The Existence of Solutions to Integral Boundary Value Problems of ...

7 downloads 0 Views 2MB Size Report
Sep 10, 2017 - order with integral boundary conditions at resonance. ... is the standard Riemann-Liouville dif- .... The Riemann-Liouville fractional inte-.
Hindawi Journal of Function Spaces Volume 2017, Article ID 2785937, 7 pages https://doi.org/10.1155/2017/2785937

Research Article The Existence of Solutions to Integral Boundary Value Problems of Fractional Differential Equations at Resonance Yumei Zou1 and Guoping He2 1

Department of Statistics and Finance, Shandong University of Science and Technology, Qingdao 266590, China Shandong Academy of Sciences, Jinan 250014, China

2

Correspondence should be addressed to Yumei Zou; [email protected] Received 10 April 2017; Accepted 10 September 2017; Published 2 November 2017 Academic Editor: Xinguang Zhang Copyright ยฉ 2017 Yumei Zou and Guoping He. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper deals with the integral boundary value problems of fractional differential equations at resonance. By Mawhinโ€™s coincidence degree theory, we present some new results on the existence of solutions for a class of differential equations of fractional order with integral boundary conditions at resonance. An example is also included to illustrate the main results.

1. Introduction In this paper, we are concerned with the following integral boundary value problem for nonlinear fractional differential equation: ๐‘

๐‘โˆ’1

๐‘โˆ’2

โˆ’๐ท0+ ๐‘ฅ (๐‘ก) = ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก)) , ๐‘ก โˆˆ (0, 1) , ๐‘ฅ (0) = ๐‘ฅ๓ธ€  (0) = 0,

(1)

1

๐‘ฅ (1) = โˆซ ๐‘ฅ (๐‘ก) ๐‘‘๐ด (๐‘ก) , 0

๐‘

where 2 < ๐‘ < 3, ๐ท0+ is the standard Riemann-Liouville differentiation, ๐‘“ : [0, 1]ร—R3 โ†’ R, and ๐‘“ satisfies Carathยดeodory conditions; ๐ด(๐‘ก) is right continuous on [0, 1) and left con1 tinuous at ๐‘ก = 1; โˆซ0 ๐‘ฅ(๐‘ก)๐‘‘๐ด(๐‘ก) denotes the Riemann-Stieltjes integrals of ๐‘ฅ with respect to ๐ด. Our problem are at resonance, in the sense that, under the integral boundary conditions, we ๐‘ study the linear equation โˆ’๐ท0+ ๐‘ฅ(๐‘ก) = 0, ๐‘ก โˆˆ (0, 1), which has nontrivial solutions. Recently, fractional differential equations have received considerable attentions not only because of a generalization of ordinary differential equations but also because they have

played a significant role in science, engineering, economy, and other fields; see, for example, [1โ€“3]. When ๐ด(๐‘ก) โ‰ก 0, problem (1) is nonresonant. In [4], the authors studied the existence of positive solutions for the nonresonant case by Krasnoselโ€™skiiโ€™s fixed point theorem. In [5], the author investigated the uniqueness of solutions for the nonresonant case by use of the ๐‘ข0 -positive operator under a Lipschitz condition on ๐‘“. In present, many papers are devoted to the integral boundary value problem for fractional differential equation under nonresonance conditions; see [4โ€“20]. On the other hand, there are some papers studying integral boundary value problem for differential equation under resonant conditions; we refer the reader to [21โ€“29]. Motivated by the above results, in this paper, we consider the existence of solutions for the resonance integral boundary value problem (1) under nonlinear growth restriction of ๐‘“. Our method is based upon the coincidence degree theorem of Mawhin. Now, we recall the essentials of the coincidence degree theory. Let ๐‘‹ and ๐‘Œ be real Banach spaces, and let ๐ฟ : dom ๐ฟ โŠ‚ ๐‘‹ โ†’ ๐‘Œ be a Fredholm operator of index zero. If ๐‘ƒ : ๐‘‹ โ†’ ๐‘‹ and ๐‘„ : ๐‘Œ โ†’ ๐‘Œ are continuous projectors such that Im ๐‘ƒ = Ker ๐ฟ, Ker ๐‘„ = Im ๐ฟ, ๐‘‹ = Ker ๐ฟ โŠ• Ker ๐‘ƒ, and ๐‘Œ = Im ๐ฟ โŠ• Im ๐‘„, then the inverse operator of ๐ฟ|dom ๐ฟโˆฉKer ๐‘ƒ :

2

Journal of Function Spaces

dom ๐ฟ โˆฉ Ker ๐‘ƒ โ†’ Im ๐ฟ exists and is denoted by ๐พ๐‘ƒ (generalized inverse operator of ๐ฟ). If ฮฉ is an open bounded subset of ๐‘‹ such that dom ๐ฟ โˆฉ ฮฉ =ฬธ 0, the mapping ๐‘ : ๐‘‹ โ†’ ๐‘Œ will be called ๐ฟ-compact on ฮฉ, if ๐‘„๐‘(ฮฉ) is bounded and ๐พ๐‘ƒ (๐ผ โˆ’ ๐‘„)๐‘ : ฮฉ โ†’ ๐‘‹ is compact. The abstract equation ๐ฟ๐‘ฅ = ๐‘๐‘ฅ is shown to be solvable in view of Theorem IV.13 [30]. Theorem 1 (see [30]). Let ๐ฟ be a Fredholm operator of index zero and let ๐‘ be ๐ฟ-compact on ฮฉ. Assume the following conditions are satisfied:

Lemma 4 (see [1]). Assume that ๐‘ข โˆˆ ๐ฟ1 [0, 1]. If ๐›ผ, ๐›ฝ, ๐‘ > 0, then ๐›ฝ

๐›ผ+๐›ฝ

๐›ผ ๐ผ0+ ) ๐‘ข (๐‘ก) = (๐ผ0+ ๐‘ข) (๐‘ก) , (๐ผ0+ ๐‘

๐‘โˆ’๐‘

Lemma 5 (see [1]). Assume that ๐ผ0+ ๐‘ข โˆˆ ๐ด๐ถ๐‘โˆ’1 [0, 1], ๐‘ > 0. Then one has ๐‘

๐‘

(๐ผ0+ ๐ท0+ ) ๐‘ข (๐‘ก) ๐‘โˆ’1

๐‘ก๐‘โˆ’๐‘˜โˆ’1 ๐‘‘๐‘โˆ’๐‘˜โˆ’1 ๐‘›โˆ’๐‘ ( ๐‘โˆ’๐‘˜โˆ’1 ๐ผ0+ ๐‘ข) (0) , ฮ“ (๐‘ โˆ’ ๐‘˜) ๐‘‘๐‘ก ๐‘˜=0

(i) ๐ฟ๐‘ฅ =ฬธ ๐œ†๐‘๐‘ฅ for every (๐‘ฅ, ๐œ†) โˆˆ [(dom ๐ฟ\ Ker ๐ฟ) โˆฉ ๐œ•ฮฉ] ร— (0, 1).

= ๐‘ข (๐‘ก) โˆ’ โˆ‘

(ii) ๐‘๐‘ฅ โˆ‰ Im ๐ฟ for every ๐‘ฅ โˆˆ Ker ๐ฟ โˆฉ ๐œ•ฮฉ.

Then the equation ๐ฟ๐‘ฅ = ๐‘๐‘ฅ has at least one solution in dom ๐ฟ โˆฉ ฮฉ.

where ๐‘ = [๐‘] + 1. Lemma 6 (see [4]). Let ๐œŽ โˆˆ ๐ถ(0, 1) โˆฉ ๐ฟ(0, 1) and 2 < ๐‘ โ‰ค 3, then the unique solution of ๐‘

๐ท0+ ๐‘ฅ (๐‘ก) + ๐œŽ (๐‘ก) = 0,

Throughout this paper, we always suppose that

(๐ป2 ) ๐‘“ : [0, 1] ร— R ร— R ร— R โ†’ R satisfies the Carathยดeodory conditions; that is, ๐‘“(โ‹…, ๐‘ข, V, ๐‘ค) is measurable for each fixed (๐‘ข, V, ๐‘ค) โˆˆ R ร— R ร— R, ๐‘“(๐‘ก, โ‹…, โ‹…, โ‹…) is continuous for a.e. ๐‘ก โˆˆ [0, 1], and for each ๐‘Ÿ > 0, there exists ฮฆ๐‘Ÿ โˆˆ ๐ฟโˆž [0, 1] such that |๐‘“(๐‘ก, ๐‘ข, V, ๐‘ค)| โ‰ค ฮฆ๐‘Ÿ (๐‘ก) for all |๐‘ข|, |V|, and |๐‘ค| โ‰ค ๐‘Ÿ and for a.e. ๐‘ก โˆˆ [0, 1].

is given by 1

๐‘ฅ (๐‘ก) = โˆซ ๐บ (๐‘ก, ๐‘ ) ๐œŽ (๐‘ ) ๐‘‘๐‘ , where ๐บ(๐‘ก, ๐‘ ) is Greenโ€™s function given by ๐บ (๐‘ก, ๐‘ )

Definition 2 (see [1]). The Riemann-Liouville fractional integral of order ๐‘ > 0 of a function ๐‘“ : (0, โˆž) โ†’ R is given by (2)

(1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ก๐‘โˆ’1 โˆ’ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 { { , 0 โ‰ค ๐‘  โ‰ค ๐‘ก โ‰ค 1, { { ฮ“ (๐‘) ={ { (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ก๐‘โˆ’1 { { , 0 โ‰ค ๐‘ก โ‰ค ๐‘  โ‰ค 1. ฮ“ (๐‘) {

Definition 3 (see [1]). The Riemann-Liouville fractional derivative of order ๐‘ > 0 of a continuous function ๐‘“ : (0, โˆž) โ†’ R is given by ๐‘

๐‘“ (๐‘ ) 1 ๐‘‘ ๐‘› ๐‘ก ๐‘‘๐‘ , ( ) โˆซ ๐‘โˆ’๐‘›+1 ฮ“ (๐‘› โˆ’ ๐‘) ๐‘‘๐‘ก 0 (๐‘ก โˆ’ ๐‘ )

(8)

Lemma 7 (see [4]). The function ๐บ(๐‘ก, ๐‘ ) defined by (8) satisfies ๐บ(๐‘ก, ๐‘ ) > 0 and ๐‘ก, ๐‘  โˆˆ (0, 1). We use the classical Banach space ๐ถ[0, 1] with the norm โ€–๐‘ฅโ€–โˆž = max๐‘กโˆˆ[0,1] |๐‘ฅ(๐‘ก)| and ๐ฟ1 [0, 1] with the norm โ€–๐‘ฅโ€–1 = 1

โˆซ0 |๐‘ฅ(๐‘ก)|๐‘‘๐‘ก. We also use the Banach space ๐‘‹

provided that the right-hand side is pointwise defined on (0, โˆž).

๐ท0+ ๐‘“ (๐‘ก) =

(7)

0

In this section, first we provide recall some necessary basic definitions and lemmas of the fractional calculus theory, which will be used in this paper. For more details, we refer to books [1โ€“3] for details.

๐‘ก 1 โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘“ (๐‘ ) ๐‘‘๐‘ , ฮ“ (๐‘) 0

(6)

๐‘ฅ (1) = 0

2. Preliminaries and Lemmas

๐‘

๐‘ก โˆˆ (0, 1) ,

๐‘ฅ (0) = ๐‘ฅ๓ธ€  (0) = 0,

1

(๐ป1 ) โˆซ0 ๐‘ก๐‘โˆ’1 ๐‘‘๐ด(๐‘ก) = 1, ๐œ… = โˆซ0 ๐‘ก๐‘ ๐‘‘๐ด(๐‘ก) โˆ’ 1 =ฬธ 0;

๐ผ0+ ๐‘“ (๐‘ก) =

(5)

๐‘ก โˆˆ [0, 1] ,

(iii) deg (๐‘„๐‘|Ker ๐ฟ , Ker ๐ฟ โˆฉ ฮฉ, 0) =ฬธ 0, where ๐‘„ : ๐‘ โ†’ ๐‘ is a projector as above with Im ๐ฟ = Ker ๐‘„.

1

(4)

๐‘

(๐ท0+ ๐ผ0+ ๐‘ข) (๐‘ก) = ๐‘ข (๐‘ก) .

๐‘โˆ’1

๐‘โˆ’2

๐‘‹ = {๐‘ฅ : [0, 1] ๓ณจ€โ†’ R | ๐‘ฅ, ๐ท0+ ๐‘ฅ, ๐ท0+ ๐‘ฅ โˆˆ ๐ถ [0, 1]} ๐‘โˆ’1

(9)

๐‘โˆ’2

with the norm โ€–๐‘ฅโ€–๐‘‹ = max{โ€–๐‘ฅโ€–โˆž , โ€–๐ท0+ ๐‘ฅโ€–โˆž , โ€–๐ท0+ ๐‘ฅโ€–โˆž }. Define ๐ฟ : dom ๐ฟ โŠ‚ ๐‘‹ โ†’ ๐‘Œ = ๐ฟ1 [0, 1] and ๐‘ : ๐‘‹ โ†’ ๐‘Œ as follows: ๐‘

(3)

where ๐‘› โˆ’ 1 โ‰ค ๐‘ < ๐‘›, provided that the right-hand side is pointwise defined on (0, โˆž).

(๐ฟ๐‘ฅ) (๐‘ก) = โˆ’๐ท0+ ๐‘ฅ (๐‘ก) , ๐‘โˆ’1

๐‘โˆ’2

(๐‘๐‘ฅ) (๐‘ก) = ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก)) , ๐‘ก โˆˆ [0, 1] ,

(10)

Journal of Function Spaces

3 ๐‘

where dom ๐ฟ = {๐‘ฅ โˆˆ ๐‘‹ | ๐ท0+ ๐‘ฅ โˆˆ ๐‘Œ, ๐‘ฅ(0) = ๐‘ฅ๓ธ€  (0) = 0, ๐‘ฅ(1) = 1

โˆซ0 ๐‘ฅ(๐‘ก)๐‘‘๐ด(๐‘ก)}. Then integral boundary value problems (1) can be rewritten as follows: (๐ฟ๐‘ฅ) (๐‘ก) = (๐‘๐‘ฅ) (๐‘ก) ,

๐‘ฅ โˆˆ dom ๐ฟ.

(11)

By a simple computation, we can obtain that ๐‘ข โˆˆ dom ๐ฟ and ๐ฟ๐‘ข = ๐‘ฆ; that is, ๐‘ฆ โˆˆ Im ๐ฟ. Clearly, dim Ker ๐ฟ = 1 and Im ๐ฟ is closed. It follows from ๐‘Œ1 = ๐‘Œ \ Im ๐ฟ that ๐‘Œ1 = {๐‘ฆ1 โˆˆ ๐‘Œ : ๐‘ฆ1 =

Lemma 8. The operator ๐ฟ is a Fredholm operator of index zero.

(12)

By Lemma 5, ๐‘ข โˆˆ Ker ๐ฟ means that ๐‘ข(๐‘ก) = ๐‘1 ๐‘ก๐‘โˆ’1 + ๐‘2 ๐‘ก๐‘โˆ’2 + ๐‘3 ๐‘ก๐‘โˆ’3 . It follows from ๐‘ข(0) = ๐‘ข๓ธ€  (0) = 0 that ๐‘2 = ๐‘3 = 0. That is, Ker ๐ฟ = {๐‘๐‘ก๐‘โˆ’1 : ๐‘ โˆˆ R}. Now we prove 1

Im ๐ฟ = {๐‘ฆ โˆˆ ๐‘Œ : โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘ 

0

0

(13)

โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )

๐‘

(14)

By the boundary condition, we obtain ๐‘2 = ๐‘3 = 0, 1

โˆซ ๐‘ข (๐‘ก) ๐‘‘๐ด (๐‘ก) 0

0

=โˆ’

๐‘‘๐ด (๐‘ก)

(15)

โˆซ (1 โˆ’ ๐‘ ) 0

1

๐‘ก

0

0

๐‘โˆ’1

โˆซ0 โˆซ0 (๐‘ก โˆ’ ๐‘ )

๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก) . ๐‘โˆ’1

1

๐‘ก

1

0

0

0

1

๐‘ก

0

0

which shows that ๐‘ฆโˆ’๐‘ฆ1 โˆˆ Im ๐ฟ. This together with ๐‘Œ1 โˆฉIm ๐ฟ = {๐œƒ} implies that ๐‘Œ = ๐‘Œ1 โŠ• Im ๐ฟ. Note that dim ๐‘Œ1 = 1 and thus codim Im ๐ฟ = 1. Therefore, ๐ฟ is a Fredholm operator of index zero. The proof is completed.

(๐‘„๐‘ฆ) (๐‘ก) = 1

๐‘ก

0

0

๐‘ก 1 โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ฮ“ (๐‘) 0

๐‘ก๐‘โˆ’1 1 + โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘ . ฮ“ (๐‘) 0

=

1 ๐‘ (โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐œ… 0 ๐‘โˆ’1

(20)

(21)

๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก)) .

๐‘ก๐‘โˆ’1 1 โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ฮ“ (๐‘) 0 โˆ’

๐‘ฆ(๐‘ )๐‘‘๐‘  =

๐‘ฆ(๐‘ )๐‘‘๐‘  ๐‘‘๐ด(๐‘ก), let

๐‘ข (๐‘ก) = โˆ’

(19)

0

On the other hand, if ๐‘ฆ โˆˆ ๐‘Œ satisfies โˆซ0 (1 โˆ’ ๐‘ ) ๐‘ก

1 ๐‘ (โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘‘๐‘  ๐œ… 0

1

1

1

โ‹… (๐‘ฆ (๐‘ ) โˆ’ ๐‘ฆ1 (๐‘ )) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก) = (1

(๐พ๐‘ ๐‘ฆ) (๐‘ก) = โˆซ ๐บ (๐‘ก, ๐‘ ) ๐‘ฆ (๐‘ ) ๐‘‘๐‘  (16)

= โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )

0

Clearly, Im ๐‘ƒ = Ker ๐ฟ and Ker ๐‘„ = Im ๐ฟ. The generalized inverse operator of ๐ฟ, ๐พ๐‘ƒ : Im ๐ฟ โ†’ dom ๐ฟ โˆฉ Ker ๐‘ƒ can be defined by

๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘โˆ’1

0

โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )

The above equalities imply that ๐‘โˆ’1

0

and ๐‘„ : ๐‘Œ โ†’ ๐‘Œ by

1 1 โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  + ๐‘1 . ฮ“ (๐‘) 0

1

๐‘ก

(๐‘ƒ๐‘ฆ) (๐‘ก) = ๐‘ฆ (1) ๐‘ก๐‘โˆ’1

1 ๐‘ก 1 โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก) + ๐‘1 , ฮ“ (๐‘) 0 0

๐‘ข (1) = โˆ’

1

Next, define the projections ๐‘ƒ : ๐‘‹ โ†’ ๐‘‹ by

1 ๐‘ก 1 =โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก) ฮ“ (๐‘) 0 0

+ ๐‘1 โˆซ ๐‘ก

1

โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 (๐‘ฆ (๐‘ ) โˆ’ ๐‘ฆ1 (๐‘ )) ๐‘‘๐‘  โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1

โ‹… ๐‘ฆ (๐‘ ) ๐‘‘๐‘  โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก)) = 0

๐‘ข (๐‘ก) = โˆ’๐ผ0+ ๐‘ฆ (๐‘ก) + ๐‘1 ๐‘ก๐‘โˆ’1 + ๐‘2 ๐‘ก๐‘โˆ’2 + ๐‘3 ๐‘ก๐‘โˆ’3 .

๐‘โˆ’1

๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก)) , ๐‘ฆ โˆˆ ๐‘Œ} ,

โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก))) โ‹… (โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1

๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก) = 0} .

In fact, if ๐‘ข โˆˆ dom ๐ฟ and ๐ฟ๐‘ข = ๐‘ฆ, then by Lemma 5,

1

0

(18)

where ๐œ… = โˆซ0 ๐‘ก๐‘ ๐‘‘๐ด(๐‘ก) โˆ’ 1 =ฬธ 0. In fact, for each ๐‘ฆ โˆˆ ๐‘Œ, we have

โˆ’

0

๐‘โˆ’1

0

๐‘โˆ’1

1

Ker ๐ฟ = {๐‘๐‘ก๐‘โˆ’1 : ๐‘ โˆˆ R} .

๐‘ก

๐‘ก

โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )

Proof. Firstly, we show that

1

1

1 ๐‘ (โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐œ… 0

(22)

๐‘ก 1 โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘ . ฮ“ (๐‘) 0

In fact, if ๐‘ฆ โˆˆ Im ๐ฟ, then ๐‘

๐ฟ๐พ๐‘ ๐‘ฆ = โˆ’๐ท0+ (โˆ’ (17)

๐‘ก 1 โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ฮ“ (๐‘) 0

๐‘ก๐‘โˆ’1 1 + โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘ ) = ๐‘ฆ. ฮ“ (๐‘) 0

(23)

4

Journal of Function Spaces For ๐‘ฅ โˆˆ dom ๐ฟ โˆฉ Ker ๐‘ƒ, ๐ฟ๐‘ฅ = ๐‘ฆ, we have ๐‘

โˆ’๐ท0+ ๐‘ฅ (๐‘ก) = ๐‘ฆ (๐‘ก) ,

Then by Lemma 7, we obtain 1 ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค max ๐บ (๐‘ก, ๐‘ ) ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 ๓ต„ฉโˆž ฮ“ (๐‘) ๐‘ก,๐‘ โˆˆ[0,1] ๓ต„ฉ

๐‘ก โˆˆ (0, 1) ,

๐‘ฅ (0) = ๐‘ฅ๓ธ€  (0) = 0,

(24)

=

๐‘ฅ (1) = 0. Then by Lemma 6, we obtain ๐พ๐‘ ๐ฟ๐‘ฅ = ๐‘ฅ whenever ๐‘ฅ โˆˆ dom ๐ฟ โˆฉ Ker ๐‘ƒ. Using (21) and (22), we write 1

0

1 ๐‘ก๐‘โˆ’1 (1 โˆ’ ๐‘ก) โ‹… (โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐œ…ฮ“ (๐‘) 0 1

๐‘ก

0

0

๐‘โˆ’1

โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )

(29)

๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘โˆ’1 ๓ต„ฉ๓ต„ฉ๐ท0+ ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค 2 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 , ๓ต„ฉโˆž ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘โˆ’2 ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐ท0+ ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค 2 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 . ๓ต„ฉ ๓ต„ฉโˆž It follows that 1 ๓ต„ฉ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค max { , 2} ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 = 2 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 . ๓ต„ฉ ๓ต„ฉ๐‘‹ ฮ“ (๐‘)

๐พ๐‘ (๐ผ โˆ’ ๐‘„) ๐‘๐‘ฆ (๐‘ก) = โˆซ ๐บ (๐‘ก, ๐‘ ) ๐‘๐‘ฆ (๐‘ ) ๐‘‘๐‘  โˆ’

1 ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๐‘ฆ๓ต„ฉ ฮ“ (๐‘) ๓ต„ฉ ๓ต„ฉ1

(25)

(30)

The proof is completed.

3. Main Results ๐‘๐‘ฆ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก)) .

By a standard method, we obtain the following lemma.

In this section, we will use Theorem 1 to prove the existence of solutions to IBVP (1). To obtain our main theorem, we need the following conditions:

Lemma 9. ๐พ๐‘ (๐ผ โˆ’ ๐‘„)๐‘ : ๐‘Œ โ†’ ๐‘Œ is completely continuous.

(๐ป3 ) There exist functions ๐œŒ, ๐›ผ, ๐›ฝ, ๐›พ โˆˆ ๐ฟ1 [0, 1] such that, for all (๐‘ข, V, ๐‘ค) โˆˆ R3 , ๐‘ก โˆˆ [0, 1],

Lemma 10. For ๐‘ฆ โˆˆ ๐‘Œ,

๓ต„จ๓ต„จ ๓ต„จ ๓ต„จ๓ต„จ๐‘“ (๐‘ก, ๐‘ข, V, ๐‘ค)๓ต„จ๓ต„จ๓ต„จ โ‰ค ๐œŒ (๐‘ก) + ๐›ผ (๐‘ก) |๐‘ข| + ๐›ฝ (๐‘ก) |V| + ๐›พ (๐‘ก) |๐‘ค| . (31)

1 ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค ๓ต„ฉโˆž ฮ“ (๐‘) ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ1 , ๓ต„ฉ

(๐ป4 ) There exists a constant ๐ต > 0 such that either for each ๐‘ โˆˆ R : |๐‘| > ๐ต

๓ต„ฉ๓ต„ฉ ๐‘โˆ’1 ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐ท0+ ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค 2 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 , ๓ต„ฉ ๓ต„ฉโˆž ๓ต„ฉ๓ต„ฉ ๐‘โˆ’2 ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐ท0+ ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค 2 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 . ๓ต„ฉ ๓ต„ฉโˆž

๐‘๐‘„๐‘ (๐‘๐‘ก๐‘โˆ’1 ) > 0

(26)

or for each ๐‘ โˆˆ R : |๐‘| > ๐ต, ๐‘๐‘„๐‘ (๐‘๐‘ก๐‘โˆ’1 ) < 0.

Moreover, (27)

๐‘โˆ’1

๐‘ก๐‘โˆ’1 1 (๐พ๐‘ ๐‘ฆ) (๐‘ก) = โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  ฮ“ (๐‘) 0 ๐‘ก 1 โˆ’ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘ , ฮ“ (๐‘) 0 1

๐‘ก

0

0

๐‘โˆ’1 ๐ท0+ (๐พ๐‘ ๐‘ฆ) (๐‘ก) = โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘  โˆ’ โˆซ ๐‘ฆ (๐‘ ) ๐‘‘๐‘ , (28) 1

0

๐‘ก

โˆ’ โˆซ (๐‘ก โˆ’ ๐‘ ) ๐‘ฆ (๐‘ ) ๐‘‘๐‘ . 0

(๐ป5 ) There exists a constant ๐‘€ > 0 such that if |๐ท0+ ๐‘ฅ(๐‘ก)| > ๐‘€ for all ๐‘ก โˆˆ [0, 1], then ๐‘„๐‘๐‘ฅ =ฬธ 0. (๐ป6 ) There exists a constant ๐‘€ > 0 such that if |๐ท0+ ๐‘ฅ(๐‘ก)|+ ๐‘โˆ’2 |๐ท0+ ๐‘ฅ(๐‘ก)| > ๐‘€ for all ๐‘ก โˆˆ [0, 1], then ๐‘„๐‘๐‘ฅ =ฬธ 0.

Proof. It is easy to see that

๐‘โˆ’2

(33) ๐‘โˆ’1

๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐พ๐‘ ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค 2 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ฆ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 . ๓ต„ฉ๐‘‹ ๓ต„ฉ

๐ท0+ (๐พ๐‘ ๐‘ฆ) (๐‘ก) = ๐‘ก โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ฆ (๐‘ ) ๐‘‘๐‘ 

(32)

Theorem 11. Suppose (๐ป1 )โ€“(๐ป5 ) hold. Then IBVP (1) has at least one solution in ๐‘Œ, provided 1 ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ โ€–๐›ผโ€–1 + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›ฝ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›พ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 < . 5

(34)

Proof. Set ฮฉ1 = {๐‘ฅ โˆˆ dom ๐ฟ \ Ker ๐ฟ : ๐ฟ๐‘ฅ = ๐œ†๐‘๐‘ฅ for some ๐œ† โˆˆ [0, 1]} .

(35)

Take ๐‘ฅ โˆˆ ฮฉ1 . Since ๐ฟ๐‘ฅ = ๐œ†๐‘๐‘ฅ, so ๐œ† =ฬธ 0, ๐‘๐‘ฅ โˆˆ Im ๐ฟ = Ker ๐‘„, and hence ๐‘„๐‘๐‘ฅ = 0.

(36)

Journal of Function Spaces

5

Thus, from (๐ป5 ), there exists ๐‘ก0 โˆˆ [0, 1] such that ๓ต„จ ๓ต„จ๓ต„จ ๐‘โˆ’1 ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ก0 )๓ต„จ๓ต„จ๓ต„จ < ๐‘€. ๓ต„จ ๓ต„จ

Let

Noticing that ๐‘โˆ’1

๐‘โˆ’1

๐‘ก

ฮฉ2 = {๐‘ฅ โˆˆ Ker ๐ฟ : ๐‘๐‘ฅ โˆˆ Im ๐ฟ} .

(37)

๐‘

๐ท0+ ๐‘ฅ (๐‘ก) = ๐ท0+ ๐‘ฅ (๐‘ก0 ) + โˆซ ๐ท0+ ๐‘ฅ (๐‘ ) ๐‘‘๐‘ , ๐‘ก0

(38)

we obtain

(46)

Then for ๐‘ฅ โˆˆ ฮฉ2 , ๐‘ฅ = ๐‘๐‘ก๐‘โˆ’1 for some ๐‘ โˆˆ R. So, ๐‘„๐‘๐‘ฅ(๐‘ก) = 0. By (๐ป4 ), we have |๐‘| โ‰ค ๐ต. Therefore, ฮฉ2 is bounded. We define the isomorphism ๐ฝ : Ker ๐ฟ โ†’ Im ๐‘„ by ๐ฝ (๐‘๐‘ก๐‘โˆ’1 ) = ๐‘.

(47)

If (32) holds, then let

๐‘ก ๓ต„จ๓ต„จ ๐‘โˆ’1 ๓ต„จ ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ก)๓ต„จ๓ต„จ๓ต„จ โ‰ค ๐‘€ + โˆซ |๐‘๐‘ฅ (๐‘ )| ๐‘‘๐‘  โ‰ค ๐‘€ + โ€–๐‘๐‘ฅโ€–1 . ๓ต„จ ๓ต„จ ๐‘ก

(39)

0

Observe that (๐ผ โˆ’ ๐‘ƒ)๐‘ฅ โˆˆ dom ๐ฟ โˆฉ Ker ๐‘ƒ for all ๐‘ฅ โˆˆ ฮฉ1 . Then by Lemma 10, ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ โ€–(๐ผ โˆ’ ๐‘ƒ) ๐‘ฅโ€–๐‘‹ = ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐พ๐‘ ๐ฟ (๐ผ โˆ’ ๐‘ƒ) ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘‹ = ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐พ๐‘ ๐ฟ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘‹ โ‰ค 2 โ€–๐ฟ๐‘ฅโ€–1 โ‰ค 2 โ€–๐‘๐‘ฅโ€–1 , ๓ต„ฉ ๓ต„ฉ ๐‘โˆ’1 ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘โˆ’1 ๓ต„ฉ๓ต„ฉ๐ท0+ (๐ผ โˆ’ ๐‘ƒ) ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐ท0+ ๐พ๐‘ ๐ฟ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉโˆž โ‰ค 2 โ€–๐ฟ๐‘ฅโ€–1 ๓ต„ฉโˆž ๓ต„ฉ ๓ต„ฉ โ‰ค 2 โ€–๐‘๐‘ฅโ€–1 .

(40)

(43)

๐ป (๐‘ฅ, ๐œ†) =ฬธ 0 for ๐‘ฅ โˆˆ Ker ๐ฟ โˆฉ ๐œ•ฮฉ.

(52)

Thus, by the homotopy property of degree deg ( ๐‘„๐‘|Ker ๐ฟ , Ker ๐ฟ โˆฉ ฮฉ, 0) = deg (๐ป (โ‹…, 0) , Ker ๐ฟ โˆฉ ฮฉ, 0) (44)

Applying (๐ป3 ), we have ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘โˆ’1 ๓ต„ฉ โ€–๐‘ฅโ€–๐‘‹ โ‰ค ๐‘€ + 5 (๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œŒ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 + โ€–๐›ผโ€–1 โ€–๐‘ฅโ€–โˆž + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›ฝ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐ท0+ ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉโˆž ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘โˆ’2 ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›พ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐ท0+ ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉโˆž ) โ‰ค ๐‘€ + 5 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œŒ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 + 5 (โ€–๐›ผโ€–1 + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›ฝ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 (45)

Therefore, ฮฉ1 is bounded.

(51)

where ๐ฝ is as above. Similar to the above argument, we can show that ฮฉ3 is bounded too. Next, we will prove that all the assumptions of Theorem 1 are satisfied. Let ฮฉ be given any bounded open subset of ๐‘Œ such that โ‹ƒ3๐‘–=1 ฮฉ๐‘– โŠ‚ ฮฉ. By Lemma 9, ๐พ๐‘ƒ (๐ผ โˆ’ ๐‘„)๐‘ : ฮฉ โ†’ ๐‘Œ is compact; thus ๐‘ is ๐ฟ-compact on ฮฉ. Clearly, assumptions (i) and (ii) of Theorem 1 are fulfilled. At last, we will prove that (iii) of Theorem 1 is satisfied. Let ๐ป(๐‘ฅ, ๐œ†) = ยฑ๐œ†๐ฝ๐‘ฅ + (1 โˆ’ ๐œ†)๐‘„๐‘๐‘ฅ. According to above argument, we know

that is, for all ๐‘ฅ โˆˆ ฮฉ1 ,

๓ต„ฉ ๓ต„ฉ + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›พ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 ) โ€–๐‘ฅโ€–๐‘‹ .

(50)

(42)

= ๐‘€ + 5 โ€–๐‘๐‘ฅโ€–1 ;

โ€–๐‘ฅโ€–๐‘‹ โ‰ค ๐‘€ + 5 โ€–๐‘๐‘ฅโ€–1 .

๐‘ (1 โˆ’ ๐œ†) ๐‘„๐‘ (๐‘๐‘ก๐‘โˆ’1 ) > 0

= {๐‘ฅ โˆˆ Ker ๐ฟ : โˆ’๐œ†๐ฝ๐‘ฅ + (1 โˆ’ ๐œ†) ๐‘„๐‘๐‘ฅ = 0, ๐œ† โˆˆ [0, 1]} ,

โ€–๐‘ฅโ€–๐‘‹ โ‰ค โ€–(๐ผ โˆ’ ๐‘ƒ) ๐‘ฅโ€–๐‘‹ + โ€–๐‘ƒ๐‘ฅโ€–๐‘‹

1 โ‰ค 2 โ€–๐‘๐‘ฅโ€–1 + (๐‘€ + 3 โ€–๐‘๐‘ฅโ€–1 ) ฮ“ (๐‘) ฮ“ (๐‘)

If ๐œ† = 1, then ๐‘ = 0. Otherwise, if |๐‘| > ๐ต, in view of (๐ป4 ), one has

ฮฉ3

so that

1 ๓ต„ฉ ๓ต„ฉ โ€–๐‘๐‘ฅโ€–1 + |๐‘ฅ (1)| โ‹… ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘ก๐‘โˆ’1 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐‘‹ ฮ“ (๐‘)

(49)

which contradicts ๐œ†๐‘2 โ‰ฅ 0. Thus ฮฉ3 is bounded. If (33) holds, then define the set

โ‰ค ๐‘€ + 3 โ€–๐‘๐‘ฅโ€–1 ,

โ‰ค

(48)

For ๐‘ฅ = ๐‘๐‘ก๐‘โˆ’1 โˆˆ ฮฉ3 ,

(41)

๓ต„จ ๓ต„จ ๐‘โˆ’1 ๓ต„จ ๓ต„จ ๐‘โˆ’1 ฮ“ (๐‘) |๐‘ฅ (1)| = ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐ท0+ (๐‘ฅ (1) ๐‘ก๐‘โˆ’1 )๓ต„จ๓ต„จ๓ต„จ๓ต„จ = ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐ท0+ ๐‘ƒ๐‘ฅ (๐‘ก)๓ต„จ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ ๐‘โˆ’1 ๓ต„จ ๓ต„จ ๓ต„จ ๐‘โˆ’1 โ‰ค ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ก)๓ต„จ๓ต„จ๓ต„จ๓ต„จ + ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐ท0+ ((๐ผ โˆ’ ๐‘ƒ) ๐‘ฅ) (๐‘ก)๓ต„จ๓ต„จ๓ต„จ๓ต„จ

= {๐‘ฅ โˆˆ Ker ๐ฟ : ๐œ†๐ฝ๐‘ฅ + (1 โˆ’ ๐œ†) ๐‘„๐‘๐‘ฅ = 0, ๐œ† โˆˆ [0, 1]} .

๐œ†๐‘ = โˆ’ (1 โˆ’ ๐œ†) ๐‘„๐‘ (๐‘๐‘ก๐‘โˆ’1 ) .

Using (39) and (41), we have

๓ต„จ ๓ต„จ ๐‘โˆ’1 = ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐ท0+ (๐‘ฅ (๐‘ก) โˆ’ ((๐ผ โˆ’ ๐‘ƒ) ๐‘ฅ) (๐‘ก))๓ต„จ๓ต„จ๓ต„จ๓ต„จ

ฮฉ3

= deg (๐ป (โ‹…, 1) , Ker ๐ฟ โˆฉ ฮฉ, 0)

(53)

= deg (ยฑ๐ฝ, Ker ๐ฟ โˆฉ ฮฉ, 0) =ฬธ 0. Then by Theorem 1, ๐ฟ๐‘ฅ = ๐‘๐‘ฅ has at least one solution in dom ๐ฟ โˆฉ ฮฉ, so that IBVP (1) has a solution. The proof is completed. Theorem 12. Suppose (๐ป1 )โ€“(๐ป4 ) and (๐ป6 ) hold. Then IBVP (1) has at least one solution in ๐‘Œ, provided ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ โ€–๐›ผโ€–1 + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›ฝ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›พ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 < ฮ“ (๐‘ โˆ’ 1) . (54)

6

Journal of Function Spaces

Proof. As in the proof of Theorem 11, ๐‘ฅ โˆˆ ฮฉ1 , implies from (๐ป6 ), there exist ๐‘ก0 โˆˆ [0, 1] such that ๓ต„จ๓ต„จ ๐‘โˆ’1 ๓ต„จ ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ก0 )๓ต„จ๓ต„จ๓ต„จ < ๐‘€, ๓ต„จ ๓ต„จ ๓ต„จ๓ต„จ๓ต„จ๐ท๐‘โˆ’2 ๐‘ฅ (๐‘ก )๓ต„จ๓ต„จ๓ต„จ < ๐‘€. ๓ต„จ๓ต„จ 0+ 0 ๓ต„จ๓ต„จ

(55)

๐‘ก

๐‘โˆ’1

Therefore, ฮฉ1 is bounded. The rest of the proof repeats that of Theorem 11. ๐‘

๐ท0+ ๐‘ฅ (๐‘ก) = ๐ท0+ ๐‘ฅ (๐‘ก0 ) + โˆซ ๐ท0+ ๐‘ฅ (๐‘ ) ๐‘‘๐‘ , ๐‘ก0

๐‘โˆ’2 ๐ท0+ ๐‘ฅ (๐‘ก)

=

๐‘โˆ’2 ๐ท0+ ๐‘ฅ (๐‘ก0 )

+โˆซ

๐‘ก

๐‘ก0

๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐œŒ๓ต„ฉ๓ต„ฉ1 + 2๐‘€ . ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ โ€–๐›ผโ€–1 + ๓ต„ฉ๓ต„ฉ๐›ฝ๓ต„ฉ๓ต„ฉ1 + ๓ต„ฉ๓ต„ฉ๐›พ๓ต„ฉ๓ต„ฉ1 โˆ’ ฮ“ (๐‘ โˆ’ 1)

โ€–๐‘ฅโ€–๐‘‹ โ‰ค

(61)

Noticing that ๐‘โˆ’1

๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๐œŒ๓ต„ฉ + 2๐‘€ + ๓ต„ฉ ๓ต„ฉ1 , ฮ“ (๐‘ โˆ’ 1)

Example 13. Consider the IBVP (56)

+

we obtain (57)

0

๐‘ฅ (1) =

Hence, we have ๐‘ก ๓ต„จ๓ต„จ ๐‘โˆ’2 ๓ต„จ ๓ต„จ ๐‘โˆ’2 ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ก)๓ต„จ๓ต„จ๓ต„จ โ‰ค ๓ต„จ๓ต„จ๓ต„จ๐ท0+ ๓ต„จ๓ต„จ + โˆซ ๐‘ฅ (๐‘ก ) 0 ๓ต„จ ๓ต„จ ๓ต„จ ๓ต„จ ๐‘ก

0

๓ต„จ๓ต„จ ๐‘โˆ’1 ๓ต„จ ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ )๓ต„จ๓ต„จ๓ต„จ ๐‘‘๐‘  ๓ต„จ ๓ต„จ

๐‘โˆ’2

๐‘โˆ’2

1

(58)

๐ผ3โˆ’๐‘ ๐‘ฅ (0) ๐‘โˆ’3 ๐‘ก ฮ“ (๐‘ โˆ’ 2)

โ‰ค

๐‘โˆ’2

๐‘โˆ’1

(59)

๐‘ก 1 ๐‘โˆ’2 โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’3 ๐ท0+ ๐‘ฅ (๐‘ ) ๐‘‘๐‘ . ฮ“ (๐‘ โˆ’ 2) 0

1 (2๐‘€ + โ€–๐‘๐‘ฅโ€–1 ) . ฮ“ (๐‘ โˆ’ 1)

๓ต„ฉ ๐‘โˆ’1 ๓ต„ฉ ๓ต„ฉ ๐‘โˆ’2 ๓ต„ฉ โ€–๐‘ฅโ€–๐‘‹ = max {โ€–๐‘ฅโ€–โˆž , ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐ท0+ ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉโˆž , ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐ท0+ ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉโˆž } โ‰ค max {๐‘€ 1 + โ€–๐‘๐‘ฅโ€–1 , 2๐‘€ + โ€–๐‘๐‘ฅโ€–1 , (2๐‘€ + โ€–๐‘๐‘ฅโ€–1 )} ฮ“ (๐‘ โˆ’ 1) 2๐‘€ 1 โ€–๐‘๐‘ฅโ€–1 + ฮ“ (๐‘ โˆ’ 1) ฮ“ (๐‘ โˆ’ 1)

๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘โˆ’1 ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘โˆ’2 ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐œŒ๓ต„ฉ๓ต„ฉ1 + โ€–๐›ผโ€–1 โ€–๐‘ฅโ€–โˆž + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›ฝ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐ท0+ ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉโˆž + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›พ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐ท0+ ๐‘ฅ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉโˆž โ‰ค ฮ“ (๐‘ โˆ’ 1) +

1 2๐‘€ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ โ‰ค (โ€–๐›ผโ€–1 + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›ฝ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 + ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐›พ๓ต„ฉ๓ต„ฉ๓ต„ฉ1 ) โ€–๐‘ฅโ€–๐‘‹ ฮ“ (๐‘ โˆ’ 1) ฮ“ (๐‘ โˆ’ 1)

โˆ’

+ (60)

1 ๐‘โˆ’1 ๐ท ๐‘ฅ (๐‘ก) 12 0+

2+๐œ‹ ๐‘โˆ’1 > 0, if ๐ท0+ ๐‘ฅ (๐‘ก) > 15; 48 ๐‘โˆ’1

๐‘ก

1 ๓ต„จ ๐‘โˆ’2 ๓ต„จ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’3 ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ )๓ต„จ๓ต„จ๓ต„จ๓ต„จ ๐‘‘๐‘  ฮ“ (๐‘ โˆ’ 2) 0

๐‘โˆ’2

๐‘โˆ’2

๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก)) โ‰ค

Considering (57), (58), and (60), and applying (๐ป3 ), we get

โ‰ค

1 1 1 (63) sin ๐‘ข + V + arctan ๐‘ค, 24 12 24 so that โ€–๐›ผโ€–1 = โ€–๐›พโ€–1 = 1/24, โ€–๐›ฝโ€–1 = 1/12, and โ€–๐›ผโ€–1 + โ€–๐›ฝโ€–1 + โ€–๐›พโ€–1 = 1/6 < 1/5, which verifies (๐ป2 ) and (34). ๐‘โˆ’1 Taking ๐‘€ = 15, we have |๐ท0+ ๐‘ฅ(๐‘ก)| > 15, ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก) , ๐ท0+ ๐‘ฅ (๐‘ก)) โ‰ฅ

Thus, by (58), |๐‘ฅ (๐‘ก)| โ‰ค

(5/2) โˆซ0 ๐‘ฅ5/2 ๐‘‘๐‘ก = 5/7; thus (๐ป1 ) is satisfied. Let ๐‘“ (๐‘ก, ๐‘ข, V, ๐‘ค) = ๐‘ก +

= (๐ผ0+ ๐ท0+ ๐‘ฅ) (๐‘ก) =

5 1 โˆซ ๐‘ฅ (๐‘ก) ๐‘‘๐‘ก. 2 0 1

In view of ๐‘ฅ(0) = 0, ๐ผ3โˆ’๐‘ ๐‘ฅ(0) = 0. From this together with Lemma 5, for ๐‘ฅ โˆˆ dom ๐ฟ, we have ๐‘โˆ’2

(62)

Let ๐‘ = 5/2 and ๐ด(๐‘ก) = (5/2)๐‘ก, then (5/2) โˆซ0 ๐‘ฅ3/2 ๐‘‘๐‘ก = 1 and

โ‰ค 2๐‘€ + โ€–๐‘๐‘ฅโ€–1 .

๐‘ฅ (๐‘ก) = (๐ผ0+ ๐ท0+ ๐‘ฅ) (๐‘ก) +

1 ๐‘โˆ’2 arctan ๐ท0+ ๐‘ฅ (๐‘ก) , 24

๐‘ฅ (0) = ๐‘ฅ๓ธ€  (0) = 0,

๐‘ก

๓ต„จ๓ต„จ ๐‘โˆ’1 ๓ต„จ ๓ต„จ๓ต„จ๐ท0+ ๐‘ฅ (๐‘ก)๓ต„จ๓ต„จ๓ต„จ โ‰ค ๐‘€ + โˆซ |๐‘๐‘ฅ (๐‘ )| ๐‘‘๐‘  โ‰ค ๐‘€ + โ€–๐‘๐‘ฅโ€–1 . ๓ต„จ ๓ต„จ ๐‘ก

1 1 ๐‘โˆ’1 sin ๐‘ฅ (๐‘ก) + ๐ท0+ ๐‘ฅ (๐‘ก) 24 12

5/2 ๐‘ฅ (๐‘ก) = ๐‘ก + โˆ’๐ท0+

๐‘โˆ’1 ๐ท0+ ๐‘ฅ (๐‘ ) ๐‘‘๐‘ ,

50 + ๐œ‹ < 0, 48

๐‘„๐‘๐‘ฅ (๐‘ก) = 1

t

0

0

1 ๐‘โˆ’1 ๐ท ๐‘ฅ (๐‘ก) 12 0+

(64)

๐‘โˆ’1

if ๐ท0+ ๐‘ฅ (๐‘ก) < โˆ’15,

1 ๐‘ (โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘๐‘ฅ (๐‘ ) ๐‘‘๐‘  ๐œ… 0

โˆ’ โˆซ โˆซ (๐‘ก โˆ’ ๐‘ )๐‘โˆ’1 ๐‘๐‘ฅ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐ด (๐‘ก)) = 1

โ‹… โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐‘ ๐‘๐‘ฅ (๐‘ ) ๐‘‘๐‘  = 0

๐‘โˆ’1

๐‘ ๐œ…

(65)

1

๐‘ โˆซ (1 โˆ’ ๐‘ )๐‘โˆ’1 ๐œ… 0

๐‘โˆ’2

โ‹… ๐‘ ๐‘“ (๐‘ , ๐‘ฅ (๐‘ ) , ๐ท0+ ๐‘ฅ (๐‘ ) , ๐ท0+ ๐‘ฅ (๐‘ )) ๐‘‘๐‘  =ฬธ 0. Hence (๐ป5 ) holds. Finally, taking ๐ต = 10, when |๐‘| > 10, ๐‘โˆ’1

๐‘โˆ’2

๐‘๐‘“ (๐‘ก, ๐‘๐‘ก๐‘โˆ’1 , ๐‘๐ท0+ ๐‘ก๐‘โˆ’1 , ๐‘๐ท0+ ๐‘ก๐‘โˆ’1 ) โ‰ฅ

๐‘2 50 + ๐œ‹ ฮ“ (๐‘) โˆ’ |๐‘| > 0, 12 48

(66)

then we obtain ๐‘๐‘„๐‘(๐‘๐‘ก๐‘โˆ’1 ) > 0; that is, condition (๐ป4 ) is satisfied. It follows from Theorem 11 that IBVP (62) has at least one solution.

Journal of Function Spaces

7

Conflicts of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

[15]

[16]

The project was supported by the National Natural Science Foundation of China (11371221, 11571207, and 51774197).

References [1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006. [2] V. Lakshmikantham, S. Leela, and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. [3] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993. [4] X. Zhang, L. Liu, and Y. Wu, โ€œMultiple positive solutions of a singular fractional differential equation with negatively perturbed term,โ€ Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 1263โ€“1274, 2012. [5] Y. Cui, โ€œUniqueness of solution for boundary value problems for fractional differential equations,โ€ Applied Mathematics Letters, vol. 51, pp. 48โ€“54, 2016. [6] R. P. Agarwal, M. Benchohra, and S. Hamani, โ€œA survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,โ€ Acta Applicandae Mathematicae, vol. 109, no. 3, pp. 973โ€“1033, 2010. [7] B. Ahmad and A. Alsaedi, โ€œExistence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations,โ€ Fixed Point Theory and Applications, vol. 2010, Article ID 364560, 2010. [8] Z. Bai, โ€œOn positive solutions of a nonlocal fractional boundary value problem,โ€ Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 2, pp. 916โ€“924, 2010. [9] H. Li and Y. Liu, โ€œOn the uniqueness of the positive solution for a second-order integral boundary value problem with switched nonlinearity,โ€ Applied Mathematics Letters, vol. 24, no. 12, pp. 2201โ€“2205, 2011. [10] H. Li and Y. Liu, โ€œOn sign-changing solutions for a second-order integral boundary value problem,โ€ Computers and Mathematics with Applications, vol. 62, pp. 651โ€“656, 2011. [11] L. Liu, X. Hao, and Y. Wu, โ€œPositive solutions for singular second order differential equations with integral boundary conditions,โ€ Mathematical and Computer Modelling, vol. 57, no. 3-4, pp. 836โ€“ 847, 2013. [12] L. Liu, F. Sun, X. Zhang, and Y. Wu, โ€œBifurcation analysis for a singular differential system with two parameters via to degree theory,โ€ Nonlinear Analysis: Modelling and Control, vol. 22, no. 1, pp. 31โ€“50, 2017. [13] L. Liu, H. Li, C. Liu, and Y. Wu, โ€œExistence and uniqueness of positive solutions for singular fractional differential systems with coupled integral boundary conditions,โ€ Journal of Nonlinear Sciences and Applications. JNSA, vol. 10, no. 1, pp. 243โ€“262, 2017. [14] M. ur Rehman and R. A. Khan, โ€œExistence and uniqueness of solutions for multi-point boundary value problems for

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

fractional differential equations,โ€ Applied Mathematics Letters, vol. 23, no. 9, pp. 1038โ€“1044, 2010. F. Sun, L. Liu, X. Zhang, and Y. Wu, โ€œSpectral analysis for a singular differential system with integral boundary conditions,โ€ Mediterranean Journal of Mathematics, vol. 13, no. 6, pp. 4763โ€“ 4782, 2016. S. Zhang and X. Su, โ€œThe existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order,โ€ Comput. Math. Appl, vol. 62, pp. 1269โ€“1274, 2011. X. Zhang, L. Liu, and Y. Wu, โ€œThe eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives,โ€ Applied Mathematics and Computation, vol. 218, no. 17, pp. 8526โ€“8536, 2012. X. Zhang, L. Liu, and Y. Wu, โ€œExistence and uniqueness of iterative positive solutions for singular Hammerstein integral equations,โ€ Journal of Nonlinear Sciences and Applications. JNSA, vol. 10, no. 7, pp. 3364โ€“3380, 2017. D. Zhao and Y. Liu, โ€œPositive solutions for a class of fractional differential coupled system with integral boundary value conditions,โ€ Journal of Nonlinear Sciences and Applications, vol. 9, pp. 2922โ€“2942, 2016. Y. Zou and G. He, โ€œOn the uniqueness of solutions for a class of fractional differential equations,โ€ Applied Mathematics Letters, vol. 74, pp. 68โ€“73, 2017. Z. Bai and Y. Zhang, โ€œThe existence of solutions for a fractional multi-point boundary value problem,โ€ Computers and Mathematics with Applications, vol. 60, no. 8, pp. 2364โ€“2372, 2010. Y. Cui and Y. Zou, โ€œExistence of solutions for second-order integral boundary value problems,โ€ Lithuanian Association of Nonlinear Analysts. Nonlinear Analysis: Modelling and Control, vol. 21, no. 6, pp. 828โ€“838, 2016. Y. Cui, โ€œExistence of solutions for coupled integral boundary value problem at resonance,โ€ Publicationes Mathematicae, vol. 89, no. 1-2, pp. 73โ€“88, 2016. N. Kosmatov and W. Jiang, โ€œResonant functional problems of fractional order,โ€ Chaos, Solitons and Fractals, vol. 91, pp. 573โ€“ 579, 2016. Q. Sun and Y. Cui, โ€œExistence results for (๐‘˜, ๐‘› โˆ’ ๐‘˜) conjugate boundary-value problems with integral boundary conditions at resonance with dim ker L= 2,โ€ Boundary Value Problems, vol. 2017, no. 1, article no. 29, 2017. Q. Sun and Y. Cui, โ€œSolvability of (k, n - k) Conjugate Boundary Value Problems with Integral Boundary Conditions at Resonance,โ€ Journal of Function Spaces, vol. 2016, Article ID 3454879, 2016. Z. Zhao and J. Liang, โ€œExistence of solutions to functional boundary value problem of second-order nonlinear differential equation,โ€ Journal of Mathematical Analysis and Applications, vol. 373, no. 2, pp. 614โ€“634, 2011. Y. Zou, L. Liu, and Y. Cui, โ€œThe existence of solutions for fourpoint coupled boundary value problems of fractional differential equations at resonance,โ€ Abstract and Applied Analysis, vol. 2014, Article ID 314083, 2014. Y. Zou and Y. Cui, โ€œExistence results for a functional boundary value problem of fractional differential equations,โ€ Advances in Difference Equations, vol. 2013, article no. 233, 2013. J. Mawhin, in Proceedings of the, vol. 40 of NSFCBMS Regional Conference Series in Mathematics, American Mathematical Society.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at https://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

#HRBQDSDฤฎ,@SGDL@SHBR

Journal of

Volume 201

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014