Thermal energy storage

8 downloads 0 Views 775KB Size Report
[100] Jian Yongfang, Falcoz Quentin, Neveu Pierre, Bai Fengwu, Wang Yan, Wang ... [116] Martínez-Lera S, Ballester J, Martínez-Lera J. Analysis and sizing of ...
Applied Energy xxx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Applied Energy journal homepage: www.elsevier.com/locate/apenergy

Thermal energy storage

1. Overview This virtual special issue collects papers on thermal energy storage published in Applied Energy from 2009 to 2017. This amounts to 165 papers, accounting for approximately 1.91% of the 8622 papers published in Applied Energy, during the 9 year period. As shown in Table 1, we have classified the papers into the following categories:

sumption, including heating supply, hot water supply and so on, with thermal energy storage technologies. 1.2.4. Industrial waste heat storage 4 papers [133–136] concern the topic of industrial waste heat recovery. 1.3. Management, assessments and strategies

1.1. Technology 1.1.1. Sensible heat storage 9 papers [1–9] are within this topic which concerns one of the three thermal energy storage technology: sensible heat storage.

13 papers [137–149] are listed in this category related to aspects of management, assessments and strategies about thermal energy storage. 1.4. Other topics

1.1.2. Latent heat storage 76 papers [10–85] are included in latent heat storage, which cover topics as preparation, characterization and thermal properties determination of novel phase change materials, design, development and improvement of latent heat storage systems etc.

15 papers [146,150–163] covering the cross-cutting issues related to TES including analysis of energy savings, comparison between different TES technologies, exergy analysis etc.

1.1.3. Chemical heat storage (the heat of reaction) 5 papers [86–90] were accepted regarding chemical heat storage technologies. Topics including thermal energy storage through thermochemical methods, fuel combustion and etc. Were conducted in this category.

Fig. 1 shows the published papers according to the published year, which indicates the increased trends in TES in particular from 2013. The most studies were on latent heat storage technologies, following with the applications in meeting building energy consumption as shown in Fig. 2. The leading countries for TES research in term of published papers in Applied Energy are China, Spain, US, Sweden and Australia mainly from Europe and Asia as region (Figs. 3 and 4).

1.2. Applications

2. Analysis

1.2.1. Solar thermal energy storage The applications in the area of solar thermal energy storage were discussed in 18 papers [85,91–107].

2.1. Based on published year

1.2.2. Peak load shifting of electric power 5 papers [108–112] are classified in this topic, mainly focusing on peak load shifting of electric power using thermal energy storage technologies.

2.2. Based on topics

See Fig. 1.

See Fig. 2. 2.3. Based on geographic distributions

1.2.3. Applications in building 20 papers [113–132] are aiming at meeting building energy con-

https://doi.org/10.1016/j.apenergy.2018.03.001

0306-2619/ © 2018 Published by Elsevier Ltd.

See Fig. 3.

Applied Energy xxx (xxxx) xxx–xxx

Fig. 1. Published papers on TES during 2009 to 2017.

Fig. 2. Percentage of published papers on TES by different topics.

3. Future perspectives 1. efficient and effective absorption heat pump with heat storage and recovery of low-grade waste heat; 2. low-temperature heat storage integrated with the air conditioning; 3. thermal energy storage integrated with buildings; 4. new thermal energy storage materials involving nano-technology to

Thermal energy storage technologies have received significant attention which will be further developed in the future on the following potential topics:

2

Applied Energy xxx (xxxx) xxx–xxx

Fig. 3. Published papers on TES by different countries.

Fig. 4. Percentage of published papers on TES by different regions.

improve the performance of the materials. 5. Application innovations with thermal energy storage with module design.

energy storage in aquifers. Appl Energy 2017;203:948–58. [7] Hobold Gustavo M, da Silva Alexandre K. Critical phenomena and their effect on thermal energy storage in supercritical fluid. Appl Energy 2017. [8] Ortega-Fernández Iñigo, Zavattoni Simone A, Rodríguez-Aseguinolaza Javier, D’Aguanno Bruno, Barbato Maurizio C. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology. Appl Energy 2017;205:280–93. [9] Sciacovelli A, Vecchi A, Ding Y. Liquid air energy storage (LAES) with packed bed cold thermal storage – from component to system level performance through dynamic modelling. Appl Energy 2017;190:84–98. [10] Rady Mohamed. Thermal performance of packed bed thermal energy storage units using multiple granular phase change composites. Appl Energy 2009;86(12):2704–20. [11] Sarı Ahmet, Alkan Cemil, Karaipekli Ali. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Appl Energy 2010;87(5):1529–34. [12] Wang Lijiu, Meng Duo. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Appl Energy 2010;87(8):2660–5. [13] Yang Zhen, Garimella Suresh V. Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions. Appl Energy 2010;87(11):3322–9. [14] Cai Yibing, Huizhen Ke Ju, Dong Qufu Wei, Lin Jiulong, Zhao Yong, Song Lei, et al. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as

References [1] Mawire A, McPherson M, van den Heetkamp RRJ, Mlatho SJP. Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems. Appl Energy 2009;86(7–8):1246–52. [2] Mawire Ashmore, Taole Simeon H. A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging. Appl Energy 2011;88(12):4766–78. [3] Kranz Stefan, Frick Stephanie. Efficient cooling energy supply with aquifer thermal energy storages. Appl Energy 2013;109:321–7. [4] Sommer Wijbrand, Valstar Johan, Leusbrock Ingo, Grotenhuis Tim, Rijnaarts Huub. Optimization and spatial pattern of large-scale aquifer thermal energy storage. Appl Energy 2015;137:322–37. [5] Becattini Viola, Motmans Thomas, Zappone Alba, Madonna Claudio, Haselbacher Andreas, Steinfeld Aldo. Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl Energy 2017;203:373–89. [6] Guo Chaobin, Zhang Keni, Pan Lehua, Cai Zuansi, Li Cai, Li Yi. Numerical investigation of a joint approach to thermal energy storage and compressed air

3

Applied Energy xxx (xxxx) xxx–xxx Energy 2014;121:184–95. [43] Biwan Xu, Li Zongjin. Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material. Appl Energy 2014;1211:114–22. [44] Alam Tanvir E, Dhau Jaspreet S, Goswami D Yogi, Stefanakos Elias. Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Appl Energy 2015;154:92–101. [45] Chen Changzhong, Liu Wenmin, Wang Hongwei, Peng Kelin. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy 2015;152:198–206. [46] Fan Li-Wu, Yao Xiao-Li, Wang Xiao, Yu-Yue Wu, Xue-Ling Liu XuXu, Zi-Tao Yu. Non-isothermal crystallization of aqueous nanofluids with high aspect-ratio carbon nano-additives for cold thermal energy storage. Appl Energy 2015;138:193–201. [47] Gutierrez Andrea, Ushak Svetlana, Galleguillos Hector, Fernandez Angel, Cabeza Luisa F, Grágeda Mario. Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Appl Energy 2015;154:616–21. [48] Konuklu Yeliz, Paksoy Halime O, Unal Murat. Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage. Appl Energy 2015;150:335–40. [49] Li Xiangyu, Chen Huisu, Li Huiqiang, Liu Lin, Zeyu Lu, Zhang Tao, Duan Wen Hui. Integration of form-stable paraffin/nano-silica phase change material composites into vacuum insulation panels for thermal energy storage. Appl Energy 2015;159:601–9. [50] Memon Shazim Ali, Cui Hongzhi, Lo Tommy Y, Li Qiusheng. Development of structural–functional integrated concrete with macro-encapsulated PCM for thermal energy storage. Appl Energy 2015;150:245–57. [51] Tian Heqing, Wang Weilong, Ding Jing, Wei Xiaolan, Song Ming, Yang Jianping. Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites. Appl Energy 2015;148:87–92. [52] Wang Wei-Wei, Wang Liang-Bi, He Ya-Ling. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit. Appl Energy 2015;138:169–82. [53] Biwan Xu, Ma Hongyan, Zeyu Lu, Li Zongjin. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Appl Energy 2015;160:358–67. [54] Zhang P, Xiao X, Menga ZN, Li M. Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement. Appl Energy 2015;137:758–72. [55] Chen Weiwang, Weng Wenguo. Ultrafine lauric–myristic acid eutectic/poly (metaphenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning. Appl Energy 2016;173:168–76. [56] Fukahori Ryo, Nomura Takahiro, Zhu Chunyu, Sheng Nan, Okinaka Noriyuki, Akiyama Tomohiro. Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Appl Energy 2016;170:324–8. [57] Gunasekara Saman Nimali, Pan Ruijun, Chiu Justin Ningwei, Martin Viktoria. Polyols as phase change materials for surplus thermal energy storage. Appl Energy 2016;162:1439–52. [58] Guo Shaopeng, Zhao Jun, Wang Weilong, Yan Jinyue, Jin Guang, Zhang Zhiyu, et al. Numerical study of the improvement of an indirect contact mobilized thermal energy storage container. Appl Energy 2016;161:476–86. [59] Izquierdo-Barrientos MA, Sobrino C, Almendros-Ibáñez JA, Barreneche C, Ellis N, Cabeza LF. Characterization of granular phase change materials for thermal energy storage applications in fluidized beds. Appl Energy 2016;181:310–21. [60] Lv Peizhao, Liu Chenzhen, Rao Zhonghao. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl Energy 2016;182:475–87. [61] Myers Jr. Philip D, Alamb Tanvir E, Kamal Rajeev, Goswami DY, Stefanakos E. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer. Appl Energy 2016;165:225–33. [62] Pereira da Cunha Jose, Eames Philip. Thermal energy storage for low and medium temperature applications using phase change materials – a review. Appl Energy 2016;177:227–38. [63] Rapantova Nada, Pospisil Pavel, Koziorek Jiri, Vojcinak Petr, Grycz David, Rozehnal Zdenek. Optimisation of experimental operation of borehole thermal energy storage. Appl Energy 2016;181:464–76. [64] Vogel J, Felbinger J, Johnson M. Natural convection in high temperature flat plate latent heat thermal energy storage systems. Appl Energy 2016;184:184–96. [65] Wang Tingyu, Wang Shuangfeng, Luo Ruilian, Zhu Chunyu, Akiyama Tomohiro, Zhang Zhengguo. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl Energy 2016;171:113–9. [66] Yang Chuntao, Wei Xiaolan, Wang Weilong, Lin Zihao, Ding Jing, Wang Yan, et al. NOx emissions and the component changes of ternary molten nitratesalts in thermal energy storage process. Appl Energy 2016;184:346–52. [67] Yang Jialin, Yang Lijun, Chao Xu, Xiaoze Du. Experimental study on enhancement of thermal energy storage with phase-change material. Appl Energy 2016;169:164–76. [68] Zhang He, Xing Feng, Cui Hong-Zhi, Chen Da-Zhu, Ouyang Xing, Su-Zhen Xu, et al. A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties. Appl Energy 2016;170:130–9. [69] Zhang P, Ma F, Xiao X. Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system. Appl Energy 2016;173:255–71. [70] Zhao Bing-chen, Cheng Mao-song, Liu Chang, Dai Zhi-min. Thermal performance

form-stable phase change materials. Appl Energy 2011;88(6):2106–12. [15] Joulin Annabelle, Younsi Zohir, Zalewski Laurent, Lassue Stéphane, Rousse Daniel R, Cavrot Jean-Paul. Experimental and numerical investigation of a phase change material: thermal-energy storage and release. Appl Energy 2011;88(7):2454–62. [16] Li Min, Zhishen Wu, Kao Hongtao. Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Appl Energy 2011;88(9):3125–32. [17] Tao YB, He YL. Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary. Appl Energy 2011;88(11):4172–9. [18] Oró E, de Gracia A, Castell A, Farid MM, Cabeza LF. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 2012;99:513–33. [19] Qin Frank GF, Yang Xiaoping, Ding Zhan, Zuo Yuanzhi, Shao Youyan, Jiang Runhua, et al. Thermocline stability criterions in single-tanks of molten salt thermal energy storage. Appl Energy 2012;97:816–21. [20] Tay NHS, Belusko M, Bruno F. An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems. Appl Energy 2012;91(1):309–19. [21] Tay NHS, Belusko M, Bruno F. Experimental investigation of tubes in a phase change thermal energy storage system. Appl Energy 2012;90(1):288–97. [22] Chao Xu, Wang Zhifeng, He Yaling, Li Xin, Bai Fengwu. Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system. Appl Energy 2012;92:65–75. [23] Zhang Zhengguo, Zhang Ni, Peng Jing, Fang Xiaoming, Gao Xuenong, Fang Yutang. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 2012;91(1):426–31. [24] Chiu Justin NW, Martin Viktoria. Multistage latent heat cold thermal energy storage design analysis. Appl Energy 2013;112:1438–45. [25] Gil Antoni, Barreneche Camila, Moreno Pere, Solé Cristian, Fernández A Inés, Cabeza Luisa F. Thermal behavior of D-mannitol when used as PCM: comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale. Appl Energy 2013;111:1107–13. [26] Guo Shaopeng, Li Hailong, Zhao Jun, Li Xun, Yan Jinyue. Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage. Appl Energy 2013;112:1416–23. [27] Liu Zhenyu, Yao Yuanpeng, Huiying Wu. Numerical modeling for solid–liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage. Appl Energy 2013;112:1222–32. [28] Nithyanandam K, Pitchumani R. Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power. Appl Energy 2013;103:400–15. [29] Oró Eduard, Castell Albert, Chiu Justin, Martin Viktoria, Cabeza Luisa F. Stratification analysis in packed bed thermal energy storage systems. Appl Energy 2013;109:476–87. [30] Peng Qiang, Yang Xiaoxi, Ding Jing, Wei Xiaolan, Yang Jianping. Design of new molten salt thermal energy storage material for solar thermal power plant. Appl Energy 2013;112:682–9. [31] Qian Yong, Weia Ping, Jiang Pingkai, Li Zhi, Yan Yonggang, Liu Jiping. Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application. Appl Energy 2013;116:321–7. [32] Tay NHS, Bruno F, Belusko M. Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD. Appl Energy 2013;104:79–86. [33] Biwan Xu, Li Zongjin. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy 2013;105:229–37. [34] Fang Yutang, Liu Xin, Liang Xianghui, Liu Hong, Gao Xuenong, Zhang Zhengguo. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage. Appl Energy 2014;132:551–6. [35] Li Huiqiang, Chen Huisu, Li Xiangyu, Sanjayan Jay G. Development of thermal energy storage composites and prevention of PCM leakage. Appl Energy 2014;135:225–33. [36] Mehrali Mohammad, Latibari Sara Tahan, Mehrali Mehdi, Mahlia Teuku Meurah Indra, Sadeghinezhad Emad, Metselaar Hendrik Simon Cornelis. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage. Appl Energy 2014;135:339–49. [37] Nithyanandam K, Pitchumani R. Design of a latent thermal energy storage system with embedded heat pipes. Appl Energy 2014;126:226–80. [38] Parameshwaran R, Deepak K, Saravanan R, Kalaiselvam S. Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl Energy 2014;115:320–30. [39] Rathgeber Christoph, Schmit Henri, Hennemann Peter, Hiebler Stefan. Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45°C. Appl Energy 2014;136:7–13. [40] Sarı Ahmet, Alkan Cemil, Bilgin Cahit. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties. Applier Energy 2014;136:217–27. [41] Wang Yunming, Tang Bingtao, Zhang Shufen. Organic, cross-linking, and shapestabilized solar thermal energy storage materials: a reversible phase transition driven by broadband visible light. Appl Energy 2014;113:59–66. [42] Ming Wu, Chao Xu, He Ya-Ling. Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules. Appl

4

Applied Energy xxx (xxxx) xxx–xxx

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78] [79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96] [97] [98]

[99] Flueckiger Scott M, Iverson Brian D, Garimella Suresh V, Pacheco James E. Systemlevel simulation of a solar power tower plant with thermocline thermal energy storage. Appl Energy 2014;113:86–96. [100] Jian Yongfang, Falcoz Quentin, Neveu Pierre, Bai Fengwu, Wang Yan, Wang Zhifeng. Design and optimization of solid thermal energy storage modules for solar thermal power plant applications. Appl Energy 2015;139:30–42. [101] Miró Laia, Oró Eduard, Boer Dieter, Cabeza Luisa F. Embodied energy in thermal energy storage (TES) systems for high temperature applications. Appl Energy 2015;137:793–9. [102] Wu Junjie, Hou Hongjuan, Yang Yongping, Hu Eric. Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity. Appl Energy 2015;157:123–33. [103] Ben Xu, Li Peiwen, Chan Cholik. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 2015;160:286–307. [104] Jacob Rhys, Belusko Martin, Fernández A Inés, Cabeza Luisa F, Saman Wasim, Bruno Frank. Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants. Appl Energy 2016;180:586–97. [105] Li Qing, Bai Fengwu, Yang Bei, Wang Zhifeng, El Hefni Baligh, Liu Sijie, et al. Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant. Appl Energy 2016;178:281–93. [106] González-Portillo Luis F, Muñoz-Antón Javier, Martínez-Val José M. An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants. Appl Energy 2017;185:531–46. [107] Pintaldi Sergio, Sethuvenkatraman Subbu, White Stephen, Rosengarten Gary. Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Appl Energy 2017;188:160–77. [108] Ferrari Mario L, Pascenti Matteo, Sorce Alessandro, Traverso Alberto, Massardo Aristide F. Real-time tool for management of smart polygeneration grids including thermal energy storage. Appl Energy 2014;130:670–8. [109] Palacio Santiago Naranjo, Valentine Keenan F, Wong Myra, Zhang K Max. Reducing power system costs with thermal energy storage. Appl Energy 2014;129:228–37. [110] Ruddell Benjamin L, Salamanca Francisco, Mahalov Alex. Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage. Appl Energy 2014;134:35–44. [111] Yuehong Lu, Wang Shengwei, Sun Yongjun, Yan Chengchu. Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming. Appl Energy 2015;147:49–58. [112] Baeten Brecht, Rogiers Frederik, Helsen Lieve. Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response. Appl Energy 2017;195:184–95. [113] Barbieri Enrico Saverio, Melino Francesco, Morini Mirko. Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications. Appl Energy 2012;97:714–22. [114] Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 2012;92:593–605. [115] Kim Sean Hay. An evaluation of robust controls for passive building thermal mass and mechanical thermal energy storage under uncertainty. Appl Energy 2013;111:602–23. [116] Martínez-Lera S, Ballester J, Martínez-Lera J. Analysis and sizing of thermal energy storage in combined heating, cooling and power plants for buildings. Appl Energy 2013;106:127–42. [117] Nuytten Thomas, Claessens Bert, Paredis Kristof, Van Bael Johan, Six Daan. Flexibility of a combined heat and power system with thermal energy storage for district heating. Appl Energy 2013;104:583–91. [118] Persson Johannes, Westermark Mats. Low-energy buildings and seasonal thermal energy storages from a behavioral economics perspective. Appl Energy 2013;112:975–80. [119] Rouault Fabien, Bruneau Denis, Sebastian Patrick, Lopez Jérôme. Numerical modelling of tube bundle thermal energy storage for free-cooling of buildings. Appl Energy 2013;111:1099–106. [120] Jaworski Maciej, Łapka Piotr, Furman’ski Piotr. Numerical modelling and experimental studies of thermal behavior of building integrated thermal energy storage unit in a form of a ceiling panel. Appl Energy 2014;113:548–57. [121] Ikeda Shintaro, Ooka Ryozo. Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system. Appl Energy 2015;151:192–205. [122] Johannes Kévyn, Kuznik Frédéric, Hubert Jean-Luc, Durier Francois, Obrecht Christian. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl Energy 2015;159:80–6. [123] Kensby Johan, Trüschel Anders, Dalenbäck Jan-Olof. Potential of residential buildings as thermal energy storage in district heating systems – results from a pilot test. Appl Energy 2015;137:773–81. [124] Alimohammadisagvand Behrang, Jokisalo Juha, Kilpeläinen Simo, Ali Mubbashir, Sirén Kai. Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control. Appl Energy 2016;174:275–87. [125] Mosaffa AH, Farshi L Garousi. Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage. Appl Energy 2016;162:515–26. [126] Soler Mònica Subirats, Sabaté Carles Civit, Santiago Víctor Benito, Jabbari Faryar. Optimizing performance of a bank of chillers with thermal energy storage. Appl

and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants. Appl Energy 2016;178:784–99. Alva Guruprasad, Huang Xiang, Liu Lingkun, Fang Guiyin. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage. Appl Energy 2017;203:677–85. Anghel EM, Pavela PM, Constantinescua M, Petrescua S, Atkinsona I, Buixaderasb E. Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage. Appl Energy 2017. Chen J, Zhang P. Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media. Appl Energy 2017;190:868–79. Lichan Du, Ding Jing, Tian Heqing, Wang Weilong, Wei Xiaolan, Song Ming. Thermal properties and thermal stability of the ternary eutectic saltNaCl-CaCl2MgCl2 used in high-temperature thermal energy storage Process. Appl Energy 2017;204:1225–30. Elsayed Ahmed, Elsayed Eman, Raya AL-Dadah, Mahmoud Saad, Elshaer Amr, Kaialy Waseem. Thermal energy storage using metal–organic framework materials. Appl Energy 2017;186:509–19. Han Lipeng, Xie Shaolei, Liu Shang, Sun Jinhe, Jia Yongzhong, Jing Yan. Effects of sodium chloride on the thermal behavior of oxalic acid dihydrate for thermal energy storage. Appl Energy 2017;185:762–7. Jiang Long, Gao Jiao, Wang Liwei, Wang Ruzhu, Lu Yiji, Roskilly Anthony Paul. Investigation on performance of multi-salt composite sorbents for multilevel sorption thermal energy storage. Appl Energy 2017;190:1029–38. Kurnia Jundika C, Sasmito Agus P. Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage. Appl Energy 2017. Nomura Takahiro, Sheng Nan, Zhu Chunyu, Saito Genki, Hanzaki Daiki, Hiraki Takehito, et al. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Appl Energy 2017;188:9–18. Jia Tang Mu, Yang Fang Yu, Chen Xingyu, Tan Li, Wang Ge. 1-Octadecanol@ hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage. Appl Energy 2017;187:514–22. Tian Heqing, Lichan Du, Wei Xiaolan, Deng Suyan, Wang Weilong, Ding Jing. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Appl Energy 2017;204:525–30. Haoxin, Romagnoli XuAlessandro, Sze Jia Yin, Py Xavier. Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery. Appl Energy 2017;187:281–90. Yang Xu, Ren Qinlong, Zheng Zhang-Jing, He Ya-Ling. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media. Appl Energy 2017;193:84–95. Yang Xiaohu, Zhao Lu, Bai Qingsong, Zhang Qunli, Jin Liwen, Yan Jinyue. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fin. Appl Energy 2017;202:558–70. Zhao Bing-chen, Cheng Mao-song, Liu Chang, Dai Zhi-min. Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power. Appl Energy 2017;195:761–73. Jafarian Mehdi, Arjomandi Maziar, Nathan Graham J. A hybrid solar and chemical looping combustion system for solar thermal energy storage. Appl Energy 2013;103:671–8. Arias B, Criado YA, Sanchez-Biezma A, Abanades JC. Oxy-fired fluidized bed combustors with a flexible power output using circulating solids for thermal energy storage. Appl Energy 2014;132:127–36. Barbour Edward, Mignard Dimitri, Ding Yulong, Li Yongliang. Adiabatic compressed air energy storage with packed bed thermal energy storage. Appl Energy 2015;155:804–15. Korhammer Kathrin, Druske Mona-Maria, Fopah-Lele Armand, Rammelberg Holger Urs, Wegscheider Nina, Opel et al. Oliver. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage. Appl Energy 2016;162:1462–72. Li TX, Wu S, Yan T, Xu JX, Wang RZ. A novel solid–gas thermochemical multilevel sorption thermal battery for cascaded solar thermal energy storage. Appl Energy 2016;161:1–10. Rovira Antonio, Montes María José, Valdes Manuel, Martínez-Val José María. Energy management in solar thermal power plants with double thermal storage system and subdivided solar fiel. Appl Energy 2011;88(11):4055–66. Gudea Veera Gnaneswar, Nirmalakhandan Nagamany, Deng Shuguang, Maganti Anand. Low temperature desalination using solar collectors augmented by thermal energy storage. Appl Energy 2012;91(1):466–74. Guillot Stéphanie, Faik Abdessamad, Rakhmatullin Aydar, Lambert Julien, Veron Emmanuel, Echegut Patrick, et al. Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl Energy 2012;94:174–81. Palacios E, Admiraal DM, Marcos JD, Izquierdo M. Experimental analysis of solar thermal storage in a water tank with open side inlets. Appl Energy 2012;89(1):401–12. Rodríguez-Hidalgo MC, Rodríguez-Aumente PA, Lecuona A, Legrand M, Ventas R. Domestic hot water consumption vs. solar thermal energy storage: the optimum size of the storage tank. Appl Energy 2012;97:897–906. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 2013;104:538–53. Wang Tao, Mantha Divakar, Reddy Ramana G. Novel low melting point quaternary eutectic system for solar thermal energy storage. Appl Energy 2013;102:1422–9. Yang Zhen, Garimella Suresh V. Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants. Appl Energy 2013;103:256–65.

5

Applied Energy xxx (xxxx) xxx–xxx application in underground mine ventilation. Appl Energy 2017;185:1940–7. [148] Guo Shaopeng, Zhao Jun, Wang Weilong, Yan Jinyue, Jin Guang, Wang Xiaotong. Techno-economic assessment of mobilized thermal energy storage for distributed users: a case study in China. Appl Energy 2017;194:481–6. [149] Kim Youngjin, Norford Leslie K. Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation. Appl Energy 2017;193:308–24. [150] Lai Sau Man, Hui Chi Wai. Integration of trigeneration system and thermal storage under demand uncertainties. Appl Energy 2010;87(9):2868–89. [151] Arce Pablo, Medrano Marc, Gil Antoni, Oró Eduard, Cabeza Luisa F. Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe. Appl Energy 2011;88(8):2764–74. [152] Pandiyarajan V, Chinna Pandian M, Malan E, Velraj R, Seeniraj RV. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl Energy 2011;88(1):77–87. [153] Li Yongliang, Wang Xiang, Li Dacheng, Ding Yulong. A trigeneration system based on compressed air and thermal energy storage. Appl Energy 2012;99:316–23. [154] Pu Jing, Liu Guilian, Feng Xiao. Cumulative exergy analysis of ice thermal storage air conditioning system. Appl Energy 2012;93:564–9. [155] Antipova Ekaterina, Boer Dieter, Cabeza Luisa F, Guillén-Gosálbez Gonzalo, Jiménez Laureano. Multi-objective design of reverse osmosis plants integrated with solar Rankine cycles and thermal energy storage. Appl Energy 2013;102:1137–47. [156] Chiu Justin NW, Gravoille Pauline, Martin Viktoria. Active free cooling optimization with thermal energy storage in Stockholm. Appl Energy 2013;109:523–9. [157] DeForest Nicholas, Mendes Gonçalo, Stadler Michael, Feng Wei, Lai Judy, Marnay Chris. Optimal deployment of thermal energy storage under diverse economic and climate conditions. Appl Energy 2014;119:488–96. [158] Rezaie Behnaz, Reddy Bale V, Rosen Marc A. Energy analysis of thermal energy storages with grid configuration. Appl Energy 2014;117:54–61. [159] Osorio JD, Rivera-Alvarez A, Swain M, Ordonez JC. Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction. Appl Energy 2015;154:333–43. [160] Patteeuw Dieter, Bruninx Kenneth, Arteconi Alessia, Delarue Erik, D’haeseleer William, Helsen Lieve. Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems. Appl Energy 2015;151:306–19. [161] Dufour Thomas, Hoang Hong Minh, Oignet Jérémy, Osswalda Véronique, Clain Pascal, Fournaison et al. Laurence. Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage. Appl Energy 2017;204:641–52. [162] McTigue JD, White AJ. A comparison of radial-flow and axial-flow packed beds for thermal energy storage. Appl Energy 2017. [163] Nash Austin L, Badithela Apurva, Jain Neera. Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes. Appl Energy 2017;195:877–89.

Energy 2016;172:275–85. [127] Stinner Sebastian, Huchtemann Kristian, Müller Dirk. Quantifying the operational flexibility of building energy systems with thermal energy storages. Appl Energy 2016;181:140–54. [128] Zhang Yin, Wang Xin, Zhuo Siwen, Zhang Yinping. Pre-feasibility of building cooling heating and power system with thermal energy storage considering energy supply–demand mismatch. Appl Energy 2016;167:125–34. [129] Li Xiao-Yan, Dong-Qi Qu, Yang Liu, Li Kai-Di. Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems. Appl Energy 2017;189:211–20. [130] Lizana Jesús, Chacartegui Ricardo, Barrios-Padura Angela, Valverde José Manuel. Advances in thermal energy storage materials and their applications towards zero energy buildings: a critical review. Appl Energy 2017;203:219–39. [131] Renaldi R, Kiprakis A, Friedrich D. An optimisation framework for thermal energy storage integration in a residential heat pump heating system. Appl Energy 2017;186:520–9. [132] Reynders Glenn, Diriken Jan, Saelens Dirk. Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings. Appl Energy 2017;198:192–202. [133] López-Sabirón Ana M, Royo Patricia, Ferreira Victor J, Aranda-Usón Alfonso, Ferreira Germán. Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption. Appl Energy 2014;135:616–24. [134] Miró Laia, Navarro M Elena, Suresh Priyamvadha, Gil Antoni, Fernández A Inés, Cabeza Luisa F. Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES). Appl Energy 2014;113:1261–8. [135] Merlin Kevin, Soto Jérôme, Delaunay Didier, Traonvouez Luc. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Appl Energy 2016;183:491–503. [136] Miró Laia, Gasia Jaume, Cabeza Luisa F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review. Appl Energy 2016;179:284–301. [137] Medranoa M, Yilmaz MO, Nogués M, Martorell I, Roca Joan, Cabeza Luisa F. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy 2009;86(10):2047–55. [138] Cavallaro Fausto. Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Appl Energy 2010;87(2):496–503. [139] Arteconi A, Hewitt NJ, Polonara F. State of the art of thermal storage for demandside management. Appl Energy 2012;93:371–89. [140] Dickinson Ryan M, Cruickshank Cynthia A, Harrison Stephen J. Charge and discharge strategies for a multi-tank thermal energy storage. Appl Energy 2013;109:366–73. [141] Li Hailong, Wang Weilong, Yan Jinyue, Dahlquist Erik. Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Appl Energy 2013;104:178–86. [142] Vadiee Amir, Martin Viktoria. Thermal energy storage strategies for effective closed greenhouse design. Appl Energy 2013;109:337–43. [143] Cabeza Luisa F, Miró Laia, Oró Eduard, de Gracia Alvaro, Martin Viktoria, Krönauer Andreas, et al. A. Inés Fernández. CO2 mitigation accounting for Thermal Energy Storage (TES) case studies. Appl Energy 2015;155:365–77. [144] Díaz Guzmán, Moreno Blanca. Valuation under uncertain energy prices and load demands of micro-CHP plants supplemented by optimally switched thermal energy storage. Appl Energy 2016;177:553–69. [145] Arteconi Alessia, Ciarrocchi Eleonora, Pan Quanwen, Carducci Francesco, Comodi Gabriele, Polonara Fabio, et al. Thermal energy storage coupled with PV panels for demand side management of industrial building cooling loads. Appl Energy 2017;185:1984–93. [146] Cui Borui, Dian-ce Gao Fu, Xiao Shengwei Wang. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings. Appl Energy 2017;201:382–96. [147] Ghoreishi-Madiseh Seyed Ali, Sasmito Agus P, Hassani Ferri P, Amiri Leyla. Performance evaluation of large scale rock-pit seasonal thermal energy storage for

Editor-in-Chief of Applied Energy ⁎ J. Yana,b, , X. Yangc a Department of Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden b School of Sustainable Development of Society and Technology, Mälardalen University (MDH), 721 23 Västerås, Sweden c Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China E-mail address: [email protected]

⁎ Corresponding author at: Department of Chemical Engineering and Technology/ Energy Processes, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden.

6