Torus modelling summary

3 downloads 77 Views 45MB Size Report
Interpolate these parameters between a grid of tori, and we know the point x,v associated ... It works OK – model evaluated with tori (black) and. AA (blue/red). U.
Torus  modelling  summary We  can  find  the  complete  orbit  associated  with  a  given  J,  but  we  have  to   go  through  intermediate  steps:     isochrone

S  and  its  derivatives  wrt  J

Fit  such  that  J=const  is  an  orbital  torus  (H=const)  first Then  find  dSn/dJ  on  this  torus What  if  I  can’t  fit  torus  into  H  in  this  way?

Sometimes  life’s  a  bit  harder For  example,  consider  an  orbit  with  JR  =  0 Generally  this  orbit  will  look  like  that  on  the  right,   single  line  in  Rz-­‐‑plane,  not  at  r=const In  isochrone  (or  any  spherical  potential)  JRT  =  0  is   r=const,  so  our  orbit  would  require  JRT  ≠  0  

Because  of  periodicity,  can’t  have  JRT  >  0  without  also   having  (impossible)  JRT  <  0  elsewhere  

Solid:  Orbit DoSed:  constant  r

What’s  the  fix? The  fix  comes  from  recalling  that   the  relevant  integrals  stay  constant   when  change  between  canonical   coordinates This  means  that  we  can  apply  a   “point  transform”  that  alters  what   we  mean  by  the  coordinates,  such   that  the  line  r=const  is  mapped  to   the  relevant  Jr=0  orbit  (worked  out   by  integrating  an  orbit  in  the  true   potential) (Kaasalainen  &  Binney  1994)

Note  also  that  these  point  transforms   are  needed  to  deal  with  the  minor   orbit  families  (granddaughter  orbits) (Kaasalainen  1995)

Point  transform

What  do  we  want? Torus  modelling  takes  a  value  J  and  outputs  the  relevant  orbit  x,v If  you  want  to  know  about  orbit  with  another  J  (or  in  another  Φ)  you  have  to   start  again  from  scratch. What  if  we  know  x,v  &  want  to  know  J?

Guess  J,  see  if  you’re  close,  iterate  towards   truth.  (McMillan  &  Binney  2008) Slow,  not  obvious  how  to  iterate  towards   solution,  not  guaranteed  to  get  to  a   solution  at  all

Finding  J  given  x,v An  exciting  (though  to  date  untested)  possibility  is  interpolation  between   tori We  describe  each  torus  with  the  parameters  of  the  toy  Φ  and  values  Sn.   Interpolate  these  parameters  between  a  grid  of  tori,  and  we  know  the  point   x,v  associated  with  arbitrary  J,θ  which  we  can  hunt  within. This  has  been  used  in  a  carefully  controlled  way  to  interpolate  “over”  a   resonance  in  J  space  (the  resonance  can  then  be  described  using  perturbation   theory). Not  tested  for  this  work  (I  have  some  concerns).  

Finding  J  given  x,v:  other  approximations Given  this  problem,  it’s  very  useful  to  have  some   approximations  conveniently  available. Two  that  I  want  to  talk  about.   1.  Adiabatic  approximation  (decouple  motion  in  R   &  z) 2.  Stäckel  approximation

1.  Adiabatic  approximation Decouple  radial  &  vertical  motion Referred  to  as  the  “adiabatic   approximation”  because  we   assume  that  the  vertical  oscillations   are  much  faster  than  the  radial   ones,  so  Jz  calculated  in  this            -­‐‑>   potential  is  conserved Also  calculate  radial  action   assuming  radial  motion  in  this   effective  potential Therefore  given  R  &  vR  we   calculate  JR  as  1D  integral,  and   given  R,  z  &  vz  calculate  Jz  as   another  1D  integral.

Detail  –  we  can  improve  this   term  (Binney  &  McMillan  2011,   Schönrich  &  Binney  2012)

It  works  OK  –  model  evaluated  with  tori  (black)  and     AA  (blue/red)   U

V

W

Velocity   distributions  at   Solar  radius  in   the  plane  (left)   and  1.5  kpc   above  the  plane   (right)  

(blue  –  AA  as  quoted;   red  –  with  centrifugal  term   correction)

U

V

W

Comparing  integrated  orbit  to  AA Integrated  orbit  in  Miyamoto-­‐‑Nagai  potential   (curved  line) Outlines: Prediction  from  AA  (straight  solid  line) Tweaked  AA  (doSed  lines) N.B.  Values  of  Jz  &  Ez  found  from  corner  points  of  integrated  orbits  shown. Jz  much  closer  to  being  conserved. But  note  an  asymmetry  in  the  integrated  orbit  –  the  two  paths  that  pass   through  a  given  point  don’t  always  aSack  it  at  the  same  angle I.e.  not  this   (except  at   z=0)

Instead  this,   which  AA   can’t  reflect

This  problem  is  reflected  in   surfaces  of  section  at  a  given  R  (dR/ dt>0)  –  note  symmetry  of    AA This  also  means  that  the  tilt  of  the   velocity  ellipsoid  will  always  be   zero  for  any  model  assessed  by  AA

Tilt  in  model  at  R=R0  (assessed  with  tori)

Dots  –  real,  curve  -­‐‑  AA

Tilt  in  MW  from  RAVE  data  (BurneS  thesis)

2.  Stäckel  approximation   Recall  that  in  a  Stäckel  potential,  equations  of  motion  are  separable  in   ellipsoidal  coordinates  u,v  –  the  velocity  ellipsoid  will  have  a  tilt  if  we   use  a  Stäckel  potential  to  approximate.   As  suggested  by  the  fact  that  real  orbits  are   ~  bounded  by  const  u,v,  this  is  a  reasonable   approx  to  real  potentials Two  recent  works  with  two  different   approaches  to  using  this. 1.  Stäckel  fiSing  –  Sanders  2012 2.  Stäckel  “fudge”  –  Binney  2012

2.  Stäckel  approximation    -­‐‑  fiSing The  simpler  version  to  understand Integrate  orbit  in  true  potential,  then  fit  a   Stäckel  potential  Φs  over  relevant  volume. Note  that  we  do  this  fit  individually  for  each   orbit  –  we  don’t  aSempt  to  do  it  for  the   whole  potential  at  once. Recall  that  once  we  have  this,  we  have  3   integrals  of  motion  (E,  Lz,  I3)  in  Φs,  and  can   find  J  in  Φs  with  1D  integrals. Since  Φs  is  close  to  the  true  Φ,  these  are  close   to  the  true  actions.

(Sanders  2012)

2.  Stäckel  approximation    -­‐‑  fudge (Not  my  name  for  it  –  Binney  calls  it  that)

The  idea  here  is  broadly  similar  –  the  potential  relevant  for  disc   orbits  is  similar  to  a  Stäckel  potential. Here  we  pick  the  ellipsoidal  coordinates  (i.e.  the  value  of  Δ)  in   advance. Recall  that  the  potential  can  be  wriSen So  if  our  potential  is  ~  of  Stäckel  form,  then  we  have   Nearly  independent  of  v Nearly  independent  of  u

Using  these  we  end  up  with  equations  for  pu  which  ~  only  depend  on  u,  and   similar  for  v So,  again,  we  can  do  1D  integrals  that  get  out  the  actions Only  now  we’re  approximating  that  motion  is  separable  in  these  ellipsoidal   coords,  not  R,  z  –  this  is  a  beSer  approximation

Actions   determined  for   various  points  on   the  same  orbit  –   should  be  constant.

Stäckel AA

Also,  this  technique   can  be  used  to   produce  a  table   that  you  can   interpolate  in,   making  the  process   very  quick

Summary The  joys  of  actions  &  angles  are  available  in  reasonably  sensible   Galactic  potentials But  only  through  approximations Torus  modelling  is  the  most  rigorous  and  complete  approximation   scheme,  but  it  has  the  limitation  that  it  takes  you  from  J,θ  to  x,v  and   not  the  other  way  round  (for  now?). Alternative  methods  that  use  simpler  assumptions  (to  ~trivially   separable  equations)  can  take  you  from  x,v  to  J,θ

Any  occasion  on   which  you  wish   to  describe   regular  orbits

Some  examples  of  where  they  already  have  been  used   Modelling  of  discs Distribution  function  for  discs  has  been  suggested  -­‐‑  limiting  your   freedom  to  treat  (e.g.)  vR  &  vφ  independently. Modelling  of  stars  trapped  by  resonances  –  explaining  part  of  the   local  velocity  distribution Using  assumption  that  f(x,v)  =  f(J)  to  constrain  Galactic  potential Radial  migration  of  stars  –  change  in  Jφ  with  tiny  change  in  JR   (Sellwood  &  Binney  2002) Halo NFW/Einasto  profile  of  simulated  CDM  halos  may  be  explained  in   terms  of  conserving  average  actions  (Ponwen  &  Governato  2013) Structure  of  tidal  streams  (which  do  not  lie  on  orbits).

Jeans’  theorum Any  steady  state  solution  distribution  function  f(x,v)  in  a   given  potential  depends  on  x,v  only  through  the   integrals  of  motion  (in  this  case  actions).

Makes  sense  if  you  think  in  terms  of  orbits: J  doesn’t  change. θ  increases  at  rate  independent  of  θ,  Ω(J),  so  a  uniform   distribution  stays  uniform. Binney  &  Tremaine  2008  §4.2

What’s  a  sensible  disc  distribution  function? Some  basic  requirements:   Need  f(J)  -­‐‑>  0  as  each  Ji  -­‐‑>  ∞ Want  something  that  ~forms  a  double  exponential  disc   (constant  scaleheight) Note  that  stars  with  a  non-­‐‑zero  Jz  are  at  their  maximum  vz  when  they  go   through  z=0 Therefore,  a  phase-­‐‑mixed  population  all  at  a  given  Jz  will  have  density   minimum  at  z=0 So  we  need  f(J)  maximum  as  Jz  -­‐‑>  0

Binney  2010,  2012

When  in  doubt,  start  separable

When  in  doubt,  start  separable ~Radial  density  profile  (R  ~  Jφ/vc)

When  in  doubt,  start  separable ~Radial  density  profile  (R  ~  Jφ/vc)

~Vertical  distribution  at  Jφ  

When  in  doubt,  start  separable ~Radial  density  profile  (R  ~  Jφ/vc)

~Vertical  distribution  at  Jφ  

~vR,vφ  distribution  at  Jφ

When  in  doubt,  start  separable,  and   from  a  Gaussian

Common  to  approximate  local  velocity  distribution  as

When  in  doubt,  start  separable,  and   from  a  Gaussian

Or,  beSer:

(Shu  1969,  see  also  Dehnen  1999)

(Spiwer  1942)

When  in  doubt,  start  separable,  and   from  a  Gaussian

Or,  beSer:

(Shu  1969,  see  also  Dehnen  1999)

(Spiwer  1942)

When  in  doubt,  start  separable,  and   from  a  Gaussian

Or,  beSer:

(Shu  1969,  see  also  Dehnen  1999)

(Spiwer  1942)

In  1D  case,  ΩzJz  =  ,  so  possibly:  

?

When  in  doubt,  start  separable,  and   from  a  Gaussian

? The  problem  is  that  as  Ji  -­‐‑>  ∞,  Ωi  -­‐‑>  0,  and  ΩiJi  -­‐‑>  0,  so  fi  -­‐‑>  const Instead  –  use  epicycle  frequencies  κ(Jφ),  ν(Jφ)

What’s  σ? Note  that  σ  is  not  a  velocity  dispersion.  It  is,  however,   related,  and  has  the  same  units. For  an  isothermal  sheet,  the  velocity  dispersion  required   to  give  const.  scale  height  is  proportional  to  Σ½. Therefore  it  is  common  to  assume  that  velocity   dispersion  in  real  galaxies  (in  both  R  &  z)  is  too.  So  we   will  take

PuSing  it  together

PuSing  it  together

PuSing  it  together

Accounts  for  change  of   variable  J,  and  factors  of  2π

Prevents  Jφ,  -­‐‑Jφ  symmetry   –  give  net  rotation   ~Exponential  disc  in  R

What  can  we  do  with  that?   Add  many  together,  with  varying  σ(stellar  age),  can  fit  to  local  kinematics  and   density  profile

vφ   local

vR   local

(Binney  2010,   using  adiabatic   approximation)  

ρ(z)   local

vφ(z)   local

Also  vz  local  (not  pictured)

Works  quite  well,  but…

Would  be  improved  by  a  systematic  shift  in  vφ

Works  quite  well,  but…

Would  be  improved  by  a  systematic  shift  in  vφ That’s  the  effect  of  correcting  an  incorrect  peculiar  Solar  velocity,  which  it   turns  out  is  what  was  being  used  (Dehnen  &  Binney  1998  was  wrong,  see  also   McMillan  &  Binney  2010;  Schönrich,  Binney  &  Dehnen  2010)