transparencies (pdf) - Rencontres de Moriond

56 downloads 178 Views 8MB Size Report
Foex. Pratt. Ferrari. Finoguenov Lanoux. Sartoris. Mazzotta. Bazin. Bourdin. Colafrancesco Mohr ... Cosmo high-z. N u m b e r. New vision. New approach. Multi-messenger. Multi-messenger .... Wave-plate polarimeters, FTS-SP. Systematics.
Moriond Meeting 2010

… some personal conclusions

Sergio Colafrancesco ASI - ASDC Email: Email [email protected] [email protected]

1

A few numbers … 90 talks 9 posters 45 hours of meeting + 50 min. 27 hours of: ski-gondolas-chairlift-skiliftskilessons-sunbaths-sauna-swimming … or simply email reading, or … Duty Cycle: … demanding ! wakeup

breakfast

talks

lunch

Night setup

Ski setup

bar

dinner

talks

ski

2

… a bit of statistics Moriond Talk Distribution 25

Number

20 15 10 5 0 CMB

Clusters

DM

Leahy Raeth Rozo Dickinson Bonvin Pratt Errard Shaw Finoguenov Kusaka Lewis Charlassier Hinshaw Sartoris Hernandez-M Shanks Bazin Colafrancesco Salatino Piat Democles Gubitosi Pajot Bunn Tristram Fromentau Pointecouteau Amblard Fauvet Lopez-Cruz Delabrouille Rossi Dafni Lanz Girardi

Mod-G

Foex Ferrari Lanoux Mazzotta Bourdin Mohr Borgani

DE

Cosmo sce.

Blanchard Dunlop Beelen Penin Delsart Battye Serra Gawiser Zaroubi Brentjens Peterson Mesinger

Zakharov Serra Serfass Bird Gerbier Nuss Chodorowski Cline Polesello Clerbaux Camera Strahler Viel Kainulainen Vieregg Thomas Desjacques

Santos Koshelev Tartari Kirilova Iliev Tigrak Finke Regos DiPorto Dufaux Badziak Clesse Vikman Caprini Popa Godlowski

Regnault Mortonson Palanque-Del. Sawicki Kronborg Thomas Gangler Taylor Marra Crighton Copeland Abate Garcia-Bellido Busca Pearson Abdalla Quartin Ziaeepour Fourmanoit Baldi Dokuchaev 3

… a bit of statistics 20 18

Number

16 14 12 10 8 6 4 2 0 CMB

CMB Pol SZE cl

X/O cl

NT cl

DM Direct

DM Mod-G Indirect

DE

Cosmo Cosmo Cosmo IR sce. high-z

4

… a bit of statistics Initial conditions

Largest bound structures

Dark Universe Obscure Gravity

Structure formation history

20 18

Number

16 14 12 10 8 6 4 2 0 CMB

CMB Pol SZE cl

X/O cl

NT cl

Multi-messenger New vision

DM Direct

DM Mod-G Indirect

DE

Multi-messenger New approach

Cosmo Cosmo Cosmo IR sce. high-z

Multi-messenger 5

… a bit of statistics Initial conditions 20 18

Number

16 14

Largest bound structures

Dark Universe Obscure Gravity

z~0

z→∞

Structure formation history

z~0

z >> 1

12 10 8 6 4 2 0 CMB

CMB Pol SZE cl

X/O cl

NT cl

Multi-messenger New vision

DM Direct

DM Mod-G Indirect

DE

Multi-messenger New approach

Cosmo Cosmo Cosmo IR sce. high-z

Multi-messenger 6

CMB Established framework COBE Boomerang WMAP PLANCK (… some surprise at the horizon?)

Look for more details Polarization Anomalies Non Gaussianity

7

1992: CMB Anisotropy

THE ASTROPHYSICAL JOURNAL, 396:L1-L5, 1992 “PRELIMINARY SEPARATION OF GALACTIC AND COSMIC MICROWAVE EMISSION…” BENNETT ET AL, THE ASTROPHYSICAL JOURNAL, 396:L1-L5, 1992 “INTERPRETATION OF THE COSMIC MICROWAVE BACKGROUND RADIATION ANISOTROPY…” WRIGHT ET AL, THE ASTROPHYSICAL JOURNAL, 396:L1-L5, 1992 “COBE DIFFERENTIAL MICROWAVE RADIOMETERS – PRELIMINARY SYSTEMATIC ERROR…” KOGUT ET AL, THE ASTROPHYSICAL JOURNAL, 401, 1-18, 1992

First detection of temperature fluctuations (anisotropy): sets the scale of the signal – brighter than the Galactic foreground!

8

1990’s: A Decade of Progress!

QMASK DASI

Boomerang Maxima

9 to name a few…

CMB: intensity WMAP-7yr 23 GHz

33 GHz

41 GHz

61 GHz

94 GHz 10

CMB: power spectrum The imprint of sound waves is visible in the co-added degree-scale hot & cold spots.

Best-fit flat ΛCDM model

The expected radial/tangential polarization pattern around these extrema is clearly seen in the 7-year WMAP data.

This pattern is also imprinted on the baryon gas (baryon acoustic oscillations or BAO) that evolves to form large scale structure.

11

ΛCDM Parameters* Blue curves/contours – 5-year data Grey curves/contours – 3-year data Biggest improvements in: Optical depth, τ Amplitude of fluctuations @ 8 Mpc, σ8 Matter densities, Ωbh2, Ωch2 Age: t0 = 13.69 ± 0.13 Gyr *based on WMAP data only

12

The next step Planck First Light!

13

Planck … expectations

14

Planck … expectations DE equation of state

DE equation of state: evolution

15

… but in the meantime

SPT 16

SPT Survey Field

17

CMB anisotropy @ small scales Astrophysics • point-like • extended sources

No evidence for SZ in power spectrum, nor for a clustered component of point sources! Need to analyses maps @ multi-ν to break degeneracies

mm spectroscopy

SAGACE MILLIMETRON

18

PMN J0419-3010

[ O 12 Blazars in WMAP (3 in Boomerang) ]

PKS 0405-385 PKS 0521-365 PKS 0422-380 PKS 0537-441

PKS 0438-436 PKS 0454-463 PKS 0513-491l

PKS 0539-543 PKS 0252-549

PKS 0549-575

PKS 0506-61

19

1RXS0531-3533 PKS 0548-317 PMN J0419-3010 PKS 0548-322 PKS 0435 -300 PKS 0534-340 PKS 0602-31 1RXS0608-3041 PKS 0439-331 PMN0510-3533 PKS 0610-316 PKS 0426-380

PKS 0613-312

PKS 0448-392 WGA 0428.2-3805

WGA 0624-3230

1RXS0432-3506 PKS 0443-387

PKS 0402-362

PMN J0525-3343 1RXS0606-3447 PKS 0618-37 1RXS0557-3728

PMNJ0529-3555 PKS 0532-378

PKS 0405-385 PMN 0422-3844

PKS 0558-396

PKS 0521-365

PKS 0422-380 1RXS0502-4221

1RXS0543-3956 WGA 0424-3849 PKS 0524-460

PKS 0427-435

PKS 0537-441

Pictor A

PKS 0622-441

PKS 0646-437 RGal PKS 0518-45

PKS 0438-436

PKS 0514-459 PKS 0355-483

PKS 0454-463

PKS 0257-51 PKS 0431-512 PKS 0446-519

PKS 0252-549

RXS J 0606-4730 PKS 0524-485 PKS 0513-491l

PKS 0558-504 WGA 0631-5404

PKS 0452-515

PKS 0539-543 PKS 0549-575 WGA 0533-5817

PKS 0506-61

Multi-frequency analysis

[ O 54 Blazars

with ∆T > 50 µK 20]

CMB: dig into the noise Astrophysical sources from sub-mm to IR

21

CMB: anisotropies of anisotropies Sources: • CMB lensing • Power asymmetries Powerful method to test for a wide class of • Anisotropic primordial power theoretical models anisotropic • Spatially-modulated primordial power & • Primordial B-field (causal) • Non-Gaussianity instrumental systematics - Point-like and extended sources - Source clustering effect Other sources: Interesting physical effects Systematics very large cosmological scales anisotropicon noise beam-effects … 22

CMB: anomalies Large-angle CMB anomalies don’t “prove” that Large-scale power anything nonstandard is going on, but may deficit provide hints of places to look for interesting phenomena on large scales. North-south asymmetry

Important to make predictions and choose statistics in advance for new data sets, to avoid a posteriori statistics. Need a data set that probes other perturbation modes on ultralarge scales: CMB Alignment ofpolarization multipoles structure / 21 cm tomography? (“axis ofLarge-scale evil”) Kamionkowski-Loeb remote quadrupole measurements? 23

CMB polarization WMAP-5yr

24

CMB polarization Scalar quadupole moment

Tensor quadrupole moment

Produced by adiabatic fluctuations at last scattering Large polarization: photons travel significant distance between scatterings (!) Only on causally-connected angular scales (< 1°) A bit smaller-scale than structure in total intensity Polarized brightness up to 10% of total intensity fluctuations Driven by very-large scale gravitational waves, generated at inflation. Tensor-to-scalar power ratio depends on inflationary energy scale: r ≈ (V1/4 / 3.3 × 1017 GeV)4

Nearly negligible on ‘causal’ scales, strongest @ ~2°

25

CMB polarization E-modes: Direct probe of last scattering surface Best constraint on early re-ionization (z ~ 10) Independent check on cosmological model fitted to Temperature data (Nearly) independent of temperature pattern: eventually reduces cosmic variance (needs better SNR) Gravitational lensing B-modes: Sensitive probe of mass distribution: σ8, mass vs light, tests of GR consistency. Primordial B-modes: “Holy Grail of Cosmology” Relic from inflationary epoch: t = 10-37 s, Fixes inflation energy scale: big clue to relevant physics Non-guassian B-modes sensitive test of defects

T

E B

Blens

Quantum effects in CMB: Planck-scale induced birefringence 26

Present & Future Dominated by BICEP at ℓ < 300, QUaD at higher ℓ Best limit: r < 0.72 (95%) (BICEP) 1 more year of BICEP, full year of QUIET data already taken. Expect modest improvement.

Several experimental and technological advances needed → r < 0.1 Space: 3

Ballon: 4

Ground-based: 12 27

Projects ongoing and planned Space Planck CMBPOL/EPIC BPOL

Balloon EBEX PILOT (Dust) SPIDER Boomerang II

Ground-based QUIET1 (40/90 GHz) C-BASS (5 GHz) QUIJOTE1 (10-18, 30 GHz) BICEP2 (150 GHz) GEM-P (5 GHz) ABS (145 GHz) POLARBear (150 GHz) QUIET2 (30/40/90) QUIJOTE2 (30) Keck Array (100/150/220) QUBIC 28

CMB polarization: challenges Sensitivity: 100 nK (E); 10 nK (B) Receivers: bolometers, TES, KIDs, Q-dots Detectors: bolometer arrays Polarimeter on chip Wave-plate polarimeters, FTS-SP Systematics Field description (matrix structure) Experimental artifacts

Signal extraction Polarization signal reconstruction Data analysis techniques 29

CMB polarization: challenges Polarization calibrators (bright, non-variable)

Astronomical “calibrators”

known to ~2° Use physical polarization reference

Intensity Wire-grid Calibrator

Polarization CenA 30

CMB polarization: challenges Foregrounds

• Few, sparse samples • Need larger, deeper catalogues • Large Π variability Cl , Blazar − pol (ν )

ν  ∝  GHz  Cl , Blazar − pol (1.4GHz )  1.4 

VLA calibrator MG+ Okudaira 93 Aller 92 Lister 01 Nartallo 98 2ζ

ζ = 0.5 ζ = 0.3 ζ = 0.2

31

Galaxy clusters

Planck SZ all sky survey

32

Clusters Clusters are excellent Cosmological probes X-rays Optical SZ

Not completely understood physics (excellent Astro-Particle Physics Labs.) Evolution Potential wells: DM vs. Mod G Atmosphere complexity • • • •

X-ray view and systematics O view and systematics SZ view and systematics GL view and systematics

New data: SZ (mm) needed, especially spectra & polarization X-ray: assesment (hopefully also polarization) O: refinement needed (galaxy population, AGN fraction, …) Radio: new data and not data re-analysis (B-field FR,…) 33

Clusters: cosmological probes Clusters are excellent Cosmo-evolu-meters

• Understand their physics (DM, baryons, Galaxy fedback, CRs, B) • Derive their total gravitational mass

M ~ ρb R3f

• Collect large, unbiased catalogues at various z

N(M,z)

34

Clusters @ X-ray

X-ray observations currently the most efficient and well-tested way to find clusters

LX ~ n2 T1/2 f(E, Z, T)

35

Clusters @ X-rays Non Cool-core

Cool-core Evidence for the presence of non-gravitational phenomena

36

Clusters: non-thermal phenomena AGN feedback CRs B field DM feedback

37

Clusters: non-thermal phenomena AGN feedback Perseus cluster (X,γ) • • • • •

Multi-T Cool Core AGN-dominated core Mini Radio halo Non-thermal plasma

(DM, CRs, WRs, BH,..)

RXJ1347-1145 cluster (µwave-mm) • Multi-T • AGN-dominated core • Non-thermal plasma

(DM, CRs, WRs, BH,..) 38

Clusters: non-thermal phenomena Perseus + NGC1275 1

Fermi-LAT MAGIC

2 3 up

WR Possibility to detect γ-rays from Perseus • in low-states of the central AGN • in the outer parts of the cluster

DM down

39

Clusters: non-thermal phenomena Cosmic Rays Radio halos: LOFAR, SKA X-ray: cavities (Chandra) SZE th+non-th: PLANCK, Millimetron, SAGACE HXRs ICS + Brem.: NuStar, Gamma-rays Brem+ICS+p0 decay: Fermi, CTA, … Origin • Acceleration: shocks, merging • In situ: hadrons + sceondary e+• Injection

Impact on cluster evolution to be determined 40

Clusters: non-thermal phenomena Cosmic Rays

Radio emission ν=37MHz EGev2Bµ

Cavities: hadronic CR support

Merging shocks MS0735.6+7421

RXJ1314.4-2515

A3667 41

Clusters: non-thermal phenomena Acceleration vs. merging Shock acceleration: relativistic covariant formulation

Turbulent acceleration

Power-law

teq ≈ t acc

Maxwellian

teq < < t acc

42

Clusters: non-thermal phenomena B field More and more evidence & constraints Simulations help to check ideas/models

Non-linear evolution in bound structures Origin: open question (primordial or post reconbination ?) • Approach 1: galaxy/AGN outflows + cavities + … • Approach 2: evolving from primordial B-field (10-100 G)

43

B-field in clusters: evidence Synchrotron radiation

Faraday Rotation

Radio Halos

Radio Relics

B ≈ 0.1 − 5µ G

B ≈ 0.2 − 8µ G

A2163

B ≈ 1− 50 µ G A400 3C275

A3667 44

B-field from early ages

Non-linear evolution coupling with DM & baryons

45

B-field in cosmic structures Observable effects X-rays:

scaling-law problem

SZE:

modifies signal power spectrum

Radio halo population

46

Clusters: M determination Mass proxy T, LX, YX, YSZ, RO, fgas: one? M-T

which is the best M-YX

Scatter: under control (!?); extremes due to cool cores & mergers Evolution: less known 47

Cluster mass determination: Lensing From shear to surface density (Kaiser-Squires, 1993): −2 * *

κ + iβ = ∂ ∂ ∂ (γ 1 + iγ 2 )

κ = 12 ∂ 2φ

κ/β (E/B) decomposition:

κ

κ

β

β 48

3-D Dark Matter Mass (φ) Maps 3-D density maps of HST-STAGES A901/2

φ = Ψ + Φ → ρ m

49

Clusters: redshifts z determination: Optical surveys z proxy The location of the red-sequence allows for robust redshift estimates.

50

Clusters: simulations Pearce et al. ‘06 L= 500 h-1 Mpc Ngas+NDM=109 εPl = 50 h-1kpc Non-radiative

QuickTim e™ and a decom pres s or are needed to s ee this picture.

Tornatore et al. ‘10 L= 75 h-1 Mpc Ngas=NDM=5123 εPl = 2.5 h-1kpc SF + SN + enrichment Dolag et al. ‘06 M ~ 2 1015 h-1 M Ngas=NDM~ 107 εPl = 2.5 h-1kpc SF + SN + enrichment 51

Clusters: simulations From single objects to representative parts of the Universe

160h-1Mpc

- Useful to calibrate clusters for cosmology - N-body simulations fail to reproduce inner cluster structure + other detailed features

64h-1Mpc

52

Cluster and cosmology: surveys RASS XMM-COSMOS XMM-LSS SXDF E-ROSITA WFXT … PLANCK SPT ACT SAGACE MILLIMETRON …

+

Optimal Selection Function

DES 53

Cluster & cosmological parameters SPT

DES

DES+SPT

Galaxy clusters probe the physics behind our accelerating universe in a way that is fundamentally different from geometrical probes (e.g. BAO or SN). 54

Clusters and DM Clusters are useful labs for indirect DM search

55

Dark Matter All evidence is astronomical Anomaly in 1933 up to 1970’s Accepted (needed) Anomaly up to today CMB Cosmology + LSS (3D-DM distributions from GL) Cluster + GL + galactic physics

Experimental frustration: anomalies: DAMA, Pamela, ATIC Data-theory tension: go for hidden DM

Big experimental effort: Undeground: direct search Ground: Indirect search: telescopes Above the ground: indirect search: satellites

A multi3 approach: m-freq. + m-mess. + m-exp. Huge data analysis and theoretical effort New directions to go !?

56

The Dark Matter Scenario: timeline

Particle Astro Particle Astronomy Physics PhysicsCosmology

2010

Missing mass Dynamics

Rotation curves

N-body simulations 1977 Thermal relics (Lee & Weinberg)

Lensing

CMB

Today

1984 Indirect DM search idea !? & Srednicki) ν - mass (SIlk Beyond the SM theo. & exp. SUSY 1985 DirectSUSY DM experiments AXION (Goodman & Witten) Sterile ν

2 ∆m ν 57

Hunt for the DM particle DM exists: we feel its (gravitational) presence DM is mostly non-baryonic: we must think of a specific search strategy DM is very elusive: we must consider un-ambiguous evidence

Crucial Probes are required ! 58

Dark Matter probes Under-ground

On-the-ground

Above-the-ground 59

The latest results: CDMS II 2 events in the observed signal region. Based on background estimate, the probability of observing two or more background events is ~23%.

Many direct detection experiment in the (next) future

Ahmed et al. arXiv:0912.3592v1

60

DM - Astrophysical probes INFERENCE

PHYSICAL

+

+

Virial Theorem Hydro Equilibrium Gravitational lensing

Decay

Annihilation

X+ X→ π

0, ±

X → xi + γ

, p,...

X + X → e ± , µ ± ,τ ± ,ν

i 61

DM - Astrophysical search INFERENCE

PHYSICAL

L A CI

NO

C T

U R

+C U R

L A I

C

Vulnerable against: Virial Theorem MOND: Modified Newtonian Dynamics Annihilation Decay Testable against: TeVeS Tensor-Vector-Scalar Hydro :Equilibrium X → xi + γ X + X → π 0, ± , p,... Electromagnetic signals Ordinary matter feels a transformed metric Gravitational lensing X + X → e ± , µ ± ,τ ± ,ν i

62 DM illuminates thru its interaction

DM - Astrophysical search Clean and unbiased location in the sky  Best Astrophysical Laboratories

NO

YES

Clear and specific SED in the e.m. spectrum  Most specific e.m. signals 63

Multi-wavelength

Multi-messenger

Multi-experiments 64

The Galactic Center

Multi-ν

Galactic center region across the spectrum: red: radio 90 cm (VLA); green: mid-infrared; blue: X-ray (1-8 keV; Chandra ACIS-I) 65

The Galactic Center: a close up

Galactic Center (Survey) Multiwavelength Close-Up A multiwavelength close-up of the recent massive star-forming region near the Galactic center. The color image, plotted also in standard Galactic coordinates, is a composite of 20-cm radio continuum (red); 25-µm mid-infrared (green); and 6.4-keV line emission (blue).

66

Galactic Center demography Crowded, active environment HESS Fermi (1GeV) EGRET source Central Black Hole

X-ray source

SNR

Sgr A East non-thermal filaments (radio) 67

The DM challenge: Fermi GC Cont.

GC line

No evidence of DM signals in Fermi (11 months) data

DSph.G.

Clusters 68

The GC region DM challenge: limits Stronger constraints from radio + γ-rays • Radio: constrain to ~ GeV-TeV mass • γ-rays: constrain to ≤ GeV mass • ν’s : constrain to > 10 TeV mass

Borriello et al. 2008

Radio + EGRET

[Crocker et al. 2010] Radio + HESS

[Regis & Ullio 2008] 69

Pamela and ATIC Charge-dependent solar modulation important below 5-10 GeV

Rapid climb above 10 GeV indicates the presence of a

primary source of cosmic ray positrons!

Pamela

Astrophysical expectation (secondary production)

ATIC

70

Are these signal from DM? ■ Shape consistent with some generic Dark Matter candidates but with: Very hard spectrum large fraction of annihilation to e+e-, µ+µ- or τ+τ■ Flux is a factor of 100-1000 too big for a thermal relic; → requires dramatic enhancement Astrophysics

KK dark matter with m ~ 600 GeV

ATIC (2008)

- More small-scale structure than expected (“boost factor” of ~1000) - A narrow diffusion region - A large nearby clump of dark matter

Cheng, Feng, Matchev (2002) 71

Are these signal from DM? ■ Shape consistent with some generic Dark Matter candidates but with: Very hard spectrum large fraction of annihilation to e+e-, µ+µ- or τ+τ■ Flux is a factor of 100-1000 too big for a thermal relic; → requires dramatic enhancement Astrophysics Particle physics - non-perturbative effects as the “Sommerfeld Enhancement” important for mφ