the symposium commitees

207 downloads 8374 Views 9MB Size Report
Organized and sponsored by OCP, this worldwide scientific and ...... were also very rudimentary – often, single stage scrubbing in simple void spray towers. .... constitutifs contrôlent les processus de déformation et de rupture par rapport ...
Dear participants, On behalf of the Organizing Committee, I am pleased to welcome you to SYMPHOS 2011, the first International Symposium on Innovation and Technology in the Phosphates Industry, in Marrakech. Organized and sponsored by OCP, this worldwide scientific and technological event will be a global meeting point for all major players in the phosphate industry’s diverse fields. SYMPHOS 2011 is a landmark event -- the first of its kind in Morocco. Industry representatives, scholars, academics and other experts will present and discuss global developments and specific phosphate topics. Together we will: • Share information and innovative ideas; • Review new techniques and technologies that can increase production and productivity; •Discuss best practices with special attention given to sustainable development and environmental protection; • Consider the phosphate industry’s future, within the framework of a sustainable development and clean technology approach. The Organizing Committee has prepared a full agenda, including meetings and visits, as you would expect from an event of this importance. The technical program will run from May 11th to May 13th, 2011. On May 10th, OCP will offer visits to our Khouribga (industrial mining) and Jorf Lasfar (chemical platform) sites. The exhibition space will be open to all participants throughout the symposium, with more than sixty companies presenting their activities, products and services. SYMPHOS 2011 also offers a B to B centre accessible to all participants, where interested parties will be able to organize their own meetings, through an innovative interactive tool accessible on the Symposium website. We would like to thank all the people who put their worthy efforts into the organization of this event. Finally, we would like to thank you for your presence and your interest in SYMPHOS 2011, and sincerely hope it will meet and surpass your expectations. Enjoy the symposium and your stay in Marrakech!

2

THE SYMPOSIUM COMMITEES

SYMPHOS CHAIR Mr Amar DRISSI SYMPHOS PROGRAM DIRECTOR Mr Mohamed AMALHAY SYMPHOS TECHNICAL SECRETARY Ms Nawal SEMLAL SYMPHOS TREASURER Mr Younes MSOUGAR

ORGANIZATION COMMITTEE Mohamed AMALHAY, Morocco Qods BENJELLOUN, Morocco Siham CHERKAOUI, Morocco TECHNICAL COMMITTEE Mohamed AMALHAY, Morocco Jamal CHAOUKI, Morocco Nawal SEMLAL, Morocco Abdelhak KABBABI, Morocco Es-Said JOURANI, Morocco Mohamed AMALIK, Morocco Mansour ASRI, Morocco Abdelkader ALOUANI, Morocco Faris DERRIJ, Morocco Ahmed HANINE, Morocco Mohamed BELGHITI ALAOUI, Morocco Badreddine ELABID AMRANI, Morocco Moulay ZEMMARI, Morocco Amine LOUALI, Morocco Mohamed BENZEKRI, Morocco Ali AZERGUI, Morocco

STEERING COMMITTEE Meryem CHAMI, Morocco Amar DRISSI, Morocco Mhamed IBNABDELJALIL, Morocco Kerry McNAMARA, USA STAND COMMITTEE Michael P. OAKLEY, Morocco El Motaoikkil EL BARAKA, Morocco Nordine ZNIBI, Morocco Zakaria ZAIRI, Morocco SCIENTIFIC COMMITTEE GEOLOGY/HYDROGEOLOGY/PROSPECTION Hassan BOUMAGGARD, Doyen de la faculté Poly-disciplinaire, Université Cadi Ayyad, Safi, Maroc Es-said JOURANI, Directeur Géologie & Hydrologie, Mine-Géologie, OCP , Maroc Abdellah MOUTTAQI, Directeur du Pôle Technique et exploration de l’ONHYM, Maroc

3

EXTRACTION Mansour ASRI, Chercheur en extraction minière, OCP, Maroc Jayanta BHATTACHARYYA, Professeur, Indian Institute of Technology, Inde Jean-Alain FLEURISSON, MINES ParisTech Centre de Géosciences, France Raja V. RAMANI, Emeritus Professor of Mining Engineering and Emeritus, The Pennsylvania State University, USA Jamal ROSTAMI, Chercheur, Pennsylvania State University, USA Maurice SAVE, Ingénieur expert en procédés, BRGM, France TREATMENT AND ENRICHMENT OF MINERALS Abdelkader ALOUANI, Directeur Logistique et Projets d’Amélioration à Khouribga, OCP, Maroc Florent BOURGEOIS, Professeur, ENSIACET, Laboratoire de Génie Chimique, Toulouse, France. Jamal CHAOUKI, Professeur, Directeur du Centre Bioraffinage, Département de Génie Chimique, Ecole Polytechnique de Montréal, Canada Mohammed EL ASRI, Professeur, Faculté des Sciences et Techniques FST Fès, Maroc Hassan EL SHALL, Associate Professor, University of Florida, USA Robert HALL, Associate Professor, UBC, Director Mine Automation / Environmental Simulation Laboratory (MAESL),Canada Jim HENDRIX, Professor, Department of Chemical & Biomolecular Engineering College of Engineering, University of Nebraska–Lincoln,USA. El Aïd JDID, Professeur, Laboratoire Environnement et Minéralurgie LEM, France My Brahim JOUTI, Chef de Département, OCP, Maroc Brij MOUDGIL, Professeur, University of Florida, Gainesville, USA Laurindo de S.LEAL FILHO, Professor, Engineering School – University of Sao Paulo, Brazil

4

Maurice SAVE, Ingénieur expert en procédés, BRGM, France Mohamed SMANI, Directeur de « R-D Maroc », Maroc Ponisseril SOMASUNDARAN, Professor of Mineral Engineering in the Department of Earth and Environmental Engineering, New York, USA Belhaj SOULAMI, Professeur, Ecole des ingénieurs ENIM Rabat, Maroc Daniel TAO, University of Kentucky Lexigton, USA Abdelatif TOUZANI, Professeur, Ecole des ingénieurs EMI Rabat, Maroc Patrick ZHANG, Ph.D, Research Director Beneficiation & Mining, Florida Industrial and Phosphate Research Institute, USA. SULPHURIC ACID, WATER &ENERGY Jamal CHAOUKI, Professeur, Directeur du Centre Bioraffinage, Département de Génie Chimique Ecole Polytechnique de Montréal, Canada. Henri DELMAS, Professeur ENSIACET, Laboratoire de Génie Chimique, Toulouse, France. Ahmed HANINE, Chef de Division Produit Intermédiaire à Maroc Phosphore III et IV, OCP, Maroc Francis LUCK, TOTAL S.A. - DG/DS, Catalysis and Process Engineering, Paris, France B.K PAREKH, Professor, University of Kentucky, Center for Applied Energy Research, USA SOTUDEH – GHAREBAGH Rahmat, Department of Chemical Engineering University of Tehran, Iran PHOSPHORIC ACID, FERTILIZER Mohamed AMALHAY, Chef de Projet, Directeur Recherche, Chimie et Valorisation, OCP, Maroc Mohamed BADRAOUI, Directeur de l’Institut National de la Recherche Agronomique (INRA) Rabat, Maroc Mohamed BELGHITI ALAOUI, Chef de projet Adaptation Atelier Phosphorique au phosphate pulpe. Jamal CHAOUKI, Professeur, Directeur du Centre

Bioraffinage, Département de Génie Chimique Ecole Polytechnique de Montréal, Canada Christopher EARL, Technology Consultant, KEMWorks Technology,Inc, USA David IVELL, Director of Process Technology, JACOBS Engineering SA USA Abdelaâli KOSSIR, Directeur Recherche &Développement, Pôle Chimie, OCP, Maroc. Tayeb MRABET, Secrétaire Général de IMPHOS, Maroc Marten WALTERS, President, KEMWorks Technology Inc, Kentucky, Lakeland, USA MATERIALS& NEW PRODUCTS Lahcen BIH, Professeur, Faculté des Sciences et Techniques d’Errachidia, Maroc Bruno AMEDURI, Directeur de Recherches CNRS, Ecole Nationale Supérieure de Chimie de Montpelier (ENSCM), France Driss DHIBA, Directeur Développement Nouveaux Produits, Pole Commercial, OCP, Maroc Diana A. ESTENOZ, Professeur, Institut de Développement Technologique pour l’Industrie Chimique. Faculté d’Ingénierie Chimique INTEC, Argentine. Gilles LE FLEM, Directeur de Recherche (CNRS), ICMCB, Bordeaux, France Jan D. MILLER, Chair Metallurgical engineering, Mines And Earth Sciences-Dean, University of Utah, USA.SEMLAL Nawal, Chef de l’Unité R&D, Matériaux et Corrosion, OCP, Maroc

de Dessalement, Maroc. El Aïd JDID, Professeur, Laboratoire Environnement et Minéralurgie LEM, France Abdelhak KABBABI, Chef de Projet Environnement, OCP, Maroc Faiçal LARACHI, Chair Department of Chemical Engineering, Laval University, Quebec, Canada Rahmat SOTUDEH – GHAREBAGH, Department of Chemical Engineering University of Tehran, Tehran, Iran Mohamed TAHIRI, Professeur, Maitrise des Risques et Sûreté de Fonctionnement, Maroc. Serge VIGNERON, Ingénieur, Sales and project Manager at LESNI A/S,ex-Monsanto, France INDUSTRIAL MANAGEMENT Muthanna AL-DAHHAN, Professor and Chairman, Department of Chemical and Biological Engineering, Missouri University of science and Technology (Missouri S&T), Missouri, USA Aziz CHRAIBI, Directeur Adj. CRIP Bioraffinage, Ecole Polytechnique de Montréal, Département Génie Chimique,  Canada Faris DERRIJ, Director of performance, OCP, Maroc Amine LOUALI, Director of performance, OCP, Maroc

SECURITY,ENVIRONMENT,SUSTAINABLE DEVELOPMENT Mohamed AZAROUAL, Docteur chercheur, Chef de projet chez BRGM, France Ismail AKALAY, Directeur Général Managem – Groupe ONA - Maroc Pascale COMPAIN, Responsable Développement Commercial, Bertin Technologies, France Azeddine EL MIDAOUI, Professeur, Président de la SMMD : Société Marocaine des Membranes et

5

6

TABLE OF CONTENTS PLENARY LECTURES

9

KEYNOTES

15

MINING

29

PHOSPHATE BENEFICIATION

39

SULFURIC ACID, ENERGY & WATER

47

PHOSACID & FERTILIZER

51

ENVIRONMENT & SUSTAINABLE DEVELOPMENT

73

INDUSTRIAL MANAGEMENT

87

MATERIALS & NEW PRODUCTS

91

POSTERS

103

WORKSHOPS

123

INDEX

144

7

8

I - PLENARY LECTURES

9

L’INNOVATION TECHNOLOGIQUE DANS L’AVENTURE HUMAINE. - LE CAS DE LA CHIMIE CP 1 François GUINOT, Président Honoraire Académie Française des Technologies Conférence Plénière d’Ouverture de SYMPHOS 2011 Aux origines, l’espèce humaine fragile et vulnérable, dominée par la nature et d’autres espèces, a dû à son codéveloppement en symbiose avec l’outil de pouvoir émerger. Elle s’est affirmée dans la « révolution néolithique » par son refus de subir passivement la domination de la nature. Elle atteint alors ses tout premiers millions d’individus, et se renforce en s’organisant en sociétés dont le développement se fait en symbiose avec la technique et les sciences observations. Au tout début du XIXe siècle, elle atteint son premier milliard. La rationalisation des techniques, conséquence de la naissance de la méthode et des sciences expérimentales, conduit à des innovations qui joueront un rôle majeur dans la première révolution industrielle. À la fin du XIXe siècle, la naissance des technologies par la combinaison des savoirs techniques et scientifiques, et l’explosion des innovations qui en découle seront un facteur d’accélération continue du progrès et de structuration des sociétés modernes. Peu à peu, de dominée, l’espèce humaine est devenue hyper dominante. Elle est dès aujourd’hui avec 6,8 milliards d’êtres humains et demain avec plus de 9 milliards, une véritable force de la nature. L’homme découvre cependant que, quelle que soit sa puissance créatrice, il reste une créature qui ne pourra survivre qu’en respectant les équilibres naturels. On montrera que la chimie, qui est le langage de la nature, de la matière comme de la vie, a joué un rôle essentiel dans chacune des étapes de cette aventure humaine. Cette aventure ne pourra se poursuivre, un vrai développement durable ne sera possible qu’en s’appuyant sur la chimie nouvelle qui est en train de se bâtir. Toutes celles et ceux qui y concourent portent une responsabilité toute particulière dans cette étape marquante de l’évolution de l’humanité.

SURFACE MINING TECHNOLOGY : PROGRESS AND PROSPECTS Raja V. Ramani, Ph.D., P.E. Emeritus Professor of Mining Engineering and Emeritus George H. Jr and Anne B. Deike Chair in Mining Engineering Department of Energy and Mineral Engineering The Pennsylvania State University 209 Research West University Park, PA 16802, USA

Mining CP2

Surface mining methods dominate the world production of minerals. Currently, almost all non-metallic minerals [more than 95%], most metallic minerals [more than 90%] and a large fraction of the coal [more than 60 percent] are mined by surface methods. In terms of materials moved, of the over 30 billion tons of ore and waste materials that are mined each year, surface mining accounts for over 80% and in terms of ore and coal mined, over 66%. In

10

the last two decades, the mining industry has seen consolidation of operating companies, growth in the size of individual operations, increase in size of equipment, and greater demands for sustainable development. These trends would continue into the future impacting in a very large way both the opening of new mines and the closure of existing operations. The specific surface mining method applied in a particular deposit may vary but the operations of drilling, blasting, loading and hauling are common to all methods. Advances in research and development in all these areas are needed to increase productivity and decrease cost to continue increasing the application of surface mining to greater depths. Common to all methods and operations also are the removal of the surface cover over the deposit, the changes to the original topography, the effects on soil and hydrologic conditions, the issues of mining and processing wastes, and ultimately the future economic potential of the mined areas and communities. However, the scope and solutions to the issues can be different. While research and development are needed to address technical aspects associated with these issues, there is also a need to develop innovative ways of approaching the overall problem of environmental and ecological planning for post mining community development. In this presentation, an overview of surface mining technology and the research needs is presented.

AN INDUSTRIAL ECOLOGY APPROACH TO THE USE OF PHOSPHORUS Environment & sustainable development CP3 Roland Clift, Emeritus Professor, Centre for Environmental Strategy Executive Director of the International Society for Industrial Ecology University of Surrey, Guildford, GU2 7XH, UK Phosphorus management presents two complementary problems: availability and pollution control. Long-term management of phosphorus requires the two to be addressed together by moving (back) to closed-loop use of phosphorus. Resource scarcity is increasingly recognised as an impending problem for the global economy. Phosphorus is in a unique position: it is essential for life and can not be substituted by any other element. Estimates for nonrenewable reserves of phosphorus cover a wide range, around an order-of-magnitude of 100 years. Thus, the issue is not yet recognised as pressing but it will certainly become serious unless practices which use P once only are replaced. The principal pollution problem is eutrophication of water bodies, which can also be mitigated if releases of phosphorus to the environment are avoided. This talk will review the industrial ecology of phosphorus, to explore where strategic attention should be directed to promote “closing the loop” on phosphorus use.

11

NANOSTRUCTURE PROCESSING OF ADVANCED PHOSPHATE-BASED MATERIALS Materials & new products CP4

Jackie Y. Ying, Institute of Bioengineering and Nanotechnology 31 Biopolis Way, The Nanos, Singapore 138669

Nanostructured materials are of interest for a variety of applications. This talk describes the synthesis and properties of nanoparticulate materials. Nanoparticulate materials are made up of crystallites or particles of ~ 10 nm. They may be generated by various physical and chemical approaches with ultrahigh surface areas. We have prepared hydroxyapatite (Ca10(PO4)6(OH)2) nanoparticles of well-defined size and morphology for orthopedic implant applications. These nanocrystals facilitated the sintering of high-strength ceramics that are biocompatible to bone. They can also be combined with collagen to form bone grafts with a foam-like structure. In addition, nanocrystalline hydroxyapatite can be added to a polymer matrix to form a nanocomposite system for the controlled delivery of drugs and growth factors. For example, this system has provided the long-term, zero-order release of bone morphogenetic proteins to promote the healing of bone defects. Such a protein delivery system can also be combined with tissue engineering approaches to promote cartilage repair. Besides biomaterials, wet-chemical synthesis has led to the derivation of various phosphate materials with controlled porosity, crystalline orientation and particle size. These materials are of great interest for catalytic and energy storage applications.

Chris Earl KEMWORKS, USA Mohamed Belghiti Aloui OCP, Morocco

PHOSPHORIC ACID TECHNOLOGY – HISTORY, EVOLUTION & FUTURE PERSPECTIVES Phosacid & fertilizer CP5

The first Wet Process Phosphoric Acid (WPA) plants were built between World War I & II. Plant size has increased from 25 t/d up to 2650 t/d. During the last forty years the wet process phosphoric acid industry has evolved under the influence of several major factors. Among the most important are: • Changes in phosphate quality • Greatly improved instrumentation and control • Improved materials of construction • Improved equipment & processes • Continuous increase of World demand for phosphate fertilizers This paper reviews those factors and their effect on the design and construction of modern phosphoric acid plants.

12

PHOSPHORUS, CROPS AND FOOD Agriculture & fertilization CP6 Dr. Donald L. Smith Plant Science Department, McGill University, Macdonald Campus Ste. Anne de Bellevue, Quebec, Canada H9X 3V9 Phosphorus is one of the three crop plant macronutrients contained in almost all fertilizers applied to agricultural lands. In plants large pools of phosphorus reside in DNA and RNA and in the phospholipids of membranes. A smaller pool is in ATP, where phosphorus plays a pivotal role in energy metabolism, including photosynthesis. Finally, phosphorylating and dephosphorylating proteins is a key mechanism for regulating protein conformation and enzyme activity, including the enzymes that regulate the cell cycle. When other growth requirements are not limiting crops have a very clear pattern of yield response to phosphorus fertilizer additions. This has been a very important contributing factor in increased global food production over the last six decades, and has allowed food production to keep pace with population growth during that time. However, application of large amounts of fertilizer phosphorus has also been an important contributor to agricultural pollution of water, contributing to eutrophication of rivers and lakes and even, in some cases, the development of “dead zones” in the open ocean. Agricultural phosphorus utilization has continued to expand in response to food requirements, however, there is now concern that we will reach “peak phosphorus” extraction sometime in the reasonably near future (perhaps only a few decades from now). If this is so it poses an important challenge to global food security. The thinking on peak phosphorus has paralleled that of peak oil and assumes a more or less bell shaped curve of extraction rate. Clearly, there are things that can be done to mitigate this, and phosphorus recycling is the most obvious. It may well be possible to integrate a biogas biofuel approach whereby municipal sewage treatment plants produce and sell biogas into energy markets and use the returns to extract and recycle phosphorus from the remaining sludge, selling this back to the agricultural sector. Food prices are already rising, in part because of higher energy prices and diversion of food material into biofuels. If we are going to avoid a potentially serious problem with world phosphorus and global food production levels we should begin broader and more integrated phosphorus management activities quite soon.

13

14

II - KEYNOTES

15

A NOTE ON HUBBERT’S HYPOTHESES AND TECHNIQUES Mining KN1 Pierre-Noël Giraud Professor of Economics at Mines ParisTech and Paris-Dauphine

Many have attempted to forecast the date of the production peak and the volume of the ultimate reserves of a mineral commodity, using techniques derived from Hubbert’s thesis. This note aims at exploring the scientific foundations and therefore the scope of validity of these forecasting techniques. Looking at the basic assumptions of Hubbert’s thesis, it concludes that these techniques should not be used to forecast neither the peak (or plateau) of the annual production rate, nor the ultimate reserves of any mineral, unless given exceptional conditions.

RECENT TECHNOLOGY BREAKTHROUGHS IN PHOSPHATE PROCESSING Mining KN2 Patrick Zhang, Ph.D, Research Director – Beneficiation and Mining, Florida Industrial and Phosphate Research Institute

This paper gives a review of promising technologies for phosphate processing, covering flotation, analysis and process control, and tailings treatment and utilization. Air bubbles of micron-size range in combination with relatively large bubbles has been demonstrated, both in the lab and on pilot scale, to improve flotation dramatically by reducing reagent use while improving product grade. Innovative use of polymers has allowed rapid dewatering of fine tailings with a final product that does not segregate. The first on-line LIBS analyzer was born allowing rapid analysis of wet samples using the laser technology. Many large commercial projects are taking off for utilization of phosphogypsum. Research has become very active in recovering many valuable minerals associated with phosphate rock, such as uranium and rare earth elements.

16

LES MÉTHODES GÉOPHYSIQUES DE SUBSURFACE: UN OUTIL INCONTOURNABLE POUR L’INGÉNIEUR Mining KN3

Teresa Teixido Institut Andalous de Géophysique, Université de Granada SPAIN

Les méthodes géophysiques de sub-surface sont devenues un outil incontournable dans les études liées à la géologie minière, à la géotechnique, à la prospection hydrogéologique, aux études d’impacts environnementaux, etc. Depuis quelques années, l’évolution des composants électroniques et des techniques informatiques a permis de mettre au point des équipements sophistiqués et des approches adéquates pour mieux appréhender les problématiques posées. L’objectif de la conférence est de faire le point sur les derniers développements en matière de géophysique de sub-surface par la présentation des champs d’application des méthodes les plus utilisées, des techniques de mise en œuvre, des logiciels d’inversion et d’interprétation des données acquises et de la manière rationnelle de présenter les résultats des levés de terrain. L’accent sera principalement mis sur les techniques de géoradar, de tomographie électrique et de sismique haute résolution. Des développements au niveau des dispositifs de mesure pour certaines méthodes électromagnétiques seront également p résentés. L’illustration de chaque méthode présentée se fera grâce à des études de cas réalisées par une équipe de géophysiciens espagnols sur différents projets en Espagne, au Maroc et en Egypte. Un intérêt particulier sera accordé à la présentation des résultats des travaux géophysiques effectués dans le cadre de partenariat entre le Groupe Office Chérifien des Phosphates, l’Université de Granada et l’Université Caddi Ayyad. Ces travaux portent sur le sujet des « dérangements » de la série phosphatée dans le centre minier de Khouribga et sur l’étude d’impact des rejets miniers abandonnés de l’ancienne mine de Kettara, région de Marrakech. Mots clés : géophysique de subsurface, imagerie du sous-sol, inversion, études de cas AN EFFICIENT AND EFFECTIVE PROCESS FOR DISPOSAL OF PHOSPHATIC CLAY SLURRIES Environment & sustainable development KN4 B.K.Parekh and D.P.Tao University of Kentucky Lexington, KY 40511 - USA Phosphatic clays suspension produced during the beneficiation of phosphate, is colloidal in nature, more than 90 percent is finer than 0.044mm (44 microns). It takes several years for the waste slurries to thicken from about 3 percent to 20 percent solids in the impoundments. The impoundments ties up a tremendous amount of water as well as land. Potential from the dam failure causes environmental as well as property damages. In this presentation, pilot-scale studies results obtained using the Deep Cone Thickener (DCT) will be presented. The study found that the phosphatic clays combined with the coarse sand refuse in the ratio of 2:1 produced a paste containing about 35 percent solids. Addition of anionic and cationic flocculants additions in certain mode was necessary to produce thickened slurry. The overflow from the DCT thickener was clear with no solids present and could be recycled back in the plant. A preliminary cost estimate for the process will also be presented.

17

“PHOSPHATES IN SUSTAINABLE HUMAN DEVELOPMENT” Environment & sustainable development KN5 Michael Zammit Cutajar Former Ambassador on Climate Change, Malta Sustainability will be a component of corporate competitiveness in this half-century – driven both by the perpetual search for resource efficiency and by rising expectations of environmental and social standards. The phosphate industry will need to pursue these general aims amidst growing global concern about feeding a “9-billion world”. In pursuing a strategy for sustainability to 2050, the phosphate industry and its main actors should: • promote sustainable use of fertilizers, notably in regions (e.g. Africa) where access to them is inadequate; • set verifiable benchmarks of environmental performance that should be integrated in measuring and rewarding corporate success; • invest in economic diversification and social development around operating hubs, as well as in national infrastructure that is supportive of production operations; • support research on new resources and processes, and engage in open dialogue with all stakeholders.

CARBON AND WATER MANAGEMENT FOR INDUSTRIAL SUSTAINABILITY – EXAMPLES FROM THE OIL INDUSTRY Dr Philippe A. Tanguy Total SA, Paris, FRANCE

Environment & sustainable development KN6

The present energy system based on non-sustainable resources is reaching its limits. As the “business-as-usual’ scenario will not be able to cope with the increased energy demand while addressing climate change issues, new scenarios must be deployed to reduce the environmental footprint of energy production and use. They rely mostly on a significant increase in energy efficiency, the development of renewable and new energy sources, and greenhouse gas mitigation measures, especially carbon capture and storage. The proposed scenarios, however, pay little attention to their underlying water requirements. Yet, the development of several “new” energies requires a large amount of water, which may jeopardize their industrial deployment at large scale. In a sustainable world, it is essential to establish sound management policies for the access and use of water. This brings a clear and important message to industry that it is of paramount importance to develop and implement water use improved practices and find alternative water sources, especially in countries where the supply of water is already constrained. Process engineering innovations will be needed to establish solutions that are sustainable on the long term.

18

LES PHOSPHATES, LE LITHIUM ET LE STOCKAGE DE L’ÉNERGIE Materials & new products KN7 Dr. Michel Gauthier Consultant, R&D et PI Phostech Lithium inc Chercheur, Département de chimie, Université de Montréal CSMG inc. 237 St-Ignace La Prairie, J5R 1E6, (Québec) CANADA La légèreté du lithium (7g/at. Vs 207g/at. pour le plomb), son électronégativité (DG), son faible rayon ionique (0.6Ao) et sa facilité à former des films de passivation conducteurs (SEI) en on fait le matériau de choix pour le stockage de l’énergie sous forme d’accumulateurs. En 50 ans les générateurs au lithium sont passés de piles boutons non-rechargeables, à des accumulateurs rechargeables au lithium métallique, aux lithium-ion et aux ‘berçantes’ électrochimiques (Rocking Chair) à la suite du développement d’électrolytes solides (cristallins ou polymériques) ou liquide organiques aprotiques conducteurs des ions lithium et surtout à la suite du développement des électrodes à insertion du lithium, essentielles à la rechargeabilité prolongée. Un scientifique en particulier à influencé le développement phénoménal des accumulateurs au lithium-ion c’est le Dr. J.B. Goodenough, inventeur des cathodes de LiCoO2 présentes dans la majorité des accumulateurs au lithiumion actuels (1), co-inventeur des spinelles de manganèse et plus récemment inventeur des cathodes phosphates de structures Olivines et Nasicon (2). L’accumulateur au lithium idéal est le lithium-air à case de sa légèreté et de la réactivité du couple Lio-O2 pour former Li2O (>5kWh/kg). En pratique pour assurer la réversibilité au cyclage on a dû à ce jour utiliser des oxydes de métaux de transition au lieu de l’air (0.5kWh/kg avec le LiCoO2). Toutefois les oxydes sont parfois instables en recharge et ont conduit à des problèmes de sécurité consécutifs à la libération d’oxygène (rappel de cellulaires et d’ordinateurs portables suite à des incendies). Le développement du véhicule électrique et le stockage de l’énergie à grande échelle repose sur des accumulateurs au lithium sécuritaires, performants et réalisables à un prix abordable. En montrant que le phosphate de fer peut insérer réversiblement les ions lithium et que le lien covalent des polyanions PO4 peut non seulement avoir un effet inductif sur le potentiel de couple redox mais également retenir l’oxygène, le Dr. Goodenough (2) a ouvert un marché prometteur pour les phosphates comme structures de stockage de l’énergie. La difficulté d’induire la conductivité électrique dans des matériaux jusqu’alors considérés comme des isolants a été résolue par après par la déposition de carbone pyrolytique lors de la synthèse du LiFePO4 par Ravet et al (3), faisant d’un composé constitué d’éléments abondants et non-toxiques : Li, Fe, PO4 un matériau de choix pour le stockage de l’énergie à grande échelle. La présentation fera le point sur les voies de synthèse du LiFePO4, les précurseurs utilisés ainsi que sur les autres applications possibles de la chimie des phosphates dans les nouvelles générations d’accumulateurs au lithium. (1) J.B. Goodenough et al, Material Research Bulletin, Vol. 15 (6), p. 783-789, June 1980. (2) J.B. Goodenough et al, J. Electrochem. Soc., 144, 1188, 1997. (3) N. Ravet, J.B. Goodenough et al, ECS 196th Meeting, Abstract 127, Honolulu, Hawai, oct. 1999.

19

RHEOLOGICAL PROPERTIES OF CONCENTRATED SUSPENSIONS OF COLLOIDAL AND NON COLLOIDAL PARTICLES Materials & new products KN8 Pierre J. Carreau Center for Applied Research on Polymers and Composites (CREPEC), Dept. of Chemical Eng., Ecole Polytechnique, Montreal, QC H3C 3A7, CANADA Although considerable efforts have been devoted to the determination of the rheological properties of concentrated suspensions, the behavior of concentrated suspensions is still far from being understood. A new approach has been developed with the help of the newest generation of high precision rheometers. Instead of the traditional shear rate sweep method, that is quite disruptive or even destructive for the particle arrangement in the suspension, softer measurement strategies have been used for understanding phenomena and interactions in concentrated suspensions. These strategies include low stress creep tests and low strain oscillatory measurement. Also, special care must be taken in sample preparation and conditioning before doing any rheological measurement. These strategies have been tested on model suspensions of non colloidal particles (hollow glass beads in low molecular weight polybutene) and are shown to provide a better understanding of the rheological behavior of concentrated suspensions. More recently, we have examined the rheological properties of colloidal suspensions. These include concentrated suspensions of charged latex particles of poly(styrene-butadiene) and silica particles. The suspensions were found to behave as elastic solids at small strains and to require a finite stress to flow. This was related to an ordered structure of the suspensions at rest, resulting from electrostatic and dispersion forces. Important shear-thinning effects were also observed as a consequence of structure rearrangements under shear. At a fixed shear rate, the steady-shear viscosity as a function of the ionic strength exhibits a minimum. Under oscillatory shear flow, the behavior of the concentrated suspensions was found to be non-linear at very small strain amplitude values. The behavior of these suspensions could be qualitatively described using a structural model. HIGH VALUE PHOSPHATE MATERIAL DEVELOPMENT, A SCIENTIST VIEWPOINT. Materials & new products KN9

Gilles Le Flem Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS UPR 9048 Avenue du Dr. Schweitzer 33608 PESSAC (FRANCE)

High value material including phosphates can result from: (I) major efforts to maintain and possible improve the quality of education, (II) cross disciplinary approach (Chemistry, Physics, Geology, Biology etc.), (III) implementation of new concepts which are able to push back the technological frontiers. Composite materials, metamaterials (properties depending on the structure and architecture rather than composition), laser processing, size of the particles (aggregates, nano, micro etc.), chemical reaction in supercritical atmosphere, surface–functional material, “lab on chip” (microfluidic, micromachining), template effect ( pre-organization of the final architecture of the material) are typical examples of such new concepts which have been recently developed. A non exhaustive list of typical high value phosphate materials resulting from cross-disciplinary approach and new

20

material engineering concepts can be given. 1) Composites for high temperature uses with LaPO4 (Geology, Chemistry, Mechanics, High temperature) 2) Electrode for battery with LiFePO4 (Composite, Chemistry, Electrochemistry, Surface reaction, Nano- size particles) 3) Chemical bonded phosphate ceramics: cements for low temperature environments (Chemistry, Mechanics,) 4) Phosphate glass laser for fusion energy (Chemistry of glasses, Optics, Mechanics) 5) Phosphates for second harmonic generation (Chemistry, Crystal growth, Crystallography, Optics) 6) Photoniccomponentforinformationstorage(PhosphatechemistryMaterialsLaserProcessing,Aggregates,Optics) 7) Biomaterials (Chemistry, Biology, Medicine, Ceramics) 8) Waste storage (Chemistry, Geology, Mechanics) Most of them are commercially exploited. As an example phosphate glass composite used as Perennial High Capacity Optical Recording Medium is schematically introduced in the figure ( from A. Royon , K. Bourhis , M. Bellec , G. Papon , B. Bousquet , Y. Deshayes , T. Cardinal and L. Canioni in Adv. Mater. 2010, 22, 5282–5286). Steps for the design of the photonic component 1) Phosphate chemistry leads to the preparation of silver glass, 2) Laser processing allows the construction of three dimensional laser silver aggregates within the glass and consequently of three-dimensional fluorescent sequential nanostructures, 3) Such sequential fluorescent nanostructures are used for the optical storage of information.

Figure (a) Writing set-up. A Near Infra Red high repetition-rate femtosecond laser is focused into a silver phosphate glass, which can be moved in 3D by translation stages to make sequential silver aggregates. (b) Reading set-up. A “Blu-Ray” laser diode is focused into the glass. Some of the fluorescence emitted in the entire space by the photoinduced silver clusters is collected by the focusing element, filtered from the excitation with a long pass filter (LPF), and detected with an avalanche photodiode (APD). As a result are shown the images of three peoples in 3D space.

21

SCALE-UP CHALLENGES IN CHEMICAL ENGINEERING: THE ROLE OF THE CHEMICAL ENGINEERS IN THE 21ST CENTURY. Phosacid & fertilizer KN10 Jocelyn Doucet Kengtek Engineering Inc. With increasingly complex process being developed due to increasingly heterogeneous feedstocks, severe environmental regulations and increasing cost of energy, chemical engineers require developing new heuristic and theoretical tools such as models to allow for development of process in a time and resource limited project environment. The selection of experimental work to be done at both lab and pilot scale as well as selecting the appropriate scale required to obtain relevant results for scale-up analysis is of their jurisdiction. It is no surprise to say that engineers and scientists speak sometimes a different language. In fact, scaling of chemical processes is often considered as a trivial debate by the former and seems essential by the latter. Nevertheless, it is well assumed, indeed, that scale-up requires knowledge of key parameters -but not all- in order to be able to anticipate the effect of scale change on the overall dynamics and performance of a certain operation. This talk will present a quick discussion on the physics of scale and then cover couple of industrial examples where application of different models combined to appropriate lab and pilot work lead to successful commercial process development. LE DÉVELOPPEMENT DES PROCÉDÉS AU SERVICE DE LA CRÉATION DE RICHESSES ET DU DÉVELOPPEMENT DURABLE Phosacid & fertilizer KN11 Ismaïl AKALAY Directeur Général de la Branche Cobalt et Spécialités B.P. 469 Marrakech-Medina MAROC Managem groupe minier privé a fait du développement des procédés son axe majeur pour une stratégie de création de valeur. Au moyen de sa filiale Reminex, Managem a développé au niveau de son centre de recherche 20 procédés qui ont été industrialisés. Son bureau d’ingénierie a réalisé tous ces projets industriels au cours de ces vingt dernières années. L’exemple type pour illustrer cette politique est le projet de production d’oxydes de zinc. Ce projet, dont le procédé a été breveté, a permis de désenclaver et de créer des emplois dans des régions très pauvres au Maroc. La technologie de production de ZnO nanométrique permet de viser des marchés niches tels que celui des engrais. Il est démontré que le développement des procédés peut créer de la richesse par la pénétration de nouveaux marchés en aval et par l’enrichissement des populations des régions minières en amont.

22

PHOSPHATE FERTILIZER PRODUCTION FROM THE 1835 TO 2011 AND BEYOND Phosacid & fertilizer KN12

David M. Ivell Jacobs Engineering SA (JESA), Lakeland, USA

Early Fertilizer Production In 1835 Gotthold Escher pointed out the value of bone as a fertilizer and suggested a “cheap and not too strong acid” to decompose the bones before applying to the soil. Later in 1840, the Duke of Richmond stated that the fertilizer value of bones was due to the phosphoric acid that they contained. In that same year, Justus Von Leibig added sulfuric acid to crushed bones to make them more soluble and proved that phosphate of lime and not gelatin was the fertilizing agent in the material. In 1843 he proved that phosphate of lime performed identically whether obtained from bones or phosphate rock. John Bennet Lawes, founder of the Rothamstead Experiment Station in Harpenden, England, put Leibig’s suggestions to practical use and began to manufacture artificial fertilizer in Deptford, London (See Figure 1), by mixing sulfuric acid with crushed bones and coprolites. He called his product “superphosphate”. Although Lawes has been credited with the first commercial success in the manufacture of superphosphate, he was not, contrary to popular belief, the inventor of the substance. The first commercial production of superphosphate was actually carried out by Sir James Murray. In his pamphlet “Advice to Farmers”, Murray described a formulated mixture consisting primarily of superphosphate produced by treating crushed bones with sulfuric acid. English patents for the manufacture of superphosphate were granted to both Murray and Lawes on the same day, The Rise of Di-Ammonium Phosphate Higher analysis fertilizers incorporating both nitrogen and phosphorous were the next step in the development of the fertilizer industry. Mono-Ammonium Phosphate (MAP) production began in about 1920. Major Di-Ammonium Phosphate (DAP) production began in about 1954. DAP is now, of course, the most widely traded phosphate fertilizer in the world with about

Figure 1

In the original Dorr-Oliver process, the ammoniation was carried out entirely in reaction vessels. Three reactors were used in series operating at 0.6, 1.4 and 1.85 mole ratio respectively. The slurry from the final reactor flowed by launder to one or more pugmills or blungers (See Figure 2). Because of the relatively insoluble nature of the slurry at 1.85 mole ratio, large amounts of water (30% or higher) were necessary to enable the slurry to flow. As a consequence these early plants operated with a large recycle ratio of up to 12/1. Some refinements were made to the process whereby partial ammoniation was carried out in two vessels and the remaining ammonia added in the

23

Figure 2

A major break-through came in 1956 when Frank Nielsson of TVA patented the Ammoniator-Granulator (See Figure 3). This invention allowed large quantities of ammonia to be injected beneath the rolling bed of wet solids in a rotary drum with reasonable efficiency. In the TVA process only one “preneutralizer” vessel was used, operating at the point of maximum solubility (mole ratio 1.4-1.45) to minimize the slurry moisture (16-20%). This enabled recycle ratio to be reduced to about 5/1. Modern plants From the 1960’s to Date The changes to processing techniques since the 1960’s have been evolutionary rather than revolutionary. I have the following memories from when I first started out in the fertilizer industry back in 1975 in the U.K. The plants that we operated were old, probably dating back to the 1940’s and 50’s. MATERIALS OF CONSTRUCTION A lot of wood was used, especially for floors and roof beams etc. Today practically no wood is used for any purpose – steel and concrete have taken over as cheaper and superior materials. Not much stainless steel was in evidence – rubber, and, where appropriate, brick lining, on carbon steel was

Figure 3

employed. As better stainless steels have become available, these have tended to replace lined carbon steel in many duties due to lower maintenance costs. PRODUCT SIZE At the time our focus was on maximizing capacity rather than maximizing product quality. Standard product size was maybe 85% between 1 and 4 mm. Today’s customer requires a much tighter and larger size specification to optimize distribution of the fertilizer by mechanical spreaders. Typically a size distribution of 95% between 2 and 4 mm is required. This has become a practical proposition as the available screening machines have improved considerably. The machines that we operated when I first started work were essentially horizontal, frame vibrated machines with no in-built mechanism for keeping the cloths clean. The cloths tended to blind quite quickly leading to progressively more and more fines in the product. As a result we actually had an operator with a long handled brush whose job it was to physically clean the screens (“the screen man”)! Luckily the current generation of screens that are available are inclined at some 35deg. to the horizontal, have static frames and the cloths are directly vibrated by electric motors, meaning that they are, to a large extent, self-cleaning. CONTROL SYSTEMS The plants that we operated back in 1975 had a very rudimentary measurement and control scheme. Such controls,

24

ENVIRONMENTAL ISSUES The plants that I worked on at that time either had no dedusting system or at best only a very rudimentary system to keep the working environment clean. Modern plants are designed with dedicated dedust systems with suction applied at all materials handling transfer points. In general there have been giant strides in the HSE area. Scrubbing systems were also very rudimentary – often, single stage scrubbing in simple void spray towers. Modern plants now typically involve three stages of scrubbing. The first two stages employ phosphoric acid as the scrubbing medium – the so-called dual mole ratio system consisting of a low pressure drop duct-cyclonic scrubber operating at a mole ratio of about 1.5 and higher pressure drop venturi-cyclonic scrubbers operating at a mole ratio of about 0.7. The last stage is typically a cyclonic tail gas scrubber utilizing water acidified with sulfuric acid to recover traces of fluoride, ammonia and particulate. All of these scrubber liquors are recycled back to the process via the preneutralizer. PLANT SIZE The plants that I worked on back in 1975 had capacities of 25 t/h or even less and were designed to serve the market area around the plant. At that time we operated at eight plant sites and that was in a small country like England! World scale capacities have increased five-fold and product is now routinely transported in bulk by ship to global markets. PIPE REACTORS Conventional tank reactors have in many parts of the globe been replaced by so-called pipe reactors. Pipe reactors are located directly in the granulator and do not require pumping of the reaction products. This allows them to operate at high pressure and temperature and therefore the slurry produced can have a lower water content. In theory this allows a reduction in recycle ratio provided the slurry from the pipe reactor can be spread evenly on the recycle material. My belief is that the advantages of pipe reactors are a little over-hyped. From the many plants that I have visited, I don’t see many of them operating at a recycle ratio much lower than can be achieved in a well-designed and operated preneutralizer plant. Also, none of the large world-scale plants in the U.S., North Africa or Australia of 120 t/h and more are employing pipe reactors. THE FUTURE I believe that the definition of a world-class DAP plant will continue upwards – the 5,000 t/d DAP plant is just around the corner. Actually, I am confident it could be designed right now. Environmental standards will continue to be tightened up and scrubbing systems will continue to evolve to meet those new standards. Product quality – meaning closer control of chemical and physical quality (tighter and tighter size specifications, a demand for increased sphericity and improvements in anti-caking treatments – will continue to be a focus point. The production of specialty fertilizer containing micronutrients will grow. Following the tightening of environmental emission standards worldwide and the consequent reduction of acid rain, soils are becoming deficient in sulfur. I expect sulfur enhanced fertilizers to become a growth market And lastly, I believe that granulation plant control systems will become more intelligent, taking a lot of decisions away from the operator to be determined by computer. This will in part assist in achieving the advances mentioned above. In summary, we’ve come a long way since we started crushing up bones and solubilizing the phosphate by adding sulfuric acid in batch pits!

25

SUSTAINABLE AGRICULTURAL PRACTICES IMPACT ON PHOSPHATE ROCK PRODUCTION Agriculture & fertilization KN13

James L. Hendrix University of Nebraska-Lincoln Lincoln, NE 68588-0643, USA

In many areas of the world sustainable agricultural practices are being touted as a necessity for a sustainable world. In the United Kingdom, China, and other nations the use of phosphorus fertilizers has been highlighted as an area in which more sustainable practices can be employed. The possible advantages of using organic sources for the phosphorus required by intensive agriculture are investigated. The potential for replacing inorganic sources of phosphorous is estimated. Limitations to the use of organic sources of phosphorus are considered and their impacts on the possible general use of organic sources are discussed. BENEFICIAL MICROORGANISMS FOR THE SUSTAINABLE USE OF PHOSPHATES IN AGRICULTURE Agriculture & fertilization KN14

Hani Antoun Département des Sols et de Génie agroalimentaire et Centre de recherche en Horticulture, Pavillon Paul-Comtois, Université Laval 2425 rue de l’Agriculture Québec (Qc) CANADA G1V0A6

Phosphorus (P) is an essential nutrient for plant growth and reproduction; however the concentration of P in soil solution is very low, varying from 0.001mg L-1 in very poor soils to 1 mg L-1 in heavily fertilized soils. The inorganic P (Pi) is absorbed by plant roots mainly as phosphate anions (H2PO4- and HPO4-2) which are chemically very active and in the presence of cations like Ca+2 in alkaline soils or Al+3 and Fe+3 in acid soils, they form sparingly soluble P, not available for plants. Therefore, to secure high crop yields farmers are using amounts of Pi- fertilizers exceeding plant requirements, which result in an important yearly accumulation of Pi in soils. Soil organic P (Po) is another important reserve which can form from 20 up to 80% of total soil P. To be available for plant Po must first be mineralized by soil microorganisms to orthophosphate anions. Since the fifties when large scale field inoculation trials were performed in the former Soviet Union with phosphobacterin, a plant inoculant based on the Pi solubilizing bacterium Bacillus megaterium var phosphaticum, empiric observations indicated that it is possible to improve plant P nutrition by using phosphate solubilizing microorganisms (PSM). However although there is a huge literature on PSM, there is until now important variability in the results obtained. This variability clearly reflects the complexity of the different interactions taking place between the different constituents of the soil-plant ecosystem: soil, plant, microorganisms and fauna. Weather and crop history are also factors affecting the results obtained in field trials. In this presentation the complexity of the soil-plant ecosystem will be discussed by showing some important points overlooked in previous studies and that should be considered when developing the PSM beneficial inoculants of the future. Different strategies for using PSM will be presented, that will allow the use of soil reserves in Pi and Po, while also using chemical P fertilizers in a rational manner for a sustainable agriculture, or for the direct use of phosphate rock for organic agriculture.

26

FOOD SECURITY AND THE ROLE OF FERTILIZER IN SUPPORTING IT Agriculture & fertilization KN15 W.M. Stewart and T.L. Roberts International Plant Nutrition Institute, Norcross, GA , USA World population is expected to increase by some 35% over about the next 40 years. With this projection comes mounting concerns over an already higher than acceptable level of food insecurity. The issue of food security is of course much more complex than simple population projections and involves other factors such as economics, government policies, and natural disasters. The demand on agriculture to increase production will continue to grow at least for the next few decades. Some new land will likely be put under the plow to help meet the demand; however, the majority of the increased production will have to come from land already being farmed, thus necessitating more intensive agriculture and higher crop yields. The great challenge for the world’s farmers and their affiliates will therefore be to increase output in a (sustainable) manner that minimizes environmental impact and at the same time provides sufficient, safe, and nutritious products. Many believe that biotechnology holds the key to producing more food, but it is only one piece of the puzzle. The employment and further advancement of many technologies (e.g., irrigation, equipment, pest control, fertilizer, and seed) will be needed to meet the challenge ahead and to close the gap between actual and attainable yields. It is the positive interactions among the advancement of several technologies that holds the key. Nutrient management practices and fertilizer technologies are among those that will need to continue advancement and improvement, as adequate and balanced nutrition is the foundation of healthy crops. Evaluation of long term field studies has shown that fertilizer input is critical to crop production. In temperate climates such as in the USA and England the average percentage of yield attributable to fertilizer generally ranged from about 40 to 60%. However, in the more highly weathered soils of the tropics (Amazon Basin in Brazil and in Peru) fertilizer input was much more critical to production. After the second year of land clearing yields attributable to fertilizer and lime were never below 90%. Based on past evaluations it is safe to say that without adequate plant nutrition, the world would produce only about half as much staple foods and more forested lands would have to be put into production. Inorganic fertilizer plays a critical role in the world’s food security, but it must be recognized that highest yields are in some systems the result of using both organic and inorganic nutrient sources. Integrated soil fertility management is critical to optimizing food production and efficient use of plant nutrients. The 4Rs — right source at the right rate, right time, and right place — are the flexible underpinning principles of nutrient management that can be adapted to all cropping systems to ensure productivity is optimized.

27

28

III - MINING

29

CONCEPTION ET RÉALISATION DES TALUS DE MINES À CIEL OUVERT APPROCHE GÉOLOGIQUE ET GÉOMÉCANIQUE MN-O-01 Jean-Alain FLEURISSON MINES ParisTech - Centre de Géosciences Fontainebleau/FRANCE Les talus de mine à ciel ouvert doivent être reconnus comme des ouvrages géotechniques à part entière dont le dimensionnement, réalisé suivant les règles de l’art, doit prendre en compte des préoccupations techniques, économiques, environnementales et de sécurité. Mais ces ouvrages sont, avant tout, des ouvrages géologiques et géomécaniques naturels pour lesquels la structure géologique et la nature pétrographique des matériaux constitutifs contrôlent les processus de déformation et de rupture par rapport auxquels il faut les dimensionner. Il importe donc de mettre en œuvre une méthodologie bien maîtrisée qui peut se décomposer en plusieurs étapes : 1) la caractérisation du massif rocheux par l’acquisition, puis l’analyse de données géologiques et géomécaniques ; 2) la détermination des mécanismes potentiels de déformation et de rupture, et leur modélisation ; 3) l’analyse des facteurs déclenchants ou aggravants des ruptures. Cet article présente différentes techniques et outils existants pour aborder ces étapes successives, et illustre leur mise en œuvre pratique ainsi que leurs limitations par des études de cas de dimensionnement de mines à ciel ouvert. SLOPE DESIGN AND IMPLEMENTATION IN OPEN PIT MINES : GEOLOGICAL AND GEOMECHANICAL APPROACH Slopes in open pit mines must be considered as geotechnical structures. Therefore their design and implementation must be conducted with all consideration including technical, economical, environmental and safety issues. But these structures are above all natural geological and geomechanical features and the geological structures as well as the petrographical nature of the rock material control the deformation and failure mechanisms. It is therefore important to implement a well-defined methodology which should be conducted according to the following phases: 1) rock mass characterization derived from the acquisition and analysis of geological and geomechanical data; 2) determination of the potential mechanisms of deformation and failure, and their numerical modelling; 3) analysis of triggering or aggravating factors of failure. This paper presents various available techniques and tools to achieve these successive phases and illustrate their implementation and also limitations through case studies of slope design in open pit mines. GRIDDED SEAM VS 3D BLOCK MODELS IN MINE PLANNING OF PHOSPHATE DEPOSITS MN-O-02

Daniel M GAGNON P. Eng, Manager – Mining Group – Met-Chem Canada Inc, Montreal, QUEBEC CANADA

Advantages of using gridded seam models over 3D block models for mine planning of industrial minerals and other tabular deposits such as phosphates. Keywords: Gridded Seam, 3D block model, mine design, mine planning Met-Chem Canada Inc. is an engineering consulting firm serving the mining industry since 1969 and based in Montreal Canada. Met-Chem is a wholly owned subsidiary of UEC Technologies LLC which is part of United States Steel Corporation. Mining engineers and geologists at Met-Chem have been using 3D block models and gridded seam models since the mid-80s for geological modelling, resource/reserve estimation, economic evaluations and mine planning. Over the years, Met-Chem has prepared numerous mine plans for mining operations based on either 3D Block models or Gridded Seam models developed by Met-Chem or client geologists. These models were initially developed by the

30

geologists to accurately model the deposits shape and grade distribution and not for mine planning purposes. In the last few years, Met-Chem’s mining engineers have developed their own mine planning 3D block or Gridded Seam models based on these geological models to better predict mine operation and facilitate mine planning activities. The decision of which model to use for mine planning is dependent on the type of operation, deposit geometry, grade distribution and blending requirements. This paper will discuss the advantages and disadvantages of using gridded seam or 3D block models for mine planning purposes depending on the type of operation and blending requirements. A number of real cases will be presented as examples.

Jayanta Bhattacharya

ASSESSMENT OF RELIABILITY, AVAILABILITY AND REPAIRABILITY OF FIELD EQUIPMENT IN MINES MN-O-03

Professor, Department of Mining Engineering, Indian Institute of Technology, haragpur-721302 Honorary Advisor of Environmental and Social Performance, Tata Steel, India and Expert, Ministry of Environment and Forest, Government of India - INDIA

Large equipment involving huge capital expenditure should be always measured in terms of performance to assess the utilization and profitability. Reliability analysis helps in understanding the failure characteristics of large equipment in mines. Availability assessment helps in understanding the maintenance requirements of the equipment and its critical parts. Repairability indicators help in measuring the performance of both machine and manpower in the maintenance exercise. The paper deals with the exact measurement methods of the above with case studies in a surface mine. NOUVELLES MÉTHODES POUR L’EXTRACTION DE PHOSPHATES Andreas Marquardt Wirtgen GmbH Windhagen/GERMANY

MN-O-04

EXPLOITATION EFFICACE ET ÉCOLOGIQUE DES PHOSPHATES La méthode consistant à tailler, à concasser et à charger en une seule opération est nettement plus efficace que les procédés conventionnels. Les stricts règlements antipollution concernant les émissions de bruit et de poussière rendent le rabotage intéressant par rapport aux procédés conventionnels du forage et du minage. L’extraction sélective des phosphates contribue à augmenter le taux d’exploitation des gisements. Les surfaces planes et stables produites par les travaux de terrassement ou de taille des roches peuvent être utilisées directement comme voies de circulation, talus ou radiers de tunnel. TAILLER, CONCASSER ET CHARGER EN UNE SEULE OPÉRATION Des coûts de main d’oeuvre, de machines et d’exploitation considérablement réduits ainsi qu’un faible volume de déblais sont les signes distinctifs d’une technologie de rabotage de roches moderne. L’enlèvement sélectif de couches rocheuses fournit un rendement élevé de minéraux très purs tout en ménageant les ressources. Le tracé plan obtenu constitue un support idéal pour les revêtements de chaussées, pouvant déjà être emprunté sans danger par les véhicules de transport pendant les travaux. Un effet positif direct de l’exploitation douce sans minage: les procédures d’obtention d’autorisations et les temps de préparation pour l’exploitation de nouveaux gisements sont nettement raccourcis.

31

LE SURFACE MINING: UN STANDARD INTERNATIONAL 2500 SM, Inde + Etats-Unis : Le chargement direct du calcaire fraisé...

... protège le matériau de l’humidité et de la pluie

2500 SM, Etats-Unis : Extraction de roche calcaire concassée sans broyeur dégrossisseur

LES INNOMBRABLES POSSIBILITÉS DE L’EXTRACTION PAR RABOTAGE Le champ d’application de l’innovant Surface Mining ne cesse de s’agrandir, intégrant toujours de nouvelles dimensions prometteuses. Nos ingénieurs repoussent toujours les limites de la faisabilité technique pour développer de nouvelles possibilités d’utilisation rentables et respectueuses de l’environnement. C’est ainsi que, dans l’exploitation minière, l’extraction de bauxite, de phosphate, de kimberlite ou de sel à l’aide du Surface Mining offre une rentabilité toujours croissante. De plus, nous concevons des machines extrêmement robustes pour la taille des roches, capables de fraiser même du calcaire ou du granit durs allant jusqu’à 260 MPa, sans minage. LE FONCTIONNEMENT D’UN SURFACE MINER MODERNE Le Surface Miner est entraîné par quatre trains à chenilles réglables en hauteur. En cas de chargement direct, le matériau enlevé est transporté par le système de convoiement pivotable et réglable en hauteur pour être déversé dans des camions ou tombereaux. En cas de chargement indirect, le matériau est déversé latéralement en tas où il pourra être mélangé ultérieurement de façon ciblée. En déposant le matériau en cordon entre les trains de roulement, il est possible d’atteindre des rendements journaliers particulièrement élevés, associés à de faibles coûts d’exploitation.

32

DEVELOPMENTS IN DC AND AC TECHNOLOGY FOR SURFACE MINING EQUIPMENT MN-O-05

Mark JOHNSTON, General Manager Electrical Upgrades, Bucyrus International Inc., South Milwaukee, USA

This paper and presentation will reflect the latest developments in Excavator Electrical Control Systems in association with the latest technological advances in Diagnostics, Condition Based Monitoring Systems and Data gathering equipment as it applies to mobile Surface Mining Equipment. Examples will show how Bucyrus International Inc, has incorporated this technology with Safety, Reliability and Productivity as the major focus. Topics that will be covered during the presentation include: - AC and DC Drive Technology - Complete Electrical System Diagnostics - Continuous Data Monitoring stored to on-board servers - Automated Condition Monitoring utilizing wireless vibration sensors electronic fluid analysis for debris and oil wireless strain gauges - Production Monitoring - Complete Remote Access via GSM networks OPTIMISATION OF DRAGLINE OPERATIONS IN PHOSPHATE MINING Vince Osborne, SRK Consulting (UK) Ltd, UK

MN-O-06

This presentation addresses the application of large walking draglines to overburden removal in open pit phosphate mining, with particular emphasis on optimisation. Where dragline stripping is the dominant method of waste removal, optimisation of the dragline operation will act to maximise ore uncovery rate and minimise stripping costs. Optimising the dragline operation requires consideration of a number of factors which affect the efficiency of dragline stripping. Such factors include dragline selection, pit layout, waste allocation, dragline stripping method, scheduled maintenance, downtime, walking and deadheading, and operator technique. The choice of dragline stripping method is a primary determinant of productivity and the object of mine planners is to select the dragline method that best suits the deposit and dragline. This presentation focuses on choice of stripping method, but also addresses the other factors which influence dragline productivity.

33

LA STRATIGRAPHIE SEQUENTIELLE OUTIL DE PREDICTION DES CORTEGES PHOSPHATES ET DE PLANIFICATION DE L’EXPLOITATION MINIERE MN-O-07 Mustapha MOUFLIH1, El Hassan CHELLAI2, Abdelmajid BENBOUZIANE1, Es-said JOURANI3, Mbarek AMAGHZAZ3 & Hamid EL HADDI1 1- Laboratoire des Géoressources Sédimentaires et Environnement, Université Hassan II Mohammedia-Casablanca, Faculté des Sciences Ben M’Sik, Maroc 2- Département de Géologie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech. 3- Direction Géologie et d’Hydrogéologie, Pôle Industriel, Groupe OCP. Durant ces dernières années, l’application du concept de la stratigraphie séquentielle couplé aux simulations stratigraphiques par ordinateur a confirmé la cohérence des approches de cette doctrine dans d’interprétation 3D et 4D des cortèges des bassins sédimentaires. Il en découle deux applications qui intéressent particulièrement l’industrie, d’abord en domaine pétrolier la prédiction et la localisation de réservoirs et de couvertures. D’autre part, en domaine minier la corrélation régionale des séquences dont l’objectif est le calcul des réserves et la planification de l’exploitation. En effet, la détermination des cortèges de dépôt (école d’Exxon) et la modélisation stratigraphique (Colorado School of mines) permet non seulement le fractionnement spatial des sédiments (stock sédimentaire en progradation par rapport à l’aggradation), mais aussi la configuration et le fractionnement volumétrique. En s’appuyant sur des données de terrain, biostratigraphiques, géochimiques et diagraphiques, l’application de ce concept aux séries des bassins phosphatés du Maroc central (Oulad Abdoun, Ganntour et Meskala) et du Moyen Atlas, permet la détermination de l’ensemble des cortèges sédimentaires : - Cortèges sédimentaires transgressif (transgressive Systems Tract) qui se démarquent, du Maastrichtien à l’Yprésien, par des faciès très riches en P2O5 : les phosphates ossifères riches en débris d›ossements, vertèbres et dents de vertébrés, et les phosphates granulaires coprolithiques (oocoprophospharénites). Ces faciès traduisent une évolution progressive vers des faciès phosphatés fins, reflétant ainsi des milieux de dépôt marin très agités à agités qui deviennent de plus en plus calmes avec approfondissement du milieu. Au Lutétien ce type de cortèges se manifeste par des corps lumachélliques à gastéropodes de type Thersites et Térutelles. - Cortèges de haut niveau marin inférieur (Early Highstand Systems Tract) se traduisent par les dépôts de phosphatés marneux et/ou argileux, des marnes phosphatées et des faciès argileux et/ou silteux très peu phosphatés. Les surfaces d›inondation maximale (maximum flooding surfaces), marquées par un liseré argileux et des surfaces à bioturbations intenses, des concrétions siliceuses et des nodules de silex. - Cortèges de haut niveau marin supérieur (late Highstand Systems Tract) qui se définit par des faciès silteux à sableux très peu phosphatés dans la paléogéographie proximale du bassin et des faciès argileux et marneux progradants dans les parties distales de la plate-forme de l’époque. Ce sont des cortèges très remarquables par une silicification et une dolomitisation intenses. - Cortèges sédimentaires de bordure de plateforme (P.B.P)  qui s’articulent en trois paraséquences à faciès

34

phosphatés, riches en débris bioclastiques de lamellibranches à la base et calcareux au toit. Ces cortèges, reconnaissables surtout dans le gisement d’El Brouj (bassin des Oulad Abdoun), ont pris place à la fin du cycle eustatique yprésien, pendant la baisse relative du niveau marin de l’époque. L’identification des niveaux stratigraphiques isochrones à partir des données biostratigraphiques, lithologiques, géochimiques et diagraphiques nous a permis de définir l’ensemble des séquences de dépôt (unités génétiques) et les discontinuités sédimentaires (ligne-temps) corrélables à l’échelle de tout ces bassins sédimentaires. Ces séquences enregistrent des oscillations marines qui s’intègrent globalement dans des cycles eustatiques de 3ème ordre. Les séries phosphatées globales constituent une superséquence déposée pendant un supercycle eustatique (cycle eustatique de 2ème ordre) avec comme surface d’inondation maximale qui se démarque dans l’étage Yprésien. L’intégration de ces données dans un système d’information géographique constitue une étape seconde et valorisable pour l’exploitant et l’industriel. Mots clés : Stratigraphie Séquentielle, Cortèges phosphatés, Séquences de dépôt, Corrélation, Maroc. DÉPÔTS DE PHOSPHORE ET TITANE DU LAC À PAUL PROJET MINIER À CIEL OUVERT DE PLUS DE 300MT DE TONNE MN-O-08 Bernard Lapointe , Ariane - Canada Phosphate Depuis le début de 2010 le prix des roches phosphatés augmente progressivement. Alors qu’il s’était stabilisé aux environs de 90 US$/tonne en 2009 après une chute importante causée par la crise de 2008, il a atteint les 170 US$/ tonne en décembre dernier. Les marchés boursiers commencent à prendre conscience de l’importance stratégique des fertilisants dans notre monde moderne et de la place qu’ils occuperont dans les échanges internationaux dans un futur proche. De plus en plus de compagnies ayant des intérêts dans le domaine des fertilisants essaient de s’intégrer verticalement. Ceci leur permet de s’assurer d’un approvisionnement constant en volume et en qualité des matières premières dont elles ont besoin. Cette intégration verticale implique pour ces compagnies l’achat de dépôts de minéraux phosphatés déjà en activité ou susceptible de l’être au cours des prochaines années. L’augmentation des prix, l’intérêt des marchés boursiers ainsi que le besoin constant de nouveaux dépôts pour répondre à une demande croissante sont de bons augures pour le projet du Lac à Paul. LES DÉPÔTS DU LAC À PAUL - Localisation : Cette propriété est située à environ 200 km au nord du Saguenay-LacSt-Jean au Québec, Canada. Elle couvre une superficie de plus de 15 000 hectares. Elle est facile d’accès grâce à un réseau de routes forestières. La voie ferroviaire de Dolbeau est accessible par route en quelques heures seulement. Le port de Grande Anse, sur la rive sud du Saguenay, constitue aussi une avenue possible pour la sortie du minerai. La propriété est située à quelques kilomètres des centrales électriques de Péribonka (Hydro Québec) et de Chutes des Passes (Rio Tinto Alcan). Plusieurs lacs et rivières permettraient l’approvisionnement en eau nécessaire à l’exploitation des dépôts.

35

- Calcul de Ressources et Étude Économique : Les trois dépôts de ce projet totalisent maintenant 78,34 Millions de tonnes (Mt) de ressources indiquées à 7,24 % P2O5 et 7,84 % TiO2 et 260,15 Mt de ressources présumées à 5,70 % P2O5 et 7,64 % TiO2 (teneur de coupure à 2 %) calcul de ressources effectué par la firme SGS Geostat Ltd (NI 43-101). Calcul actuel (Ressources indiquées L’évaluation économique préliminaire Calcul historique et présumées 43-101) (Scoping Study) effectuée par la firme Millions Millions %P2O5 Classification %P2O5 Dépôts tonnes tonnes IOS Inc. de Chicoutimi, à la fin de 2009, 20,1 3,78 Zone 1 17,6 4,27 Présumées 64,25 4,54 Zone 2 et mise à jour en 2010 démontre que Présumées 137,65 5,71 Zone Manouane le projet est rentable. Cette étude ne Présumées 58,25 6,97 Zone Paul Indiquées 78,34 7,24 traite que du dépôt de la Zone Paul Présumées 260,15 5,7 Total 37,7 4,01 Indiquées 78,34 7,24 qui compte actuellement 78,34 Mt de ressources indiquées et 58,25 Mt de ressources présumées. Elle prévoit une production annuelle de 2 Mt de concentré d’apatite à 39,9 % P2O5. Seuls les concentrés d’apatite sont considérés et aucune valeur n’a été attribuée pour d’éventuels concentrés de titane ou de fer. La dernière campagne de forages sur la Zone Paul (complétée en décembre 2010) et a clairement démontré que cette Zone se continue en profondeur jusqu’à 400 mètres verticaux et qu’elle demeure encore ouverte.

COÛTS D’INFRASTRUCTURE ET D’OPÉRATIONS (CAN$)

- ÉTUDE DE PRÉFAISABILITÉ ET NOUVEAU CALCUL DE RESSOURCES : L’étude de préfaisabilité du projet du Lac à Paul est en cours et nous attendons les résultats pour le mois de juin. Une campagne de forage sur la Zone Manouane est en cours. Cette campagne vise à catégoriser une partie des ressources présumées de cette zone en ressources indiquées et à vérifier les extensions latérales de ce dépôt qui s’établit, selon le dernier calcul de ressources NI 43-101(SGS Canada Inc, 2010), à 137.65 Mt de ressources présumées titrant 5,71 % P2O5 et 8,92 % TiO2 pour une teneur de coupure à 2%. Un nouveau calcul de ressources (SGS Canada Inc) concernant les zones Paul et Manouane sera inclus dans l’étude de préfaisabilité qui traitera donc d’un projet minier ayant une durée de vie de 25 ans au minimum.

36

À la fin de l’été 2010 un échantillonnage en vrac de huit tonnes a été réalisé sur la Zone Paul dans le but d’effectuer des tests de concentration du minerai à une échelle plus importante. Une entente a été conclue avec COREM (Québec) dans le but d’obtenir une tonne de concentré d’apatite provenant de cet échantillon. Cette firme, un consortium de recherche en traitement et transformation de substances minérales, a comme mandat d’élaborer le processus de recouvrement de l’apatite à partir d’une usine pilote. L’échéance de ces travaux est pour le mois de mai 2011. Les résultats de ces essais métallurgiques seront inclus dans l’étude de préfaisabilité. Ces travaux permettront à la Société de distribuer un concentré de haute qualité auprès de clients actuellement en attente.

37

I

38

IV - PHOSPHATE BENEFICIATIONS

39

BENEFICIATION OF INDIAN LOW GRADE ROCK PHOSPHATES A FEW CASE STUDIES BN-O-01 Arun Kumar Majumder, Department of Mining Engineering Indian Institute of Technology, Kharagpur 721302, INDIA Jayanta Bhattacharya, Department of Mining Engineering Indian Institute of Technology, Kharagpur 721302, INDIA Kaushik Dey, Department of Mining Engineering Indian Institute of Technology, Kharagpur721302, INDIA India, with its vast agricultural base remains one of the major fertilizer consuming countries in the world. The domestic requirements of primary nutrients such as nitrogen, phosphorous and potash (NPK) are being mostly met by imports. Out of 200 million tonnes of rock phosphate reserves, approximately 15 million tonnes only have been estimated to be of high grades (> 30% P2O5) which are being mined by different government agencies for commercial purposes. The rock phosphate assaying between 20 to 30% P2O5 is currently being used for different purposes such as blending with high grade rock phosphates, direct application to soil as fertilizer, partially acidulated phosphate rock (PAPR) concentrate. The low grade ( production plus haute 50 % = > 80 % (moins de recyclage) • des résultats sont disponibles plus fréquemment et plus rapidement – y compris la nuit = > moins de rejets et économie de temps • des résultats sauvegardés dans 1000 classes de taille, d’où la capacité de simuler n’importe quelle configuration de pile de tamis • le logiciel CAMSIZER permet l’exportation de fichiers EXCEL pour fournir les résultats de l’analyse de laboratoire au système de gestion des données du laboratoire. Un logiciel complémentaire (DIA) assure que les données sont transférées sans aucun risque au système • calibration plus fréquente et meilleure • résultats similaires sur diverses locations de production d’ un groupe Certaines sociétés d’engrais travaillent aussi avec des herbicides et/ou des pesticides aussi bien que des terreaux, des produits pour le soin des plantes, des produits industriels, des ingrédients actifs pharmaceutiques et le sel. Le CAMSIZER permet également l’analyse de tous ces produits.

Camsizer avec un passeur d’échantillon.s

 

131

POLYMER COATINGS. Andrews DUNCAN, Lake International Technologies, UK

WS3 - 3

Coatings have long been used by the fertiliser industry for a variety of purposes which can be broadly defined as follows. 1. Coatings for anti-caking 2. Coatings to prevent moisture uptake 3. Coatings for anti-dusting 4. Coatings to value add (i.e. colour, slow release) For the purpose of this paper, we will focus on the potential for Trace Element Attachment (or TEA) using polymer coatings. Up to 6% 50- 200 micron powder can be added in a controlled fashion and so attached to the surface of a fertiliser granule by using a polymer coating. TRACE ELEMENT ATTACHMENT

Uncoated Fertiliser or carrier granule

Trace Element, inoculants or yield boosting nutrients coated onto each and every granule in the correct ratio.

TEA is extremely versatile and can be adopted by the agronomist in crop-led farming in applying E.g. zinc to onions or boron to sugar beet. It can thus be used to value-add fertiliser, increasing both farmer yield and manufacturer margin. By fixing nutrient to each and every granule, this method of Trace Element Attachment is immensely more efficient than simply blending in the required pellets, increasing the crops roots chance of finding the nutrient by twentyfold. Further, it is proactive as opposed to reactive versus foliar application (with the e.g. Manganese added before leaf decolourisation occurs) and it can also be used to achieve specific outcomes, such as to prevent volatilisation of Nitrogen in Urea. With 40% population growth projected by 2050, and less arable land and water available, there is pressure on the farmer to increase his yield on a scale similar to that achieved by the Green revolution. We at Lake see a trend towards ‘Intelligent Agriculture’ and believe that TEA will most certainly have a role to play.

132

Coatings The underlying principle of coating is straightforward, to cover the granule with a protective layer, seeing the interaction between the granules reduced via the additional barrier.

 

 

 

 

Untreated Granules

 

 

 

Coated Granules

 

Whereas Polymerising coatings remain on the outside, traditional oil or mineral coatings have a tendency to migrate over time either drying off (visible via a colour change) or worse, working their way inwards so inadvertently weakening the granule and causing more dust. Polymerising Coatings

■ Brilliant at attaching powder ■ Permanent ■ Non migrating ■ Non penetrating ■ Does not weaken granule strength ■ Initial powder never released

Conventional Wax/oil coatings

■ Initially trap powder well ■ Non permanent ■ Continually migrating ■ Continually penetrating ■ Weakens granule strength ■ Releases initial powder after short time

133

Traditional coatings are composed from • Oil or paraffin • Waxes • And sometimes amines though due to their price, these are normally restricted to anti-caking The above are often used in combination with inert powders such as talc or china clay. Oils applied range from white oil to bunker oil. Both are powerfully hydrophobic but differ in their viscosity and solidification point. Heavy fuel oil (HFO or bunker oil) contains branched and cyclic alkanes but the quantity of polycyclic aromates is higher than 3% m/m (IP-346,DMSO extraction) and as a result they are classified as carcinogenic. This saw legislation introduced in Sweden and later Germany – ‘Dungemittelverordnung 2003’ restricting the polycyclic aromate content (PCA) due to their mutagenic and carcinogenic properties. Heavy Fuel Oil (HFO) is brutal on bacteria, fungi and mycorrhizae and even when their volume was not significantly impacted, the colonies took appreciably longer to develop. In further studies by Lake, HFO had a marked impact on the volume of maize produced albeit the impact was not so pronounced on beans.

There seems to be some loyalty to HFO in the market, often because of the distinctive colour it lends to the host granule, but certainly from an agronomy perspective, its continued use is indefensible.

POLYMERISING COATINGS - MANAGING EXPECTATIONS • For practical purposes 180um, considered fines which are very difficult to attach. • Polymerising coatings cannot at this stage, strengthen a weak granule.

134

HOW IS BINDING ACHIEVED?

Trace Element Attachment is achieved by first adding the coating to wet the granules then adding the required powder via a powder feeder. The coating will dry on the surface trapping the powder, which due to its small size, is readily oxidised. Efficiency of the coating process can be enhanced by the following a) Product temperature – either via heating the coating or monitoring the granule temperature if adding post production. A gently heated coating (35 – 40 degrees C) spreads further and is more easily applied with less potential for blockages. b) Coating in a drum/belt. A drum undoubtedly gives better results but speed and internal contours should be checked to avoid violent throwing of granules and instead an even tumbling action is desired. This may require some drum adaptation. c) Use of a nozzle. Type, aperture, air atomising, flow jet etc. d) Number of nozzle outlets. A high dosage of coating can be spread over several nozzle outlets maximising coverage and so minimising product requirement. SELECTING YOUR POLYMERISING COATING When selecting a coating the following points should be considered • The effectiveness of the coating on attaching and retaining the required volume of powder • Cost effectiveness in terms of yield and result • Whether you require oil based or water soluble coatings • The method and equipment for application • Environmental aspects of the coating – is it soil beneficial and will it comply with European legislation? • Health and Safety considerations for the workforce including smell, toxicity and operating temperature. Whether the coating needs to be applied at 80 degree C - or is classified as a fire hazard for storage purposes. • Availability, stability and reputation of supplier

135

LAKE TEST METHODS Moisture Analysis. Are done gravimetrically using a Precisa XM 10 SE Moisture Analyzer. A single layer of the fertilizer sample is place in a shallow 100 mm diameter metal sample dish (supplied with analyzer). Moisture loss is determined at 105°C and the end point is determined automatically as per the “ADAPTSTOP” settings on the instrument. Analyses are performed in quadruplicate with the average reported. Granule Breaking Strength A Mecmecin Compact Force Gauge (Digital), rated to 200 N (20 kg) is used to determined the fertilizer granule strength. The average breaking strength values of 20 granules are used to calculate the final breaking strength for the specific fertilizer sample received. Post coating residual powder analysis The free powder analysis is based on the standard IFDC S-122 method. A measured sample (250 g) is passed through the column five times to remove the maximum amount of powder. The amount of powder is expressed as a ppm value for the specific fertilizer sample. Coating Application Depending on sample size the Biofix coatings are either applied using a modified cement mixer or a 5 L rotating coating drum. Biofix sample are spayed onto the sample at room temperature (22 – 25°C), unless otherwise stated, using a handheld DIY spray-gun fitted to a nitrogen cylinder regulated to between 100 and 200 kPa. Attrition. With Lake’s attrition test, the wear of fertilizer granules is simulated. Samples of approximately 150 g are sealed in a high strength plastic bag and placed in the handling simulator. The instrument rotates is run for 5 minutes at 30 rpm after which the latent powder value of the tested fertilizer is determined using Lake’s standard powder analysis method. I - Assuming e.g. 5% addition II - IFS Proceeding 584 New Developments in Fertiliser Coatings EA Bijpost and JG Korver. 2006

136

MODÉLISATION THERMOCINÉTIQUE DES PROCESSUS PHYSICO CHIMIQUES À L’ORIGINE DES PROBLÈMES DE L’ENCRASSEMENT DANS L’INDUSTRIE DES PHOSPHATES WS5 - 3 M. Mohamed AMALHAY, OCP, MAROC M. Mohamed AZAROUAL, BRGM, FRANCE M. M. EL GUENDOUZI, Département Chimie – FS Ben M’Sik, MAROC De part le monde, Les procédés de valorisation et d’épuration de l’acide phosphorique (ACP) sont basés sur l’utilisation de l’acide sulfurique (H2SO4) pour l’attaque acide du phosphate. L’un des problèmes majeurs rencontrés dans ces procédés est lié à la formation de dépôts minéraux de façon non maîtrisée à des endroits sensibles des unités de production d’ACP. L’optimisation des conditions d’exploitation nécessite une meilleure compréhension des mécanismes de formation de ces minéraux pour éviter les nuisances qu’ils engendrent en termes de perte de produits, acide phosphorique, et d’encrassement dans les réacteurs d’attaque, les échangeurs de chaleur, les évaporateurs, etc. Conscient de ces problèmes, et dans le but de les cerner d’une manière précise, que ce soit sur le niveau théorique, expérimental ou pratique, le Groupe OCP (Maroc) a entamé depuis 2004, une étude, en intime collaboration avec le BRGM (France) et la Faculté des sciences et techniques de Ben M’Sik de Casablanca, en vue de développer un code de calcul thermocinétique dédié aux métiers de valorisation des phosphates minéraux. Actuellement, et dans sa version V, ce code de calcul appelé « Scale2000 », constitue un outil performant et innovant, offrant aux chercheurs et ingénieurs qui opèrent dans les domaines des industries de phosphates plusieurs volets, possibilités et outils pour : - Comprendre et déterminer les conditions de formations des dépôts solides dans les endroits sensibles des installations de productions d’acide phosphorique dans le but de leurs trouver des remèdes durables et optimales ; - Calcul de quelques propriétés thermodynamiques et physiques des systèmes riches en acide phosphorique (densité, activité de l’eau, pH, …) ; - Simuler la cinétique d’attaque des phosphates et les phénomènes qui l’accompagnent, notamment, le Scale-up et le Scale-dwon ; - Etablir plusieurs abaques et graphiques très utiles dans la conduite, l’optimisation et l’exploitation des procédés de transformation chimique des phosphates ;

137

- Optimiser la conduite des procédés de valorisation des phosphates par voie humide, notamment au niveau de la réaction, tout en introduisant un outil numérique fiable et performant pour le calcul des réacteurs de lixiviation des phosphates ; - Développer d’autres procédés de valorisation de phosphates minéraux beaucoup plus performants ou contribuer à l’amélioration des procédés existants. En effet, la compréhension des phénomènes mis en jeux lors de l’attaque des phosphates permet aux chercheurs et aux ingénieurs d’optimiser les paramètres opératoires ainsi que les conditions physicochimiques et donc les procédés dans leur globalité.

NEW BOLT-ON TECHNOLOGIES FOR SCALE CONTROL AND METALS REMOVAL IN PHOSPHORIC ACID PRODUCTION WS5 - 4 SA.Ravishankar & Ahmet TEOMAN, Bing Wang, John Carr and Rajesh Raitani Cytec Industries Inc., 1937 West Main Street, Stamford CT 06902 USA Strong demand in biofuels crop, food and feeds, the recovery in fertilizer use is likely to hit a new demand-driven cycle for phosphoric acid with an average of 4.5% increase in consumption in the next 4-5 years. However, increasing energy prices, regulatory pressures and growing environmental concerns, pose major constraints to capacity growth. The purpose of this paper is to discuss two technologies developed by Cytec recently on fluorosilicate scale control and metals removal in phosphoric acid production. In scale control, a new anti-scalant chemical additive has been developed and demonstrated at plant level for preventing scale formed as a result of cooling in long pipelines transporting 28% P2O5 phosphoric acid. And, with metals removal, several plant trials and lab results will be discussed with special reference to removing Cd and As metals from Phosphoric acid. One of the most salient features of these technologies is their “bolt-on” nature which substantially minimizes the capital investment with no downstream effects.

138

ULTRA LARGE SULFURIC ACID PLANTS Garret Palmquist (MECS-DuPont), Senior Engineering Supervisor

WS7 - 1

MECS has successfully designed Sulfur Burning Sulfuric Acid plants in excess of 4000 MTPD in capacity. The important considerations with respect to the design and specification of the critical equipment will be presented. Specific topics will include: • Use of Computational Fluid Dynamics (CFD) for modeling the mixing of gases and gas distribution into key vessels • Design of large HRS™ systems • Specification and testing of a large single main compressor • Specification and design of cylindrical superheater • MECS patented Swivel Expansion Joint for key ducts

SULPHUR HANDLING AND STORAGE - NEW APPROACHES TO REDUCE CAPEX & OPEX COSTS WS7 - 2 John MacDonald, Brimrock Group Inc., Calgary, Canada presenting author Mr. Les Lang Brimrock Group Inc., is based in Calgary, Canada. Founded in 2006, Brimrock has provided consulting services to international companies that either produce or consume sulphur. With over 100 years of collective technical and operational experience in sulphur forming and materials handling systems, Brimrock has brought new ideas to the traditional methods of how industry approaches the challenge of upgrading existing facilities or designing and building greenfield facilities. In 2009, Brimrock became a member of the Martin Group of Companies, a $2 billion a year enterprise based in Kilgore, Texas. Martin’s experience in the U.S. sulphur business ranges from logistics (truck, railcars, marine vessels, terminals), to trading operations, specialty fertilizer production, and sulphuric acid production and trading. Today, Brimrock has developed and is operating three newly updated sulphur processing technologies; a 1500 MTPD granulation unit, a 2000 MTPD wet prilling unit, and a 600 and 800 MTPD contaminated and solid sulphur remelting unit. The Traditional Approach to Sulphur Handling and Storage

139

Sulphur producers and consumers typically store their sulphur inventories in one or a combination of three ways; blocked (or vatted), open stockpile, or under cover. Sulphur stored in blocks, as found in Canada, Central Asia, and other locations, is mainly a method used by producers to limit exports into the marketplace when either prices drop below the economics necessary to encourage shipping or at production locations too remote to ship sulphur at any price. This paper will not address the subject of sulphur blocking as it wishes to focus on those storage methodologies of active producers and consumers. Open storage is a viable method of holding live sulphur inventory while it awaits either waterborne or rail shipment. The principles of open storage systems include movement of the sulphur in and out of storage with stacker reclaimers, or conveyors and front end loaders, asphalt pads upon which the sulphur is stored, asphalt berms surrounding the stockpile to contain and direct water runoff, water treatment ponds to neutralize collected water runoff, and fire suppression systems. Open sulphur storage facilities are primarily used where airborne contamination (i.e. sand storms) is at a minimum or producers wish to reduce the visible impact of the stockpiles. Rainfall is not typically hazardous to open stockpiles if the water runoff and treatment systems are well designed and constructed, and the inventory is turned over in accordance with good industry practice. Sulphur producers will also use open storage facilities to reduce the capital costs associated with buildings. The third method of storing live inventory and one that is widely used throughout the world is covered storage. These systems range from the massive longitudinal covered building used at Ruwais in the UAE to the stainless steel structure used in Brake, Germany. When sulphur producers examine the capital costs of sulphur forming and handling systems they are often left with what is termed “sticker shock”. It is not the sulphur forming systems that skew the capital costs but the materials handling and storage systems. Sulphur storage systems have, in the past, been designed around longitudinal buildings. This is in part due to the use of stacker-reclaim equipment but also because the engineering companies who work on behalf of their clients see this storage model and, in order to follow the path of least resistance, replicate and recommend similar storage facilities to their clients. New Thinking to an Old Problem In the early years of Brimrock’s existence, the partners conducted many consulting studies for clients throughout the world examining ways and means of designing sulphur forming and materials handling systems that provided an array of choices for the client. Those choices were developed to provide the client with various capital cost options. The Brimrock partners brought over 50 years of operational and technical experience in sulphur forming and handling systems to its consulting studies. To some clients, capital costs for materials handling and storage systems was a concern but often times other factors had to be taken into account. What emerged from all the research over this time were new ideas of storing and recovering sulphur safely and economically.

140

The ideas emerged from looking at how other commodities were handled and if those concepts could be transferred to the world of sulphur. Brimrock discovered that, in fact, these concepts and technologies could indeed be applied to sulphur handling. The use of the dome in storing commodities is a proven technology. What Brimrock found difficult was to marry up the recovery of the sulphur from the dome without damaging the product by running over it on a continuous basis, thus creating a dusty and unsafe work environment. The solution was a new technology called a moving hole feeder. Both the dome and the feeder were used with other commodities, but not sulphur. When Brimrock set about looking to marry the two concepts together the detailed capital and operating cost analysis (CAPEX and OPEX respectively) produced some surprising results. It soon became apparent that these two technologies could be recommended to clients as a means of keeping the sulphur under storage, keeping capital costs contained, and for the long term, keeping operating costs to a minimum. The purpose of this abstract is to outline, at a high level, what Brimrock has discovered through its research and present a new way of approaching the design of sulphur materials handling and storage facilities. It would be Brimrock’s intent to present the details of these concepts, including the economic models that it developed, to the Symphos Conference in order to allow the attendees to broaden their views on how sulphur can be handled safely and economically.

BASICS OF SULFURIC ACID CATALYST HANDLING Harris Jack President, VIP International, Inc.USA

WS7 - 4

While catalyst screening is a routine part of most maintenance outages, many producers view this operation as a labor intence material handling project rather than a critical part of ongoing plant reliability that can extend production time between outages. Specializing in servicing sulfuric acid plant converters since 1977, VIP International has handled over 300 million liters of catalyst and is without a doubt the leader in sulfuric acid catalyst screening and loading technology. This presentation will inform attendees of proper catalyst handling techniques, equipment and priorities to maximize down time, reduce pressure drop and increase production. The live video footage taken in the field will allow the viewer to see first hand how these practices are executed thereby training the participants in what to expect from the service providers of their converter. Actual case study results will be shared to support the presentation.

141

PROLONG PRODUCTION CYCLES WITH DUST PROTECTION CATALYST Marie Vognsen Haldor Topsoe A/S, DENMARK

WS7 - 5

For many sulphuric acid plants the bottleneck for prolonged operating time between plant shutdowns is the requirement for screening of bed 1 due to increased pressure drop caused by deposition of dust from the feed gas. An improved protection against pressure drop build-up can be obtained by the use of a dust protection catalyst in the top of bed 1. In 2007 Topsøe introduced a new dust protection catalyst in the shape of a 25 mm Daisy. Installation of a 15 cm top layer of this unique VK38 dust protection catalyst results in a doubling of the operating time between screenings compared to the 12 mm Daisy. COMMENT UN SYSTÈME DE PRODUCTION PERMET DE PÉRENNISER ET CAPITALISER LES MEILLEURES PRATIQUES INDUSTRIELLES. WS8 - 3 Vincent Laboucheix Senior Manager Lean Manufacturing, Renault Consulting Inventés au Japon dans les années 70, les « Systèmes de Production » correspondent à une nouvelle logique d’industrialisation qui bouleverse l’approche traditionnelle de la production. Derrière les gains parfois spectaculaires liés à leur mise en œuvre (une qualité 5 à 10 fois meilleure, une productivité 2 fois meilleure, des délais 10 fois plus courts, dans des surfaces deux fois inférieures) se cache aussi une réalité moins bien connue. Celle d’organisations capables de pérenniser en permanence leurs meilleures pratiques dans des domaines aussi divers que : - le développement produit, - l’industrialisation, - la production, - le service, - la formation des hommes, - la formalisation du Système de Production… Une capitalisation étendue dans toute l’entreprise qui s’avère une arme d’autant plus redoutable, qu’elle correspond à la face cachée du Système.

142

143

INDEX CP 1................................................................. 10 CP 2 Mining ..................................................... 10 CP 3 Environment & sustainable development... 11 CP 4 Materials & new products.......................... 12 CP 5 Phosacid & fertilizer.................................. 12 CP 6 Agriculture & fertilization.......................... 13 KN 1 Mining..................................................... 16 KN 2 Mining..................................................... 16 KN 3 Mining..................................................... 17 KN 4 Environment & sustainable development .. 17 KN 5 Environment & sustainable development .. 18 KN 6 Environment & sustainable development .. 18 KN 7 Materials & new products ......................... 19 KN 8 Materials & new products ......................... 20 KN 9 Materials & new products ......................... 20 KN 10 Phosacid & fertilizer ............................... 22 KN 11 Phosacid & fertilizer ............................... 22 KN 12 Phosacid & fertilizer ............................... 23 KN 13 Agriculture & fertilization....................... 26 KN 14 Agriculture & fertilization....................... 26 KN 15 Agriculture & fertilization....................... 27 MN-O-01 ......................................................... 30 MN-O-02 ......................................................... 30 MN-O-03 ......................................................... 31 MN-O-04 ......................................................... 31 MN-O-05 ......................................................... 33 MN-O-06 ......................................................... 33 MN-O-07 ......................................................... 34 MN-O-08 ......................................................... 45 BN-O-01 .......................................................... 40 BN-O-02 .......................................................... 41 BN-O-03 .......................................................... 41 BN-O-04 .......................................................... 42

144

BN-O-05 ..................................... BN-O-06 ..................................... BN-O-07 ..................................... BN-O-08 ..................................... SW-O-01 ..................................... SW-O-02 ..................................... SW-O-03 ..................................... SW-O-04 ..................................... SW-O-05 ..................................... PH-O-01 ..................................... PH-O-02 ..................................... PH-O-03 ..................................... PH-O-04 ..................................... PH-O-05 ..................................... PH-O-06 ..................................... PH-O-07 ..................................... PH-O-08 ..................................... PH-O-09 ..................................... PH-O-10 ..................................... PH-O-11 ..................................... PH-O-12 ..................................... PH-O-13 ..................................... PH-O-14 ..................................... PH-O-15 ..................................... PH-O-16 ..................................... PH-O-17 ..................................... PH-O-18 ..................................... PH-O-19 ..................................... PH-O-20 ..................................... PH-O-21 ..................................... PH-O-22 ..................................... PH-O-23 ..................................... PH-O-24 .....................................

42 43 44 45 48 49 49 50 50 52 52 53 54 54 55 56 57 58 59 61 61 62 63 63 64 64 65 65 67 67 68 68 69

PH-O-25 ..................................... 70 PH-O-26 ..................................... 70 EN-O-01 ..................................... 74 EN-O-02 ..................................... 74 EN-O-03 ..................................... 76 EN-O-04 ..................................... 76 EN-O-05 ..................................... 78 EN-O-06 ..................................... 78 EN-O-07 ..................................... 79 EN-O-08 ..................................... 79 EN-O-09 ..................................... 81 EN-O-10 ..................................... 81 EN-O-11 ..................................... 82 EN-O-12 ..................................... 84 EN-O-13 ..................................... 85 IM-O-01 ..................................... 88 IM-O-02 ..................................... 88 IM-O-03 ..................................... 89 IM-O-04 ..................................... 89 IM-O-05 ..................................... 90 AP-O-01 ..................................... 92 AP-O-02 ..................................... 92 AP-O-03 ..................................... 93 AP-O-04 ..................................... 94 AP-O-05 ..................................... 94 AP-O-06 ..................................... 95 AP-O-07 ..................................... 95 AP-O-08 ..................................... 96 AP-O-09 ..................................... 98 AP-O-10 ..................................... 98 AP-O-11 ..................................... 99 AP-O-12 ..................................... 100 AP-O-13 ..................................... 101 P1.............................................. 104 P2.............................................. 104 P3.............................................. 106 P4.............................................. 107 P5.............................................. 107 P6.............................................. 108

P7.............................................. 109 P8.............................................. 109 P9.............................................. 110 P10............................................ 111 P11............................................ 112 P12............................................ 113 P13............................................ 113 P14............................................ 114 P15............................................ 114 P16............................................ 117 P17............................................ 118 P18............................................ 118 P19............................................ 119 P20............................................ 119 P21............................................ 120 P22............................................ 121 P24............................................ 122 WS1-1........................................ 124 WS1-2........................................ 124 WS1-4........................................ 125 WS1-6........................................ 125 WS3-1........................................ 126 WS3-2........................................ 128 WS3-3........................................ 132 WS5-3........................................ 137 WS5-4........................................ 138 WS7-1........................................ 139 WS7-2........................................ 139 WS7-4........................................ 141 WS7-5........................................ 142 WS8-3........................................ 142

145

146

147

148