 19-Dec-06 18:13:48 TSB_L0P5_a10_01_030 19-Dec-06 18:17:31 TSB_L0P5_a30_01_031 20-Dec-06 20-Dec-06 7:38:08 TSB_L0P5_a10_02_032 20-Dec-06 7:40:38 TSB_L0P5_A10_03_033 20-Dec-06 7:45:07 TSB_L1P5_a10_01_034 20-Dec-06 7:53:03 TSB_L1P0_a10_01_035 20-Dec-06 7:55:01 TSB_L2P0_a10_01_036 20-Dec-06 7:58:21 TSB_L2P5_a10_01_037 20-Dec-06 8:01:50 TSB_L3P0_a10_01_038 20-Dec-06 8:09:21 TSB_L0P5_a30_01_039 20-Dec-06 8:11:46 TSB_L1P0_a30_01_040 20-Dec-06 8:14:24 TSB_L1P5_a30_01_041 20-Dec-06 8:19:08 TSB_L2P0_a30_01_042 20-Dec-06 8:21:26 TSB_L2P5_a30_01_043 20-Dec-06 8:23:47 TSB_L3P0_a30_01_044 20-Dec-06 8:31:40 TSB_L0P5_a40_01_045 20-Dec-06 8:33:42 TSB_L1P0_a40_01_046 20-Dec-06 8:36:04 TSB_L1P5_a40_01_047

Institute for Ocean Technology Transport Canada

Video Start Video End 0:04:37 0:04:37 0:13:49 0:13:49 0:13:49 0:02:25 0:04:04 0:01:21 0:02:59 0:04:52 0:06:36 0:00:36 0:02:11 0:03:20 0:04:39 0:06:21 0:08:04 0:10:07 0:10:49 0:12:06 0:13:35 0:15:05 0:16:23 0:18:27 0:20:00 0:21:22 0:22:46 0:24:10 0:02:09 0:04:28 0:07:00 0:07:50 0:09:57 0:11:28 NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV

0:01:21

Tape Set Number

National Research Council Canada Large Cold Room PJ 42_2188_16

Comment

Intial Cam Angle Intial Load

Rezero Cam Angle at full lock position, previously 123.6º To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open To full open Static Static Static Static Static Static Static, Released on Slightest loading Static Static Static Rattling thru known static cases without video

On offload truned loaded to 3000 kg momentarily

C-1

Final Position

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 39.8 45.4 47.2 48.01 49.1 48.48 10.5 30.02

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 500 500 500 500 500 500 500 500 500 500

10.32 10.47 10.4 10.7 10.7 10.05 9.81 29.3 29.3 29.06 29.14 29.18 29.22 39.8 39.7 39.74

500 500 1500 1000 2000 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500

Open Open Open Open Open Open Open Open Open Open Open Open Open Open Open Open Open Open Open Open Open

open

Estimated Release Cam Angle

49.93 50.1 50 49.8

20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec-06 20-Dec_06

8:38:40 8:43:28 8:46:19 8:52:18 8:54:49 8:57:04 9:02:05 9:04:31 9:06:46 9:11:56 9:15:32 9:18:32 9:21:10 9:23:41 9:25:59 9:37:16 9:39:24 9:41:25 9:44:14 9:46:56 9:49:25 9:57:00 9:59:18 10:01:29 10:05:16 10:08:18 10:11:36 10:37:49 10:49:02 10:53:05 11:10 11:15 11:18:57 11:18:57 14:00

21-Dec_06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06 21-Dec-06

11:49 13:58:55 14:09:07 14:20:39 14:24:25 14:29:21 14:35:53 14:40:47 14:49:02 15:16:48 15:26:11 15:31:21 15:38:25 15:44:25 15:52:23 15:57:46 16:05:11 16:09:48 16:16:21 16:27:12 16:33:11 16:39:45 16:46:03

TSB_L2P0_a40_01_048 TSB_L2P5_a40_01_049 TSB_L3P0_a40_01_050 TSB_L0P5_a20_01_051 TSB_L1P0_a20_01_052 TSB_L1P5_a20_01_053 TSB_L2P0_a20_01_054 TSB_L2P5_a20_01_055 TSB_L3P0_a20_01_056 TSB_L0P5_a00_01_057 TSB_L1P0_a00_01_058 TSB_L1P5_a00_01_059 TSB_L2P0_a00_01_060 TSB_L2P5_a00_01_061 TSB_L3P0_a00_01_062 TSB_L0P5_a45_01_063 TSB_L1P0_a45_01_064 TSB_L1P5_a45_01_065 TSB_L2P5_a45_01_066 TSB_L2P0_a45_01_067 TSB_L3P0_a45_01_068 TSB_L0P5_a48_01_069 TSB_L1P0_a48_01_070 TSB_L1P5_a48_01_071 TSB_L2P0_a48_01_072 TSB_L2P5_a48_01_073 TSB_L3P0_a48_01_074 TSB_L0P5_a485_01_075 TSB_L1P0_a485_01_076 TSB_L1P5_a485_01_077 TSB_L1P5_a485_02_078 TSB_L1P5_a485_03_079 TSB_L2P0_a485_01_080 TSB_L2P0_a485_02_081

NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV

Note full lock CW position is -23º

0:13:15 0:00 0:01:46 0:02:51 0:03:57 0:06:02 0:07:33

0:02:51

1 2 2 Hook Release @ ~1200 kg 2 Hook release 2 2 Hook Release at load 2 TSB Hook Out/Decomission

39.6 39.8 39.68 20.64 20.53 20.5 20.45 20.44 20.43 -0.86 0.65 0.51 0.45 0.5 0.44 44.7 45.55 45.6 45.6 45.7 45.7 47.9 48.2 48 48.14 48.1 48.45 48.61 48.59 48.5 48.48 48.66 48.66

2000 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500 2500 2000 3000 500 1000 1500 2000 2500 3000 500 1000 1500 Open 1500 open 1500 2000 open 2000

17.8 17.89 17.95 19.65 17.59 17.62 18.2 18.08 16.55 39.17 62.9 81.06 89.5 73.67 86.6 17.7 19.2 16.54 18.42 40.91 62.32 81.04

0 1000 1000 1000 3000 3000 3000 3000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 6000 6000 6000 6000

Tors Hook In place. Tail Stop Position Renamed Main Hook Position. Cam Position Rezeroed. tors_L0_dyn_01_081 tors_L1_dyn_01_082 tors_L1_dyn_02_083 tors_L1_dyn_03_084 tors_L3_dyn_01_085 tors_L3_dyn_02_086 tors_L3_dyn_02_087 tors_L6_dyn_01_088 tors_L1_A00_01_089 tors_L1_A20_01_090 tors_L1_A40_01_091 tors_L1_A60_01_092 tors_L1_A70_01_093 tors_L1_A50_01_094 tors_L1_A65_01_095 tors_L1_A00_02_096 tors_L1_A02_01_097 tors_L1_Am01_01_098 tors_L6_A01_01_099 tors_L6_A20_01_100 tors_L6_A40_01_101 tors_L6_A60_01_102

0:07:33 0:08:15 0:01:42 0:03:08 0:04:29 0:06:13 0:08:07 0:09:48 NV NV NV NV NV NV NV NV NV NV NV NV NV NV

0:01:42 0:03:08 0:04:29 0:06:13 0:08:07 0:09:48 0:11:39

2 2 2 2 2 2 2 2 2 2 2 2 2 load didn't com off Release after hook unloaded (jammed) 2 2 2 2 2 2 2 2 2

C-2

21-Dec-06 21-Dec-06 21-Dec-06

16:50:45 tors_L6_A65_01_103 16:55:39 tors_L6_A50_01_104 17:00:55 tors_L6_A01_02_105

NV NV NV

2 2 2

10-Jan-07 10-Jan-07 10-Jan-07

15:17:11 tors_L2_dyn_01_106 15:23:36 tors_L2_dyn_02_107 5:32:11 tors_L2_dyn_03_108

11:36 13:53 13:53

13:53 15:34

11-Jan-07 11-Jan-07 11-Jan-07

10:18:47 tors_L4_dyn_01_109 10:33:38 tors_L4_dyn_02_110 10:53:48 tors_L4_dyn_03_111

0:17:05 0:19:01 0:20:29

0:19:01 0:20 0:21

11-Jan-07 11-Jan-07 11-Jan-07 11-Jan-07 11-Jan-07 11-Jan-07 11-Jan-07

11:15:25 11:34:01 11:38:07 11:46:51 12:03:03 12:11:38 12:25:17

TORS_L0p1_Am00_01_112 TORS_L0p1_Am02p5_01_113 TORS_L0p1_Am05_01_114 TORS_L0p1_Am10_01_015 TORS_L0p1_Am15_01_016 TORS_L0p1_Am05_01_117 TORS_L0p1_Am01_01_118

NV NV NV NV NV NV NV

12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07

9:25:19 9:31:01 9:35:32 9:39:46 9:44:05 9:48:00 9:56:46 9:59:57 10:04:54 10:07:52 10:11:07 10:15:33 10:53:16 10:57:14 11:34:44 11:37:51 11:40:46 11:43:14 11:48:37 11:51:30 11:54:39 11:57:42 12:01:19 12:04:01 12:08:09 12:11:11 12:13:55 12:18:30 12:23:40 12:27 12:38:54 12:42:41 12:46:12 12:49:40 12:52:44 12:55:39 13:00:10 13:06:09 13:09:09 13:12:48

TORS_L1_A30_01_119 TORS_L3_A30_01_120 TORS_L5_A30_01_121 TORS_L6_A30_01_122 TORS_L4_A30_01_123 TORS_L2_A30_01_124 TORS_L1_A10_01_125 TORS_L3_A10_01_126 TORS_L5_A10_01_127 TORS_L6_A10_01_128 TORS_L4_A10_01_129 TORS_L2_A10_01_130 TORS_L1_A00_03_131 TORS_L3_A00_01_132 TORS_L5_A00_01_133 TORS_L6_A00_01_134 TORS_L4_A00_01_135 TORS_L2_A00_01_136 TORS_L1_A20_02_137 TORS_L3_A20_01_138 TORS_L5_A20_01_139 TORS_L6_A20_02_140 TORS_L4_A20_01_141 TORS_L2_A20_01_142 TORS_L1_A40_02_143 TORS_L3_A40_01_144 TORS_L5_A40_01_145 TORS_L6_A40_02_146 TORS_L4_A40_01_147 TORS_L2_A40_01_148 TORS_L1_A50_02_149 TORS_L3_A50_01_150 TORS_L5_A50_01_151 TORS_L6_A50_02_152 TORS_L4_A50_01_153 TORS_L2_A50_01_154 TORS_L1_A60_02_155 TORS_L3_A60_01_156 TORS_L5_A60_01_157 TORS_L6_A60_02_158

NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV

86.6 73.54 18.53

6000 6000 6000

2 2 2

18.58 18.2 18.5

2000 2000 2000

2 2 2

19.16 18.16 18.16

4000 4000 4000

18.16 16.8 9.5 5.7 2.5 13.7 17.6

100 100 100 100 100 100 100

52.2 51.89 52.14 51.4 51.28 51.6 28.2 28.3

1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000

End of Dec program

Over-rotation 2 2 2 More like a 10º 2 2 2

28.56 28.39 18.74 18.66 18.62 18.72 18.54 18.53 41.02 40.44 40.46 40.57 40.62 40.58 63.4 62.6 62.76 62.63 62.7 62.5 72.9 73.05 73.02 72.9 72.9 72.9 81.41 80.82 80.56 81.05

wiggled hook at start

C-3

12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07 12-Jan-07

13:18:00 13:21:52 13:48:49 13:54:45 13:58:05 14:00:31 14:04:07 14:07:53 14:13:13 14:15:28 14:20:51 14:25:08 14:28:58 14:31:51 14:34:26 14:37:48 14:44:22

TORS_L4_A60_01_159 TORS_L2_A60_01_160 Tors_free_L1_Am20_01_161 Tors_free_L1_Am10_01_162 Tors_free_L1_A00_01_163 Tors_free_L1_A10_01_164 Tors_free_L1_A20_01_165 Tors_free_L1_A30_01_166 Tors_free_L1_A25_01_167 Tors_free_L1_A22_01_168 Tors_free_L1_A23_01_169 Tors_free_L1_A24_01_170 Tors_free_L1_A25_02_171 Tors_free_L1_A30_02_172 Tors_free_L1_A40_01_173 test_174 test_175

NV NV 0:21:56 0:22:30 0:23:20 0:24:07 0:24:59 0:25:52 0:01:11 0:01:57 0:03:04 0:04:19 0:05:36 0:06:43 0:07:43 0:08:35

17-Jan-07 17-Jan-07 17-Jan-07

17:33:29 ROC_shakedown_176 17:47:09 ROC_shakedown_177

18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07

10:37:46 10:46:09 10:48:24 10:54:42 10:59:11 11:07:15 11:11:58 11:15:41 11:19:08

18-Jan-07

11:27:49 ROC_L1_A00_01_187

NV

18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07 18-Jan-07

11:32:20 11:41:30 11:44:06 11:45:54 11:48:16 11:51:25 11:54:34 11:57:39 12:02:07 12:05:04 12:08:00

ROC_L1_A00_02_188 ROC_L1_A20_01_189 ROC_L1_A20_02_190 ROC_L1_A40_01_191 ROC_L1_A60_01_192 ROC_L1_A80_01_193 ROC_L1_A70_01_194 ROC_L1_A75_01_195 ROC_L1_A74_01_196 ROC_L1_A73_01_197 ROC_L1_A72_01_198

NV NV NV NV NV

19-Jan-07 19-Jan-07 19-Jan-07 19-Jan-07 19-Jan-07

9:33:30 9:38:33 9:42:10 9:46:51 9:50:23

ROC_L3_A70_01_199 ROC_L3_A69_01_200 ROC_L3_A70_02_201 ROC_L5_A69_01_202 ROC_L5_A68_01_203

23-Jan-07 23-Jan-07 23-Jan-07 23-Jan-07 23-Jan-07

9:36:07 9:55:10 9:59:22 10:03:21 10:07:52

rock_test_204 ROC_L1_A20_03_205 ROC_L1_A40_02_206 ROC_L1_A60_02_207 ROC_L1_A50_01_208

0:05:36

0:10:31

2 2 2 2 2 2 time code 00, full release 2 Full Release 2 2 2 2 2 2 no video, Load 1000kg Cycle T=20s, Amp ~800kg 2 Load 1000kg Cycle T=20s, Amp ~800kg

80.72 80.62 1.2 9.6 19.13 29.8 41.3 53.9 47.3 42.9 44.4 45.1 47.23 53.54 65.7 1.2 42.2

4000 2000 1000 1000 1000 1000 OPEN !!!!! OPEN !!!!!

1000 1000

Comissioned Roc-Loc 6 NV NV

ROC_L0_DYN_01_178 ROC_L0_DYN_02_179 ROC_L1_DYN_01_180 ROC_L3_DYN_01_181 ROC_L5_DYN_01_182 ROC_L6_DYN_01_183 ROC_L4_DYN_01_184 ROC_L2_DYN_01_185 ROC_L6_DYN_02_186

0 10 0:10:30 0:11:28 0:12:07 0:13:38 0:14:57 0:16:39 0:18:03 0:19:31 0:20:44

NV NV NV NV NV

500 open 500 open

2 Actuator rotated a bit, locked down 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0

0 0 1000 3000 5000 6000 4000 2000 6000

initial angle 45 then set to zero for loading check. Manually 2 set hook to reduce contact load between cylinder and hook.

0

1000

0 20 20 40 60 80 70 75 74 73 72

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

70 69 70 69 68

3000 3000 3000 5000 5000

20 40 60 50

1000 1000 1000 1000

0:22:00 0:23:21 0:24:33 0:25:28 0:26:14 0:27:17

2 2 2 2 2 2 2 2 2 2 2

0:00:00 0:01:09 0:01:09 0:02:49 0:02:49 0:03:52 0:03:52 0:04:54 0:04:54 0:06:08:14

3 3 3 3 3

initial angle 45 then set to zero for loading check. Held at zero, Compressive load on release cable signifcantly higher

Release with no loading Release with some load , darn close to critical angle Release with some load Release with some load

Release with some load Held Release with some load Release with some load Actuator hold down failed

3 Repair in place, Actuator sweep load check 3 3 3 3

C-4

open open open open open open open open open

open open open open

open open open open

23-Jan-07 23-Jan-07

10:10:07 ROC_L1_A30_01_209 10:11:55 ROC_L1_A10_01_210

NV NV

3 3

30 10

1000 1000

25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07 25-Jan-07

10:35:18 11:14:37 11:22:45 11:25:49 11:28:39 11:31:45 11:39:47 11:42:16 11:44:33 11:46:57 13:21:05 13:24:44 13:31:32 13:34:20 13:37:22 13:41:18 13:43:23 13:45:40 17:08:00 17:10:35 17:12:46 17:15:10 17:17:16 17:20:33 17:23:44 17:26:34 17:29:13 17:31:11 17:33:20 17:35:35

ROC_L1_A20_04_211 ROC_L3_A20_01_212 ROC_L5_A20_01_213 ROC_L6_A20_01_214 ROC_L4_A20_01_215 ROC_L2_A20_01_216 ROC_L1_A40_03_217 ROC_L3_A40_01_218 ROC_L5_A40_01_219 ROC_L6_A40_01_220 ROC_L4_A40_01_221 ROC_L2_A40_01_222 ROC_L1_A50_02_223 ROC_L3_A50_01_224 ROC_L5_A50_01_225 ROC_L6_A50_01_226 ROC_L4_A50_01_227 ROC_L2_A50_01_228 ROC_L1_A30_02_229 ROC_L3_A30_01_230 ROC_L5_A30_01_231 ROC_L6_A30_01_232 ROC_L4_A30_01_233 ROC_L2_A30_01_234 ROC_L1_A10_02_235 ROC_L3_A10_01_236 ROC_L5_A10_01_237 ROC_L6_A10_01_238 ROC_L4_A10_01_239 ROC_L2_A10_01_240

NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

20 20 20 20 20 20 40 40 40 40 40 40 50 50 50 50 50 50 30 30 30 30 30 30 10 10 10 10 10 10

1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000 1000 3000 5000 6000 4000 2000

26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07

9:49:05 9:54:13 9:57:06 9:59:41 10:02:36 10:05:10

ROC_L1_A60_03_241 ROC_L3_A60_01_242 ROC_L5_A60_01_243 ROC_L6_A60_01_244 ROC_L4_A60_01_245 ROC_L2_A60_01_246

NV NV NV NV NV NV

3 3 3 3 3 3

26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07 26-Jan-07

11:26:19 11:33:22 11:38:28 13:35:56 15:57:26 16:02:21 16:06:06 16:10:27 16:18:15 16:24:13 16:31:42 16:39:31 16:44:33 16:50:46 16:58:18 17:16:42 17:24:15 17:28:09 17:32:31

ROC_L0p1_A05p0_01_247 ROC_L0p1_A02p0_01_248 ROC_L0p1_A00p0_01_249 ROC_L0p1_A00p0_02_250 ROC_L0p1_Am5p0_01_251 ROC_L0p1_Am7p5_01_252 ROC_L0p1_Am6p0_01_253 ROC_L0p1_Am5p0_02_254 ROC_L0p1_Am4p0_01_255 ROC_L0p1_Am3p0_01_256 ROC_L0p1_Am2p0_01_257 ROC_L0p1_Am1p0_01_258 ROC_L0p1_Am0p0_01_259 ROC_L0p1_A00p0_01_260 ROC_L0p1_A01p0_01_261 ROC_L0p1_A02p0_01_262 ROC_L0p1_A03p0_01_263 ROC_L0p1_A04p0_01_264 ROC_L0p1_A05p0_02_265

NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV NV nv nv nv

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1000 3000 5000 6000 4000 2000

Left hook at 5 deg then rotated to zero prior to testing set hook loose to angle then installed loop & loaded set hook loose to angle then installed loop & loaded

Hook Loaded then slipped, Load didn't drop on Release Cable Hook Loaded then slipped, Load didn't drop on Release Cable Hook Loaded then slipped, Load didn't drop on Release Cable Hook Loaded then slipped, Load didn't drop on Release Cable -0 Hook Loaded then slipped, Load didn't drop on Release Cable +0

4.44 2.04 5 0 -5 -7.5 -6 -5 -4 -3 -2 -1

1 2 3 4 4

C-5

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07 29-Jan-07

14:27:56 14:31:14 14:33:45 14:37:03 14:41:43 14:44:53 14:47:32 14:50:00 14:53:09 14:57:27 15:00:51 15:04:35 15:07:49 15:10:14 15:13:52 15:31:37 15:36:43 15:40:29 15:44:22 15:48:06 16:02:22 16:19:50 16:22:27 16:25:40 16:28:05

ROC_l1_A72_02_266 ROC_l1_A71_01_267 ROC_l1_A70_02_268 ROC_l1_A69_01_269 ROC_l3_A70_02_270 ROC_l3_A69_02_271 ROC_l3_A68_01_272 ROC_l3_A67_01_273 ROC_l3_A66_01_274 ROC_l5_A69_02_275 ROC_l5_A70_01_276 ROC_l5_A68_02_277 ROC_l5_A67_01_278 ROC_l5_A66_01_279 ROC_l5_A66_02_280 ROC_l5_A65_01_281 ROC_l5_A64_01_282 ROC_l5_A63_01_283 ROC_l5_A62_01_284 ROC_l5_A61_01_285 ROC_l6_A61_01_286 ROC_l6_A62_01_287 ROC_l6_A63_01_288 ROC_l6_A64_01_289 ROC_l6_A65_01_290

0:06:01 0:07:17 0:08:52 0:10:55 0:12:45 0:14:05 0:15:16 0:16:20 0:18:03 0:19:38 0:20:53 0:20:53 0:23:24 0:23:24 0:26:52 0:26:52 0:29:18 0:30:27 0:32:03 0:34:23 0:36:01 0:38:15 0:40:00 0:41:42 0:42:38

0:07:17 0:08:52 0:10:55 0:12:45 0:14:05 0:15:16 0:16:20 0:18:03 0:19:38 0:20:53 0:22:12 0:23:24 0:24:29 0:26:52 0:28:00 0:29:18 0:30:27 0:32:03 0:34:23 0:36:01 0:38:15 0:40:00 0:41:42 0:42:38 0:43:28

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

held with slip, released when load cam off Pop!!! poped near max load held with continious slip, then failed held, very slow slip,

slipped then popped slipped then popped slipped then popped

C-6

72 71 70 69 70 69 68 67 66 69 70 68 67 66 66 65 64 63 62 61 61 62 63 64 65

1000 1000 1000 1000 3000 3000 3000 3000 3000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 6000 6000 6000 6000 6000

open open held held open open open held held open open open open held, barely held with slip, released when load cam off open poped open

7

National Research Council Canada Large Cold Room PJ 42_2188_16

Intial Cam Angle

Intial Load

10.36 19.93 30.25

0 0 500 1000 1500 2000 2500 3000 3000 3000 3000

Side Angle(deg)

Aft Angle(deg)

Fwd Angle(deg)

Tape Set Numbe

File

Video Start

Video (Y/N)

Date Das Time 08-May-07 08-May-07 14:42 08-May-07 16:46 08-May-07 15:01 08-May-07 15:34 08-May-07 15:43 08-May-07 15:49 08-May-07 15:56 08-May-07 16:07 08-May-07 16:13 08-May-07 16:20

PJ2188_LCR_log_May06.xls

Closed Closed Closed Closed Closed Closed Closed

Comment Rezero cam closed To full open To full open To full open To full open To full open To full open To full open

SS_L0P0_A50_DYN_001 SS_L0P5_A50_DYN_002 SS_L1P0_A50_DYN_003 SS_L1P5_A50_DYN_004 SS_L2P0_A50_DYN_005 SS_L2P5_A50_DYN_006 SS_L3P0_A50_DYN_007 SS_L3p0_A50_C10_008 SS_L3p0_A50_C20_009 SS_L3p0_A50_C30_010

y y y y y y y n n n

0:00:00 0:01:00 0:03:00 0:04:30 0:07:30 0:09:30 0:11:30 0:14:00 0:14:00 0:14:00

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9

0 0 0 0 0 0 0 0 0 0

49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9

0 Closed 0 40.03 0 50.02 0 50.99 0 55.25 0 60.28 0 65.04 0 69.85 0 75.08 0 75.33 0 77.60 0 70.90 0 72.13 0 73.12 0 74.02

0 3000 3000 3000 3000 3000 3000 3000 3000 Released while ramping up load 3000 Problem with edge/close up video 3000 Released while ramping up load 3000 3000 3000 3000

Institute for Ocean Technology Transport Canada

Final Position Open Open Open Open Open Open Open

09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07 09-May-07

9:55 11:38 11:50 11:58 13:02 13:11 13:23 13:30 13:40 14:51 15:05 15:17 15:26 15:36 15:44

SS_L0P0_A50_DYN_011 SS_L3p0_A50_C40_012 SS_L3p0_A50_C50_013 SS_L3p0_A50_C51_014 SS_L3p0_A50_C55_015 SS_L3p0_A50_C60_016 SS_L3p0_A50_C65_017 SS_L3p0_A50_C70_018 SS_L3p0_A50_C75_019 SS_L3p0_A50_C75_020 SS_L3p0_A50_C78_021 SS_L3p0_A50_C71_022 SS_L3p0_A50_C72_023 SS_L3p0_A50_C73_024 SS_L3p0_A50_C74_025

n n n n n n n n n y y y y y y

0:14:00 0:14:00 0:14:00 0:14:00 0:14:00 0:14:00 0:14:00 0:14:00 0:14:00 0:14:00 0:15:30 0:17:00 0:19:29 0:22:51 0:25:49

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10-May-07

13:53

SS_L3P0_A50_C71P5_026

n

0:25:49

1

0 49.9

0

71.47

3000

10-May-07 10-May-07

10:43 10:54

SS_L3P0_A50_C71P9_027 SS_L3P0_A50_C72P8_028

n n

0:25:49 0:25:49

1 1

0 49.9 0 49.9

0 0

71.90 72.80

3000 3000

11-May-07

SS_L3P0_A50_C72P4_029

n

0:25:49

1

0 49.9

0

Reset

17-May-07 17-May-07 17-May-07 17-May-07

SS_L3P0_A50_C00_030 SS_L3P0_A50_C00_031 SS_L3P0_A50_C00_032 SS_L3P0_A50_C00_033

n n n n

0:25:49 0:25:49 0:25:49 0:25:49

1 1 1 1

0 0 0 0

49.9 49.9 49.9 49.9

0 0 0 0

Sum of Loads on Pin, Deck, Tension not adding Up, missing one load. Awaiting go-no-go from ASR Angle test, Load Check Flat on Pin Upward Angle test, Load Check Flat on Pin Upward Angle test, Load Check Flat on Pin toward MTS Angle test, Load Check Flat on Pin toward MTS

SS_L0P5_A50_C00_034 SS_L0P5_A50_C20_035 SS_L0P5_A50_C40_036 SS_L0P5_A50_C60_037 SS_L0P5_A50_C50_038 SS_L0P5_A50_C30_039 SS_L0P5_A50_C10_040

n n n n n n n

0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49

1 1 1 1 1 1 1

0 0 0 0 0 0 0

49.9 49.9 49.9 49.9 49.9 49.9 49.9

0 0 0 0 0 0 0

1.46 19.92 40.94 59.99 50.90 30.34 10.36

n n n n n n n n

0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9

0 0 0 0 0 0 0 0

1.40 20.48 40.46 59.73 49.22 30.22 10.08 2.33

29-May-07 29-May-07 29-May-07 29-May-07 29-May-07 29-May-07 29-May-07

15:37:09 15:43:18 15:48:24 15:53:09 15:57:33 16:02:05 16:07:42

31-May-07 31-May-07 31-May-07 31-May-07 31-May-07 31-May-07 31-May-07 31-May-07

16:56:47 17:01:59 17:05:37 17:09:20 17:13:45 17:17:29 17:21:13 17:25:09

SS_L1P0_A50_C00_041 SS_L1P0_A50_C20_042 SS_L1P0_A50_C40_043 SS_L1P0_A50_C60_044 SS_L1P0_A50_C50_045 SS_L1P0_A50_C30_046 SS_L1P0_A50_C10_047 SS_L1P5_A50_C00_048

500 Flat on Pin Rotated Upward 500 500 500 500 500 500 1000 1000 1000 1000 1000 1000 1000 1500

C-7

Open

Open Open Open

Open

8

National Research Council Canada Large Cold Room PJ 42_2188_16 Tape Set Numbe

Fwd Angle(deg)

Aft Angle(deg)

Side Angle(deg)

Intial Cam Angle

Intial Load

SS_L1P5_A50_C20_049 SS_L1P5_A50_C40_050 SS_L1P5_A50_C60_051 SS_L1P5_A50_C50_052 SS_L1P5_A50_C30_053 SS_L1P5_A50_C10_054

n n n n n n

0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49

1 1 1 1 1 1

0 0 0 0 0 0

49.9 49.9 49.9 49.9 49.9 49.9

0 0 0 0 0 0

19.75 39.38 59.41 49.95 30.66 10.99

1500 1500 1500 1500 1500 1500

05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07 05-Jun-07

9:17:06 9:20:52 9:24:24 9:28:10 9:31:20 9:34:41 9:38:05 9:41:07 9:44:30 9:47:42 9:50:56 9:53:39 10:55:03 10:59:27 11:05:46 11:10:17 11:13:51 11:16:28 11:20:07 11:23:17 11:26:59 11:45:27 11:49:46 11:53:32 11:56:39 11:59:48 12:03:32 12:06:37

SS_L2P0_A50_C00_055 SS_L2P0_A50_C20_056 SS_L2P0_A50_C40_057 SS_L2P0_A50_C60_058 SS_L2P0_A50_C50_059 SS_L2P0_A50_C30_060 SS_L2P0_A50_C10_061 SS_L2P5_A50_C00_062 SS_L2P5_A50_C20_063 SS_L2P5_A50_C40_064 SS_L2P5_A50_C60_065 SS_L2P5_A50_C50_066 SS_L2P5_A50_C30_067 SS_L2P5_A50_C10_068 SS_L3P0_A50_C00_069 SS_L3P0_A50_C20_070 SS_L3P0_A50_C40_071 SS_L3P0_A50_C60_072 SS_L3P0_A50_C50_073 SS_L3P0_A50_C30_074 SS_L3P0_A50_C10_075 SS_L3P3_A50_C00_076 SS_L3P3_A50_C20_077 SS_L3P3_A50_C40_078 SS_L3P3_A50_C60_079 SS_L3P3_A50_C50_080 SS_L3P3_A50_C30_081 SS_L3P3_A50_C10_082

n n n n n n n n n n n n n n n n n n n n n n n n n n n n

0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49 0:25:49

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.69 19.66 40.12 60.41 49.66 29.95 10.64 1.13 20.13 40.98 59.65 49.50 29.66 10.29 0.89 19.27 40.86 59.27 49.37 30.54 9.03 0.67 20.11 41.05 60.91 49.22 30.35 10.53

2000 2000 2000 2000 2000 2000 2000 2500 2500 2500 2500 2500 2500 2500 3000 3000 3000 3000 3000 3000 3000 3300 3300 3300 3300 3300 3300 3300

06-Jun-07 06-Jun-07 06-Jun-07 06-Jun-07

10:51:19 11:21:41 15:19:56 15:40:26

SSWL_L2p0_PM1p0_P10_A50C00_083

SSWL_L1p5_PM1p5_P05_A50C00_086

Y Y Y Y

1 1 1 1

0 0 0 0

49.9 49.9 49.9 49.9

0 0 0 0

07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07 07-Jun-07

12:21:45 12:54:27 13:03:59 13:09:58 13:16:24 13:21:41 13:26:11 13:26:11 14:08:49 14:14:40 14:18:26 14:23:55 14:30:31

SSNC_L1P0_A50_C10_087 SSNC_L1P0_A50_C10_088 SSNC_L1P0_A50_C20_089 SSNC_L1P0_A50_C30_090 SSNC_L1P0_A50_C40_091 SSNC_L1P0_A50_C50_092 SSNC_L1P0_A50_C60_093 SSNC_L1P0_A50_C71_094 SSNC_L1P0_A50_C75_095 SSNC_L1P0_A50_C72_096 SSNC_L1P0_A50_C74_097 SSNC_L1P0_A50_C76_098 SSNC_L1P0_A50_C75_099

n y y y y y y y y y y y y

0:27:39 0:30:33 0:33:22 0:37:08 0:41:23 0:41:20 0:41:20 0:43:25 0:44:59 0:46:47 0:48:45 0:50:00 0:51:27 0:52:43 0:53:15 0:54:49 0:56:35 0:57:10

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9

0 0 0 0 0 0 0 0 0 0 0 0 0

Date 31-May-07 31-May-07 31-May-07 31-May-07 31-May-07 31-May-07

Video (Y/N)

Das Time File 17:28:55 17:33:23 17:37:01 17:41:13 17:46:07 17:49:58

Video Start

PJ2188_LCR_log_May06.xls

SSWL_L2p0_PM1p0_P05_A50C00_084 SSWL_L1p5_PM1p5_P10_A50C00_085

Comment

Institute for Ocean Technology Transport Canada

Final Position

Mean Load: 2000 kg / + 1000 kg / Period 10 sec Mean Load: 2000 kg / + 1000 kg / Period 5 sec Mean Load: 1500 kg / + 1500 kg / Period 10 sec Mean Load: 1500 kg / + 1500 kg / Period 5 sec 11.21 10.20 20.33 30.95 40.46 50.87 61.12 71.00 75.70 72.10 73.80 75.80 74.93

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable

C-8

Release Release Release Release

9

National Research Council Canada Large Cold Room PJ 42_2188_16

Das Time 11:49:56 13:44:36 13:48:56 13:52:58

File SSNC_L3P0_A50_C10_100 SSNC_L3P0_A50_C20_101 SSNC_L3P0_A50_C30_102 SSNC_L3P0_A50_C40_103

Tape Set Numbe

Fwd Angle(deg)

Aft Angle(deg)

Side Angle(deg)

Intial Cam Angle

Intial Load

y y y y

0:00:00 0:02:35 0:03:49 0:05:27

2 2 2 2

0 0 0 0

49.9 49.9 49.9 49.9

0 0 0 0

10.97 10.97 30.65 39.59

3000 3000 3000 3000

12-Jun-07 12-Jun-07 12-Jun-07 12-Jun-07 12-Jun-07

13:10:29 13:14:51 13:19:21 13:24:41 13:28:49

SSNC_L3P0_A50_C50_104 SSNC_L3P0_A50_C60_105 SSNC_L3P0_A50_C70_106 SSNC_L3P0_A50_C72_107 SSNC_L3P0_A50_C73_108

y y y y y

0:06:50 0:08:41 0:10:01 0:11:28 0:13:34

2 2 2 2 2

0 0 0 0 0

49.9 49.9 49.9 49.9 49.9

0 0 0 0 0

51.24 60.81 71.30 72.30 73.15

3000 3000 3000 3000 3000

12-Jun-07 14:27:33

SSNCWL_L2P0PM1P0_P10_A50C40_109

Y

0:14:22

2

0 49.9

0

40.41

12-Jun-07 14:42:56

SSNCWL_L2P0PM1P0_P05_A50C40_110

Y

0:23:03

2

0 49.9

0

39.19

12-Jun-07 15:09:28

SSNCWL_L2P0PM1P0_P10_A50C50_111

Y

0:32:35

2

0 49.9

0

51.70

12-Jun-07 15:22:59

SSNCWL_L2P0PM1P0_P10_A50C50_112

Y

0:42:05

2

0 49.9

0

51.34

2000 Wave Loading No cable Mean Load: 2000 kg / + 1000 kg / Period 5 sec (Span1 Setting 1.37) Wave Loading No cable Mean Load: 2000 kg / + 1000 kg / Period 10 sec (Span1 Setting 2000 1.13) Aborted Wrong period. Wave Loading No cable Mean Load: 2000 kg / + 1000 kg / Period 5 2000 sec (Span1 Setting 1.37)

12-Jun-07 15:42:37 12-Jun-07 16:03:50

SSNCWL_L2P0PM1P0_P05_A50C50_113 SSNCWL_L2P0PM1P0_P10_A50C60_114

Y Y

0:47:12 0:55:55

2 2

0 49.9 0 49.9

0 0

51.47 61.60

2000 Wave Loading No cable Mean Load: 2000 kg / + 1000 kg / Period 5 sec (Span1 Setting 1.37) 2000 Wave Loading No cable Mean Load: 2000 kg / + 1000 kg / Period 5 sec (Span1 Setting 1.13)

12-Jun-07 14:07:43

SSNCWL_L2P0PM1P0_P05_A50C60_115

Y

0:00:00

3

0 49.9

0

59.08

12-Jun-07 14:27:50

SSNCWL_L1P5PM1P5_P10_A50C40_116

Y

0:05:00

3

0 49.9

0

39.63

2000 Wave Loading No cable Mean Load: 2000 kg / + 1000 kg / Period 5 sec (Span1 Setting 1.13) Wave Loading No cable Mean Load: 1500 kg / + 1500 kg / Period 10 sec (Span1 Setting 1500 1.70)

Video (Y/N)

Date 08-Jun-07 08-Jun-07 08-Jun-07 08-Jun-07

Video Start

PJ2188_LCR_log_May06.xls

Comment Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable

Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Cam with Broken Release Cable Wave Loading No cable Mean Load: 2000 kg / + 1000 kg / Period 10 sec (Span1 Setting 2000 1.13)

SSNCWL_L1P5PM1P5_P05_A50C40_117

Y

0:10:12

3

0 49.9

0

41.25

SSNCWL_L1P5PM1P5_P10_A50C50_118

Y

0:15:00

3

0 49.9

0

51.61

12-Jun-07 17:48:07

SSNCWL_L1P5PM1P5_P05_A50C50_119

Y

0:20:02

3

0 49.9

0

50.30

12-Jun-07 18:00:22

SSNCWL_L1P5PM1P5_P10_A50C60_120

Y

0:24:59

3

0 49.9

0

61.20

12-Jun-07 12-Jun-07 12-Jun-07 12-Jun-07

18:09:29 18:30:05 18:34:13 18:40:31

SSNCWL_L1P5PM1P5_P05_A50C60_121

Y Y Y Y

0:31:00 0:40:00 0:42:30 0:46:08

3 3 3 3

0 0 0 0

49.9 49.9 49.9 49.9

0 60.01 0 75+ 0 75+ 0 75+

1500 Wave Loading No cable Mean Load: 1500 kg / + 1500 kg / Period 10 sec (Span1 Setting 1.70 Wave Loading No cable Mean Load: 1500 kg / + 1500 kg / Period 05 sec (Span1 Setting 1500 2.32) 500 force bad reset, load upto 500 kg 500 force bad reset, load upto 500 kg 500 force bad reset, load upto 500 kg

14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07

9:23:09 11:56:16 12:01:05 13:33:39 14:13:03 14:19:46 14:25:52 14:37:58 14:47:52 16:22:52 16:26:53 16:30:38 16:34:29 16:38:56 16:41:42 16:44:50

SS_BR_L0p5_A50_125

Y Y Y Y Y Y Y Y Y n n n n n n n

0:48:06 0:51:55 0:52:55 0:54:13 0:55:33 0:57:23 0:59:01 0:00:00 0:01:49 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4

0 49.9 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0 56.4 0

0 75+ 0 7.10 0 7.10 0 6.40 0 4.10 0 4.27 0 4.24 0 4.24 0 4.24 0 6.60 0 21.33 0 39.08 0 61.68 0 49.08 0 30.18 0 11.64

500 force bad reset, load upto 500 kg 0 500 1000 1500 2000 2500 3000 3300 500 500 500 500 500 500 500

SS_BR_L0p5_A50_123 SS_BR_L0p5_A50_124

SS_L0P0_F50_DYN_126 SS_L0P5_F50_DYN_127 SS_L1P0_F50_DYN_128 SS_L1P5_F50_DYN_129 SS_L2P0_F50_DYN_130 SS_L2P5_F50_DYN_131 SS_L3P0_F50_DYN_132 SS_L3P3_F50_DYN_133 SS_L0P5_F50_C00_134 SS_L0P5_F50_C20_135 SS_L0P5_F50_C40_136 SS_L0P5_F50_C60_137 SS_L0P5_F50_C50_138 SS_L0P5_F50_C30_139 SS_L0P5_F50_C10_140

Final Position

release

1500 Wave Loading No cable Mean Load: 1500 kg / + 1500 kg / Period 5 sec (Span1 Setting 2.32) Wave Loading No cable Mean Load: 1500 kg / + 1500 kg / Period 10 sec (Span1 Setting 1500 1.70) Wave Loading No cable Mean Load: 1500 kg / + 1500 kg / Period 05 sec (Span1 Setting 1500 2.32)

12-Jun-07 15:02:54 12-Jun-07 15:18:10

SS_BR_L0p5_A50_122

Institute for Ocean Technology Transport Canada

C-9

open open open open open open open open

10

National Research Council Canada Large Cold Room PJ 42_2188_16 Tape Set Numbe

Fwd Angle(deg)

Aft Angle(deg)

Side Angle(deg)

Intial Cam Angle

Intial Load

SS_L1P0_F50_C00_141 SS_L1P0_F50_C30_142 SS_L1P0_F50_C40_143 SS_L1P0_F50_C60_144 SS_L1P0_F50_C50_145 SS_L1P0_F50_C20_146 SS_L1P0_F50_C10_147

n n n n n n n

0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38

4 4 4 4 4 4 4

56.4 56.4 56.4 56.4 56.4 56.4 56.4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

4.92 30.35 39.18 60.35 50.71 19.17 11.66

1000 1000 1000 1000 1000 1000 1000

15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07 15-Jun-07

9:39:12 9:43:22 9:46:48 9:49:53 9:52:58 9:55:49 9:59:02 10:01:58 10:05:22 10:09:05 10:12:40 10:15:45 10:18:43 10:22:02

SS_L1P5_F50_C00_148 SS_L1P5_F50_C20_149 SS_L1P5_F50_C40_150 SS_L1P5_F50_C60_151 SS_L1P5_F50_C50_152 SS_L1P5_F50_C30_153 SS_L1P5_F50_C10_154 SS_L2P0_F50_C00_155 SS_L2P0_F50_C30_156 SS_L2P0_F50_C40_157 SS_L2P0_F50_C60_158 SS_L2P0_F50_C50_159 SS_L2P0_F50_C20_160 SS_L2P0_F50_C10_161

n n n n n n n n n n n n n n

0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38

4 4 4 4 4 4 4 4 4 4 4 4 4 4

56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.40 20.84 39.23 59.12 50.66 29.72 11.86 4.66 30.15 39.06 60.75 49.76 20.39 11.08

1500 1500 1500 1500 1500 1500 1500 2000 2000 2000 2000 2000 2000 2000

26-Jun-07 26-Jun-07 26-Jun-07 26-Jun-07 26-Jun-07 26-Jun-07 26-Jun-07 26-Jun-07 26-Jun-07 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06

11:00:42 11:05:29 11:18:07 11:21:39 11:24:29 11:27:27 11:31:08 11:34:54 11:38:33 10:14:46 10:20:23 10:23:31 10:26:28 10:29:56 10:32:30 10:35:26 10:40:48 11:34:45 11:40:13 11:45:16 11:52:50 14:01:54 14:05:56 14:25:47 15:06:47 15:11:49 15:16:33 15:19:56 15:45:34 15:50:23 15:54:02 15:58:08 16:02:20 16:07:06

SS_L2P0_F50_C00_162 SS_L2P0_F50_C60_163 SS_L2P5_F50_C00_164 SS_L2P5_F50_C20_165 SS_L2P5_F50_C40_166 SS_L2P5_F50_C60_167 SS_L2P5_F50_C50_168 SS_L2P5_F50_C30_169 SS_L2P5_F50_C10_170 SS_L3P0_F50_C00_171 SS_L3P0_F50_C20_172 SS_L3P0_F50_C40_173 SS_L3P0_F50_C60_174 SS_L3P0_F50_C50_175 SS_L3P0_F50_C30_176 SS_L3P0_F50_C10_177 SS_L3P0_F50_C10_178 SS_NC_L1P0_F50_C10_179 SS_NC_L1P0_F50_C20_180 SS_NC_L1P0_F50_C30_181 SS_NC_L1P0_F50_C40_182 SS_NC_L1P0_F50_C50_183 SS_NC_L1P0_F50_C60_184 SS_NC_L1P0_F50_C72_185 SS_NC_L1P0_F50_C70_186 SS_NC_L1P0_F50_C71_187 SS_NC_L1P0_F50_C71_188 SS_NC_L1P0_F50_C70_189 SS_NC_L3P0_F50_C00_190 SS_NC_L3P0_F50_C10_191 SS_NC_L3P0_F50_C20_192 SS_NC_L3P0_F50_C30_193 SS_NC_L3P0_F50_C40_194 SS_NC_L3P0_F50_C50_195

n n n n n n n n n n n n n n n n n n n n n n n y y y y y n n n n n n

0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:38 0:03:58 0:05:00 0:05:30 0:06:10 0:07:30 0:07:30 0:07:30 0:07:30 0:07:30 0:07:30

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.82 59.48 5.74 20.56 40.44 60.09 50.74 29.04 12.06 5.53 20.37 40.54 59.75 49.72 30.16 9.84 10.25 11.38 21.17 31.10 40.70 51.30 61.30 71.70 70.10 71.20 70.70 70.10 -0.20 10.20 20.10 30.10 40.30 50.10

2000 2000 2500 2500 2500 2500 2500 2500 2500 3000 3000 3000 3000 3000 3000 3000 3000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Date 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07 14-Jun-07

Video (Y/N)

Das Time File 16:47:39 16:50:35 16:54:45 16:58:04 17:01:16 17:04:25 17:07:37

Video Start

PJ2188_LCR_log_May06.xls

Comment

Institute for Ocean Technology Transport Canada

Final Position

Checked Angle @ 0.64V MTS

didn't off load repeat Broken Release Cable

release release release

C-10

11

National Research Council Canada Large Cold Room PJ 42_2188_16

n y y n y y

0:07:30 0:07:30 0:09:34 0:09:59 0:09:59 0:13:00

4 4 4 4 4 4

56.2 56.2 56.2 56.2 56.2 56.2

0 0 0 0 0 0

0 0 0 0 0 0

60.10 69.70 71.10 70.90 -1.10 -1.10

Comment 1000 1000 1000 1000 2000 setting span1 1.03, amp 1000 1500 setting span1 1.53, amp 1500 ran out of stroke, e-stoped

SSWLnc_L1P5PM1P5_P05_F50C40_206

y y y y y

0:18:03 0:28:49 0:38:33 0:44:00 0:38:33

4 4 4 4 4

56.2 56.2 56.2 56.2 56.2

0 0 0 0 0

0 0 0 0 0

-1.10 -1.10 40.00 39.60 40.10

2000 1500 2000 2000 2000

SSWLnc_L1P5PM1P5_P05_F50C40_207

y

0:55:40

4 56.2

0

0

42.70

SSWLnc_L1P5PM1P5_P10_F50C40_208

y y y y

0:00:00 0:05:00 0:08:24 0:13:30

5 5 5 5

0 0 0 0

0 0 0 0

40.30 39.90 39.90 49.70

setting span1 1.53, amp 1500, Retorqued Plate and Arm Bolts. Attempted base plate but 2000 solid. Note Load and LVDT were switched, Knocking still there. Knocking on one pin. Greased the daylights out of that pin, eye, and tightened/shortened tension rods. Note new angle 1500 setting span1 1.45, amp 1500. No Knocking 1500 setting span1 1.76, amp 1500. 1500 setting span1 1.49, amp 1500. 1500 setting span1 1.58, amp 1500.

File SS_NC_L3P0_F50_C60_196 SS_NC_L3P0_F50_C70_197 SS_NC_L3P0_F50_C71_198 SS_NC_L3P0_F50_C71_199 SSWL_L2P0PM1P0_P05_F50C00_200 SSWL_L1P5PM1P5_P05_F50C00_201

SSWL_L2P0PM1P0_P10_F50C00_202 SSWL_L1P5PM1P5_P10_F50C00_203 SSWLnc_L2P0PM1P0_P05_F50C40_204 SSWLnc_L2P0PM1P0_P10_F50C40_205

SSWLnc_L1P5PM1P5_P05_F50C40_209 SSWLnc_L1P5PM1P5_P10_F50C50_210 SSWLnc_L1P5PM1P5_P05_F50C50_211

09-Jul-07 15:17:15 09-Jul-07 18:27:21 09-Jul-07 18:35:31

SSWLnc_L2P0PM1P0_P10_F50C50_212

10-Jul-07 9:39:13 10-Jul-07 11:46:28 10-Jul-07 12:05:33 10-Jul-07 14:15:44 10-Jul-07

SSWLnc_L2P0PM1P0_P10_F50C60_215

SSWLnc_L2P0PM1P0_P05_F50C50_213 SSWLnc_L2P0PM1P0_P10_F50C50_214

SSWLnc_L2P0PM1P0_P05_F50C60_216 SSWLnc_L1P5PM1P5_P10_F50C60_217 SSWLnc_L1P5PM1P5_P05_F50C60_218

55.5 55.5 55.5 55.5

Intial Load

Intial Cam Angle

11:30:00 14:15:40 14:28:51 14:28:51 14:56:32

Side Angle(deg)

09-Jul-07 09-Jul-07 09-Jul-07 09-Jul-07 09-Jul-07

Aft Angle(deg)

09-Jul-07 11:19:37

Fwd Angle(deg)

9:38:52 10:01:00 11:06:41 11:30:43 11:45:57

Tape Set Numbe

05-Jul-07 05-Jul-07 05-Jul-07 05-Jul-07 05-Jul-07

Video Start

Das Time 16:12:19 16:16:43 16:21:41 16:25:27 16:38:18 16:45:49

Video (Y/N)

Date 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06 04-Jul-06

PJ2188_LCR_log_May06.xls

setting span1 0.95, amp 1000 setting span1 1.5, amp 1500 setting span1 1.03, amp 1000, 3 cycles of T=10s @ start setting span1 0.98, amp 1000 setting span1 1.53, amp 1500, test Aborted Knocking on load cycle.

y y y

0:20:06 0:26:07 0:32:57

5 55.5 5 55.5 5 55.5

0 0 0

0 0 0

49.90 50.20 50.30

setting span1 1.54, amp 1000 , Gecko Issues, Checked run, wrong initial load and amplitude, 1500 load with 1500 amp, Run Renamed SSWLNC_L1P5PM1P5_P10_F50C50_212, original 2000 name SSWLnc_L2P0PM1P0_P10_F50C50_212 2000 setting span1 1.08, amp 1000 2000 setting span1 1.54, amp 1000

y y y y

0:37:21 0:44:24 0:54:36 0:00:00

5 5 5 6

0 0 0 0

0 0 0 0

59.80 60.20 60.10 60.10

2000 2000 1500 1500

55.5 55.5 55.5 55.5

setting span1 1.01, amp 1000 setting span1 1.15, amp 1000 setting span1 1.58, amp 1500 setting span1 1.78, amp 1500 Attempted install of 20º Side. Tension Rods too Long

11-Jul-07

Delivered 20º rods to fabrication for Mod, started install of Tor hook

18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07 18-Jul-07

12:12:00 12:32:03 Tor_Shakedwn_219 12:35:33 Tor_Shakedwn_220 14:17:02 tor_L0P0_F50_DYN_221 14:25:19 tor_L1P0_F50_DYN_222 14:32:12 tor_L2P0_F50_DYN_223 14:41:24 tor_L3P0_F50_DYN_224 14:48:09 tor_L4P0_F50_DYN_225 14:59:24 tor_L5P0_F50_DYN_226 15:11:13 tor_L5P0_F50_DYN_227 15:22:44 tor_L6P0_F50_DYN_228

n y y y y y y y y y

0:09:00 0:09:00 0:10:14 0:12:00 0:13:55 0:16:00 0:18:29 0:20:31 0:24:00 0:26:00

6 6 6 6 6 6 6 6 6 6

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

Completed install of Torr Hook for Fwd/Aft Tests 39.90 39.80 42.20 42.10 41.60 41.50 42.50 46.30 41.40 41.40

1000 1000 0 1000 2000 3000 4000 5000 5000 6000

19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07

14:06:20 15:49:35 15:54:17 15:59:05 16:03:28 16:08:37 16:12:15 16:37:30 16:41:54

y n n n n n n n n

0:30:14 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30

6 6 6 6 6 6 6 6 6

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

41.40 39.00 39.10 39.00 39.10 39.10 39.10 10.00 11.40

6000 Pin releveled, C-Clamps checked, All pins checked. 1000 2000 3000 4000 5000 6000 1000 2000

tor_L6P6_F50_DYN_229 tor_L1P0_F50_c40_230 tor_L2P0_F50_c40_231 tor_L3P0_F50_c40_232 tor_L4P0_F50_c40_233 tor_L5P0_F50_c40_234 tor_L6P0_F50_c40_235 tor_L1P0_F50_c10_236 tor_L2P0_F50_c10_237

no load control, slight tension taken up on system

Bungies tensioned & rope added, Hook Almost fell back on recoil System interlocked, test restarted. Cable clamps Slipped. Assumed off from Previous repeat, in a word, whoomp!! Pin releveled, C-Clamps checked, All pins checked.

C-11

Institute for Ocean Technology Transport Canada

Final Position

release

12

National Research Council Canada Large Cold Room PJ 42_2188_16

Intial Cam Angle

Intial Load

0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

11.60 10.50 9.90 10.10 19.60 19.80 20.20 20.10 20.20 20.70 29.90 29.80 29.60 29.70 29.50 29.50

3000 4000 5000 6000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07 20-Jul-07

9:10 10:18:26 10:21:42 10:25:18 10:29:03 10:32:30 10:35:19 10:48:18 10:57:38 11:02:05 15:40:29 15:43:43 15:46:16

tor_L1P0_F50_c50_254 tor_L2P0_F50_c50_255 tor_L3P0_F50_c50_256 tor_L4P0_F50_c50_257 tor_L5P0_F50_c50_258 tor_L6P0_F50_c50_259 tor_L1P0_F50_c60_260 tor_L2P0_F50_c60_261 tor_L3P0_F50_c60_262 tor_L4P0_F50_c60_263 tor_L5P0_F50_c60_264 tor_L6P0_F50_c60_265

n n n n n n n n n n n n

0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30 0:33:30

6 6 6 6 6 6 6 6 6 6 6 6

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

50.10 51.20 49.00 48.90 49.10 48.90 60.90 60.70 60.80 60.90 61.10 60.90

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07 23-Jul-07

11:18:10 11:24:22 13:51:07 14:07:01 14:15:25 14:18:34 14:27:52 14:31:58 14:39:38 14:44:35 14:48:10 14:51:22 14:56:51 15:00:23 15:02:25 15:05:12 15:09:12 15:11:27 15:31:55 15:38:41

tor_L1P0_F50_c00_266 tor_L1P0_F50_c00_267 tor_L1P5_F50_c00_268 tor_L1P0_F50_c00_269 tor_L2P0_F50_c00_270 tor_L3P0_F50_c00_271 tor_L1P0_F50_c70_272 tor_L2P0_F50_c70_273 tor_L3P0_F50_c70_274 tor_L4P0_F50_c70_275 tor_L5P0_F50_c70_276 tor_L6P0_F50_c70_277 tor_L1P0_F50_c80_278 tor_L2P0_F50_c80_279 tor_L3P0_F50_c80_280 tor_L4P0_F50_c80_281 tor_L5P0_F50_c80_282 tor_L6P0_F50_c80_283 tor_L1P0_F50_c90_284 tor_L1P0_F50_c90_285

n y y y y y y y n y y y y y y y y y y y

0:33:30 0:33:30 0:35:00 0:37:00 0:38:15 0:39:37 0:40:57 0:42:00 0:43:00 0:43:00 0:44:00 0:45:15 0:46:29 0:47:30 0:48:32 0:49:29 0:50:29 0:15:09 0:53:09 0:53:44

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

3.00 3.10 3.10 3.10 3.60 3.70 69.70 69.90 68.90 69.60 69.80 69.90 80.20 80.10 80.40 80.60 79.80 80.00 89.30 89.90

1000 1000 1500 1000 2000 3000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000 1000 1000

Side Angle(deg)

Fwd Angle(deg)

n n n n n n n n n n n n n n n n

Aft Angle(deg)

Tape Set Numbe

tor_L3P0_F50_c10_238 tor_L4P0_F50_c10_239 tor_L5P0_F50_c10_240 tor_L6P0_F50_c10_241 tor_L1P0_F50_c20_242 tor_L2P0_F50_c20_243 tor_L3P0_F50_c20_244 tor_L4P0_F50_c20_245 tor_L5P0_F50_c20_246 tor_L6P0_F50_c20_247 tor_L1P0_F50_c30_248 tor_L2P0_F50_c30_249 tor_L3P0_F50_c30_250 tor_L4P0_F50_c30_251 tor_L5P0_F50_c30_252 tor_L6P0_F50_c30_253

Date 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07 19-Jul-07

Video (Y/N)

Das Time File 16:47:18 16:53:53 16:58:21 17:04:14 17:13:44 17:21:31 17:26:34 17:30:23 17:33:50 17:37:51 17:49:17 17:55:36 17:59:09 18:03:21 18:06:39 18:10:37

Video Start

PJ2188_LCR_log_May06.xls

Comment

Institute for Ocean Technology Transport Canada

Final Position

Cable removed, Fitting checked for Adapters for long Cable, Fabrication Requested

C-clamps removed on cable, Moved cable to force smallest hook cam position possible. Cam moved a lot, Repeat with Video Extra C-clamp added to reduce sliding of angle Load high on Release cable, aborting remainder on this angle Moved C-Clamps to get position

Jammed, needed to reset hook after

C-12

release no release

13

National Research Council Canada Large Cold Room PJ 42_2188_16

Intial Load 2000 500

11:21:56 11:26:26 11:30:25 14:07:46 14:19:08 14:23:50 14:27:58 14:30:53 15:42:38 15:46:10 15:49:35 15:54:58 15:57:40 16:00:21 19:41:00 19:43:48 19:47:32 19:51:12 19:55:51 20:00:05 20:03:22 20:06:07 20:09:10 20:12:07 20:16:02 20:19:11 20:22:02

tor_L1P0_F50_c85_288 tor_L2P0_F50_c85_289 tor_L3P0_F50_c85_290 tor_L3P0_F50_c85_292 tor_NC_L2P0_F50_C00_292 tor_NC_L2P0_F50_C10_293 tor_NC_L2P0_F50_C20_294 tor_NC_L2P0_F50_C30_295 tor_NC_L2P0_F50_C40_296 tor_NC_L2P0_F50_C50_297 tor_NC_L2P0_F50_C60_298 tor_NC_L2P0_F50_C70_299 tor_NC_L2P0_F50_C80_300 tor_NC_L2P0_F50_C85_301 tor_NC_L2P0_F50_C82_302 tor_NC_L2P0_F50_C81_303 tor_NC_L2P0_F50_C80_304 tor_NC_L2P0_F50_C79_305 tor_NC_L6P0_F50_C00_306 tor_NC_L6P0_F50_C10_307 tor_NC_L6P0_F50_C20_308 tor_NC_L6P0_F50_C30_309 tor_NC_L6P0_F50_C40_310 tor_NC_L6P0_F50_C50_311 tor_NC_L6P0_F50_C60_312 tor_NC_L6P0_F50_C70_313 tor_NC_L6P0_F50_C80_314

y n y y y y y y y y y y n y y y y y y y y y y y y y y

0:56:19 0:57:16 0:57:16 0:57:46 0:58:34 0:59:25 1:00:42 1:40:08 0:00:00 0:01:00 0:02:04 0:03:00 0:04:00 0:04:00 ? 0:05:29 0:06:29 0:07:00 0:08:00 0:10:30 0:11:35 0:12:31 0:13:34 0:14:31 0:15:39 0:16:35 0:17:36

6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

85.40 86.50

0.90 10.10 20.00 29.90 40.70 49.90 60.10 69.40 80.20 84.90 82.10 81.00 79.80 79.10 1.70 10.10 20.00 30.10 40.00 50.00 59.90 70.40 80.20

1000 5000 6000 6000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 6000 6000 6000 6000 6000 6000 6000 6000 6000

10:17:02 10:34:53 10:50:47 11:28:27 14:09:08 15:02:00 15:10:52 15:20:12 15:36:00 15:42:45 15:52:40 19:38:39 19:46:38 19:54:40

TRWL_L4P0PM2P0_P10_F50C20_315 TRWL_L4P0PM2P0_P05_F50C20_316 TRWL_L3P0PM3P0_P10_F50C20_317 TRWL_L4P0PM2P0_P05_F50C20_318 TRWL_L4P0PM2P0_P05_F50C20_319 Tor_FlatChk_320 TRWL_L4P0PM2P0_P10_F50C50_321 TRWL_L4P0PM2P0_P05_F50C50_322 TRWL_L3P0PM3P0_P10_F50C50_323 TRWL_L3P0PM3P0_P05_F50C50_324 TRWL_L4P0PM2P0_P10_F50C60_325 TRWL_L4P0PM2P0_P05_F50C60_326 TRWL_L3P0PM3P0_P10_F50C60_327 TRWL_L3P0PM3P0_P05_F50C60_328

y y y y y

0:18:25 0:24:35 0:32:31 0:40:03 0:47:08

7 7 7 7 7

49.8 49.8 49.8 49.8 49.8

20.40 20.10 19.90 20.10 19.70

y y y y y y y y

0:54:47 0:59:08 0:00:00 0:03:40 0:08:00 0:13:00 0:18:00 0:22:59

7 7 8 8 8 8 8 8

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

50.80 50.10 50.00 50.00 60.20 59.40 59.40 59.40

4000 4000 3000 3000 3000 0 4000 4000 3000 3000 4000 4000 3000 3000

49.90

Cam position Didn't Make sense? Checked video, Cam position off. Realigned cam pot. Cable off, Move Cam by Hand Flat to Flat ~15.5º. Visually confirmed by side protractor. Will repeat runs 321 to 328. By back checking video, runs could be post corrected, but would have to be checked. 4000 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85

Side Angle(deg)

89.50 89.90

Aft Angle(deg)

6 49.8 6 49.8

Fwd Angle(deg)

Intial Cam Angle

Tape Set Numbe

0:54:45 0:55:29

Video Start

y y

Video (Y/N) tor_L2P0_F50_c90_286 tor_L0P5_F50_c90_287

Date Das Time File 23-Jul-07 15:42:51 23-Jul-07 15:48:13 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07 24-Jul-07

PJ2188_LCR_log_May06.xls

25-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07 26-Jul-07

Comment

27-Jul-07 14:28:52 Tor_FlatChk_329 27-Jul-07 15:10:51 TRWL_L4P0PM2P0_P10_F50C50_330

y

0:27:12

8 49.8

30-Jul-07 13:55:35 Tor_FlatChk_331 30-Jul-07 15:13:05 TRWL_L4P0PM2P0_P10_F50C50_332

y y

0:32:03

8 49.8

Final Position release release

release release no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable no release cable,Hook accepted load then released, release likely dammaged pot yeah pot toast Pot replaced, Calibrated, Installed, and rezeroed

27-Jul-07

Institute for Ocean Technology Transport Canada

Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, Pot setting 2.00 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot setting 2.81 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 2.98 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.02 Cable off, Move Cam by Hand Flat to Flat ~49º to 51º Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, Pot setting 2.00 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot setting 2.87 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.05 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, Pot setting 2.00 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot setting 2.79 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.05

Check Flat to flat cable removed, Helde flat to flat from about 60-75 Sec 4000 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85

C-13

release release release release

release

14

National Research Council Canada Large Cold Room PJ 42_2188_16

9 9 9 9

49.8 49.8 49.8 49.8

4000 4000 3000 3000

Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, Pot setting 2.00 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot setting 2.79, Late starting Video Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.05

y y y y

0:43:23 0:43:49 0:44:19 0:55:02

9 9 9 9

49.8 49.8 49.8 49.8

4000 4000 2000 4000

Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Repeat of multiple runs, 00º - 80º inc 10º, release @ 70º Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Although previous tests suggested a no cable release point should exist beyond 70º, it is not showing to be the case. Maybe due to hook tail wear and rounding.

0:56:32 0:58:13 0:59:36 1:00:35 1:01:22 0:00:00 0:01:13 0:02:33

9 9 9 9 9 10 10 10

49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

y y y y y y y y y y y

0:36:08 0:40:29 0:45:43 0:51:24 0:53:55 0:00:00

19:06:18 19:13:00 19:18:39 19:23:11

TRNCWL_L4P0PM2P0_P10_F50C40_344 TRNCWL_L4P0PM2P0_P05_F50C40_345 TRNCWL_L3P0PM3P0_P10_F50C40_346 TRNCWL_L3P0PM3P0_P05_F50C40_347

y y y y

31-Jul-07 31-Jul-07 31-Jul-07 31-Jul-07 31-Jul-07

9:18 10:28:19 10:35:38 11:09:19 11:26:08

TOR_FLATCHK_348 TRNCWL_L4P0PM2P0_P10_f50C50_349 TRNCWL_L4P0PM2P0_P10_f50C50_350 tor_NC_L2P0_F50_C00-80_351 TRNCWL_L4P0PM2P0_P10_f50C50_352

0:11:35 0:16:40 0:21:45 0:26:55

31-Jul-07

02-Aug-07 02-Aug-07 02-Aug-07 02-Aug-07 02-Aug-07 02-Aug-07 02-Aug-07 02-Aug-07 02-Aug-07 02-Aug-07

16:05:06 tor_L0P0_F50_DYN_353 16:12:05 tor_L1P0_F50_DYN_354 16:17:52 tor_L2P0_F50_DYN_355 16:23:21 tor_L3P0_F50_DYN_356 16:27:35 tor_L4P0_F50_DYN_357 16:34:07 tor_L5P0_F50_DYN_358 16:45:16 tor_L6P0_F50_DYN_359 16:51:42 tor_L6P6_F50_DYN_360 16:55 TOR_FLATCHK_361

y y y y y y y y

03-Aug-07 03-Aug-07 03-Aug-07 03-Aug-07 03-Aug-07 03-Aug-07 03-Aug-07 03-Aug-07 03-Aug-07 03-Aug-07

13:29 TOR_FLATCHK_362 13:37:22 Tor_L1p0_a45_363 13:56:34 tor_L0P0_A45_DYN_364 14:04:11 tor_L1P0_A45_DYN_365 14:12:19 tor_L2P0_A45_DYN_366 14:26:17 tor_L3P0_A45_DYN_367 14:31:48 tor_L4P0_A45_DYN_368 14:38:56 tor_L5P0_A45_DYN_369 14:57:42 tor_L6P0_A45_DYN_370 15:37:18 TRWL_L3p0m3p0_p05_a45C60_371

n n y y y y y y y y

09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07

11:26 TOR_FLATCHK_372 11:32:26 Tor_L1p0_a49_373 11:51:27 tor_L0P0_A49_DYN_374 12:00:17 tor_L1P0_A49_DYN_375 12:05:48 tor_L2P0_A49_DYN_376 12:14:07 tor_L3P0_A49_DYN_377 12:20:24 tor_L4P0_A49_DYN_378 12:26:17 tor_L5P0_A49_DYN_379

n n y y y y y y

0:04:23 0:05:00 0:06:30 0:08:00 0:09:30 0:11:00 0:12:30 0:14:31

0:20:30 0:21:00 0:22:03 0:23:20 0:25:01 0:26:29

10 10 10 10 10 10 10 10

10 10 10 10 10 10

Intial Load

0:30:35 0:34:55 0:38:07 0:39:47 0:43:23

File TRWL_L4P0PM2P0_P05_F50C50_333 TRWL_L3P0PM3P0_P10_F50C50_334 TRWL_L3P0PM3P0_P05_F50C50_335 TRWL_L4P0PM2P0_P10_F50C60_336 TRWL_L4P0PM2P0_P05_F50C60_337 TRWL_L3P0PM3P0_P10_F50C60_338 TRWL_L3P0PM3P0_P05_F50C60_339 TRWL_L4P0PM2P0_P10_F50C70_340 TRWL_L4P0PM2P0_P05_F50C70_341 TRWL_L3P0PM3P0_P10_F50C70_342 TRWL_L3P0PM3P0_P05_F50C70_343

Intial Cam Angle

Comment Mean Load: 4000 kg / + 2000 kg / Period 5 sec, Pot setting 2.00 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot setting 2.79 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.05 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, Pot setting 2.00 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot setting 2.79 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.05 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, Pot setting 1.85 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, Pot setting 2.00 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot setting 2.79 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.05

Das Time 15:22:50 15:36:27 15:46:44 17:14:47 17:22 17:39:26 17:47:07 18:06:21 18:14:30 18:22:13 18:29:15

Side Angle(deg)

4000 3000 3000 4000 4000 3000 3000 4000 4000 3000 3000

Date 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07 30-Jul-07

Aft Angle(deg)

Fwd Angle(deg) 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8

Video Start

8 8 8 8 8 9 9 9 9 9 9

Video (Y/N)

Tape Set Numbe

PJ2188_LCR_log_May06.xls

New Cable installed, Limits Set 0 1000 2000 3000 4000 5000 Tape Set 9 ran out on test, switched tapes durring das 6000 6600 flat to flat check Plan to rotate hook to 45Aft condition tomorrow flat to flat check 18.9 Pull to check angle 19.9 20 20.7 17.2 20.9 20.7 17.9 59 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Pot setting 3.05 Ring Diameter does not clear main hook pin.

45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2

49.2 49.2 49.2 49.2 49.2 49.2 49.2

19.60 18.50 22.50 19.50 22.20

New ring Installed, note significantly larger flat to flat check Pull to check angle 0 Long run, Problem with video 1000 2000 3000 4000 5000

C-14

Institute for Ocean Technology Transport Canada

Final Position

release release release

release release release release release release release release

15

National Research Council Canada Large Cold Room PJ 42_2188_16

9:48 TOR_FLATCHK_390 9:55:17 tor_L1P0_A49_c40_391 9:58:25 tor_L2P0_A49_c40_392 10:01:24 tor_L3P0_A49_c40_393 10:03:57 tor_L4P0_A49_c40_394 10:07:56 tor_L5P0_A49_c40_395 10:10:09 tor_L6P0_A49_c40_396 10:13:23 tor_L6P6_A49_c40_397 10:26:01 tor_L1P0_A49_c60_398 10:29:15 tor_L2P0_A49_c60_399 10:31:34 tor_L3P0_A49_c60_400 10:35:20 tor_L4P0_A49_c60_401 10:38:31 tor_L5P0_A49_c60_402 10:41:23 tor_L6P0_A49_c60_403 10:55:02 tor_L6P6_A49_c60_404 11:33:41 tor_L1P0_A49_c70_405 11:38:25 tor_L2P0_A49_c70_406 11:41:45 tor_L3P0_A49_c70_407 11:44:42 tor_L4P0_A49_c70_408 11:47:38 tor_L5P0_A49_c70_409 11:49:46 tor_L6P0_A49_c70_410 11:52:57 tor_L6P6_A49_c70_411 12:35:17 tor_L1P0_A49_c80_412 12:37:51 tor_L2P0_A49_c80_413 12:40:20 tor_L3P0_A49_c80_414 12:43:13 tor_L4P0_A49_c80_415 12:46:54 tor_L5P0_A49_c80_416 12:49:38 tor_L6P0_A49_c80_417 12:52:00 tor_L6P6_A49_c80_418 13:06:19 tor_L1P0_A49_c50_419 13:08:31 tor_L2P0_A49_c50_420 13:11:28 tor_L3P0_A49_c50_421 13:14:09 tor_L4P0_A49_c50_422 13:16:15 tor_L5P0_A49_c50_423 13:18:22 tor_L6P0_A49_c50_424 13:20:34 tor_L6P6_A49_c50_425 13:28:53 tor_L1P0_A49_c30_426 13:31:24 tor_L2P0_A49_c30_427 13:33:30 tor_L3P0_A49_c30_428 13:36:22 tor_L4P0_A49_c30_429 13:38:15 tor_L5P0_A49_c30_430 13:40:49 tor_L6P0_A49_c30_431 13:43:19 tor_L6P6_A49_c30_432

n n n n n n n n n n n n n n n n n n n n n n y y y y y y y n n n n n n n n n n n n n n

0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:32:09 0:33:04 0:34:14 0:35:34 0:37:02 0:38:17 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27

Intial Load

10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07

49.2 49.2

Intial Cam Angle

10 10 10 10 10 10 10 10 10 10

Side Angle(deg)

0:27:30 0:28:59 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00 0:31:00

Aft Angle(deg)

Tape Set Numbe

y y n n n n n n n n

Fwd Angle(deg)

Das Time File 12:32:42 tor_L6P0_A49_DYN_380 12:39:30 tor_L6P6_A49_DYN_381 17:14 TOR_FLATCHK_382 17:30:13 tor_L1P0_A49_c20_383 17:33:41 tor_L2P0_A49_c20_384 17:38:46 tor_L3P0_A49_c20_385 17:45:28 tor_L4P0_A49_c20_386 17:49:05 tor_L5P0_A49_c20_387 17:54:16 tor_L6P0_A49_c20_388 17:58:36 tor_L6P6_A49_c20_389

Video (Y/N)

Date 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07 09-Aug-07

Video Start

PJ2188_LCR_log_May06.xls

49.2 49.2 49.2 49.2 49.2 49.2 49.2

17.60 18.00 19.80 20.70 20.40 19.80 19.60 20.00 19.70 19.60

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2

19.50 40.20 40.60 40.90 40.60 40.50 40.50 40.60 59.50 59.70 60.10 60.40 60.60 60.80 60.90 69.80 70.40 70.80 69.40 70.00 70.50 70.80 79.30 80.40 81.50 79.10 79.70 79.90 80.00 50.40 50.60 49.10 49.10 49.10 48.90 49.00 30.40 30.30 30.30 30.30 30.30 30.30 30.10

1000 2000 3000 4000 5000 6000 6600 1000 2000 3000 4000 5000 6000 6600 1000 2000 3000 4000 5000 6000 6600 1000 2000 3000 4000 5000 6000 6600 1000 2000 3000 4000 5000 6000 6600 1000 2000 3000 4000 5000 6000 6600

Comment

6000 6600 flat to flat check 1000 2000 3000 4000 5000 6000 6600 last 3 runs, link ring stuck inside hook, then dropped flat to flat check

10-Aug-07 13:57:37

tor_L1P0_A49_c10_433

n

0:39:27

10

49.2

10.50

1000 Belcrank arm move forward and up manually to reach min angle, Orange ring jammed in hook

10-Aug-07 14:01:03

tor_L2P0_A49_c10_434

n

0:39:27

10

49.2

11.30

2000 Belcrank arm move forward and up manually to reach min angle, Orange ring jammed in hook

C-15

Institute for Ocean Technology Transport Canada

Final Position

16

National Research Council Canada Large Cold Room PJ 42_2188_16

Intial Load

Intial Cam Angle

Side Angle(deg)

Aft Angle(deg)

Fwd Angle(deg)

n n n n n n y y y y y y y n y y y y y y y y y y y y y y y

0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:39:27 0:40:44 0:40:45 0:42:53 0:44:02 0:44:50 0:46:05 0:47:09 0:47:09 0:50:00 0:50:40 0:51:05 0:51:46 0:53:05 0:54:50 0:56:29 0:57:27 0:58:25 0:59:16 1:00:06 1:01:08 1:01:58 1:02:31

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2

10.80 11.00 11.40 11.30 11.00 13.10 22.00 32.40 42.20 52.30 62.00 73.20 82.50 82.40 77.60 74.10 73.60 72.80 13.30 22.40 32.50 42.40 52.20 62.20 72.90 74.40 77.60 75.40 20.00

3000 4000 5000 6000 6600 0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 0

TR_flatchk_465 TRWL_L3p0m3p0_p05_a45C60_466 TRWL_L4p0m2p0_p10_a49C20_467 TRWL_L4p0m2p0_p05_a49C20_468 14:18:53 TRWL_L3p0m3p0_p10_a49C20_469 14:37:05 TRWL_L3p0m3p0_p05_a49C20_470

y y y y y

0:00:00 0:04:45 0:11:00 0:24:41 0:33:30

11 11 11 11 11

49.2 49.2 49.2 49.2 49.2

63.59 19.16 19.29 19.35 19.50

3000 4000 4000 3000 3000

15-Aug-07

7:40:39

n

0:41:06

11

15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07 15-Aug-07

8:04:31 8:19:01 8:31:25 8:42:49 9:12:11 9:24:31 10:16:42 10:43:00

TRWL_L4p0M2p0_p10_A49C50_472

50 50 50 50 60 60 60 60

0:41:06 0:47:36 0:51:38 0:56:52 0:00:00 0:03:45 0:07:07 0:13:44

11 11 11 11 12 12 12 12

11:01:15 11:09:47 11:19:38 11:28:08 11:41:36 11:53:18 12:02:04 12:11:26

TrWlnc_L4P0M2P0_P10_A49C40_480

40 40 40 40 50 50 50 50

0:21:20 0:29:51 0:35:27 0:40:16 0:47:22 0:54:22 0:57:55 0:00:00

12 12 12 12 12 12 12 13

14-Aug-07 14-Aug-07 14-Aug-07 14-Aug-07 14-Aug-07 14-Aug-07

16:04:42 16:08:07 16:10:28 16:13:11 16:19:51 16:24:38 16:27:26 16:29:40 16:31:54 16:34:27 16:37:03 16:39:16 16:43:07 16:46:18 16:48:51

tor_L3P0_A49_c10_435 tor_L4P0_A49_c10_436 tor_L5P0_A49_c10_437 tor_L6P0_A49_c10_438 tor_L6P6_A49_c10_439 tor_flatchk_440 TR_NC_L2p0_A50_C10_441 TR_NC_L2p0_A50_C20_442 TR_NC_L2p0_A50_C30_443 TR_NC_L2p0_A50_C40_444 TR_NC_L2p0_A50_C50_445 TR_NC_L2p0_A50_C60_446 TR_NC_L2p0_A50_C70_447 TR_NC_L2p0_A50_C80_448 TR_NC_L2p0_A50_C80_449 TR_NC_L2p0_A50_C75_450 TR_NC_L2p0_A50_C72_451 TR_NC_L2p0_A50_C71_452 TR_NC_L2p0_A50_C70_453 TR_NC_L6p0_A50_C10_454 TR_NC_L6p0_A50_C20_455 TR_NC_L6p0_A50_C30_456 TR_NC_L6p0_A50_C40_457 TR_NC_L6p0_A50_C50_458 TR_NC_L6p0_A50_C60_459 TR_NC_L6p0_A50_C70_460 TR_NC_L6p0_A50_C72_461 TR_NC_L6p0_A50_C75_462 TR_NC_L6p0_A50_C73_463 TR_flatchk_464

Tape Set Numbe

File

Video Start

Das Time 14:04:02 14:07:54 14:11:07 14:14:39 14:27:02 14:39:02 15:39:02 15:41:40 15:44:06 15:46:32 15:49:57 15:52:27 15:56:25 15:59:09

Video (Y/N)

Date 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07 10-Aug-07

PJ2188_LCR_log_May06.xls

11:59:18 13:21:37

TR_flatchk_471 Wave Loading (Sinsoidal Tests) TRWL_L4p0M2p0_P05_A49C50_473 TRWL_L3p0M3p0_p10_A49C50_474 TRWL_L3p0M3p0_p05_A49C50_475 TRWL_L4p0M2p0_p10_A49C60_476 TRWL_L4p0M2p0_P05_A49C60_477 TRWL_L3p0M3p0_p10_A49C60_478 TRWL_L3p0M3p0_p05_A49C60_479

TrWlnc_L4P0M2P0_P05_A49C40_481 TrWlnc_L3P0M3P0_P10_A49C40_482 TrWlnc_L3P0M3P0_P05_A49C40_483 TRNCWL_L4p0PM2p0_A50_P10_C50_484 TRNCWL_L4p0PM2p0_A50_P05_C50_485 TRNCWL_L3p0_PM3p0_A50_P10_C50_486 TRNCWL_L3p0_PM3p0_A50_P5_C50_487

Comment Orange ring jammed in hook Orange ring jammed in hook Orange ring jammed in hook, end of test moved acuator, readily released Orange ring jammed in hook, end of test moved acuator, readily released Orange ring jammed in hook, end of test moved acuator, readily released flat to flat check, Photos taken of hook wear, placed in PJ2188 directory. Angle set by eye from compas rose on hook

50.20 50.47 50.49 50.66 59.38 59.72 59.73 60.19 39.77 40.70 39.90 40.60 49.70 50.50 50.60 51.40

Final Position

two test in same run, video on last no video

release release release release release

two test in same run, video on last

release release release

0 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2

Institute for Ocean Technology Transport Canada

4000 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, pot 1.85 4000 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, pot 2.15 3000 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot 2.75 3000 Mean Load: 3000 kg / + 3000 kg / Period 5 sec,pot 3.42 4000 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, pot 1.85 4000 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, pot 2.15 3000 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot 2.75 3000 Mean Load: 3000 kg / + 3000 kg / Period 5 sec,pot 3.42 Wave Loading @ Improper Reset Cam with Broken Release Cable 4000 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, pot 1.85 4000 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, pot 2.16 3000 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot 2.77 3000 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, pot 3.42 4000 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, pot 1.85 4000 Mean Load: 4000 kg / + 2000 kg / Period 5 sec, pot 2.16 3000 Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot 2.77 3000 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, pot 3.42

C-16

17

National Research Council Canada Large Cold Room PJ 42_2188_16

60.00 60.00 60.50

4000 4000 3000

60

0:17:58

13

49.2

60.50

3000

y y y y y y y

0:22:35 0:22:53 0:24:43 0:26:30 0:28:28 0:31:17 0:32:17

13 13 13 13 13 13 13

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

22.40 23.50 25.30 24.30 24.00

Intial Load

49.2 49.2 49.2

Intial Cam Angle

13 13 13

Side Angle(deg)

0:02:03 0:08:24 0:12:47

Aft Angle(deg)

Tape Set Numbe

60 60 60

Fwd Angle(deg)

Video Start

Das Time File 12:23:34 TRNCWL_L4p0_PM2p0_A50_P10_C60_488 12:31:53 TRNCWL_L4p0_PM2p0_A50_P5_C60_489 12:38:24 TRNCWL_L3p0_PM3p0_A50_P10_C60_490

Video (Y/N)

Date 15-Aug-07 15-Aug-07 15-Aug-07

PJ2188_LCR_log_May06.xls

Comment Mean Load: 4000 kg / + 2000 kg / Period 10 sec Mean Load: 4000 kg / + 2000 kg / Period 5 sec Mean Load: 3000 kg / + 3000 kg / Period 10 sec Mean Load: 3000 kg / + 3000 kg / Period 5 sec, Note release cable laid by machine not connected

15-Aug-07 12:45:52 16-Aug-07 13:42:11

TRNCWL_L3p0_PM3p0_A50_P5_C60_491

16-Aug-07 16-Aug-07 16-Aug-07 16-Aug-07 16-Aug-07 16-Aug-07 16-Aug-07 16-Aug-07 16-Aug-07

15:19:37 15:38:13 15:40:50 15:47:04 15:51:02 15:57:35 16:05:49 16:11:13 16:23:21

TOR_FLATCHK_492

17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07

8:22:14 8:41:39 9:20:36 9:40:04 9:53:39

TOR_FLATCHK_502 Tor_L1P0_S20_C00_503 Tor_L1P0_S20_C00_504 Tor_L1p0_S20_C20_505 Tor_L1p0_S20_C40_506

y y y y

0:34:38 0:38:31 0:40:39 0:42:42

13 13 13 13

23.2 23.2 23.2 23.2

24.00 11.50 24.30 44.20

MTS machine in warm up mode, small sin wave. Cam angle not set to 0deg, repeat run repeat, cam angle set to 0deg on the compass rose cam angle set to 20deg on the compass rose cam angle set to 40deg on the compass rose release cable not connected, repeat todays runs

10:30:08 10:38:44 11:03:17 11:10:38 11:18:14 11:23:59 11:32:07

Tor_L1P0_S20_C00_507 Tor_L1p0_S20_C20_508 Tor_L1p0_S20_C40_509 Tor_L1p0_S20_C60_510 Tor_L1p0_S20_C50_511 Tor_L1p0_S20_C30_512 Tor_L1p0_S20_C10_513

y y y y y y y

0:45:18 0:48:15 0:51:13 0:53:59 0:56:35 0:59:12 1:01:57

13 13 13 13 13 13 13

23.2 23.2 23.2 23.2 23.2 23.2 23.2

5.00 21.80 42.00 61.50 52.00 32.20 13.20

cam angle set to 0deg on the compass rose cam angle set to 20deg on the compass rose cam angle set to 40deg on the compass rose cam angle set to 60deg on the compass rose cam angle set to 50deg on the compass rose cam angle set to 30deg on the compass rose cam angle set to 10deg on the compass rose, rec'ders stopped, no video

11:52:06 11:57:20

Tor_L2p0_S20_C00_514 Tor_L2p0_S20_C20_515

y y

0:00:00 0:02:53

14 14

23.2 23.2

9.10 25.10

17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07

Tor_L2p0_S20_C00_516 Tor_L2p0_S20_C20_517 14:20:44 Tor_L2p0_s20_c00_516 14:27:48 Tor_L2p0_s20_c20_517 14:31:29 Tor_L2p0_s20_c40_518 Tor_L2p0_s20_c60_519 14:47:58 Tor_L2p0_s20_c50_520 14:53:33 Tor_L2p0_s20_c30_521 14:58:37 Tor_L2p0_s20_c10_522

y y

14 14 14 14 14 14 14 14 14

9.10 25.10 9.00 20.42 40.25 61.00 50.48 31.88

17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07 17-Aug-07

15:04:48 15:10:17 15:14:56 15:19:07 15:23:41 15:27:50 15:32:09

14 14 14 14 14 14 14

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

cam angle set to 0deg on the compass rose cam angle set to 20deg on the compass rose release cable mount slipped, redo prev 2 runs. repeat, cam angle set to 0deg on the compass rose repeat, cam angle set to 20deg on the compass rose repeat due to release cable slippage. repeat due to release cable slippage.

14 14 14

23.2 23.2 23.2

21.80 22.90 21.70

TOR_FLATCHK_492

tor_L0P0_s23_DYN_494 tor_L1P0_s23_DYN_495 tor_L2P0_s23_DYN_496 tor_L3P0_s23_DYN_497 tor_L4P0_s23_DYN_498 tor_L5P0_s23_DYN_499 tor_L6P0_s23_DYN_500 TOR_FLATCHK_501

0:07:49 0:10:25

Tor_L3p0_s20_c00_523 Tor_L3p0_s20_c20_524 Tor_L3p0_s20_c40_525 Tor_L3p0_s20_c60_526 Tor_L3p0_s20_c50_527 Tor_L3p0_s20_c30_528 Tor_L3p0_s20_c10_529 TOR_FLATCHK_530

20-Aug-07 11:40:20 TOR_FLATCHK_531 20-Aug-07 13:08:31 TOR_L4p0_S23_C20_532 20-Aug-07 13:10:46 TOR_L5p0_S23_C20_533 20-Aug-07 13:15:33 TOR_L6p0_S23_C20_534

n n y

0:25:36 0:25:36 0:25:39

21.20

Flat check

video counter keeps reseting 5.39 22.20 40.83 60.15 50.35 32.28 12.77

Tapes dubed, resynced & "blackcoded"

C-17

Institute for Ocean Technology Transport Canada

Final Position

18

National Research Council Canada Large Cold Room PJ 42_2188_16

20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07

16:58:57

TRWL_L4p0M2p0_p10_s23c20_584

y

17:05:19 17:17:00 17:23:06 17:29:02 17:46:52 17:51:37

TRWL_L4p0M2p0_P05_s23c20_585

y y y y y y

TRWL_L4p0M2p0_P05_s23c20_586 TRWL_L3p0M3p0_p10_s23c20_587 TRWL_L3p0M3p0_p05_s23c20_588 TRWL_L2p0M2p0_p10_s23c20_589 TRWL_L2p0M2p0_P05_s23c20_590

0:26:57 0:27:53 0:29:09 0:30:31 0:32:09 0:33:36 0:34:49 0:36:06 0:37:46 0:39:48 0:41:14 0:42:48 0:44:48 0:46:01 0:47:36 0:48:51 0:50:03 0:51:17 0:52:31 0:53:35 0:54:24 0:54:24 0:55:16 0:56:08 0:56:55 0:57:50 0:58:23 0:59:36 1:00:30 1:00:49 1:01:10 1:01:26 1:01:42 1:02:21 0:00:00 0:01:11 0:02:31 0:03:36 0:03:36 0:04:44 0:06:03 0:07:09 0:08:10 0:09:21 0:10:50 0:11:12 0:11:38 0:12:16

0:13:26

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

0:17:04 0:20:30 0:24:02 0:28:20 0:31:12 0:34:34

15 15 15 15 15 15

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

40.70 37.30 37.20 58.90 59.80 59.70 67.90 67.70 67.80 48.40 48.30 48.40 28.80 28.40 28.60 10.70 10.80 10.80 6.70

Intial Load

Aft Angle(deg)

Fwd Angle(deg)

Intial Cam Angle

y y y y y y y y y y y y y y y y y y y y n y y y y y y y y y y y y y y y y y y y y y y y y y y y n

Side Angle(deg)

16:15:11 16:17:45 16:20:25 16:22:54 16:25:14 16:27:58 16:31:24 16:33:36 16:37:12 16:40:40 16:42:47

TOR_L4p0_s23_C40_535 TOR_L5p0_s23_C40_536 TOR_L6p0_s23_C40_537 TOR_L4p0_s23_C60_538 TOR_L5p0_s23_C60_539 TOR_L6p0_s23_C60_540 TOR_L4p0_s23_C70_541 TOR_L5p0_s23_C70_542 TOR_L6p0_s23_C70_543 TOR_L4p0_s23_C50_544 TOR_L5p0_s23_C50_545 TOR_L6p0_s23_C50_546 TOR_L4p0_s23_c30_547 TOR_L5p0_s23_c30_548 TOR_L6p0_s23_c30_549 TOR_L4p0_s23_c10_550 TOR_L5p0_s23_c10_551 TOR_L6p0_s23_c10_552 TRNC_L2p0_S23_C06_553 TRNC_L2p0_S23_C10_554 TOR_FLATCHK_555 TRNC_L2p0_S23_C20_556 TRNC_L2p0_S23_C30_557 TRNC_L2p0_S23_C40_558 TRNC_L2p0_S23_C50_559 TRNC_L2p0_S23_C60_560 TRNC_L2p0_S23_C70_561 TRNC_L2p0_S23_C80_562 TRNC_L2p0_S23_C81_563 TRNC_L2p0_S23_C79_564 TRNC_L2p0_S23_C78_565 TRNC_L2p0_S23_C77_566 TRNC_L2p0_S23_C76_567 TRNC_L2p0_S23_C75_568 TRNC_L2p0_S23_C74_569 TRNC_L6p0_S23_C08_570 TRNC_L6p0_S23_C10_571 Tor_flatchk_572 TRNC_L6p0_S23_C20_573 TRNC_L6p0_S23_C30_574 TRNC_L6p0_S23_C40_575 TRNC_L6p0_S23_C50_576 TRNC_L6p0_S23_C60_577 TRNC_L6p0_S23_C70_578 TRNC_L6p0_S23_C80_579 TRNC_L6p0_S23_C75_580 TRNC_L6p0_S23_C73_581 TRNC_L6p0_S23_C71_582 Tor_flatchk_583

Tape Set Numbe

File

Video Start

Das Time 13:19:53 13:22:48 13:25:51 13:29:10 13:31:41 13:33:49 13:41:54 13:44:17 13:48:04 13:58:07 14:00:45 14:03:20 14:07:53 14:11:55 14:15:55 14:20:48 14:25:07 14:28:00 14:44:35 14:49:09 14:51:27 14:54:24 14:56:56 14:59:31 15:02:01 15:04:42 15:06:59 15:10:30 15:13:53 15:16:55 15:21:02 15:23:16 15:26:29 15:29:11 16:00:09 16:07:44 16:11:08

Video (Y/N)

Date 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07 20-Aug-07

PJ2188_LCR_log_May06.xls

Comment

2000 Angle set by compas rose 2000 0.00 2000 2000 2000 2000 2000 2000 2000 c-clamp place to prevent fly around on cam during recoil 2000 2000 2000 2000 2000 2000 2000 6000 6000 0 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 0

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

20.9 23.30 32.60 42.00 51.90 61.50 71.70 81.60 82.40 80.20 79.90 78.90 78.40 77.30 76.40 8.60 15.70

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

24.00 34.20 43.90 52.90 62.70 73.10 84.50 78.20 76.30 73.70

23.2

24.20

4000 Mean Load: 4000 kg / + 2000 kg / Period 10 sec, pot 2.26

23.2 23.2 23.2 23.2 23.2 23.2

24.30 24.30 21.60 22.40 22.40 23.00

4000 4000 3000 3000 2000 2000

Mean Load: 4000 kg / + 2000 kg / Period 5 sec, pot 2.20, Aborted due to flex in false deck Bolts Tightened on False deck, pot 3.2, Aborted due to excessive creaking Mean Load: 3000 kg / + 3000 kg / Period 10 sec, pot 3.62 Mean Load: 3000 kg / + 3000 kg / Period 5 sec, pot 4.5 Mean Load: 2000 kg / + 2000 kg / Period 10 sec, pot 3.42 Mean Load: 2000 kg / + 2000 kg / Period 5 sec, pot 4.83

C-18

Institute for Ocean Technology Transport Canada

Final Position

release on off load release release release release release release closed

release release release

19

National Research Council Canada Large Cold Room PJ 42_2188_16

Intial Load

23.2

65.70

y y y y y y y y y

0:20:18 0:20:58 0:22:24 0:24:08 0:25:29 0:26:44 0:28:18 0:29:31 0:30:41

16 16 16 16 16 16 16 16 16

21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07

16:32:22 16:38 16:52:14 16:56:45 17:02:28 17:07:00 17:10:58 17:18:39

SS_L0P0_s21_DYN_605 SS_L0P5_s21_DYN_606 SS_L1P0_s21_DYN_607 SS_L1P5_s21_DYN_608 SS_L2P0_s21_DYN_609 SS_L2P5_s21_DYN_610 SS_L3P0_s21_DYN_611 SS_L3P3_s21_DYN_612

17:23:39

ss_zerochk_613

8:26:25 8:34:10 8:57:24 9:05:29 9:12:02 9:34:17 9:41:37 9:48:03

ss_zerochk_614 SS_L0P5_s21_DYN_615 SS_L1P0_s21_DYN_616 SS_L1P5_s21_DYN_617 SS_L2P0_s21_DYN_618 SS_L2P5_s21_DYN_619 SS_L3P0_s21_DYN_620 SS_L3P3_s21_DYN_621

13:28:16 13:34:59 13:39:21 13:42:57 13:46:11 13:49:56 13:53:46 13:58:07 14:03:43

ss_zerochk_614_622 SS_L3P3_s21_DYN_623 SS_L3P0_s21_DYN_624 SS_L2P5_s21_DYN_625 SS_L2P0_s21_DYN_626 SS_L1P5_s21_DYN_627 SS_L1P0_s21_DYN_628 SS_L0P5_s21_DYN_629 SS_L0P0_s21_DYN_630 ss_zerochk_631

y y y y y y y y y

9:49:35 14:17:12 14:19:40 14:21:34 14:24:25 14:26:23 14:28:44 14:32:10 14:40:50

SS_L3p3_s21_c11_681 SS_L0P5_s21_C40_632 SS_L1P0_s21_C40_633 SS_L1P5_s21_C40_634 SS_L2P0_s21_C40_635 SS_L2P5_s21_C40_636 SS_L3P0_s21_C40_637 SS_L3p3_s21_C40_638 SS_L0P5_s21_C60_639

n n n n n n n n n

Side Angle(deg)

16

9:43:57 9:48:52 10:01:52 10:07:41 10:13:18 10:22:15 10:27:46 10:38:35 10:45:38 10:55:37 11:02:43 11:12:20 11:20:08

Aft Angle(deg)

24.20 24.00 55.20 55.40 65.10 65.30

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07 21-Aug-07

Fwd Angle(deg)

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

Date Das Time File 20-Aug-07 18:03:37 tor_flatchk_591

Video Start

15 15 15 15 15 15 16 16 16 16

y

0:39:11 0:43:11 0:47:34 0:51:22 0:55:20 0:58:12 0:00:00 0:03:21 0:07:52 0:12:06 0:16:29 0:16:29

Video (Y/N)

Intial Cam Angle

Tape Set Numbe

PJ2188_LCR_log_May06.xls

Comment

tor_flatchk_592 TRWL_L2p0M2p0_p10_s23C50_593 TRWL_L2p0M2p0_P05_s23C50_594 TRWL_L2p0M2p0_p10_s23c60_595 TRWL_L2p0M2p0_P05_s23c60_596 TRWLNC_L2p0M2p0_p10_s23C20_597 TRWLNC_L2p0M2p0_P05_s23C20_598 TRWLNC_L2p0M2p0_p10_s23C50_599 TRWLNC_L2p0M2p0_P05_s23C50_600 TRWLNC_L2p0M2p0_p10_s23c60_601 TRWLNC_L2p0M2p0_P05_s23c60_602

y y y y y y y y y y

tor_flatchk_603 TRWLNC_L2p0M2p0_P05_s23c60_604

21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4

35.10 34.10 34.80 35.1 35.50 37.50 37.50

Mean Load: 2000 kg / + 2000 kg / Period 10 sec, pot 3.65 Mean Load: 2000 kg / + 2000 kg / Period 5 sec, pot 4.83 Mean Load: 2000 kg / + 2000 kg / Period 10 sec, pot 3.68 Mean Load: 2000 kg / + 2000 kg / Period 5 sec, pot 5.04 Mean Load: 2000 kg / + 2000 kg / Period 10 sec, pot 3.65, Started Flat-flat Mean Load: 2000 kg / + 2000 kg / Period 5 sec, pot 4.83 Started Flat-flat Mean Load: 2000 kg / + 2000 kg / Period 10 sec, pot 3.65 Mean Load: 2000 kg / + 2000 kg / Period 5 sec, pot 5.14 Mean Load: 2000 kg / + 2000 kg / Period 10 sec, pot 3.68 Mean Load: 2000 kg / + 2000 kg / Period 5 sec, pot 5.04

2000 Mean Load: 2000 kg / + 2000 kg / Period 5 sec, pot 5.04 Change over to Shigi Hook for Side Pull 1100 Angle measured 68.6 -> 21.4, cam rezeroed fully closed 0 All in pink, are likely slippage, cam angle data suspect. 500 1000 1500 2000 2500 3000 3300 slippage? Lock down & repeat tomorrow wrench ground down to fit, both nuts secured very tightly

y y y y y y y

0:30:41 0:32:05 0:33:56 0:37:31 0:39:08 0:40:27

16 16 16 16 16 16 16

0:42:14 0:43:42 0:44:46 0:46:21 0:47:36 0:48:45 0:49:55 0:51:36

16 16 16 16 16 16 16 16 16

21.4 21.4 21.4 21.4 21.4 21.4 21.4

34.00 31.40 33.9 30.20 31.50 20.20

500 1000 1500 2000 2500 3000 3300 slippage, changed lock nut config, Relocked nut, rezeroed

21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4

0.00 35.70 33.60 36.00 35.30 35.2 35.00 34.70 35.50 -0.60 11.00 40.30 40.10 40.20 40.20 40.10 40.10 40.10 60.20

3300 3000 2500 2000 1500 1000 500 0 release, reset, release, first release not on video 0 minimal slippage 3300 500 1000 1500 2000 2500 3000 3300 500

C-19

Institute for Ocean Technology Transport Canada

Final Position

20

National Research Council Canada Large Cold Room PJ 42_2188_16

23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07 23-Aug-07

7:47 7:50:53 7:53:03 7:54:46 7:57:01 7:58:48 9:47:27 9:52:19 9:55:10 9:57:36 9:59:40 10:01:36 10:04:18 10:06:27 10:09:11 10:11:10 10:12:53 10:15:03 10:17:00 10:19:10

SS_L0P5_s21_c11_675 SS_L1P0_s21_c11_676 SS_L1P5_s21_c11_677 SS_L2P0_s21_c11_678 SS_L2P5_s21_c11_679 SS_L3P0_s21_c11_680 SS_L0P5_s21_C20_682 SS_L1P0_s21_C20_683 SS_L1P5_s21_C20_684 SS_L2P0_s21_C20_685 SS_L2P5_s21_C20_686 SS_L3P0_s21_C20_687 SS_L3p3_s21_C20_688 SS_L0P5_s21_C30_689 SS_L1P0_s21_C30_690 SS_L1P5_s21_C30_691 SS_L2P0_s21_C30_692 SS_L2P5_s21_C30_693 SS_L3P0_s21_C30_694

n n n n n n n n n n n n n n n n n n n

0:53:00 0:54:10 0:54:40 0:55:54 0:57:17 0:58:34 0:59:57

21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4

60.40 60.50 60.60 60.40 60.40 60.60 70.60 69.20 68.80 68.70 68.70 68.40 68.40 80.50 79.50 80.30 80.60 78.50 78.00 78.10 90.60 90.60 89.70 89.70 90.20 90.10 90.20 50.90 50.90 51.00 51.00 51.10 49.60 50.40

Intial Load

Aft Angle(deg)

Fwd Angle(deg)

Tape Set Numbe 16 16 16 16 16 16 16

Intial Cam Angle

n n n n n n n n n n n n n n n n n n n n y y y y y y y n n n n n n n

Side Angle(deg)

SS_L1P0_s21_C60_640 SS_L1P5_s21_C60_641 SS_L2P0_s21_C60_642 SS_L2P5_s21_C60_643 SS_L3P0_s21_C60_644 SS_L3p3_s21_C60_645 SS_L0P5_s21_C70_646 SS_L1P0_s21_C70_647 SS_L1P5_s21_C70_648 SS_L2P0_s21_C70_649 SS_L2P5_s21_C70_650 SS_L3P0_s21_C70_651 SS_L3p3_s21_C70_652 SS_L0P5_s21_C80_653 SS_L1P0_s21_C80_654 SS_L1P5_s21_C80_655 SS_L2P0_s21_C80_656 SS_L2P5_s21_C80_657 SS_L3P0_s21_C80_658 SS_L3p3_s21_C80_659 SS_L0P5_s21_C90_660 SS_L1P0_s21_C90_661 SS_L1P5_s21_C90_662 SS_L2P0_s21_C90_663 SS_L2P5_s21_C90_664 SS_L3P0_s21_C90_665 SS_L3P3_s21_C90_666 SS_L0P5_s21_C50_667 SS_L1P0_s21_C50_668 SS_L1P5_s21_C50_669 SS_L2P0_s21_C50_670 SS_L2P5_s21_C50_671 SS_L3P0_s21_C50_672 SS_L3p3_s21_C50_673 ss_zerochk_674

Video Start

Das Time File 14:44:01 14:47:05 14:49:31 14:52:42 15:28:48 15:31:16 15:34:49 15:39:22 15:42:59 15:48:19 15:51:06 15:54:56 15:59:14 16:10:24 16:12:42 16:15:37 16:17:50 16:20:17 16:22:48 16:25:42 16:55:20 16:58:27 17:01:11 17:05:52 17:08:10 17:10:37 17:13:30 17:21:55 17:23:57 17:26:37 17:28:39 17:30:26 17:32:57 17:35:29

Video (Y/N)

Date 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07

PJ2188_LCR_log_May06.xls

Comment

1000 1500 2000 2500 3000 3300 500 1000 1500 2000 2500 3000 3300 500 1000 1500 2000 2500 3000 3300 500 1000 1500 2000 2500 3000 3300 500 1000 1500 2000 2500 3000 3300 No significant slippage Linkage set to allow 11º to 30 deg. Geometry does not allow linkage to set cam