The organic-inorganic hybrid material 1

0 downloads 0 Views 631KB Size Report
Sep 23, 2013 - hydrogen bonds (Table 2) and van der Waals contacts. These ... code, see Table 2). IR spectroscopy is one of the major physical methods for.
metal-organic compounds Acta Crystallographica Section C

2. Experimental

Crystal Structure Communications

2.1. Synthesis and crystallization

ISSN 0108-2701

The organic–inorganic hybrid material 1-cyclohexylpiperazine-1,4-diium tetrachloridozincate Sarra Soudani,a Emmanuel Aubert,b Christian Jelschb and Cherif Ben Nasra*

1-Cyclohexylpiperazine (0.37 g, 3 mmol; Aldrich, purity 97%) and ZnCl2 (0.41 g, 3 mmol; Aldrich, purity 98%) were dissolved in aqueous HCl (2 M, 20 ml). The resulting solution was evaporated slowly at room temperature over a period of several days, leading to the formation of transparent colourless prismatic crystals with suitable dimensions for singlecrystal structural analysis (yield 73%). The crystals are stable for months under normal conditions of temperature and humidity. The IR spectrum was recorded on a Nicolet FT–IR NEXUS spectrophotometer and the Raman spectrum on a LabRAM HR (Horiba Jobin Yvon) spectrophotometer.

a

Laboratoire de Chimie des Mate´riaux, Faculte´ des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bCristallographie, Re´sonance Magne´tique et Mode´lisations (CRM2), UMR CNRS–UHP 7036, Institut Jean Barriol, Universite´ de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France Correspondence e-mail: [email protected] Received 18 July 2013 Accepted 23 September 2013

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were located in difference Fourier maps. The final structure was constructed using riding models for C—H bonds, with interatomic ˚ and Uiso(H) = 1.2Ueq(C). H atoms distances fixed at 0.99 A bonded to N atoms were refined freely, with isotropic displacement parameters.

In the crystal structure of the title organic–inorganic hybrid material, (C10H22N2)[ZnCl4], the tetrachloridozincate anions and 1-cyclohexylpiperazine-1,4-diium dications are interconnected via N—H  Cl and C—H  Cl hydrogen bonds to form layers parallel to the (001) plane. The cyclohexyl groups from adjacent chains interdigitate, thus building the threedimensional structure. The piperazinium and cyclohexyl rings exhibit regular spatial chair conformations. The title salt was also characterized by FT–IR and Raman spectroscopic analyses. Keywords: crystal structure; organic–inorganic hybrid materials; organic–inorganic salts; tetrachloridozincate anions; 1-cyclohexylpiperazine-1,4-diium cations.

3. Results and discussion 1. Introduction Organic–inorganic hybrid materials have received extensive attention in recent years owing to their great fundamental and practical interest, such as second-order nonlinear optical (NLO) responses, magnetism, luminescence and drug delivery (Mitzi, 1999; Qin et al., 1999; Ogawa & Kuroda, 1995; Pecaut et al., 1993; Lacroix, 2001; Bringley & Rajeswaran, 2006). The energetics of N—H  Cl—M (M = metal) hydrogen bonds and their possible role in supramolecular chemistry have been recently described in detail (Brammer et al., 2002). It is therefore vital to design and synthesize novel organic– inorganic hybrid compounds to explore their various properties. The present work is devoted to determining the detailed structure of the title organic–inorganic salt, 1-cyclohexylpiperazine-1,4-diium tetrachloridozincate, (I). The characterization of this material by FT–IR and Raman spectroscopic analyses is also described. Acta Cryst. (2013). C69

The asymmetric unit of (I) comprises one 1-cyclohexylpiperazine-1,4-diium dication and one [ZnCl4]2 anion (Fig. 1). The crystal structure consists of a network of the different constituents connected by N—H  Cl and C—H  Cl hydrogen bonds (Table 2) and van der Waals contacts. These hydrogen bonds hold the tetrachloridozincate anions and piperazine-1,4-diium dications together in layers parallel to the (001) plane (Fig. 2). Fig. 3 shows that two such layers cross the unit cell at z  n/2 (where n is an integer), and the bodies of the organic entities from adjacent layers, the cyclohexyl groups, interdigitate. The organic entities exhibit a regular spatial conformation (chair conformation for both piperazine and cyclohexyl rings) with normal distances and angles. The Zn—Cl bond lengths vary between 2.2467 (4) and ˚ , and the Cl—Zn—Cl angles range from 2.3318 (4) A 103.327 (14) to 116.146 (15) . Owing to these differences in the geometric parameters, the [ZnCl4]2 anion has a slightly distorted tetrahedral stereochemistry. It is worth noting that,

doi:10.1107/S0108270113026267

# 2013 International Union of Crystallography

1 of 3

metal-organic compounds Table 1

Table 2

Experimental details.

˚ ,  ). Hydrogen-bond geometry (A

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm)

(C10H22N2)[ZnCl4] 377.47 Orthorhombic, Pbca 110 11.3673 (2), 9.5997 (2), 28.6571 (5) 3127.14 (10) 8 Cu K 8.30 0.26  0.22  0.15

Data collection Diffractometer

Absorption correction

Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment

D—H

H  A

D  A

D—H  A

N1—H1  Cl1 N4—H4A  Cl3i C5—H5A  Cl1ii N4—H4B  Cl1iii N4—H4B  Cl4iii C5—H5B  Cl1

0.90 (2) 0.90 (2) 0.99 0.89 (2) 0.89 (2) 0.99

2.42 (2) 2.46 (2) 2.75 2.50 (2) 2.66 (2) 2.79

3.2441 (13) 3.3050 (12) 3.6125 (15) 3.2153 (12) 3.2561 (12) 3.5573 (15)

152 (2) 158 (2) 146 138 (2) 125 (2) 135

Symmetry codes: (i) x; y  1; z; (ii) x þ 12; y  12; z; (iii) x þ 1; y þ 1; z.

Agilent SuperNova Dual diffractometer (Cu at zero) with an Atlas detector Analytical [CrysAlis PRO (Agilent, 2012); analytical absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] 0.201, 0.425 17184, 3263, 3154 0.030 0.630

0.022, 0.056, 1.08 3263 166 H atoms treated by a mixture of independent and constrained refinement 0.32, 0.27

˚ 3) max, min (e A

D—H  A

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1994), DIAMOND (Brandenburg, 1998) and SHELXL97 (Sheldrick, 2008).

among all the hydrogen bonds, one is a three-centred interaction, viz.N4—H4B  (Cl1iii,Cl4iii) (for details and symmetry code, see Table 2).

Figure 2 A projection, along the c axis, of the layers in the structure of (I). Hydrogen bonds are shown as dashed lines. Generic labels show the atom types.

IR spectroscopy is one of the major physical methods for the investigation of molecular structures. The IR spectrum of crystalline (I) is shown in Fig. 4. To assign the IR bands to vibrational modes, we examined the modes and frequencies observed in similar compounds (Calve et al., 1989; Navak, 1990). In the high-frequency region, broad bands between

Figure 1 A view of the contents of the asymmetric unit of (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

2 of 3

Soudani et al.



(C10H22N2)[ZnCl4]

Figure 3 A packing diagram of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. Generic labels show the atom types. Acta Cryst. (2013). C69

metal-organic compounds assigned to the 3(ZnCl4) mode (Guo et al., 2007). The intense band at 117 cm1 is likely due to the 4(ZnCl4) mode (Carter, 2000). Finally, the band appearing at 102 cm1 is likely related to the 2(ZnCl4) mode (Ben Rhaiem et al., 2007).

4. Conclusions

Figure 4 The IR spectrum of (I).

Compound (I) was prepared as single crystals at room temperature and characterized by physicochemical methods. On the structural level, the atomic arrangement of this material consists of a network of the tetrachloridozincate anions and 1-cyclohexylpiperazine-1,4-diium dications interconnected via N—H  Cl and C—H  Cl hydrogen bonds to form layers parallel to the (001) plane. The cyclohexyl groups from adjacent chains interdigitate, thus completing the threedimensional structure. The bands corresponding to the vibrational modes of the organic group were assigned by IR spectroscopy, while those of the inorganic entity, [ZnCl4]2, were attributed using Raman spectroscopy. The authors acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. Supplementary data for this paper are available from the IUCr electronic archives (Reference: CU3034). Services for accessing these data are described at the back of the journal.

References

Figure 5 The Raman spectrum of (I).

3300 and 2700 cm1 are attributed to the stretching vibrations of N—H and C—H groups (Smirani et al., 2004). The bands between 1650 and 1200 cm1 are assigned to the deformation vibration of N—H groups and to the stretching modes of C—C and C—N groups (Kaabi et al., 2003). The vibration bands between 1000 and 500 cm1 are attributed to out-of-plane bending modes for C—H, C—C and C—N (Oueslati et al., 2005). Raman spectroscopy shows that the bands corresponding to the internal vibrational modes of the [ZnCl4]2 anion, i.e. 1, 2, 3 and 4 , appear in the spectroscopic region below 350 cm1. Fig. 5 shows this Raman region related to (I). The weak band at 306 cm1 is attributed to the 1(ZnCl4) mode (Carter, 2002). The bands observed at 297 and 251 cm1 are

Acta Cryst. (2013). C69

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. Ben Rhaiem, A., Helel, F., Guidara, K. & Gargouri, M. (2007). Spectrochim. Acta Part A, 66, 1107–1109. Brammer, L. J., Swearingen, K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961. Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305. Calve, N. L., Romain, F., Limage, M. H. & Novak, A. (1989). J. Mol. Struct. 200, 131–147. Carter, R. L. (2000). Spectrochim. Acta Part A, 56, 2351–2363. Carter, R. L. (2002). Spectrochim. Acta Part A, 58, 3185–3195. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571. Kaabi, K., Rayes, A., Ben Nasr, C., Rzaigui, M. & Lefebvre, F. (2003). Mater. Res. Bull. 38, 741–747. Lacroix, P. G. (2001). Chem. Mater. 13, 3495–3506. Mitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1–121. Navak, A. (1990). J. Mol. Struct. 217, 35–49. Ogawa, M. & Kuroda, K. (1995). Chem. Rev. 95, 399–438. Oueslati, A., Ben Nasr, C., Durif, A. & Lefebvre, F. (2005). Mater. Res. Bull. 40, 970–980. Pecaut, J., Le Fur, Y., Levy, J. & Masse, R. (1993). J. Mater. Chem. 3, 333–338. Qin, J., Dai, C., Liu, D., Chen, C., Wu, B., Yang, C. & Zhan, C. (1999). Coord. Chem. Rev. 188, 23–34. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Smirani, W., Ben Nasr, C. & Rzaigui, M. (2004). Mater. Res. Bull. 39, 1103– 1111.

Soudani et al.



(C10H22N2)[ZnCl4]

3 of 3

supplementary materials

supplementary materials Acta Cryst. (2013). C69 [doi:10.1107/S0108270113026267]

The organic–inorganic hybrid material 1-cyclohexylpiperazine-1,4-diium tetrachloridozincate Sarra Soudani, Emmanuel Aubert, Christian Jelsch and Cherif Ben Nasr Computing details Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). 1-cyclohexylpiperazine-1,4-diium tetrachloridozincate Crystal data (C10H22N2)[ZnCl4] Mr = 377.47 Orthorhombic, Pbca Hall symbol: -P 2ac 2ab a = 11.3673 (2) Å b = 9.5997 (2) Å c = 28.6571 (5) Å V = 3127.14 (10) Å3 Z=8

F(000) = 1552 Dx = 1.604 Mg m−3 Cu Kα radiation, λ = 1.54184 Å Cell parameters from 9435 reflections θ = 3.1–76.4° µ = 8.30 mm−1 T = 110 K Prism, colourless 0.26 × 0.22 × 0.15 mm

Data collection Agilent SuperNova Dual diffractometer (Cu at zero) with Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4508 pixels mm-1 ω scans

Absorption correction: analytical [CrysAlis PRO (Agilent, 2012); analytical numerical absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] Tmin = 0.201, Tmax = 0.425 17184 measured reflections 3263 independent reflections 3154 reflections with I > 2σ(I) Rint = 0.030 θmax = 76.2°, θmin = 3.1° h = −14→10 k = −11→12 l = −36→35

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.022 wR(F2) = 0.056 S = 1.08

Acta Cryst. (2013). C69

3263 reflections 166 parameters 0 restraints Primary atom site location: structure-invariant direct methods

sup-1

supplementary materials Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0273P)2 + 2.021P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.32 e Å−3 Δρmin = −0.27 e Å−3

Special details Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Zn1 Cl3 Cl2 Cl1 Cl4 N1 N4 C7 H7 C3 H3B H3A C6 H6B H6A C2 H2A H2B C12 H12B H12A C9 H9B H9A C5 H5A H5B C8 H8A

x

y

z

Uiso*/Ueq

0.552127 (17) 0.44251 (3) 0.66233 (3) 0.41865 (3) 0.64732 (3) 0.46089 (11) 0.48467 (11) 0.44402 (12) 0.5235 0.59015 (13) 0.6052 0.6600 0.35583 (13) 0.2873 0.3364 0.57029 (13) 0.5633 0.6390 0.39402 (15) 0.4429 0.3130 0.36831 (15) 0.4494 0.3192 0.37872 (13) 0.3097 0.3915 0.36894 (13) 0.2877

0.837964 (19) 0.99531 (4) 0.69395 (4) 0.68822 (3) 0.95295 (3) 0.42781 (13) 0.22977 (13) 0.46430 (15) 0.4855 0.30339 (16) 0.3888 0.2423 0.35838 (15) 0.4218 0.2728 0.34155 (15) 0.2554 0.3945 0.34274 (16) 0.2587 0.3219 0.63142 (17) 0.6538 0.7153 0.32076 (15) 0.2714 0.4066 0.59428 (16) 0.5765

0.089690 (6) 0.130948 (12) 0.133374 (12) 0.053615 (12) 0.031959 (12) 0.12379 (4) 0.04818 (4) 0.17543 (5) 0.1885 0.06715 (5) 0.0487 0.0645 0.10184 (5) 0.1036 0.1195 0.11769 (5) 0.1365 0.1294 0.20329 (5) 0.1983 0.1926 0.23370 (5) 0.2438 0.2386 0.05119 (5) 0.0382 0.0327 0.18160 (5) 0.1706

0.01164 (7) 0.01701 (9) 0.01658 (8) 0.01533 (8) 0.01565 (8) 0.0116 (2) 0.0136 (2) 0.0129 (3) 0.015* 0.0150 (3) 0.018* 0.018* 0.0141 (3) 0.017* 0.017* 0.0142 (3) 0.017* 0.017* 0.0186 (3) 0.022* 0.022* 0.0202 (3) 0.024* 0.024* 0.0145 (3) 0.017* 0.017* 0.0164 (3) 0.020*

Acta Cryst. (2013). C69

sup-2

supplementary materials H8B C11 H11A H11B C10 H10B H10A H4B H1 H4A

0.4021 0.39285 (16) 0.3588 0.4745 0.32078 (16) 0.3246 0.2374 0.4965 (18) 0.4747 (17) 0.4746 (19)

0.6722 0.38115 (18) 0.3033 0.3963 0.51264 (18) 0.5388 0.4950 0.205 (2) 0.508 (2) 0.150 (2)

0.1632 0.25525 (5) 0.2735 0.2662 0.26348 (6) 0.2969 0.2554 0.0185 (8) 0.1084 (7) 0.0639 (8)

0.020* 0.0232 (3) 0.028* 0.028* 0.0244 (3) 0.029* 0.029* 0.021 (5)* 0.016 (5)* 0.022 (5)*

Atomic displacement parameters (Å2)

Zn1 Cl3 Cl2 Cl1 Cl4 N1 N4 C7 C3 C6 C2 C12 C9 C5 C8 C11 C10

U11

U22

U33

U12

U13

U23

0.01350 (11) 0.01859 (18) 0.01603 (17) 0.01766 (17) 0.01613 (16) 0.0128 (6) 0.0149 (6) 0.0149 (7) 0.0117 (7) 0.0117 (6) 0.0126 (7) 0.0274 (8) 0.0237 (8) 0.0138 (7) 0.0191 (7) 0.0345 (9) 0.0277 (8)

0.00970 (11) 0.01404 (17) 0.01697 (16) 0.01406 (16) 0.01425 (16) 0.0115 (5) 0.0134 (6) 0.0140 (7) 0.0169 (7) 0.0160 (7) 0.0144 (7) 0.0165 (7) 0.0202 (7) 0.0159 (7) 0.0156 (7) 0.0237 (8) 0.0319 (9)

0.01171 (11) 0.01840 (17) 0.01674 (17) 0.01426 (16) 0.01657 (16) 0.0106 (5) 0.0126 (6) 0.0097 (6) 0.0164 (7) 0.0147 (7) 0.0154 (7) 0.0119 (7) 0.0168 (7) 0.0137 (7) 0.0146 (7) 0.0116 (7) 0.0134 (7)

0.00094 (7) 0.00101 (13) −0.00007 (13) −0.00266 (13) 0.00047 (12) 0.0003 (5) 0.0000 (5) 0.0006 (5) −0.0016 (6) 0.0002 (5) 0.0021 (5) −0.0010 (6) 0.0049 (6) 0.0015 (6) 0.0022 (6) −0.0002 (7) 0.0028 (7)

0.00004 (7) 0.00349 (12) −0.00065 (12) −0.00250 (12) 0.00054 (12) 0.0005 (4) 0.0003 (5) −0.0007 (5) 0.0021 (5) −0.0013 (5) −0.0007 (5) 0.0014 (6) −0.0013 (6) −0.0017 (5) 0.0000 (5) 0.0019 (6) 0.0042 (6)

0.00002 (6) −0.00108 (12) 0.00320 (12) 0.00128 (11) 0.00002 (12) −0.0002 (4) −0.0024 (5) −0.0022 (5) −0.0024 (5) −0.0018 (5) −0.0023 (5) 0.0007 (5) −0.0059 (6) −0.0014 (5) −0.0009 (5) 0.0013 (6) −0.0037 (6)

Geometric parameters (Å, º) Zn1—Cl2 Zn1—Cl4 Zn1—Cl3 Zn1—Cl1 N1—C2 N1—C6 N1—C7 N1—H1 N4—C5 N4—C3 N4—H4B N4—H4A C7—C8 C7—C12 C7—H7 C3—C2

Acta Cryst. (2013). C69

2.2467 (4) 2.2641 (4) 2.2874 (4) 2.3318 (4) 1.5043 (18) 1.5052 (18) 1.5328 (17) 0.90 (2) 1.4902 (19) 1.4942 (18) 0.89 (2) 0.90 (2) 1.522 (2) 1.524 (2) 1.0000 1.511 (2)

C6—H6A C2—H2A C2—H2B C12—C11 C12—H12B C12—H12A C9—C10 C9—C8 C9—H9B C9—H9A C5—H5A C5—H5B C8—H8A C8—H8B C11—C10 C11—H11A

0.9900 0.9900 0.9900 1.534 (2) 0.9900 0.9900 1.523 (2) 1.535 (2) 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 1.523 (2) 0.9900

sup-3

supplementary materials C3—H3B C3—H3A C6—C5 C6—H6B

0.9900 0.9900 1.5183 (19) 0.9900

C11—H11B C10—H10B C10—H10A

0.9900 0.9900 0.9900

Cl2—Zn1—Cl4 Cl2—Zn1—Cl3 Cl4—Zn1—Cl3 Cl2—Zn1—Cl1 Cl4—Zn1—Cl1 Cl3—Zn1—Cl1 C2—N1—C6 C2—N1—C7 C6—N1—C7 C2—N1—H1 C6—N1—H1 C7—N1—H1 C5—N4—C3 C5—N4—H4B C3—N4—H4B C5—N4—H4A C3—N4—H4A H4B—N4—H4A C8—C7—C12 C8—C7—N1 C12—C7—N1 C8—C7—H7 C12—C7—H7 N1—C7—H7 N4—C3—C2 N4—C3—H3B C2—C3—H3B N4—C3—H3A C2—C3—H3A H3B—C3—H3A N1—C6—C5 N1—C6—H6B C5—C6—H6B N1—C6—H6A C5—C6—H6A H6B—C6—H6A N1—C2—C3 N1—C2—H2A C3—C2—H2A

116.146 (15) 114.966 (15) 108.429 (14) 103.327 (14) 106.711 (14) 106.366 (15) 111.32 (11) 109.96 (11) 113.91 (11) 105.6 (13) 108.1 (13) 107.5 (12) 110.50 (11) 109.3 (13) 110.5 (13) 111.6 (14) 108.9 (14) 105.9 (18) 110.96 (12) 111.70 (11) 112.18 (12) 107.2 107.2 107.2 110.09 (12) 109.6 109.6 109.6 109.6 108.2 111.64 (12) 109.3 109.3 109.3 109.3 108.0 111.61 (12) 109.3 109.3

N1—C2—H2B C3—C2—H2B H2A—C2—H2B C7—C12—C11 C7—C12—H12B C11—C12—H12B C7—C12—H12A C11—C12—H12A H12B—C12—H12A C10—C9—C8 C10—C9—H9B C8—C9—H9B C10—C9—H9A C8—C9—H9A H9B—C9—H9A N4—C5—C6 N4—C5—H5A C6—C5—H5A N4—C5—H5B C6—C5—H5B H5A—C5—H5B C7—C8—C9 C7—C8—H8A C9—C8—H8A C7—C8—H8B C9—C8—H8B H8A—C8—H8B C10—C11—C12 C10—C11—H11A C12—C11—H11A C10—C11—H11B C12—C11—H11B H11A—C11—H11B C11—C10—C9 C11—C10—H10B C9—C10—H10B C11—C10—H10A C9—C10—H10A H10B—C10—H10A

109.3 109.3 108.0 109.13 (13) 109.9 109.9 109.9 109.9 108.3 111.88 (13) 109.2 109.2 109.2 109.2 107.9 109.47 (11) 109.8 109.8 109.8 109.8 108.2 107.83 (12) 110.1 110.1 110.1 110.1 108.5 110.74 (13) 109.5 109.5 109.5 109.5 108.1 110.05 (13) 109.7 109.7 109.7 109.7 108.2

C2—N1—C7—C8 C6—N1—C7—C8 C2—N1—C7—C12 C6—N1—C7—C12

156.71 (12) −77.55 (15) −77.98 (14) 47.76 (16)

C8—C7—C12—C11 N1—C7—C12—C11 C3—N4—C5—C6 N1—C6—C5—N4

−60.68 (17) 173.60 (12) −60.15 (15) 56.76 (15)

Acta Cryst. (2013). C69

sup-4

supplementary materials C5—N4—C3—C2 C2—N1—C6—C5 C7—N1—C6—C5 C6—N1—C2—C3 C7—N1—C2—C3 N4—C3—C2—N1

60.08 (15) −53.28 (15) −178.30 (11) 52.84 (15) −179.96 (11) −56.07 (16)

C12—C7—C8—C9 N1—C7—C8—C9 C10—C9—C8—C7 C7—C12—C11—C10 C12—C11—C10—C9 C8—C9—C10—C11

60.11 (16) −173.91 (12) −58.33 (17) 57.94 (18) −56.23 (18) 57.11 (18)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1—H1···Cl1 N4—H4A···Cl3i C5—H5A···Cl1ii N4—H4B···Cl1iii N4—H4B···Cl4iii C5—H5B···Cl1

0.90 (2) 0.90 (2) 0.99 0.89 (2) 0.89 (2) 0.99

2.42 (2) 2.46 (2) 2.75 2.50 (2) 2.66 (2) 2.79

3.2441 (13) 3.3050 (12) 3.6125 (15) 3.2153 (12) 3.2561 (12) 3.5573 (15)

152 (2) 158 (2) 146 138 (2) 125 (2) 135

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, z; (iii) −x+1, −y+1, −z.

Acta Cryst. (2013). C69

sup-5