Trigonometric Identities 1 Sample Problems

76 downloads 1616510 Views 53KB Size Report
Trigonometric Identities 1 page 1. Sample Problems. Prove each of the ... 10. 1 2 ϲοs2 x φ tan2 x 1 tan2 x + 1. 11. tan2 θ φ ϲsϲ2 θ tan2 θ 1. 12. seϲx + tanx φ.
Trigonometric Identities 1

Lecture Notes

page 1

Sample Problems Prove each of the following identities.

1. tan x sin x + cos x = sec x 2.

1 1 + tan x = tan x sin x cos x

3. sin x 4.

5.

sin x cos2 x = sin3 x

cos 1 + sin

+

cos x 1 sin x

6. cos2 x =

1 + sin cos

csc x cos x tan x + cot x

sin4 x sin2 x

8.

tan2 x = sin2 x tan2 x + 1

9.

1

cos4 x =1 cos2 x

sin x cos x = cos x 1 + sin x

c copyright Hidegkuti, Powell, 2009

2 cos2 x =

tan2 x 1 tan2 x + 1

11. tan2 = csc2 tan2 12. sec x + tan x =

= 2 sec

cos x = 2 tan x 1 + sin x

7.

10. 1

13.

csc sin

cot tan

1

cos x 1 sin x

=1

14. sin4 x

cos4 x = 1

15. (sin x

cos x)2 + (sin x + cos x)2 = 2

2 cos2 x

sin2 x + 4 sin x + 3 3 + sin x 16. = 2 cos x 1 sin x 17.

cos x 1 sin x

tan x = sec x

18. tan2 x + 1 + tan x sec x =

1 + sin x cos2 x

Last revised: May 8, 2013

Trigonometric Identities 1

Lecture Notes

page 2

Practice Problems Prove each of the following identities.

1. tan x +

cos x 1 = 1 + sin x cos x

11.

12. (sin x + cos x) (tan x + cot x) = sec x + csc x

2. tan2 x + 1 = sec2 x

3.

1

1 sin x

sin3 x + cos3 x 13. =1 sin x + cos x

1 = 2 tan x sec x 1 + sin x

4. tan x + cot x = sec x csc x

5.

1 + tan2 x 1 = 2 1 tan x cos2 x sin2 x

6. tan2 x

7.

8.

1

cot x 1 1 tan x = cot x + 1 1 + tan x

sin2 x = tan2 x sin2 x

14.

cos x + 1 csc x = 3 1 cos x sin x

15.

1 + sin x 1 sin x

16. csc4 x

cos x sin x + = 2 csc x sin x 1 cos x

sin x cos x

1 sin x = 4 tan x sec x 1 + sin x

cot4 x = csc2 x + cot2 x

sin2 x 1 cos x 17. = 2 cos x + 3 cos x + 2 2 + cos x

sec x 1 1 cos x = sec x + 1 1 + cos x

18.

tan x + tan y = tan x tan y cot x + cot y

19.

1 + tan x cos x + sin x = 1 tan x cos x sin x

9. 1 + cot2 x = csc2 x

10.

csc2 x 1 = cos2 x csc2 x

20. (sin x

tan x) (cos x

cot x) = (sin x

c copyright Hidegkuti, Powell, 2009

1) (cos x

1)

Last revised: May 8, 2013

Trigonometric Identities 1

Lecture Notes

page 3

Sample Problems - Solutions 1. tan x sin x + cos x = sec x Solution: We will only use the fact that sin2 x + cos2 x = 1 for all values of x. sin2 x sin2 x cos2 x sin x LHS = tan x sin x + cos x = sin x + cos x = + cos x = + cos x cos x cos x cos x sin2 x + cos2 x 1 = = = RHS cos x cos x 2.

1 1 + tan x = tan x sin x cos x Solution: We will only use the fact that sin2 x + cos2 x = 1 for all values of x. LHS =

1 cos x sin x cos2 x + sin2 x 1 + tan x = + = = = RHS tan x sin x cos x sin x cos x sin x cos x

sin x cos2 x = sin3 x

3. sin x

Solution: We will only use the fact that sin2 x + cos2 x = 1 for all values of x. LHS = sin x 4.

cos 1 + sin

+

1 + sin cos

sin x cos2 x = sin x 1

cos2 x = sin x sin2 x = RHS

= 2 sec

Solution: We will only use the fact that sin2 x + cos2 x = 1 for all values of x. cos 1 + sin cos2 (1 + sin )2 cos2 + (1 + sin )2 + = + = 1 + sin cos (1 + sin ) cos (1 + sin ) cos (1 + sin ) cos 2 2 cos2 + 1 + 2 sin + sin cos2 + sin + 1 + 2 sin 2 + 2 sin = = = (1 + sin ) cos (1 + sin ) cos (1 + sin ) cos 2 (1 + sin ) 2 1 = = =2 = 2 sec = RHS (1 + sin ) cos cos cos

LHS =

5.

cos x 1 sin x

cos x = 2 tan x 1 + sin x

Solution: We will start with the left-hand side. First we bring the fractions to the common denominator. Recall that sin2 x + cos2 x = 1 for all values of x. cos x cos x cos x (1 + sin x) cos x (1 sin x) = 1 sin x 1 + sin x (1 sin x) (1 + sin x) (1 sin x) (1 + sin x) cos x (1 + sin x) cos x (1 sin x) cos x + cos x sin x cos x + cos x sin x 2 sin x cos x = = = 2 (1 sin x) (1 + sin x) cos2 x 1 sin x 2 sin x = = 2 tan x = RHS cos x

LHS =

c copyright Hidegkuti, Powell, 2009

Last revised: May 8, 2013

Trigonometric Identities 1

Lecture Notes

page 4

csc x cos x tan x + cot x

6. cos2 x =

Solution: We will start with the right-hand side. We will re-write everything in terms of sin x and cos x and simplify. We will again run into the Pythagorean identity, sin2 x + cos2 x = 1. cos x 1 1 cos x cos x cos x csc x cos x sin x sin x sin x 1 = = RHS = = sin x = 1 sin x cos x tan x + cot x sin2 x + cos2 x sin2 x cos2 x + + sin x cos x cos x sin x sin x cos x sin x cos x sin x cos x 2 cos x cos x sin x cos x = = = cos2 x = LHS sin x 1 1 7.

sin4 x sin2 x

cos4 x =1 cos2 x

Solution: We can factor the numerator via the di¤erence of squares theorem. 2

sin2 x sin4 x cos4 x LHS = = sin2 x cos2 x sin2 x = sin2 x + cos2 x = 1 = RHS 8.

2

(cos2 x) sin2 x + cos2 x = cos2 x sin2 x

sin2 x cos2 x

cos2 x

tan2 x = sin2 x tan2 x + 1 Solution: 2

sin x sin2 x sin2 x 2 2x tan x cos x cos2 x LHS = = = cos = 2 2 2 2 tan x + 1 sin x sin x cos2 x sin x +1 + +1 cos2 x cos2 x cos2 x cos x sin2 x sin2 x 2 2 cos2 x cos2 x = sin x cos x = sin2 x = RHS = = 1 cos2 x 1 sin2 x + cos2 x 2 cos x cos2 x 9.

1

sin x cos x = cos x 1 + sin x

Solution: sin x 1 sin x 1 sin x 1 + sin x (1 sin x) (1 + sin x) 1 sin2 x = 1= = = cos x cos x cos x 1 + sin x cos x (1 + sin x) cos x (1 + sin x) 2 cos x cos x = = = RHS cos x (1 + sin x) 1 + sin x

LHS =

1

c copyright Hidegkuti, Powell, 2009

Last revised: May 8, 2013

Trigonometric Identities 1

Lecture Notes

10. 1

2 cos2 x =

page 5

tan2 x 1 tan2 x + 1

Solution: sin2 x cos2 x sin2 x sin2 x cos2 x 1 2 2 2 tan x 1 cos2 x = cos2 x cos2 x = RHS = = cos2 x 2 2 tan x + 1 sin x + cos2 x sin x cos x sin x + + 1 cos2 x cos2 x cos2 x cos2 x 2 2 2 2 2 cos x sin x cos x sin x cos x sin2 x cos2 x = = = = sin2 x cos2 x 1 sin2 x + cos2 x sin2 x + cos2 x = 1 cos2 x cos2 x = 1 2 cos2 x = LHS 2

11. tan2 = csc2 tan2

1

RHS = csc2 tan2 1 = cos2 12. sec x + tan x =

cos2 x

cos2 cos2

1= =

1 sin2 1

sin cos

cos2 cos2

2

sin2 = cos2

=

sin2 cos2

1 sin2

1=

sin cos

1=

1 cos2

1

2

= tan2 = LHS

cos x 1 sin x

Solution: cos x cos x cos x 1 + sin x cos x (1 + sin x) = 1= = 1 sin x 1 sin x 1 sin x 1 + sin x (1 sin x) (1 + sin x) cos x (1 + sin x) cos x (1 + sin x) 1 + sin x 1 sin x = = = = + = LHS 2 2 cos x cos x cos x cos x 1 sin x

RHS =

13.

csc sin

cot tan

=1

Solution: We will start with the left-hand side. We will re-write everything in terms of sin and cos and simplify. We will again run into the Pythagorean identity, sin2 x + cos2 x = 1 for all angles x. cos 1 csc cot sin sin LHS = = sin sin sin tan 1 cos 2 2 2 sin + cos 1 cos = = 2 sin sin2 14. sin4 x

cos4 x = 1

= cos2

1 sin

1 sin

=

sin2 sin2

cos sin

cos sin

=

1 sin2

cos2 sin2

= 1 = RHS

2 cos2 x

Solution: LHS = sin4 x cos4 x = sin2 x = 1 sin2 x cos2 x = 1 c copyright Hidegkuti, Powell, 2009

2

2

cos2 x = sin2 x + cos2 x sin2 x cos2 x cos2 x cos2 x = 1 2 cos2 x = RHS Last revised: May 8, 2013

Trigonometric Identities 1

Lecture Notes 15. (sin x

page 6

cos x)2 + (sin x + cos x)2 = 2

Solution: LHS = (sin x cos x)2 + (sin x + cos x)2 = sin2 x + cos2 x 2 sin x cos x + sin2 x + cos2 x + 2 sin x cos x = 2 sin2 x + 2 cos2 x = 2 sin2 x + cos2 x = 2 1 = 2 = RHS 3 + sin x sin2 x + 4 sin x + 3 16. = 2 cos x 1 sin x Solution: LHS =

17.

cos x 1 sin x

(sin x + 1) (sin x + 3) sin x + 3 sin2 x + 4 sin x + 3 (sin x + 1) (sin x + 3) = = = = RHS 2 cos2 x (1 + sin x) (1 sin x) 1 sin x 1 sin x tan x = sec x

Solution: cos x sin x cos2 x sin x (1 sin x) cos2 x sin x + sin2 x cos x tan x = = = 1 sin x 1 sin x cos x cos x (1 sin x) cos x (1 sin x) 2 2 cos x + sin x sin x 1 sin x 1 = = = = RHS cos x (1 sin x) cos x (1 sin x) cos x

LHS =

18. tan2 x + 1 + tan x sec x =

1 + sin x cos2 x

Solution: sin2 x sin x 1 sin2 x cos2 x sin x LHS = tan x + 1 + tan x sec x = +1+ = + + 2 2 2 cos x cos x cos x cos x cos x cos2 x 2 2 sin x + cos x + sin x 1 + sin x = = = RHS 2 cos x cos2 x 2

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to [email protected]. c copyright Hidegkuti, Powell, 2009

Last revised: May 8, 2013