trinity college dublin

4 downloads 0 Views 29MB Size Report
May 30, 2014 - TRINITY COLLEGE DUBLIN. The Influence of Lubricant Slurries on Skin Friction. Resistance in Pipe Jacking. A thesis presented to the ...
     

  TRINITY  COLLEGE  DUBLIN      

   

 

The  Influence  of  Lubricant  Slurries  on  Skin  Friction   Resistance  in  Pipe  Jacking      

  A  thesis  presented  to  the  University  of  Dublin,     Trinity  College  for  the  degree  of  Doctor  of  Philosophy  

   

  Ciaran  C.  Reilly  

   

  School  of  Engineering   Supervisor:  Assoc.  Prof.  Trevor  L.  L.  Orr   30th  May  2014    

 

Declaration     I   declare   that   this   thesis   entitled   “The   Influence   of   Lubricant   Slurries   on   Skin   Friction   Resistance   in   Pipe   Jacking”   is   entirely   my   own   work   and   has   not   been   submitted   as   an   exercise  for  a  degree  at  this  or  any  other  University.     I  agree  to  deposit  this  thesis  in  the  University’s  open  access  institutional  repository  or  allow   the  Library  to  do  so  on  my  behalf,  subject  to  Irish  Copyright  Legislation  and  Trinity  College   Library  conditions  of  use  and  acknowledgement.     Signed,       _______________________________   Ciaran  C.  Reilly  

 

i  

                  “Think  positive!  Together  we  are  building  the  future.”     -­‐  Dr.-­‐Ing.  E.h.  Martin  Herrenknecht   Chairman  of  the  Board  of  Management,  Herrenknecht  AG

 

ii  

Abstract     The   use   of   bentonite   and   polymer   slurries   as   lubricants   to   reduce   jacking   force   has   long   been   established   practice   in   pipe   jacking   and   microtunnelling,   with   reductions   in   the   skin   frictional  resistance  component  of  jacking  force  of  up  to  90%  being  reported.  The  objective   of  this  research  is  to  improve  the  understanding  of  the  mechanisms  of  action  of  these  pipe-­‐ jacking   lubricants.   Field   case   histories   are   presented   where   the   influence   of   lubricants   is   shown.   Laboratory   studies   are   described   where   the   effects   of   pressurised   and   unpressurised  lubricant  slurries  in  the  interface  between  concrete  jacking  pipes  and  coarse-­‐ grained  and  fine-­‐grained  soils  are  quantified.  A  novel  triaxial  testing  apparatus  is  presented,   which  allows  for  the  injection  of  lubricants  onto  the  interface  between  rough  concrete  and  a   soil   that   is   shearing   at   the   constant   volume   interface   friction   angle.   It   is   shown   from   the   results  of  laboratory  testing  that  the  main  beneficial  effect  of  pipe  jacking  lubricants  is  the   reduction   of   the   radial   effective   stress   acting   on   the   pipeline   through   the   generation   and   retention  of  excess  pore  water  pressure  in  the  soil  near  the  interface.  Results  are  compared   to   field   case   history   data   and   conclusions   are   drawn.   Additionally,   the   jacking   forces   observed   during   two   recent   microtunnelling   projects   in   rock   in   Ireland   are   presented   and   analysed.  

 

iii  

Acknowledgements       I  had  the  privilege  to  meet  and  work  with  a  great  many  remarkable  people  during  my  four   years   in   Trinity   College   Dublin,   and   I   wish   to   thank   each   and   every   one.   In   particular,   I   would   like   to   thank   my   supervisor,   Dr.   Trevor   Orr,   for   his   constant   support   and   encouragement  during  my  time  at  TCD.  His  patience,  advice  and  continuous  effort  were  vital   to  the  preparation  of  this  thesis.     The  tireless   assistance  and   helpful  advice  received  from   Martin  Carney  and   Eoin  Dunne  in   the  TCD  Geotechnical  Engineering  Laboratory,  and  all  the  technical  staff  in  TCD,  is  gratefully   acknowledged.   I   wish   to   thank   all   my   postgraduate   colleagues   in   the   Department   of   Civil,   Structural  and  Environmental  Engineering,  whom  I  had  the  pleasure  of  sharing  offices  and   labs  with,  for  friendship  and  support.     I  would  like  to  thank  colleagues  from  industry  and  academia  who  have   assisted  greatly  with   the   practical   aspects   of   this   work,   and   who   have   been   generous   with   their   time:   Barry   McAllister   and   Robert   McGoran   of   Terra   Solutions   Ltd.,   Ken   McIntyre,   Eamonn   Sweetman   and  Gabrielle  Cronin  from  J.  B.  Barry  &  Partners  Ltd.,  Mark  Brooks  of  Mudtech  Ltd.,  Martin   Sommes   of   Herrenknecht   Internation   LTD.   (UK),   Paul   Wilkinson   of   Iseki   Microtunnelling   and   Paul   Willis   of   F&B   Trenchless   Solutions   Ltd.   Thanks   are   particularly   due   to   Prof.   Stephan  Jefferis,  Prof.  George  Milligan,  JP  Smith  and  John  F.  Nally,  who  assisted  greatly  in  a   personal  capacity.     The  financial  support  received  from  the  Irish  Research  Council  is  gratefully  acknowledged,   the  work  reported  in  this  thesis  would  not  have  been  possible  without  it.     Finally,   I   dedicate   this   thesis   to   my   parents,   Chris   and   Catherine,   for   encouraging   and   facilitating  my  education  over  the  years,  and  to  Niamh,  for  endless  support  and  patience.  

 

iv  

List  of  symbols      

 

a  

 

half  contact  width,  b/2  

AC  

 

corrected  area  

b  

 

contact  width  for  pipe  resting  on  base  of  stable  bore  

c'  

 

drained  cohesion  of  soil  

cd  

 

apparent  cohesion  from  undrained  tests  

cu  

 

undrained  shear  strength  of  soil  

cur  

 

residual  undrained  shear  strength  of  soil  

CU  

 

coefficient  of  uniformity  

CC  

 

coefficient  of  curvature  

C  

 

cover  depth  =  z0-­‐DP/2  

DP  

 

product  pipe  diameter  

DS  

 

shield  or  microtunnelling  machine  diameter  

Dr  

 

relative  density  of  soil  

emax  

 

maximum  void  ratio  of  a  soil  under  consideration  

emin  

 

minimum  void  ratio  of  a  soil  under  consideration  

Ep  

 

elastic  modulus  of  product  pipes  

Es  

 

elastic  modulus  of  soil  

F  

 

axial  force  

fs    

 

sleeve  friction  resistance  in  the  cone  penetration  test  

IL  

 

liquidity  index  

L  

 

length  of  jacked  pipeline  

M  

 

skin  resistance  friction  factor  

N  

 

tunnel  stability  ratio  

NSPT  

 

Standard  Penetration  Test  result  (blows/300mm)  

pF  

 

face  resistance  stress  

PF  

 

face  resistance  force  

Pmisalignment  

resistance  due  to  misalignment  of  pipe  string  

PF  

 

face  resistance  force  

pF    

 

face  resistance  stress  

PS  

 

skin  friction  resistance  force  

ps    

 

skin  friction  resistance  stress  

Ptotal  

 

total  resistance  to  jacking  force   v  

Pu    

 

contact  force  per  unit  length  

q  

 

deviator  stress  

qt    

 

corrected  cone  resistance  in  the  cone  penetration  test  

Rf      

 

friction  ratio  in  the  cone  penetration  test  

Rinter  

 

interface  strength  reduction  factor  in  Plaxis  software  

Tγ  

 

tunnel  stability  number  

u  

 

Pore  fluid  pressure  

w  

 

contact  stress  due  to  mass  of  product  pipe  

W  

 

contact  force  per  metre  due  to  self-­‐weight  of  product  pipe  

z0  

 

depth  to  pipe  jack  centreline/axis  

zw  

 

depth  from  ground  water  to  pipe  jack  centreline/axis  

α  

 

adhesion  factor  

β  

 

coefficient  characterizing  the  soil-­‐pipe  interface    

γ  

 

bulk  unit  weight  of  soil  

γd  

 

dry  unit  weight  of  soil  

γsat  

 

saturated  

γ’  

 

submerged  unit  weight  of  soil  

γw  

 

unit  weight  of  water  or  of  bentonite  slurry  

δ,  δ’  

 

angle  of  interface  friction  (total,  effective  stress)  

Δ  

 

to  signify  an  increase  (or  decrease)  in  a  quantity  

ΔV  

 

magnitude  of  elastic  unloading  in  the  vertical  plane  

ΔH  

 

magnitude  of  elastic  unloading  in  the  horizontal  plane  

ε  

 

strain  

εa  

 

axial  strain  

μ  

 

coefficient  of  friction  

ν  

 

Poisson’s  ratio  

νs  

 

Poisson’s  ratio  of  soil  

νp  

 

Poisson’s  ratio  of  product  pipes  

σT  

 

tunnel  internal  support  pressure  

σH  

 

horizontal  stress  

σm    

 

membrane  correction  

σV  

 

vertical  stress  

τ  

 

shear  stress  

 

ϕ,  ϕ’      

angle  of  internal  friction  of  soil  (total,  effective  stress)  

ϕ’cv  

constant  volume  angle  of  effective  friction  resistance  

 

ϕ’cv,DS      

 

ϕ’cv  determined  in  direct  shear   vi  

ϕ’cv,TX    

ϕ’cv  determined  in  triaxial  compression  

ψ  

angle  of  dilation  

 

List  of  abbreviations     AVN  

automatischer   Vortrieb   nass   (de)   /   remote   controlled,   slurry   circuit   microtunnelling  machine  

CPT  

 

cone  penetration  test  

DBC  

 

Dublin  Boulder  Clay  

DN  

 

Diamètre  Nominal  (fr)/nominal  diameter  

GRP  

 

glass-­‐reinforced  plastic  

MH  

 

manhole  

PLT  

 

Point  Load  Test  

PR    

 

Penetration  rate  in  rock  (m/hour)  

RMR  

 

Rock  Mass  Rating  

RQD  

 

Rock  Quality  Designation  

SPT  

 

Standard  Penetration  Test  

TBM  

 

tunnel  boring  machine  

TCD  

 

Trinity  College  Dublin  

UCS  

 

Uniaxial  Compressive  Strength  

 

 

vii  

 

Publications     The  following  papers  have  resulted  from  this  research.  

  •

Reilly,   C.C.   and   Orr,   T.L.L.   (2012),   Analysis   of   interface   friction   effects   on   microtunnel   jacking   forces   in   coarse-­‐grained   soils.   In:   Proceedings   of   the   Bridge   and   Concrete   Research  in  Ireland  (BCRI)  Conference.  Dublin,  121-­‐126.    



Reilly,   C.C.,   McCabe,   B.A.,   Orr,   T.L.L.   (2012),   Analysis   of   microtunnel   jacking   forces   in   alluvium   and   glacial   till   in   Mullingar,   Ireland.   In:   Proceedings   of   the   ITA/AITES   World   Tunnelling  Congress  2012.  Bangkok,  Thailand,  CD-­‐ROM.  



McCabe,   B.A.,   Orr,   T.L.L.,   Reilly,   C.C.   and   Curran,   B.G.   (2012),   Settlement   trough   parameters   for   tunnels   in   Irish   glacial   tills.   In:   Tunnelling   and   Underground   Space   Technology.  27(1),  1-­‐12.  



Reilly,   C.C.   and   Orr,   T.L.L.   (2011),   Microtunnelling   -­‐   recent   experience   in   Ireland.   Proc.   International  No-­‐Dig  2011  Conference  &  Exhibition,  Berlin,  2A-­‐4-­‐1  –  2A-­‐4-­‐11.  



Reilly,  Ciaran  C.  (2011),  Jacking  force  measurements  at  two  microtunnelling  projects  in   soft   ground   in   Ireland.   Pipeline   Industries   Guild   (Irish   Branch)   prize-­‐winning   paper,   unpublished.  

   

 

 

viii  

 

Table  of  contents    

Declaration  ..................................................................................................................................  i   Abstract  .....................................................................................................................................  iii   Acknowledgements  ................................................................................................................  iv   List  of  symbols  ...........................................................................................................................  v   List  of  abbreviations  ............................................................................................................  vii   Publications  ...........................................................................................................................  viii   1   Introduction  .....................................................................................................................  14   1.1   Background  ............................................................................................................................  14   1.2   Motivation  for  the  research  &  research  objectives  ..................................................  17   1.3   Scope  of  dissertation  ...........................................................................................................  17  

2   Literature  review  ...........................................................................................................  19   2.1   Introduction  ...........................................................................................................................  19   2.2   Jacking  force  in  pipe  jacking  ............................................................................................  19   2.2.1   Jacking  force  ......................................................................................................................................  19   2.2.2   Face  Resistance  ................................................................................................................................  21   2.2.3   Frictional  Resistance  .....................................................................................................................  21   2.3   Friction  ....................................................................................................................................  22   2.3.1   Friction  in  geotechnical  engineering  ......................................................................................  22   2.3.2   Friction  theory  .................................................................................................................................  22   2.3.3   Friction  in  soils  and  granular  materials  ................................................................................  23   2.3.4   Friction  in  soil-­‐structure  interfaces  ........................................................................................  28   2.4   Undrained  shear  strength  .................................................................................................  31   2.5   Use  of  lubricants  in  pipe  jacking  .....................................................................................  32   2.5.1   Definition  of  lubrication  ...............................................................................................................  32   2.5.2   Lubrication  theory  ..........................................................................................................................  33   2.5.3   Slurries  in  geotechnical  engineering  ......................................................................................  33   2.5.4   Pipe  jacking  lubricants  .................................................................................................................  36    

ix  

2.5.5   Guidelines  for  lubricating  pipe  jacks  and  usage  in  the  field  .........................................  39   2.6   Modelling  the  skin  friction  component  of  jacking  force  .........................................  42   2.6.1   Approaches  to  modelling  the  skin  friction  stress  in  pipe  jacking  ..............................  42   2.6.2   Normal  stress  on  underground  pipelines  ............................................................................  42   2.6.3   Skin  friction  resistance  models  .................................................................................................  47   2.6.4   Discussion  on  approaches  to  modelling  skin  friction  stress  ........................................  57   2.7   Field  observations  ...............................................................................................................  57   2.7.1   Introduction  to  field  studies  carried  out  ..............................................................................  57   2.7.2   Microtunnelling  field  research  projects  ................................................................................  57   2.7.3   Field  case  study  in  a  fine-­‐grained  soil  ....................................................................................  60   2.7.4   Field  research  in  Ireland  ..............................................................................................................  60   2.8   Physical  modelling  ...............................................................................................................  60   2.8.1   Advantages  of  physical  modelling  ...........................................................................................  60   2.8.2   The  physical  modelling  of  interface  friction  phenomena  ..............................................  61   2.8.3   The  physical  modelling  of  pipe  jacking  operations  ..........................................................  62   2.9   Summary  .................................................................................................................................  65  

3   Field  case  histories  ........................................................................................................  67   3.1   Introduction  ...........................................................................................................................  67   3.2   Pipe  jacking  and  microtunnelling  in  Ireland  ..............................................................  67   3.2.1   Experience  of  utility  tunnelling,  pipe  jacking  and  microtunnelling  in  Ireland  ....  67   3.2.2   Segmental  utility  tunnelling  .......................................................................................................  68   3.2.3   Pipe  jacking  and  microtunnelling  ............................................................................................  68   3.3   Selection  of  sites  ...................................................................................................................  69   3.4   Jacking  force  measurement  and  analysis  ....................................................................  70   3.4.1   Jacking  force  measurement  ........................................................................................................  70   3.4.2   Methods  of  analysis  of  jacking  force  .......................................................................................  71   3.5   Field  case  histories  ..............................................................................................................  73   3.5.1   Presentation  of  field  case  histories  .........................................................................................  73   3.5.2   Howth  ...................................................................................................................................................  73   3.5.3   Downpatrick  .....................................................................................................................................  77   3.5.4   Mullingar  ............................................................................................................................................  82   3.6   Summary  of  case  history  jacking  force  parameters  .................................................  86   3.6.1   Presentation  of  summary  ............................................................................................................  86   3.6.2   Effects  of  lubrication  .....................................................................................................................  86   3.6.3   Operator  influence  .........................................................................................................................  86   3.6.4   Pipe  surface  roughness  ................................................................................................................  87   3.6.5   Curved  drives  and  misalignments  ...........................................................................................  87    

x  

3.6.6   Influence  of  soil  type  .....................................................................................................................  89   3.6.7   Relationship  between  face  resistance  and  skin  friction  resistance  stress  .............  89   3.7   Summary  &  further  remarks  ............................................................................................  93  

4   Interface  friction  reduction  with  unpressurised  lubricants  ...........................  95   4.1   Introduction  ...........................................................................................................................  95   4.2   Experimental  considerations  ...........................................................................................  95   4.2.1   Type  of  soil  and  variation  along  the  pipeline  .....................................................................  96   4.2.2   Normal  stresses  acting  on  the  pipeline  .................................................................................  96   4.2.3   Roughness  of  the  pipeline  surface  ...........................................................................................  99   4.2.4   Rate  of  advance  ................................................................................................................................  99   4.2.5   Contact  conditions  between  pipe  and  soil  ........................................................................  101   4.2.6   Overcutting  during  excavation  ..............................................................................................  101   4.2.7   Level  of  the  water  table  .............................................................................................................  101   4.2.8   Type  and  consistency  of  lubricant  ........................................................................................  102   4.2.9   Duration  of  stoppages  during  driving  .................................................................................  103   4.2.10   Pipeline  misalignment  and  joint  effects  ..........................................................................  103   4.2.11   Boundary  effects  in  the  direct  shear  apparatus  ...........................................................  104   4.3   Equipment  ............................................................................................................................  104   4.4   Test  materials  ......................................................................................................................  105   4.4.1   Geomaterials  ..................................................................................................................................  105   4.4.2   Interface  materials  ......................................................................................................................  111   4.4.3   Slurries  .............................................................................................................................................  115   4.5   Testing  programme  and  procedures  ...........................................................................  116   4.5.1   Testing  programme  ....................................................................................................................  116   4.5.2   Testing  procedures  .....................................................................................................................  116   4.6   Results  ....................................................................................................................................  118   4.6.1   IGB  sand  ...........................................................................................................................................  119   4.6.2   Banagher  sand  ...............................................................................................................................  127   4.6.3   Kaolin  clay  .......................................................................................................................................  134   4.6.4   Cloughfin  clay  ................................................................................................................................  137   4.6.5   Summary  of  results  .....................................................................................................................  138   4.7   Summary  &  further  remarks  ..........................................................................................  140  

5   Interface  friction  reduction  with  pressurised  lubricants  –  experimental   apparatus  and  procedures  ...............................................................................................  142   5.1   Introduction  .........................................................................................................................  142   5.2   Experimental  considerations  .........................................................................................  142    

xi  

5.2.1   Requirements  for  the  design  of  a  physical  model  ..........................................................  142   5.2.2   Replicating  field  conditions  in  a  physical  model  ............................................................  143   5.2.3   Implementing  a  physical  model  in  the  laboratory  ........................................................  143   5.3   Testing  apparatus  and  materials  ..................................................................................  145   5.3.1   Development  of  the  test  apparatus  ......................................................................................  145   5.3.2   Triaxial  testing  in  geotechnical  engineering  ....................................................................  145   5.3.3   Shear  stress  in  triaxial  testing  ................................................................................................  146   5.3.4   Geomaterials  ..................................................................................................................................  147   5.3.5   Development  of  preformed  failure  plane  triaxial  testing  apparatus  .....................  152   5.3.6   Lubricant  slurries  ........................................................................................................................  158   5.4   Test  procedures  ..................................................................................................................  159   5.4.1   General  procedures  .....................................................................................................................  159   5.4.2   Unlubricated  tests  .......................................................................................................................  161   5.4.3   Lubricated  tests  ............................................................................................................................  161   5.5   Corrections  ...........................................................................................................................  164   5.5.1   The  need  for  corrections  to  the  measured  axial  force  .................................................  164   5.5.2   Area  corrections  ...........................................................................................................................  165   5.5.3   Membrane  corrections  ..............................................................................................................  167   5.5.4   Corrections  applied  to  test  results  .......................................................................................  170   5.6   Summary  ...............................................................................................................................  170  

6   Interface  friction  reduction  with  pressurised  lubricants  –  results  .............  171   6.1   Introduction  .........................................................................................................................  171   6.2   Behaviour  of  the  novel  triaxial  interface  test  apparatus  ......................................  171   6.2.1   Interpretation  of  the  model  behaviour  &  interface  strength  ....................................  171   6.2.2   Interface  friction  with  IGB  sand  ............................................................................................  174   6.2.3   Interface  friction  with  Banagher  sand  ................................................................................  175   6.2.4   Numerical  modelling  of  preformed  failure  plane  behaviour  ....................................  176   6.3   Effects  of  lubricant  injection  ..........................................................................................  181   6.3.1   Static  injection  ...............................................................................................................................  182   6.3.2   Dynamic  injection  at  a  specified  point  in  time  ................................................................  192   6.3.3   Constant  pressure  lubricant  injection  ................................................................................  193   6.4   Discussion  .............................................................................................................................  194   6.4.1   Commentary  on  lubricated  test  results  ..............................................................................  194   6.4.2   Comparison  of  results  with  other  physical  modelling  programmes  .....................  199   6.4.3   Comparison  of  results  with  the  findings  from  field  studies  ......................................  200   6.4.4   Recommendations  towards  practice  ...................................................................................  201   6.5   Summary  ...............................................................................................................................  201    

xii  

7   Pipe  jacking  and  microtunnelling  in  hard  rock  .................................................  203   7.1   Introduction  .........................................................................................................................  203   7.2   Jacking  forces  and  rates  of  advance  during  microtunnelling  in  hard  rock  ....  204   7.2.1   Hard  rock  microtunnelling  compared  to  soft  soil  microtunnelling  .......................  204   7.2.2   Rock  materials  and  classifications  as  applied  to  TBM  tunnelling  ...........................  204   7.2.3   Face  resistance  ..............................................................................................................................  206   7.2.4   Friction  resistance  .......................................................................................................................  207   7.2.5   Advance  rate  and  penetration  rate  ......................................................................................  208   7.3   Field  case  histories  in  hard  rock  ...................................................................................  209   7.3.1   Selection  of  sites  ...........................................................................................................................  209   7.3.2   Tullamore  ........................................................................................................................................  210   7.3.3   Gilford  ...............................................................................................................................................  218   7.4   Discussion  .............................................................................................................................  223   7.4.1   General  comments  on  results  .................................................................................................  223   7.4.2   Jacking  force  predictions  in  hard  rock  ................................................................................  224   7.4.3   Comparisons  to  published  results  ........................................................................................  225   7.5   Summary  ...............................................................................................................................  227  

8   Conclusion  ......................................................................................................................  228   8.1   Introduction  .........................................................................................................................  228   8.2   Conclusions  ..........................................................................................................................  229   8.2.1   Field  case  histories  ......................................................................................................................  229   8.2.2   Physical  modelling  ......................................................................................................................  230   8.3   Summary  ...............................................................................................................................  233   8.4   Recommendations  for  future  research  .......................................................................  234  

References  .............................................................................................................................  235   Appendix  A  –  Micro  concrete  mix  design  ....................................................................  244   Appendix  B  –  Hydraul-­‐EZ  technical  data  sheet  .........................................................  245   Appendix  C  –  MX  Polymer  technical  datasheet  .........................................................  246   Appendix  D  –  Triaxial  testing  procedure  ....................................................................  247   Appendix  E  –  Table  of  triaxial  interface  shear  testing  results  .............................  250      

 

xiii  

Chapter  2  

 

Literature  review  

1 Introduction    

1.1 Background   As   we   are   living   in   a   rapidly   urbanising   world,   with   more   people   now   living   in   metropolitan   areas   than   rural,   trenchless   technologies   such   as   pipe   jacking   and   microtunnelling   are   becoming  more  and  more  important  to  towns  and  cities  seeking  to  retain  and  improve  the   standards   of   utilities   available   to   their   citizens   in   a   sustainable   manner.   Pipe   jacking   or   microtunnelling  are  construction  techniques  that  allow  for  the  underground  installation  of   pipelines  from  a  starting  shaft  to  a  reception  shaft  some  distance  away,  with  a  minimum  of   vertical   intrusions   to   the   surface.   These   methods   allow   for   the   installation   of   pipelines   in   diameters   ranging   from   300mm   to   3000mm.   Typical   uses   include   water,   gas   or   oil   supply   pipelines,  waste  water  collection  systems  and  electrical  and  telecoms  cable  ducting.       Microtunnelling  is  a  special  case  of  the  pipe  jacking  technique,  although  the  terms  are  used   almost   interchangeably.   In   microtunnelling,   excavation   at   the   front   of   the   pipeline   is   carried   out  using  a  remote-­‐controlled  mechanised  shield  with  a  cutting  wheel  at  the  front  and  spoil   removal  to  the  surface  via  a  slurry  circuit  or  a  conveyor  system.  Microtunnelling  is  currently   a  very  advanced  art  with  high  levels  of  automation  and  monitoring  available  for  many  of  the   processes   involved,   and,   for   most   of   the   time,   personnel   are   not   located   in   the   pipeline.   A   typical   microtunnelling   arrangement   is   shown   in   Figure   1.1.   Traditional   pipe   jacking,   on   the   other  hand,  requires  the  presence  of  personnel  within  the  pipeline  and  the  shields  used  may   consist   of   open-­‐faced   enclosures   designed   for   hand   digging   or   fitted   with   mechanical   excavation   systems   operated   by   personnel   protected   within   the   shield.   The   choice   of   technique  will  often  come  down  to  the  type  of  ground  that  must  be  excavated,  the  general   classifications   for   the   purposes   of   equipment   selection   being   soft   soil,   hard   soil/soft   rock   and  hard  rock.  Remote-­‐controlled  microtunnelling  tends  to  be  preferred  for  longer  lengths   of  pipeline  and  the  more  challenging,  i.e.  very  soft  or  very  hard,  types  of  soil.  A  conceptual   example   of   a   project   utilising   a   hard   rock   microtunnelling   machine   to   install   pipes   on   a   curved  alignment  under  the  seabed  is  shown  in  Figure  1.2.    

 

14  

Chapter  2  

 

Literature  review  

  Figure  1.1  -­‐  Schematic  of  slurry  microtunnelling  operation  (Source:  Iseki  Microtunnelling)  

   

 

  Figure  1.2  -­‐  Installation  of  subsea  pipeline  or  outfall  using  curved  microtunnelling  technique   (Source:  Herrenknecht  AG)  

A  large  force,  the  jacking  force,  is  required  to  advance  the  microtunnelling  machine  or  pipe   jacking  shield  and  the  string  of  product  pipes  behind  it  from  the  starting  shaft  through  the   ground   to   the   reception   shaft.     The   force   required   must   be   developed   by   the   jacking    

15  

Chapter  2  

 

Literature  review  

apparatus  and  resisted  by  a  thrust  structure  in  the  starting  shaft,  usually  a  thrust  wall  that   transfers  the  force  to  the  ground.  The  product  pipes  chosen  for  the  pipe  jacking  operation,   whether   concrete,   steel,   ceramic   or   glass-­‐reinforced   plastic,   must   be   capable   of   sustaining   the  maximum  expected  force  without  damage  to  the  pipe.  Therefore  it  is  essential  that  the   likely  jacking  forces  for  given  conditions  can  be  estimated  in  advance  of  a  project.  The  total   jacking  force  must  overcome  the  resistances  at  the  face  of  the  shield  and  also  skin  frictional   resistance  developed  over  the  surface  of  the  shield  and  the  pipeline,  as  shown  in  Figure  1.3.        

  Figure  1.3  -­‐  Face  resistance,  skin  frictional  resistance  and  total  jacking  forces  

  The   microtunnelling   machine   or   pipe   jacking   shield   typically   excavates   an   opening   with   a   slightly   larger   diameter   than   the   diameter   of   the   product   pipe   to   be   installed.   This   “overcut”   or   “overbreak”   helps   to   reduce   the   skin   frictional   resistance   acting   on   the   pipeline   and   facilitates   the   steering   of   the   microtunnelling   machine.   Bentonite-­‐   or   polymer-­‐based   lubricant  slurries  may  be  injected  into  this  overcut  through  ports  set  in  the  pipes,  as  shown   in  Figure  1.4,  to  further  reduce  the  skin  frictional  resistance.  This  thesis  is  concerned  with   the  influence  of  these  lubricant  slurries  in  reducing  the  skin  frictional  resistance,  and  hence   the  total  jacking  force,  in  pipe  jacking.      

  Figure  1.4  –  Typical  arrangement  of  lubrication  ports  (Pipe  Jacking  Association,  2007)  

     

16  

Chapter  2  

 

Literature  review  

1.2 Motivation  for  the  research  &  research  objectives   The  mechanisms  of  skin  friction  reduction  due  to  the  injection  of  lubricant  slurries  into  the   overbreak   during   pipe   jacking   are   not   well   documented   or   understood.   Three   main   mechanisms   have   been   suggested   for   the   reduction   in   skin   frictional   resistance   due   to   the   injection  of  bentonite-­‐  or  polymer-­‐based  slurries,  as  follows:     1. Conventional   boundary   lubrication   reducing   the   sliding   resistance   of   the   interface   between  the  soil  and  the  pipe.   2. Rendering  of  the  pipeline  fully  or  partially  buoyant  in  the  viscous  slurry.   3. Reduction  of  the  radial  effective  stress  acting  on  the  pipeline.     The   present   research   seeks   to   clarify   the   extent   of   the   contribution   of   each   of   these   mechanisms   to   the   measured   jacking   force   reductions   observed   in   the   field   through   the   collation  and  analysis  of  field  case  history  data  and  the  physical  modelling  of  the  phenomena   in   the   laboratory.   It   was   sought   to   investigate   in   particular   whether   the   lubricant   slurries   actually   “lubricated”   the   interface,   or   if   some   other   mechanism,   such   as   radial   effective   stress  reduction,  was  more  significant.  This  was  considered  important  as  the  conventional   approaches   to   pipe   jacking   lubrication   in   the   field   focus   on   the   control   of   the   volume   of   lubricant   injected,   while   it   was   considered   that   the   control   of   lubricant   injection   pressure   might  have  more  merit.     This  research  is  topical,  since  due  to  increasing  environmental  concern,  ever  more  complex   microtunnelling   projects   are   conceived   in   fields   such   as   long   sea   outfalls,   seawater   abstraction   intakes   and   ambitious   undersea   oil   and   gas   pipelines.   These   demands   are   broadening  the  remit  of  microtunnelling  from  the  traditional  urban  setting  towards  deeper   and  longer  drives.  Such  extremely  long  distance  pipe  jacking  is  still  very  challenging,  and  a   thorough  understanding  of  the  mechanism  of  skin  friction  reduction  due  to  the  injection  of   lubricant  slurries  is  vital  to  solving  the  problems  that  will  be  faced.      

1.3 Scope  of  dissertation   The  thesis  layout  is  as  follows:     Chapter  2:    

A  general  introduction  to  jacking  force  in  pipe  jacking  and  microtunnelling  is   given,   along   with   an   introduction   to   the   use   of   lubricants   to   reduce   skin   frictional   resistances.   Previous   research   in   the   area   is   introduced   and   reviewed,   focussing   on   empirical,   analytical   and   physical   models   used   to   analyse   and   predict   the   skin   frictional   resistance   component   of   jacking   force  

 

17  

Chapter  2  

 

Literature  review  

with  and  without  lubrication.  Field  studies  carried  out  by  others  are  appraised,   with   an   emphasis   on   studies   outlining   the   impact   of   lubrication   on   jacking   forces.     Chapter  3:    

Field  case  histories  for  three  microtunnelling  projects  in  soft  soil  collated  and   analysed   by   the   author   are   presented   and   discussed.   The   jacking   forces   are   analysed   for   each   drive   and   the   impact   of   soil   properties,   operational   factors   and   lubrication   on   the   measured   jacking   forces   is   reviewed.   The   results   obtained  through  back  analysis  of  the  field  case  history  data  are  compared  to   results  found  in  the  literature.    

  Chapter  4:    

The   use   of   the   direct   shear   soil   testing   apparatus   to   investigate   the   skin   frictional  resistance  between  a  number  of  different  soils  and  a  rough  concrete   interface,   which   was   similar   in   roughness   to   a   concrete   jacking   pipe,   is   described.   The   influence   of   unpressurised   pipe   jacking   lubricants   applied   to   the   interface   was   examined,   and   the   lubrication   mechanisms   that   occurred   were  identified.    

  Chapter  5:    

The   development   of   a   novel   triaxial   testing   procedure   that   allowed   for   the   carrying   out   of   interface   friction   testing   is   described.   Furthermore,   it   is   explained   how   the   apparatus   allowed   for   the   injection   of   pipe   jacking   lubricants   under   pressure   into   the   interface   between   a   soil   and   a   rough   concrete  test  specimen.  

  Chapter  6:  

The   results   obtained   from   experimental   testing   using   the   novel   triaxial   testing   apparatus   incorporating   a   soil   specimen   and   a   concrete   specimen   are   presented   and   analysed.   Testing   was   carried   out   to   simulate   the   injection   of   lubricants   under   pressure   during   pipe   jacking   and   the   resulting   effects   and   mechanisms  of  lubrication  are  identified  and  examined.    

  Chapter  7:    

Recent   case   histories   of   two   microtunnelled   pipelines   in   hard   rock   are   presented,   along   with   an   analysis   of   the   jacking   forces,   advance   rates   and   operational   factors   encountered   in   each.   The   effectiveness   of   lubrication   in   hard  rock  pipe  jacking  situations  is  discussed.  

  Chapter  8:    

Finally,  the  main  findings  and  conclusions  of  the  field  and  experimental  work   are   summarised,   highlighting   the   practical   applications   of   the   research   and   suggesting  areas  where  further  work  may  be  recommended.  

 

18  

Chapter  2  

 

Literature  review  

2 Literature  review    

2.1 Introduction   The  research  described  in  this  thesis  concerns  the  skin  friction  resistance  generated  during   the   installation   of   pipe-­‐jacked   underground   pipelines   and   how   this   skin   friction   resistance   may   be   reduced   through   the   injection   of   lubricant   slurries   into   the   ground   around   the   pipeline  during  pipe  jacking.  In  this  chapter,  the  background  to  this  research  is  set  out.  The   concept  of  jacking  force  is  described  and  a  distinction  between  total  jacking  force  and  skin   friction  resistance  is  made  (§2.2).  The  theory  of  friction  is  discussed  and  its  relevance  to  soil   mechanics   is   explained   (§2.3),   while   the   undrained   shear   strength   and   interface   shear   strength  of  fine-­‐grained  soils  is  also  introduced  (§2.4).   Lubrication   mechanisms   and   the   use   of  slurries  as  lubricants  in  pipe  jacking  are  described  and  the  manner  in  which  pipe  jacking   lubricants  are  applied  in  the  field  is  set  out  (§2.5).  The  analytical  models  commonly  used  for   predicting   or   back   analysing   the   skin   friction   component   of   jacking   force   are   examined   (§2.6).   Some   of   the   field   research   carried   out   to   date   into   jacking   forces   in   pipe   jacking   is   reviewed   (§2.7),   while   work   done   to   physically   model   the   skin   frictional   resistance   is   discussed  (§2.8).  Finally,  the  chapter  is  summarised    (§2.9).    

2.2 Jacking  force  in  pipe  jacking   2.2.1 Jacking  force   The   jacking   force   is   that   force   which   must   be   applied   to   the   rear   of   the   pipe   string   to   advance  the  product  pipes  through  the  ground.  The  prediction  of  jacking  forces  in  advance   of   a   project   is   difficult   but   important.   It   is   difficult   due   to   the   complex   soil-­‐structure   interactions  present,  and  important  because  it  must  be  ensured  that  the  specified  materials   and   equipment   are   appropriate   to   safely   complete   the   required   drive   distance.   According   to   Stein   &   Beckmann   (2011),   there   are   three   sources   of   resistance   likely   to   act   on   the   pipe   jacking  shield  or  microtunnelling  machine  and  jacking  pipes  as  they  are  advanced  through   the  ground:     1. Face  resistance  (force:  PF  and  stress:  pF),  which  is  the  resistance  that  the  face  of  the   pipe  jacking  shield  or  microtunnelling  machine  must  overcome  as  the  soil  at  the  face   is  excavated.   2. Skin  frictional  resistance  (force:  PS  and  stress:  pS),  which  is  due  to  the  skin  friction   developed   over   the   external   surface   area   of   the   pipe   jacking   shield   or   microtunnelling  machine  and  jacking  pipes  as  they  are  pushed  into  the  ground.  It  is  

 

19  

Chapter  2  

 

Literature  review  

useful  to  note  at  this  stage  that  this  resistance  is  almost  always  frictional  in  nature,   rather  than  adhesive  (Norris,  1992).   3. Any   extra   resistance   caused   by   unintentional   misalignments   and   corrections   there   of,   or   intentional   curvature   introduced   during   the   pipe   jacking   process   (force:   PMisaliggnment  and  stress:  pMisalignment).   Once   the   soil   type   and   the   operational   parameters   remain   the   same,   the   face   resistance   should  remain  uniform  throughout  the  drive,  but  as  the  length  of  pipeline  increases,  so  too   will   the   skin   friction   resistance   and   misalignment   resistance.   This   is   shown   in   Figure   2.1.   While   it   is   relatively   easy   to   mathematically   model   the   face   resistance   and   skin   friction   resistance,   misalignment   resistance   is   much   harder   to   predict   and   model   (Sugimoto   and   Asanprakit,   2010),   varying   greatly   depending   on   the   specific   parameters   of   a   particular   drive.   For   these   reasons,   misalignment   resistance   will   not   be   studied   in   detail   here.   As   most   of   the   case   histories   presented   throughout   this   research   are   of   straight   drives   and   it   is   universally  the  case  that  attempts  are  made  by  the  contractors  to  maintain  trueness  in  these   drives,   it   is   considered   appropriate   to   allow   for   misalignment   resistance   within   the   analysis   of  face  and  skin  frictional  resistance.    

  Figure  2.1  -­‐  Illustrative  jacking  force  plot  against  length  driven,  showing  hypothetical   contributions  from  each  type  of  resistance  

  If  it  is  assumed  that  misalignment  resistance  may  be  accounted  for  within  the  face  and  the   skin  frictional  resistance,  the  total  resistance  to  be  overcome  by  the  jacking  force  can  be       expressed  as  the  sum  of  the  face  resistance  force,  PF  and  skin  friction  resistance  force,  PS:       Ptotal  =  PF  +  PS      

20  

Equation  2-­‐1  

Chapter  2  

 

Literature  review  

2.2.2 Face  Resistance   The   resistance   to   advance   of   the   face   of   a   pipe   jacking   shield   or   microtunnelling   machine   through   the   ground   is   a   function   of   the   ground   strength   in   front   of   the   face   and   the   speed   at   which   the   microtunnelling   machine   is   advanced.   While   with   open   face   pipe   jacking   the   greatest  risk  will  be  the  collapse  of  the  face  inwards,  with  microtunnelling  machines  there  is   also   the   possibility   of   exerting   excess   force   on   the   ground   in   front   of   the   machine.   As   microtunnelling  machines  are  designed  and  operated  so  as  to  achieve  a  pressure  balance  at   the  face,  the  face  resistance  will  vary  between  the  active  and  passive  earth  pressure  acting   on   the   face   of   the   machine.   Ideally   the   microtunnelling   machine   will   be   driven   as   fast   as   possible   without   stalling   due   to   lack   of   torque.   If   rate   of   advance   is   too   slow,   there   is   increasing   the   risk   of   material   sloughing   into   the   excavation   and   subsequent   surface   settlement,   while   too   fast   a   rate   may   cause   heave   (Staheli,   2006).   The   solids   and   liquids   (groundwater   and   slurry)   present   must   be   also   controlled   so   as   to   avoid   both   soil   uplift   and   surface  settlement,  as  shown  in  Figure  2.2  and  Figure  2.3.  

 

  Figure  2.2  –  Forces  acting  on  the  face  of  a  

Figure  2.3  –  Possible  deformations  caused  by  

microtunnelling  machine  (Stein,  1989)  

face  pressures  in  pipe  jacking  (Stein,  1989)  

 

2.2.3 Frictional  Resistance   As  shown  in  Figure  2.1  the  skin  frictional  resistance  force  generally  makes  up  the  larger  part   of   the   total   resistance   to   jacking   force.   As   the   length   of   drive   gets   longer,   so   does   the   overall   frictional   resistance,   and   it   is   ultimately   the   frictional   resistance   that   determines   the   practical   lengths   of   individual   drives.   Several   factors   affect   the   skin   frictional   resistances   during  pipe  jacking  including  (Marshall,  1998;  Chapman  and  Ichioka,  1999):    

 



Type  of  soil  and  variation  along  the  pipeline  



Normal  stresses  acting  on  pipeline     21  

Chapter  2  

 

Literature  review  



Roughness  of  pipeline  surface  



Rate  of  strain  



Contact  conditions  between  pipe  and  soil  



Overcut  during  excavation  



Position  of  water  table  



Lubrication  



Duration  of  stoppages,  for  example  breakdowns,  overnight  or  weekends    



Pipeline  misalignment  and/or  intentional  curvature.  



Changes  to  soil  characteristics  due  to  dynamic  loading  and  vibrations.    

  This   list   of   factors   is   widely   accepted   in   the   literature   to   hold   true   for   the   modelling   of   frictional   resistance   and   will   be   used   later   in   this   thesis   to   provide   a   framework   for   investigations  into  skin  friction  resistance.    

2.3 Friction   2.3.1 Friction  in  geotechnical  engineering   Since   this   research   is   primarily   concerned   with   the   effects   of   frictional   resistances   to   movement,  it  is  useful  to  review  the  theory  of  friction  between  solid  bodies,  and  to  discuss   frictional  contact  in  soils.  By  way  of  comparison,  cohesion  or  adhesion  in  soils  will  be  briefly   commented  upon.  Since  a  great  many  textbooks  expand  on  these  topics  in  detail,  this  section   will  be  brief.  

2.3.2 Friction  theory   “Friction”   is   intuitively   the   force   that   exists   between   two   objects   in   contact   that   resists   relative   movement   between   them.   Leonardo   da   Vinci   (1452-­‐1519)   experimentally   verified   the   two   basic   laws   of   friction,   that   the   frictional   resistance   is   proportional   to   the   load   applied   and   independent   of   the   area   of   contact   of   the   sliding   surfaces.   In   1699,   Amontons   found  similarly,  and  incorrectly  proposed  that  friction  was  due  to  interlocking  asperities  on   the  surfaces  in  contact  and  the  frictional  force  was  always  equal  to  one-­‐third  of  the  normal   load.  Coulomb  in  1781  made  a  distinction  between  static  and  dynamic  friction  and  showed   that   dynamic   friction   was   lower   than   static   friction.   Coulomb   was   unsure   whether   friction   was   due   to   adhesion   between   molecules   on   each   surface   or   the   interlocking   of   surface   asperities  (Bowden  and  Tabor,  1958),  however  the  Coulomb  model  of  friction  has  persisted:     𝐹 =  𝜇𝑁  

22  

Equation  2-­‐2  

Chapter  2  

 

Literature  review  

  where  F  is  the  force  resisting  sliding  on  a  plane,  N  is  the  normal  force  acting  perpendicularly   to   the   plane   and   μ   is   the   coefficient   of   friction,   or   the   ratio   of   the   resisting   force   to   the   normal  force  acting  n  the  plane.  It  is  convenient  to  let  μ  =  tan  ϕ,  where  ϕ  is  termed  the  angle   of  friction,  and  to  express  the  forces  N  and  T  as  the  stresses  σ  and  τ  acting  over  the  area  of   contact:   𝜏 =  𝜎  𝑡𝑎𝑛𝜙

Equation  2-­‐3  

   A   common   representation   of   friction,   the   frictional   slip   of   a   block   on   a   plane,   is   shown   in     Figure  2.4.  

   Figure  2.4  -­‐  Frictional  slip  of  a  block  on  a  plane  

  Much   of   our   modern   understanding   of   frictional   processes   comes   from   Bowden   and   Tabor’s   classic   work   in   friction   theory   (1958)   which   deals   in   the   main   with   metals.   Frictional   stresses  are  generated  by  chemical  bonding  or  “welding”  in  and  around  areas  of  real  contact,   i.e.  areas  where  tiny  asperities  on  the  surface  of  materials  come  into  contact,  areas  that  are   many  times  smaller  than  the  geometric  area  of  contact.  This  area  of  true  contact  is  found  to   be   roughly   proportional   to   the   applied   load,   which   fits   in   with   the   previously   mentioned   observations  made  by  Da  Vinci  and  Coulomb  many  centuries  ago.    

2.3.3 Friction  in  soils  and  granular  materials   2.3.3.1 Friction  mechanisms   Just   as   adhesive   bonding   prevents   relative   movement   between   two   flat   surfaces,   the   movement   of   two   soil   grains   against   one   another   is   similarly   resisted   at   points   of   real   contact,  as  is  the  movement  of  assemblies  of  soil  grains,  as  illustrated  in  Figure  2.5.  Equation   2-­‐3  equally  holds  for  the  resistance  to  movement  in  all  of  these  situations.    

 

23  

Chapter  2  

 

Literature  review  

  Figure  2.5  -­‐  Friction  between  sliding  bodies  (Bolton,  1979)  

  While  metals  can  flow  plastically  and  “weld”  together  at  the  areas  of  real  contact,  crystalline   solids   like   many   soils   cannot   and   hence   form   junctions   which   are   weaker.   Minerals   and   rocks   that   normally   form   granular   soil   particles   have   distinct   inter-­‐particle   sliding   friction   angles,   depending   on   factors   such   as   surface   micro   roughness,   durability,   texture   and   hardness   of   the   surface   and   by   the   crystal   structure   and   bonding   characteristics   of   the   mineral   crystals.   Values   of   inter-­‐particle   sliding   friction   range   from   20°   to   40°,   with   more   common  materials  having  values  in  the  range  25°  to  35°  (Terzaghi  et  al.,  1996).    

2.3.3.2 Effective  stress   The   presence   of   water   within   a   soil   does   not   affect   the   coefficient   of   friction   between   the   grains  of  a  soil,  but  the  pressures  that  exist  in  the  water  will  have  profound  effect  on  the  soil   behaviour.   This   behaviour   was   described   by   the   Principal   of   Effective   Stress   (Terzaghi,   1943),   where   the   total   normal   stress   on   a   plane,   σ,   is   equal   to   the   sum   of   the   pore   water   pressure,  u,  and  the  effective  stress  acting  through  the  soil  skeleton  only  (σ’).  Thus,  Equation   2-­‐3  becomes:     𝜏 = 𝜎 − 𝑢 𝑡𝑎𝑛𝜙′ =  𝜎′  𝑡𝑎𝑛𝜙′

Equation  2-­‐4  

  where   τ’   and   ϕ’   are   the   effective   shear   stress   and   effective   angle   of   shearing   resistance   respectively.    

2.3.3.3 Shear  strength  and  failure  in  soils   The   strength   of   a   soil   is   not   a   unique   value   but   rather   depends   very   much   on   the   conditions   under   which   the   soil   is   loaded.   A   number   of   failure   criteria   exist,   that   allow   for   the   prediction   of   the   strength   of   a   soil   under   certain   specified   conditions   once   strength   tests   have   been   carried   out   on   a   representative   sample   of   the   soil   under   known   conditions.   For   drained  conditions,  where  excess  pore  water  pressure  is  not  developed,  the  Coulomb  failure   criterion   applies   for   non-­‐cemented   soils.   It   is   similar   in   formulation   to   Equation   2-­‐4,   but  

 

24  

Chapter  2  

 

Literature  review  

using  the  parameters  that  correspond  to  a  state  of  shear  failure,  i.e.  slippage  along  the  plane   S-­‐S  in  Figure  2.5,  τf’  and  σf’:     𝜏! = 𝜎! ′  𝑡𝑎𝑛𝜙′

Equation  2-­‐5  

  This   condition   may   be   visualised   using   the   results   of   a   series   of   triaxial   tests   on   the   same   soil,   where   the   major   and   minor   principal   stresses   at   failure   are   used   to   plot   Mohr   circles   of   stress  and  a  line  through  the  origin  and  produced  tangential  to  these  circles  represents  the   soil  strength  envelope,  as  illustrated  in  Figure  2.6.  The  soil  cannot  attain  a  stress  condition   above  this  envelope.  The  compressive  sense  of  the  Mohr  circles  is  of  interest  only,  and  so  the   tensile  region  is  removed  in  the  presentation  of  Mohr  circles  of  stress  for  soils.    

  Figure  2.6  -­‐  Coulomb  shear  strength  envelope  

  The   Coulomb   failure   criterion   is   suitable   for   coarse-­‐grained   soils   where   the   behaviour   is   purely  frictional.  In  some  soils,  particularly  fine-­‐grained  soils,  a  drained  “cohesion”  intercept   is   present,   where   the   shear   stress   is   positive   when   the   normal   stress   is   zero.   Various   explanations   exist   for   this   phenomenon,   including   real   cohesion   and   cementing,   but   these   will  not  be  dealt  with  here.  The  Mohr-­‐Coulomb  criterion  may  be  used  to  define  the  failure   conditions   of   such   a   soil   and   Equation   2-­‐5   may   be   re-­‐written   to   take   account   of   a   drained   cohesion  intercept  c’:   𝜏! = 𝑐 ! + 𝜎! ′  𝑡𝑎𝑛𝜙′

Equation  2-­‐6  

  Using  hypothetical  test  results  again,  the  Mohr-­‐Coulomb  failure  criterion  may  be  illustrated   as  shown  in  Figure  2.7.    

 

25  

Chapter  2  

 

Literature  review    

  Figure  2.7  -­‐  Mohr-­‐Coulomb  shear  strength  envelope  

  The   shear   strength   of   frictional   soils   under   drained   loading   conditions   may   be   partially   described   by   these   two   models.   In   order   to   more   fully   model   the   shearing   behaviour   of   certain   soils,   other   concepts   must   be   taken   into   account,   for   example   dilation   and   peak   strength.  These  will  be  briefly  introduced  in  the  following  section.  

2.3.3.4 Peak  strength  and  dilatancy   Critical   state   theory   (Muir   Wood,   1990)   inextricably   links   shearing   and   volume   change   in   soils.   When   a   loose   sand   shears   it   tends   to   contract,   whereas   a   dense   sand   will   dilate,   or   expand   in   volume   until   it   reaches   a   critical   state   of   constant   volume   shearing.   This   phenomenon   may   be   demonstrated   quite   simply   in   the   shear   box.   When   a   dense   sand   dilates,   the   lid   of   the   shear   box   moves   upwards   at   the   angle   of   dilation   ψ   .   There   are   a   number  of  explanations  for  this  behaviour.  This  occurs  as  the  interlocking  particles  of  sand   rearrange  themselves  as  they  move  past  each  other.  The  conventional  approach  commonly   seen  in  text  books  is  that  of  the  saw  tooth  (Bolton,  1979),  where  the  particles  must  rise  up   microscopic   shear   planes   inclined   at   an   angle   of     ψ   to   the   horizontal   in   order   to   make   progress.   This   saw   tooth   analogy,   as   shown   in   Figure   2.8   below,   can   only   be   relevant   for   very   small   strains,   as   when   one   tooth   crosses   the   opposite   tooth   and   interlocks   again,   the   net  volume  change  is  zero,  or  for  very  fast  strain  rates  where  the  saw  tooth  surfaces  slide  so   quickly  that  only  the  tips  touch.  

  Figure  2.8  -­‐  Saw  tooth  analogy  for  dilation  (Powrie,  2002)  

 

26  

Chapter  2  

 

Literature  review  

More   recently   it   has   been   suggested   that   dilatancy   and   critical   state   in   granular   materials   could   be   explained   by   an   evolving   frequency   of   microscopic   topological   events   (flips)   and   elastic   relaxation   of   the   granular   particles   (Mesarovic   et   al.,   2012),   each   giving   rise   to   net   volume   increases   until   a   strain   of   approximately   5%   is   reached.   Figure   2.9   shows   a   particular  “cell”  undergoing  a  volume  increase  (dilation),  followed  by  contraction.      

  Figure  2.9  –  Generic  flipping  mechanism  (Mesarovic  et  al.,  2012).    

  From   left   to   right,   as   the   cluster   is   vertically   compressed,   the   status   of   neighbouring   particles   changes.   Solid   lines   indicate   particles   in   contact,   whereas   dashed   lines   indicate   nearest  neighbours  not  touching.  The  volume  occupied  by  the  cluster  first  increases  by  Δε+   then  decreases  by  Δε-­‐.  It  was  found  that  at  each  time  increment,  only  a  small  fraction  of  cells   in  a  sample  are  undergoing  flipping,  and  in  the  next  increment  a  completely  different  set  of   cells  are  topologically  translating,  allowing  for  the  net  volume  increase  observed  during  the   shearing  of  dense  sands.       This  property  of  dilatancy  allows  dense  sands  undergoing  shearing  to  exhibit  a  higher  peak   angle   of   shearing   resistance   before   reaching   a   lower,   critical   state,   angle   of   shearing   resistance.   The   peak   angle   of   resistance,   ϕ’peak,   is   a   transient   quantity   whereas   the   critical   state   angle   of   shearing   resistance   ϕ’  cv   is   a   fundamental   parameter   of   a   material   (Powrie,   2002).   For   sands,   this   critical   state   angle   of   friction   is   generally   termed   the   constant   volume   angle  of  shearing  resistance,  while  in  fine-­‐grained  materials,  another  strength,  the  residual   strength,   may   often   be   quoted   as   the   minimum   strength   of   the   material   after   relative   movement   has   caused   clay   particles   to   become   aligned   along   a   preferred   failure   plane   (Lupini  et  al.,  1981).  The  concept  of  critical  state  shearing  is  illustrated  in  Figure  2.10,  where   the   typical   shearing   response   of   three   different   classifications   of   soil   are   shown   (Budhu,   2011).   Type   I   soils   are   loose   sands,   normally   consolidated   and   lightly   overconsolidated   clays,   Type   II   soils   are   dense   sands   and   heavily   overconsolidated   clays   and   Type   II-­‐A   soils   are  clays  in  which  the  particles  may  become  aligned  along  a  preferred  failure  plane,  which   allows  for  a  lower  residual  shear  strength.      

 

27  

CHAPTER 10 SHEAR Chapter   2   STRENGTH OF SOILS

 

Literature  review  

τ

Shear stress

τp

Peak Type II—dense sands and overconsolidated clays

Critical state

τcs

Type II–A soils

τr

Type I—loose sands, normally consolidated and lightly overconsolidated clays Shear strain, γzx (a) εz

Compression

e

Void ratio

Type I soils

Vertical strain

Type I soils

ecs Shear strain, γzx

Expansion

264

Critical void ratio

Type II soils Shear strain, γzx

∆εz

(c)

Type II soils

∆γzx – ∆εz –d εz tan α = ––––– = ––––– ∆γzx d γzx (b)

FIGURE 10.3

Response of soils to shearing.

 

Figure  2.10  -­‐  Shearing  behaviour  of  soils  in  terms  of  (a)  shear  stress  (b)  vertical  strain  and     • Compress initially (attributed to particle and2011)   then expand, that is, they become looser (c)  void  adjustment) ratio  (Budhu,   (Figure 10.2c and Figure 10.3b, c) until a critical void ratio (the same void ratio as in Type I soils) is   attained.

The critical state shear stress is reached for all soils when no further volume change occurs under 2.3.4 Friction   n  soil-­‐structure   interfaces   continued shearing. iWe will use the term critical state to define the stress state reached by a soil when

2.3.4.1 Interface  friction  shearing  mechanism     There   has   been   much   research   on   the   shearing   mechanism   between   soil   and   construction   materials  (Potyondy,  1961;  Uesugi  and  Kishida,  1986b;  Uesugi  and  Kishida,  1986a;  Uesugi  et   al.,  1988;  Uesugi  et  al.,  1989;  Uesugi  et  al.,  1990;  Gómez  et  al.,  1999;  O'Kelly  and  Naughton,   2008).   While   shearing   behaviour   may   be   modelled   using   the   Coulomb   or   Mohr   Coulomb   FIGURE 10.4 Radiographs of shear bands a densethe   fine angle   sand (the failure   criteria   introduced   in   section   2.3.3.3,   in   in general   of   white internal   frictional  

circles are lead shot used to trace internal displacements; white lines are

resistance   ϕ ’   is   sbands). ubstituted   for   by   an  1979.) angle   of   interface   friction   resistance   δ’,   which   will   vary   shear (After Budhu, up   to   a   maximum   value   of   ϕ’   depending   on   interface   contact   conditions.   An   illustration   of   frictional   contact   between   a   soil   and   an   interface,   in   this   case   a   concrete   jacking   pipe,   is   shown  in  Figure  2.11.  

 

28  

Chapter  2  

 

Literature  review  

 

Figure  2.11  -­‐  Frictional  forces  (T,N)  and  stresses  (τ,σ)  acting  on  a  jacking  pipe  in  contact  with   in-­‐situ  soil

   The   main   factors   shown   to   effect   interface   friction   behaviour   under   direct   loading   are   interface  roughness,  soil  density,  particle  angularity  and  normal  stress  across  the  interface.   A   variety   of   test   methods   are   used   in   these   works   and   elsewhere   to   assess   the   interface   behaviour,  including  direct  shear  (Potyondy,  1961;  Zong-­‐Ze  et  al.,  1995;  Iscimen,  2004;  Liu   et  al.,  2005;  O'Kelly  and  Naughton,  2008),  simple  shear  (Uesugi  and  Kishida,  1986b;  Uesugi   and  Kishida,  1986a;  Kishida  and  Uesugi,  1987;  Uesugi  et  al.,  1988;  Uesugi  et  al.,  1989;  Uesugi   et  al.,  1990),  ring  shear  (Tan  et  al.,  1998;  Hungr  and  Morgenstern,  1984)  and  annular  shear   apparatus  (Kishida  and  Uesugi,  1987).    

2.3.4.2 Roughness   While  a  surface  may  look  flat  and  smooth  and  feel  smooth  to  the  touch,  under  a  microscope   all   surfaces   have   a   complex   structure   with   irregularities   introduced   by   material   structure,   coatings  applied  or  the  manufacturing  processes.  Surface  roughness  or  texture  often  affects   the   functionality   of   a   surface.   In   geotechnical   engineering,   the   surface   roughness   of   an   interface   will   have   a   significant   effect   on   the   resistance   to   shearing   between   a   soil   and   an   interface  (Potyondy,  1961;  Uesugi  and  Kishida,  1986b).       There   are   two   classes   of   parameters   commonly   used   for   the   measurement   of   surface   roughness,   profile   and   area.   Profile   parameters   are   parameters   based   on   measurements   made   over   a   line   of   a   certain   length,   the   gauge   length,   while   area   parameters   are   derived   from   measurements   made   over   a   certain   area   (British   Standards   Institute,   2010).   Line   measurements   are   typically   made   using   a   moving   mechanical   stylus   that   physically   makes   contact  with  the  surface,  while  area  measurements  may  be  made  using  more  modern  optical   instruments,  which  do  not  make  contact  with  the  surface.  In  common,  these  measurements   are   used   to   produce   a   surface   topography   resulting   from   the   intersection   of   the   real   surface   with   a   specified   plane,   usually   the   plane   that   lies   nominally   parallel   to   the   real   surface.   Linear  profiles  may  be  extracted  from  area  profiles  if  necessary.      

29  

Chapter  2  

 

Literature  review  

In   geotechnical   engineering   practice,   line   profile   surface   roughness   measurements   are   common   (Uesugi   and   Kishida,   1986b;   Iscimen,   2004;   Knapett   and   Craig,   2012).   The   most   commonly   quoted   profile   surface   roughness   parameters   in   the   literature   are   Ra   and   Rmax   (also  written  Rz).    Ra  is  the  arithmetic  mean  deviation  of  the  absolute  of  the  ordinate  values   over  an  evaluation  length  L:   𝑅! =  

1 𝐿

𝑧(𝑥)  𝑑𝑥

Equation  2-­‐7  

!

Rmax   is   the   maximum   height   difference   recorded   over   the   profile,   i.e.   the   distance   between   the   maximum   peak   height   and   the   minimum   valley   depth   from   the   plane   of   measurement   over  the  evaluation  length.     Uesegi   et   al.   (1990)   performed   simple   shear   tests   on   air-­‐dry   sand   and   concrete   and   found   that   peak   angle   of   interface   friction   mobilised   between   the   soil   and   the   concrete   is   highly   dependent   on   the   roughness   of   the   concrete   and   the   mean   particle   size   (D50)   of   the   sand.   The   normalised   roughness   parameter,   Rn,   was   introduced,   which   relates   the   roughness   of   the   interface   surface   to   the   particle   size   distribution   of   the   soils   shearing   against   it   as   follows:      

𝑅! =  

!!"# (!≈!!" ) !!"

   

 

Equation  2-­‐8  

  where  Rmax(L≈D50)  is  the  height  difference  between  the  highest  peak  and  the  lowest  valley   taken   along   a   surface   profile   with   a   length   L   equal   to   the   D50   value   of   the   soil   under   investigation.   A   relation   between   the   coefficient   of   friction,   μ,   which   is   the   tangent   to   the   angle  of  interface  friction  δ,  is  shown  in  Figure  2.12.     It  is  seen  that  as  the  normalised  roughness  increases,  a  “critical”  roughness  is  reached  after   which  the  coefficient  of  friction  increases  no  more.  This  critical  roughness  is  the  roughness   value  at  which  the  limiting  interface  shear  resistance  changes  from  being  a  function  of  the   interface  angle  of  friction,  δ’,  to  the  angle  of  shearing  resistance  of  the  sand  itself,   ϕ’,  i.e.  the   surface  of  shear  failure  moves  away  from  the  interface  and  into  the  soil  body.  In  practice,  the   rougher  the  interface  and/or  the  smaller  the  average  particle  size  of  a  soil,  the  greater  the   interface  shearing  resistance  becomes  until  the  limiting  value  is  reached.        

 

30  

Deep foundations

Chapter  2  

  of best fit is then tan δ′. FigureLiterature   review   effective stress; the gradient of the line 9.8 shows data from interface shear tests collated from the literature (Uesugi and Kishida, 1986; Uesugi et al., 1990; Subba Rao et al., 1998; Frost et al., 2002) for a range of common pile materials in which δ′ is expressed in terms of the angle of shearing resistance of the soil. These data are plotted against the parameter Ra/D50, where Ra is the average height of the asperities on the surface of the pile material which gives the material its roughness and D50 is the mean particle size of the soil (see Chapter 1). It should be noted that mild steel oxidises (rusts) in the ground, so δ′/b′ is usually limited to a minimum of 0.5. The concrete values given in Figure 9.8 are for precast concrete (i.e. for driven piles); for concrete cast in-situ the roughness will be much larger, and δ′ = b′ is usually assumed. In fine-grained materials under drained conditions, K ≈ K0 and δ′ = b′ is usually assumed. Alternatively, the parameters K and tan δ′ may be lumped together into a single factor β = Ktan δ′, i.e. (9.10) The determination of shaft friction in drained soil is often referred to as the β-method in pile design. Burland (1993) showed that β correlates linearly with the yield stress ratio with a surprisingly small amount of scatter, as shown in Figure 9.9 (data points represent non-displacement piles). A best-fit line to this data gives (9.11)

Equation 9.11 has been found to provide reasonable estimates of shaft capacity for both displacement   and non-displacement piles. In the case of underreamed piles, as a result of settlement there&is  Kaishida,   possibility that a small gap will Figure  2.12  -­‐  "Critical"  roughness  on  the  sand-­‐concrete  interface  (Uesugi   1990)   develop between the top of the under-ream and the overlying soil. Accordingly, no skin friction should   be taken into account below a level 2D0 above the top of the under-ream, and base resistance should be determined if the base not embedded Figure 9.5 case (b) with d = 0, spresent   cNc = 6.2). a,   Based   on   a   review   of   a   as number   of  isother   studies,  (i.e. Knapett   and   Craig   (2012)  

perhaps   more   practical,   graph   of   the   interface   friction   ratio   against   normalised   average  

Pile resistance and limit state design

surface   roughness   (Figure   2.13),   showing   similar   behaviour   with   increasing   surface  

The resistance of a pile is the sum of its base and shaft capacities. In the limit state design framework,

the rcombined compressive resistance may be factored using a partial factor γRC to obtain the roughness  and/or   educing  a(total) verage   particle  size.   design resistance, i.e.

 

1 0.8 0.6  0.4 Concrete (precast) Steel

0.2 0 0.00001

Timber 0.0001

0.001

0.01

0.1

1

Ra/D50

  Figurea9.8 friction angles `a for various construction materials. Figure  2.13  -­‐  Friction   ngle  Interface ratio  against   average   roughness   normalised   by  soil  mean   particle   size  D50  (Knapett  &  Craig,  2012)  

 

2.4 Undrained  shear  strength   While   field   studies   have   shown   that   the   soil   around   advancing   jacking   pipes   generally   behaves  in  a  drained  manner  (Norris,  1992),  Anagnostou  and  Kovari  (1996)  give  a  range  of   conditions   at   which   it   is   predicted   soil   around   a   tunnel   will   behave   in   the   manner   of   an   undrained   soil.   It   is   suggested   that   when   the   soil   affected   has   a   permeability   lower   than    

31  

335

Chapter  2  

 

Literature  review  

roughly   10-­‐7  to   10-­‐6   m/s   and   when   the   penetration   rate   is   faster   than   roughly   1.67   or   16.7   mm/min,  then  the  soil  around  the  tunnel  will  behave  as  an  undrained  soil.  It  is  useful  then  to   consider   the   undrained   shear   strength   of   a   soil,   i.e.   the   resistance   to   shearing   while   significant   excess   pore   pressures   are   allowed   to   build   up   within   the   soil.   The   undrained   shear  strength  of  a  soil  is  denoted  cu,  which  is  a  total  stress  parameter,  and  is  described  by   the  Tresca  failure  criterion:     𝜏! = 𝑐!

Equation  2-­‐9  

  The   Mohr   circles   of   stress   at   failure   of   three   hypothetical   samples   of   an   identical   fully   saturated   soil   are   shown   in   Figure   2.14,   and   illustrate   that   the   shear   stress   at   failure   will   remain  uniform  despite  changes  in  total  normal  stress.    

  Figure  2.14  -­‐  Tresca  (undrained)  shear  strength  envelope  

  In   undrained   soil   structure   interaction   problems,   the   mobilised   shear   stress   resisting   movement   along   the   interface,   τint,   is   related   to   the   undrained   shear   strength   through   an   adhesion  factor  α  (Knapett  and  Craig,  2012):     𝜏!"# = 𝛼𝑐!

Equation  2-­‐10  

  The   adhesion   factor   α   may   range   from   zero   to   unity,   with   a   perfectly   rough   interface   having   an  adhesion  factor  of  unity.      

2.5 Use  of  lubricants  in  pipe  jacking   2.5.1 Definition  of  lubrication   The  skin  friction  resistance  between  a  moving  pipe  and  the  surrounding  soil  depends  on  the   effective   normal   stress   acting   on   the   pipe   and   the   angle   of   effective   interface   shearing   resistance  between  the  pipe  and  the  soil,  as  shown  in  Figure  2.11.  If  the  frictional  stress  is  to   be  reduced,  a  reduction  in  the  effective  normal  stress  acting  on  the  pipeline  or  the  angle  of    

32  

Chapter  2  

 

Literature  review  

interface  shearing  resistance  is  required.  Lubrication,  from  the  Latin  lubricus,  “slippery”,  is   the   common   term   for   the   action   of   minimising   friction   and   allowing   smooth   movement,   and   the  manner  in  which  lubrication  may  be  applied  to  pipe  jacking  is  discussed  in  this  section.  

2.5.2 Lubrication  theory   In  ideal  fluid  lubrication,  surfaces  moving  relative  to  each  other  are  entirely  separated  by  a   layer   of   lubricant   of   appreciable   thickness   and   the   resistance   to   motion   is   due   only   to   the   viscosity   of   the   lubricant   layer.   In   practice,   and   particularly   where   speeds   of   motion   are   low   and   loads   are   high,   this   situation   is   unlikely   and   instead   lubrication   will   be   of   the   film   or   boundary  type  (for  the  purposes  of  this  research,  film  lubrication  and  boundary  lubrication   may   be   considered   as   synonymous).   Here,   lubricant   films   of   molecular   thickness   separate   the  surfaces,  and  the  efficiency  of  lubrication  will  have  little  to  do  with  the  bulk  viscosity  of   the  lubricant  and  more  to  do  with  the  properties  of  the  sliding  surfaces  themselves  (Bowden   and   Tabor,   1958).   As   for   unlubricated   friction,   the   frictional   resistance   is   proportional   to   normal   stress   except   for   extremely   low   stresses   where   frictional   resistance   is   found   to   increase   with   reducing   stress,   and   the   efficiency   of   film   lubrication   is   generally   independent   of  speed  of  movement  for  sensible  speeds  (Bowden  and  Tabor,  1958).  

2.5.3 Slurries  in  geotechnical  engineering   Mineral   slurry,   chiefly   based   on   bentonite   clay,   has   been   used   during   construction   to   stabilise  drilled  shafts  in  coarse-­‐grained  soils  since  the  late  1940s  (Majano  et  al.,  1994),  with   polymer   slurries   popular   recently   due   to   environmental   constraints   affecting   the   use   of   mineral  slurries.  One  of  the  primary  requirements  of  a  slurry  is  the  effective  formation  of  a   filter  cake  or  mud  cake,  which  is  a  relatively  impermeable  region  of  gelled  slurry  particles   that   forms,   under   the   influence   of   a   pressure   gradient,   on   the   surface   of   and   to   a   certain   depth   within   a   permeable   soil   (Figure   2.15).   This   filter   cake   of   solid   particles   enables   the   transfer   of   positive   effective   stress   to   the   soil   particles   and   hence   helps   to   maintain   the   stability  of,  for  example,  a  borehole.    

 

33  

Chapter   2   

 

Literature  review  

   Figure  2.15  -­‐  Filter  cake  formation  in  soil  (Washbourne,  1986)  

   



 most   typical   material   used   as   a   slurry   base   is   bentonite,   which   is   the   common   name   for   The  

          

a   group   of   montmorillonite   clay   minerals   including   sodium,   calcium   and   potassium  



montmorillonites.  These  minerals,  because  of  their  chemistry  and  microstructure,  are  very  

 effective  at  absorbing  water,  swelling  in  the  process  and  capable  of  absorbing  several  times   their   dry   mass.   Their   structure   is   that   of   very   thin   flat   crystalline   sheets   of   negatively    charged   particles   held   together   in   stacks   by   positive   cations   in   a   layer   of   adsorbed   water  



(Milligan,   2000).  Bentonite,  once  hydrated,  remains  strongly  dispersed  in  water  with  a  good  



resistance  to  bleeding,  i.e.  settling  out  of  suspension.  Bentonite  is  very  effective  at  filter  cake  

 with         as   low     formation,   the   creation   of   regions   of   permeability   as    of    10-­‐10m/s   in   coarse-­‐ grained   soils   possible.   There   are   two   classes   of   bentonite   useful   for   construction,   natural    sodium   bentonite   and   modified   sodium   bentonite.   Wyoming   bentonite   is   an   example   of   a  

               

natural   sodium   bentonite,   with   other   regions   around   the   world   producing   potassium   and  

             

calcium  bentonite,  which  are  less  useful  in  construction.  Calcium  bentonite  may  be  modified  

         These        through   ion    exchange   and   transformed   into   sodium   bentonite.   ion-­‐exchanged   bentonites   typically   have   the   benefit   of   higher   gel   strength   and   viscosity   than   natural    bentonite  (Jefferis,  1992).       Polymers   are   large,   long-­‐chain   molecules   formed   by   the   linking   together   of   smaller   monomer   molecules.   Water-­‐soluble   polymers   such   as   starch,   guar   gum,   xanthan   gum,  

  popular   for   ground   engineering   and   have   carboxymethyl   cellulose   or   HPAM   are   becoming   some  advantages  when  used  alone  or  mixed  with  bentonite.  They  are  useful  at  much  lower   concentrations  than  bentonite,  e.g.  a  1kg/m3  polymer  slurry  may  have  similar  viscosity  as  a  

 

34  

Chapter  2  

 

Literature  review  

40   –   50kg/m3   bentonite   slurry,   and,   since   the   long-­‐chain   polymer   molecules   effectively   “encapsulate”   the   soil   particles,   polymers   inhibit   the   swelling   of   active   clay   minerals   (Jefferis,   2013).  Other  advantages  offered  by  certain  polymers  include   a   greater   resistance   to  salt  and  cement  contamination  and  the  ability  to  be  broken  down  into  less  viscous  liquids   by   the   addition   of   simple   chemicals   like   bleach   (Jefferis,   1992),   which   may   aid   in   waste   disposal.   Polymers   may   be   added   to   bentonite   slurries   to   improve   their   properties,   and   certain   synergies   may   be   formed   with   bentonite   or   other   mineral   clays.   Polymers   on   their   own   or   as   foam   mixtures   may   be   introduced   in   relatively   small   proportions   to   ease   the   movement   and   transport   of   coarser   soils,   and   are   often   used   in   this   application   in   earth   pressure   balance   tunnelling.   However,   polymers   do   not   form   filter   cakes   in   the   same   manner   as   bentonite-­‐based   slurries,   but   rather   rely   on   their   high   viscosity   at   low   shear   stress   to   suspend   soil   particles   (Jefferis,   2013).   Some   filter   cake   may   form   with   polymers,   but   it   is   typically   a   semi-­‐permeable,   membrane-­‐like   region   of   interwoven   polymer   chains   enclosing  soil  particles,  rather  than  a  region  of  incrementally-­‐built  aligned  clay  platelets  as   is  the  case  for  bentonite  (Majano  et  al.,  1994).     Slurries  may  exist  in  three  states:  dispersed,  flocculated  or  gelled,  as  illustrated  for  the  case   of   bentonite   in   Figure   2.16.   When   particles   in   the   slurry   carry   an   electrical   charge,   which   depends   greatly   on   the   chemistry   of   the   slurry,   polar   water   molecules   may   become   adsorbed  onto  the  particle  surface,  forming  a  bound  layer  of  water  surrounding  the  particle.   The   repulsive   force   between   the   slurry   particles   are   somewhat   balanced   by   attractive   Van   der   Waal’s   forces,   but   not   fully.   So,   the   slurry   particles   are   separated   in   suspension,   in   the   dispersed  state  (Figure  2.16a).  If  the  platy  clay  particles  have  different  charges  on  the  face   and  edge,  they  may  be  able  to  accumulate  together  in  a  clumped  flocculated  structure,  as  in   Figure   2.16b.   Certain   additive   may   also   facilitate   this   behaviour.   These   clumps,   or   flocs,   settle  out  of  suspension  much  more  quickly  than  individual  particles.  Finally,  certain  types   of   slurry   including   bentonite-­‐based   slurry   exhibit   a   time-­‐dependent   behaviour   known   as   thixotropy.  Here,  the  shear  strength  of  the  fluid  depends  on  the  shearing  rate;  if  the  fluid  is   left   undisturbed,   it   “sets”   to   a   certain   gel-­‐strength   while   it   reverts   to   a   viscous   fluid   when   sheared   (Milligan,   2000).   The   particle   arrangement   for   this   situation   is   shown   in   Figure   2.16c.   The   gel   strength   will   depend   on   the   particle   concentration   within   the   slurry,   with   higher  concentrations  of  particles  giving  rise  to  higher  gel  strengths.    

 

35  

Chapter  2  

Figure 6

Short-range  forces between particles Literature  review  

 

Figure 7 -­‐  Bentonite   Structures bentonite(a)   slurry (a) Dispersed (b) Flocculated (c) Gel Figure   2.16   slurry  of structures:   dispersed   (b)  flocculated   (c)  gel  (Milligan,   2000)     The  study  of  these  non-­‐Newtonian  fluids  is  complex,  involving  the  study  of  soil  mechanics,   environmental   engineering,   chemistry   and   materials   science.   Since   there   is   a   such   a   wide   range   of   slurry   types,   and   slight   differences   in   water   chemistry   may   have   such   a   large   effect   on  their  behaviour  (for  example  magnesium  ion  concentrations  of  50mg/L  have  been  shown   to  cause  problems  in  mixing  of  bentonite  slurry  (Jefferis,  1992)),  this  section  is  necessarily   brief,  however  the  properties  presented  and  discussed  should  be  sufficient  to  aid  the  reader   with  the  understanding  of  the  present  research.  

2.5.4 Pipe  jacking  lubricants   Figure 8

Definition of viscosity

2.5.4.1 Reported  mechanisms  of  action   The   term   “lubricant”   is   perhaps   a   misnomer   in   pipe   jacking,   as   “lubricants”   are   held   to   perform  many  functions  (Norris,  1992;  Schoesser  et  al.,  2011),  including:     1. Lubrication  of  the  pipe  string,  so  that  the  friction  between  the  surface  of  the  jacking   pipes  and  the  surrounding  ground  is  reduced   2. Provision  of  buoyancy  to  the  pipeline,  so  that  the  pipeline  “floats”  in  a  stable  overcut   3. Stabilisation   of   the   bore   so   that   the   surrounding   soil   does   not   transfer   earth   pressures  to  the  entire  circumference  of  the  pipeline   4. Transport   of   soil   or   fractured   rock   particles,   so   that   cuttings   do   not   gather   at   the   bottom  of  the  overcut  and  cause  the  pipe  string  to  stick.     It  has  been  shown  that  lubricants  substantially  reduce  the  force  needed  to  drive  a  string  of   jacking  pipes  in  the  ground  (Norris,  1992;  Pellet-­‐Beaucour  and  Kastner,  2002;  Staheli,  2006;    

36  

Chapter  2  

 

Literature  review  

Curran,   2010;   Shou   et   al.,   2010;   Çetin   et   al.,   2011),   with   reductions   in   skin   frictional   resistance   of   between   10%   and   90%   being   attributed   to   the   injection   of   lubricants.   Four   possible  friction-­‐reducing  mechanisms  are  (Milligan,  2000;  McGillivray,  2009;  Schoesser  et   al.,  2011):     1. The  lubricant  forms  a  lubricating  boundary  layer  between  the  soil  and  the  pipe.   2. The   lubricant   mixes   with   the   soil   to   form   a   layer   of   material   with   a   lower   angle   of   friction.   3. The  lubricant  fills  up  the  overcut,  stabilising  it  and  making  the  pipeline  partially  or   fully  buoyant.   4. The  lubricant  permeates  into  the  soil  until  such  time  as  a  filter  cake  forms  in  the  soil   thereby  reducing  the  effective  stress  on  the  pipeline.      

These possible mechanisms will be examined at in detail in the following sections.

2.5.4.2 Film  or  boundary  lubrication   The   ability   of   pipe   jacking   lubricants   to   provide   “lubrication”   during   the   driving   of   a   pipe   string   through   the   ground   is   open   to   question.   For   comparison,   the   presence   of   water   doesn’t   “lubricate”   soils,   but   instead   the   generation   of   excess   pore   pressures   reduce   the   effective  stress  within  the  soil,  and  it  is  certainly  the  case  that  interface  shearing  resistance   is  not  fundamentally  affected  by  the  presence  of  water  (Dietz,  2000).  It  is  felt  that  given  the   particulate   nature   of   most   soils,   lubricants   may   not   be   able   to   form   a   sufficiently   durable   film  or  boundary  to  ease  the  movement  of  particles  over  each  other.  

2.5.4.3 Lubricant-­‐soil  mixtures   The   effect   of   bentonite   slurry   penetration   into   soil   on   the   shear   strength   of   the   soil   was   investigated  by  Filz  et  al.  (2004).  Test  results  were  presented  for  standard  drained  triaxial   tests  on  coarse  sand  (D15  =  3.0mm)  with  water  as  a  pore  fluid  and  for  similar  sand  samples,   where  the  pore  water  has  been  replaced  with  6%  bentonite  slurry  through  application  of  a   pressure  gradient.  It  was  found  that  there  was  no  significant  difference  in  the  strength  of  the   consolidated   coarse   sand   with   water   as   pore   fluid,   or   the   same   coarse   sand   with   6%   bentonite  slurry  as  the  pore  fluid,  as  shown  in  Figure  2.17.    

 

37  

slurry supply so that slurry was free to move into or out of the specimen in response to specimen volume change. As shown in Fig. 5, there is no significant difference between the results for the water-saturated specimens and the specimens penetrated with

Chapter  2  

 

unit weight of the sand below th $ sw !unit weight of the sand when ter; $ s !unit weight of the slurry of groundwater; n!H s /H where Literature   review   the bottom of the trench; and &! sand. The inclination of the critica

' f !45°#

!

ta

Eqs. "2# follow the work of Nash and Amir-Tahmasseb "1965#; and that "1# different total unit weight above and below the groundwate surcharge pressure is included, a placed on the soil strength, i.e., ta the unit weight of the slurry. Fig. 7 shows a comparison b using Eqs. "2# and using Spence UTEXAS3 "Wright 1991# for a !20 m, H w !18 m, $ sw !20 kN q!0, and a range of values for $   the agreement between Eqs. "2# a 5. Shear coarse sand and swithout penFigure  2.17  -­‐  Shear  sFig. trength   of  cstrength oarse  sof and   with   &  wwith ithout   lurry  pslurry enetration   (Filz   t  al.,  2004)  using UTEXAS3 Theecalculations etration gram to search for arbitrarily sha

 

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©

2.5.4.4 Buoyancy  and  contact  conditions  between  the  pipe  and  the  soil   Loganathan   and   Poulos   (1998)   base   their   elastic   settlement   analysis   on   the   assertion   that   the   pipe   string   settles   to   the   bottom   of   the   overcut   gap,   and   hence   the   distance   between   the   crown  of  the  tunnel  lining  and  the  crown  of  the  excavated  space  becomes  twice  the  designed   overcut.   Norris   (1992)   and   Marshall   (1998)   have   observed   pipelines   both   settling   to   the   bottom  of  the  overcut  and  undergoing  buoyant  uplift  due  to  the  action  of  water  or  slurry  in   the   excavation.   Here,   the   pipes   were   forced   to   the   top   of   the   overcut   space   and   resistance   to   jacking   was   greatly   reduced.   Simple   calculations   carried   out   based   on   data   provided   by   a   concrete   jacking   pipe   manufacturer   (FP   McCann,   2011)   show   that   from   nominal   diameter   (diamètre  nominal)  DN   900   upwards,   concrete   jacking   pipes,   if   water-­‐tight,   are   buoyant   in   water.  

2.5.4.5 Filter  cake  formation   As   mentioned   in   Section   2.5.3,   the   ability   of   slurry   to   form   a   filter   cake   in   the   soil   is   of   interest   in   pipe   jacking   and   microtunnelling,   as   the   formation   of   such   a   filter   cake   may   be   vital   to   one   mechanism   of   skin   friction   reduction   (§2.5.4.1).   The   formation   of   a   filter   cake   depends   on   the   relative   grain   sizes   present   in   the   soil   and   lubricating   fluid,   the   pressure   gradient   between   the   pore   water   pressure   in   the   soil   and   the   injection   pressure   of   the   lubricating  fluid,  and  time  (Majano  et  al.,  1994;  Filz  et  al.,  2004).  It  was  found,  for  example,   that   at   a   pressure   differential   of   2kPa   and   after   4   hours,   an   unspecified   bentonite   slurry   mix   formed   an   effectively   impermeable   filter   cake   (Majano   et   al.,   1994).   Filz   et   al.   (2004)   indicate  that  a  filter  cake  will  form  from  bentonite-­‐water  slurry  if  the  D15  size  of  the  sand  is   0.4mm   or   less   and   otherwise   the   bentonite-­‐water   slurry   will   penetrate   into   the   soil.   Schoesser  et  al.  (2011)  differentiate  between  an  outer  filter  cake,  inner  filter  cake  and  slurry   penetration  into  the  soil,  as  shown  in  Figure  2.18.    

38  

Chapter  2  

 

Literature  review  

  Figure  2.18  -­‐  Outer  filter  cake  (left),  inner  filter  cake  (centre)  and  slurry  penetration  (right)   (Schoesser  at  al.,  2011)  

  It   is   suggested   that,   for   bentonite   slurry,   an   outer   filter   cake   forms   when   D10   is   less   than   1mm,  an  inner  cake  forms  when  D10  is  between  1mm  and  6mm  and  free  penetration  into  the   soil  will  occur  when  D10  is  greater  than  6mm.  

2.5.5 Guidelines  for  lubricating  pipe  jacks  and  usage  in  the  field   2.5.5.1 Field  observations  on  the  use  of  lubricants   A   search   of   the   literature   and   discussions   with   pipe   jacking   contractors   and   drilling   mud   suppliers   revealed   that   there   were   no   explicit   guidelines   or   commonly-­‐applied   rules   as   to   what,  when  and  how  much  to  lubricate  with.    That  lubricants  should  be  mixed  “to  suit  the   ground”   and   applied   “when   necessary”   was   as   far   as   could   be   established.   The   UK-­‐based   Pipe  Jacking  Association  (2007)  give  the  following  guidance  on  the  use  of  lubricants  in  pipe   jacking:     “Frictional   forces   on   the   pipeline   may   be   reduced   by   applying   a   suitable   lubricant,   under  a  nominal  pressure  above  that  of  the  ground  water  pressure  present.”       Bentonite  is  the  preferred  choice  of  lubricant  for  most  conditions  within  Ireland  and  the  UK,   normally   in   the   form   of   CETCO   Hydraul-­‐EZ,   a   modified   bentonite   containing   proprietary   polymer   additives.   Some   contractors   mix   bentonite   with   other   polymer   or   surfactant   products  to  combat  swelling  clays  when  necessary.  Many  contractor  personnel  interviewed   had  rules  of  thumb,  for  example  to  inject  lubricant  after  every  pipe  or  every  other  pipe  at  a   set   pressure   above   an   assumed   hydrostatic   pressure.   Others   aimed   to   keep   the   annulus   open,   without   stating   exactly   how   this   was   achieved   or   checked   for.   Other   researchers   report   similar   difficulties   in   quantifying   field   lubricant   use.   Staheli   (2006)   indicated   that   the   methods  and  lubrication  schemes  used  by  tunnelling  contractors  were  based  on  experience   in  similar  ground  conditions,  while  Borghi  (2006)  stated:      

39  

Chapter  2  

 

Literature  review  

“In spite of its importance, soil conditioning, or research thereon, is sometimes regarded with distrust and the ‘common sense and experience’ approach has tended to be preferred in the field. This attitude is perfectly reasonable for less demanding projects or in cases where only a low standard of performance is required. However, as the efficiency and control of the machine operation becomes critical or when the project conditions grow in complexity, a deeper understanding of the fundamental mechanics becomes crucial to complement the experience-driven approach to soil conditioning.”

  Figure  2.19  –  Automatic  lubricant  dosing  system  (Herrenknecht  AG)  

  Recently,   there   have   been   attempts   to   manage   and   control   the   lubrication   of   pipe   jacking   operations.   The   Herrenknecht   “Volume   Controlled   Bentonite   System”,   shown   in   Figure   2.19,   is   a   new   system   that   can   automatically   provide   a   dosage   of   a   predetermined   volume   of   lubricant   along   a   pipe-­‐jacked   pipeline   (Ulkan,   2013).   Prior   to   the   commencement   of   pipe   jacking,   the   project   designer   prepares   a   lubricant   dosage   plan   based   on   the   geotechnical   conditions   expected,   so   that   the   optimal   amount   of   lubricant   is   delivered.   The   plan   is   executed  during  the  works,  with  all  data  recorded  for  later  analysis.  Meanwhile,  the  “CoJack”   system   allows   the   acquisition   of   jacking   force   data   in   real   time   and   the   processing   of   this   data  off  site  (Beckmann  et  al.,  2007).  In  future,  systems  like  these  may  make  more  data  on   lubrication  practice  in  pipe  jacking  available  for  analysis.  

2.5.5.2 Quantities  of  lubricant  injected   Pellet-­‐Beacour   and   Kastner   (2002)   and   the   French   Society   for   Trenchless   Technology   (2006)   reported   on   the   relationship   between   the   volume   of   lubricant   injected   and   the   corresponding  reduction  in  skin  friction  stress  from  a  number  of  monitored  drives.  Volumes   injected  ranged  from  25  litres  per  linear  metre  in  marl  and  sandy-­‐gravelly  marl  to  170  litres   per  linear  metre  in  clean  sand.  In  sandy  soils,  it  is  shown  that  volume  of  lubricant  injected    

40  

Chapter  2  

 

Literature  review  

and  the  percentage  reduction  in  skin  friction  stress  are  closely  related.  It  is  also  shown  that   continuous   injection   all   along   the   pipe   is   the   more   effective   strategy   than   reactive   injections   made   when   increases   in   jacking   force   were   observed,   as   it   may   be   too   late,   once   the   skin   friction  stress  has  increased,  to  have  any  effect  with  lubricant.  A  link  between  permeability   of  sandy  soil,  the  volume  of  lubricant  injected  and  the  percentage  reduction  in  skin  friction   resistance  was  also  noted,  showing  that  the  quantity  of  lubricant  injected  must  compensate   for  the  more  permeable  sandy  soils.  Pellet-­‐Beacour  and  Kastner  (2002)  present  a  graph  of   friction   reduction   percentage   against   the   volume   (litres)   of   lubricant   injected   per   linear   metre,   which   is   reproduced   in   Figure   2.20,   showing   the   beneficial   effect   of   injecting   large   volumes  of  lubricant,  particularly  in  sands.   88

A.-L. Pellet-Beaucour, R. Kastner ! Tunnelling and   Underground Space Technology 17 (2002) 83!97

  Fig. 8. Comparison between the reduction percentage of frictional stress and the volume of injected lubricant per linear metre.

Figure  2.20  -­‐  Percentage  reduction  in  skin  friction  stress  against  volume  of  injected  lubricant   per  linear  metre  (ml  =  linear  metre)  (Pellet-­‐Beaucour  and  Kastner,  2002)  

great influence on the magnitude of friction stress A comparison between the different drives where addi   reductions. This difference can be explained by a loss tional frictional stresses after an overnight stoppage For  one  site  at  Bouliac  where  the  dominant  soil  type  was  “clean  sand”,  careful  attention  paid   of lubricant, which may pass through more permeable were calculated, such as the analysis of variations of sandy and soils,allowed   and byskin   thefriction   makingstress   of a to   remain   to   gravely lubrication   at  lubricant a   very   low   value,  on approximately   injected amounts Montmorency 3 drive, soil!lubricant mixture on soil!pipe contact, which preshows the values of additional friction being reduced 0.5kPa,   for   the   drive.   Following   this   and   other   observations,   the   following   factors   were   sents a larger friction coefficient than that of the lubriwhen the injected lubricant amount increases. Additioto  inhave   in  that maintaining   this   low   (French   for  toTrenchless   cant. Datajudged   collected sandyassisted   soils show the volume nal stress   frictional stressesSociety   are seen decrease from 2.0 to of injected slurry and the reduction percentage of 0.6 kPa for increasing injection amounts from 26 to 200 Technology,  2006):   l!lm Žsee Table 3.. frictional stress are closely linked. Of course, other These few examples show that an injection of slurry fieldwork  monitoring will be necessary to quantify this relationship. in the annular space is effective for reducing additional • The   provision   of   an   adequate   overcut,   taking   account   of   the   possibility   of   swelling   With regard to the injection process, it appears that friction after stoppages injections before work interrupclay  and  slosses ettlement   ffects.  control of there are some efficiency and epoor tions help to prevent the ground closure around the pipes. friction forces when injections are carried out discont• The  addition  of  polymers  and  microbeads,  which  are  small  rigid  spheres  often  added   Therefore, the influence of lubrication was noted at inuously in reaction to critical increases of friction ŽPellet, twoslurry.   levels: forces Žin example 1997t.o   . In to  Montmorency reduce  drag  in  3d. rilling   fluids,   bentonite   fact, it is too late at this stage to achieve much benefit. • Continuous   lubricant   injection   at   several   points   along   the   pipeline,   not   just   at   the   The lubricant injection distributed among several points ! Firstly, it reduces dynamic frictional stress in proportions varying from 45 to 90% Žsee Table 2.; and along the pipelinerear   ensures a smore uniform distribution of  the   hield.   of lubricant around the jacked pipes and a more effec! secondly, lubrication is effective in reducing additive reduction in frictional resistance. tional frictional stress due to work interruptions. In addition to its effect on dynamic frictional stress, lubrication is effective for reducing additional friction In fact, relationships between dynamic friction Ždur   forces at restart, as the study on stoppages has shown. 41   ing jacking., additional friction resulting from stop-

Chapter  2   •

 

Literature  review  

A   large   injection   volume   (average   injection   rate   of   5.6   times   the   volume   of   the   overcut   in   the   case   of   Bouliac,   but   in   any   case   at   least   equal   to   the   volume   of   the   overcut).  



Continuous  jacking  without  long  stoppages.  



Careful  measurement  and  monitoring  of  lubricant  volume  and  pressure.  

 

2.6 Modelling  the  skin  friction  component  of  jacking  force   2.6.1 Approaches  to  modelling  the  skin  friction  stress  in  pipe  jacking   Many  models  have  been  proposed  for  modelling  the  skin  friction  component  of  jacking  force   in   pipe   jacking   (McGillivray,   2009),   ranging   for   simple   empirical   models   to   advanced   analytical   and   numerical   models.   In   common,   almost   all   take   account   of   the   normal   stress   imposed  by  the  ground  onto  the  pipeline  (§2.6.2).  This  will  also  depend  on  the  stability  of   the   ground,   due   to   the   overcut   and   arching,   which   may   also   be   taken   account   of   in   modelling.   A   number   of   empirical   models   are   reviewed,   followed   by   the   review   of   several   theoretically  based  models  of  skin  frictional  resistance.  For  the  theoretically  based  models,  a   distinction   is   made   between   coarse-­‐grained   soils   and   fine-­‐grained   soils,   as   models   applicable  to  one  may  not  be  applicable  to  the  other,  while  for  empirical  models  the  soil  type   is  normally  taken  account  of  within  the  model  itself.  

2.6.2 Normal  stress  on  underground  pipelines     2.6.2.1 Overcut   Normally,   the   pipe-­‐jacking   shield   or   microtunnelling   machine   is   a   slightly   larger   diameter   than  the  product  pipes,  and  the  annular  gap  behind  the  shield  or  microtunnelling  machine  is   termed   the   overcut   or   overbreak.   The   overcut   reduces   the   normal   stress   on   the   pipeline.   One   of   the   following   three   conceptual   mechanisms,   or   a   combination,   may   influence   the   normal  stress  development  following  creation  of  the  overcut:   1. The   overcut   may   remain   open,   minimising   the   contact   area   and   contact   pressure   between  the  pipe  and  the  ground.   2. The   overcut   may   yield,   allowing   for   the   development   of   arching   mechanisms   that   reduce  the  normal  effective  stress  on  the  pipe  barrel.   3. The   overcut   may   elastically   unload   onto   the   pipeline,   or   the   swelling   of   clays   may   generate  high  stresses  on  the  pipe  barrel.     These   mechanisms   are   shown   in   Figure   2.21,   while   a   probable   physical   scenario   is   also   shown.  

 

42  

Chapter  2  

 

Literature  review  

  Figure  2.21  -­‐  Conceptual  mechanisms  for  overcut  behaviour  around  a  pipeline  –  open  overcut   (left),  closed  overcut  due  to  collapse,  swelling  or  elastic  unloading  (centre)  and  a  possible   physical  scenario  (right)  

  The   overcut   ratio   (R)   is   the   ratio   of   the   shield   diameter   (DS)   to   the   product   pipe   diameter   (DP):     𝑅=

(𝐷! − 𝐷! ) 𝐷!

Equation  2-­‐11  

  From  a  series  of  small  scale  tank  tests  using  a  model  microtunnelling  machine  and  coarse-­‐ grained  soil  it  was  found  that  providing  an  overcut  causes  large  reductions  in  jacking  forces,   reducing  jacking  forces  on  the  model  microtunnelling  machine  by  a  factor  of  up  to  8  or  10   (Phelipot   et   al.,   2003).   Rogers   and   Yonan   (1992)   found   that   an   overcut   ratio   of   approximately   0.04   was   optimal,   with   forces   remaining   low   if   the   overcut   ratio   was   increased   beyond   this.   A   factor   of   3   to   5   reduction   in   frictional   resistance   between   steel   and   two  types  of  sand  was  observed  using  an  overcut  ratio  of  0.0308.    

2.6.2.2 Stability   Once  the  overcut  has  been  formed,  its  stability  is  of  concern.  The  stability  of  the  overcut  is   examined   separately   for   the   case   of   coarse-­‐grained   and   fine-­‐grained   soils,   but   first   the   concept  of  arching  in  soils  is  introduced.   2.1.1.1.1

Arching  

Since  the  effect  of  arching  was  first  identified  by  French  military  engineers  in  the  design  of   silos,   where   it   was   noted   that   the   base   of   the   silo   supported   only   a   fraction   of   the   total   mass   above  it  and  that  the  side  walls  carried  a  much  greater  load  than  expected,  there  has  been   much  research  into  the  phenomena  (Lochaden,  2012).  The  active  trapdoor  problem,  where   movement  takes  places  away  from  the  soil  mass,  has  long  been  used  as  a  simple  method  to   model   the   stress   distribution   occurring   around   tunnels.     The   classical   active   trapdoor   problem  defined  by  Terzaghi  (1943)  is  reproduced  in  Figure  2.22.    

 

43  

s=c+utanq, Chapter  2  

The unit weight of the soil is 'Y and the surface of the so   q per unit of area. Literature   review   uniform surcharge The ratio between the 2

b 1

o'y

4=

n

t1h

I:

't

4

"-

.. I/)

:J

"

';=4

K=!

8

   

Figure  2.22  -­‐  Sliding  surfaces  in  Terzaghi's   (a) trapdoor  model  (Terzaghi,  1943)  

(d)

Once   the   overcut   allows   for   enough   resulting   soil   movement   to   initiate   the   arching  

0

0

Z = tumdb

XI

2

mechanism,   the   vertical   stresses   acting   on   the   crown   of   an   underground   pipeline   may   be   calculated  as  follows:  

"

2

  𝜎! =  

! 𝛾𝐵 /b

𝐾   ∙   tan 𝜙

I

II

.....

\ia!

Z

...... ......

\1

!

I':

I

𝜎! = 0.3𝛾 0.5𝐷! + 𝐷! 𝜎!   𝜋 𝜙 − 4 2

..... ......

Equation   a I 2-­‐12  

! Klan Equation  2-­‐13  

6

b=c-Knf, Equation  2-­‐14  

8

-10)  

Barla  et  al.  (2006)  –  H’knecht  AVN  1000  

Limestone  

558.3  

Very  high  (>10)  

Thomson  (1993)  –  UK  practice  

Varies  

-­‐  

2  to  3  

Thomson  (1993)  –  Australian  practice  

Limestone  

-­‐  

1  

Project/Reference  

Rock  type  

Tullamore  

Table  7.10  -­‐  Observed  face  and  skin  friction  stresses  for  the  projects  in  Tullamore  and  Gilford   (in  italics)  and  values  from  literature  

  It   is   seen   from   the  Table   7.10   that   the   face   and   skin   friction   resistance   stresses   measured   at   Tullamore  and  Gilford  are  broadly  in  line  with  expected  values  quoted  in  the  literature.  Of   particular  note  is  the  discrepancy  between  the  guidance  on  expected  skin  friction  resistance   stresses   for   pipe   jacking   in   the   UK   and   Australia   given   by   Thomson   (1993)   and   those   observed   in   the   field.   It   may   be   that   this   guidance   needs   updating.   Also   of   note   is   the   experience  documented  by  Barla  et  al.  (2006),  where  heavily  jointed  limestone  of  relatively   low   rock   material   strength   but   with   strong   micrite   inclusions   gave   rise   to   very   high   face   resistance   stresses,   which   were   high   enough   that   one   drive   which   was   started   using   a   microtunnelling   machine   with   a   pick-­‐and-­‐scraper   head   had   to   be   abandoned   with   the   machine   being   retrieved   by   open   cut.   The   limestone   also   collapsed   onto   the   pipeline   generating  very  high  skin  frictional  stresses.       While  the  two  case  histories  documented  here  were  unremarkable,  the  information  gained   will  be  valuable  to  future  microtunnelled  pipe  jacking  works  in  hard  rock.  There  remains  an   unfortunate  lack  of  published  case  histories  relating  to  this  topic,  but  with  the  application  of   hard   rock   microtunnelling   machines   becoming   more   common   it   is   hoped   that   further   publications  will  arise  in  due  course.     Finally,   neither   in   the   two   case   histories   described   by   the   author   nor   in   any   of   the   case   histories   reported   in   the   literature   was   the   performance   of   the   lubricants   injected   during   the   pipe   jacking   process   measured   or   assessed.   While   it   is   probable   that   the   Hydraul-­‐EZ   lubricant  used  in  the  projects  at  Tullamore  and  Gilford  provided  a  contribution  in  keeping   the   pipeline   buoyant   and   suspending   unstable   pieces   of   cut   rock,   it   is   impossible   to   verify   this.   Looking   at   the   predictions   made   in   Section   7.4.2,   it   is   seen   that   the   skin   frictional    

226  

Chapter  7  

  Pipe  jacking  &  microtunnelling  in  hard  rock  

resistance   stresses   recorded   in   the   field   were   closest   to   the   “full   buoyancy”   predictions   than   the   “no   buoyancy”   predictions,   which   may   indicate   that   the   jacking   pipes   were   buoyant   in   the   lubricant   to   an   extent.   Given   the   cost   and   time   involved   in   applying   lubricants,   it   is   suggested  that  some  research  be  carried  out  in  future  to  assess  their  effectiveness.    

7.5 Summary   The   jacking   forces   recorded   during   two   drives   in   rock   have   been   back   analysed.   The   total   jacking  forces  were  separated  into  face  resistance  and  skin  frictional  resistance  components.   It   is   seen   that   skin   friction   resistance   plays   a   minor   role   in   the   resistance   to   advance   of   pipe   jacking  pipes  in  rock  compared  to  soft  soil,  while  face  resistance  is  higher.       The  skin  friction  resistance  measured  during  the  Tullamore  project  was  close  to  the  value  of   skin   friction   resistance   predicted   by   assuming   that   the   pipeline   was   fully   buoyant   in   lubricant.   This   may   indicate   that   the   lubrication   applied   in   Tullamore   was   effective   in   keeping  the  pipeline  suspended  within  the  overcut.  For  Gilford,  the  measured  skin  friction   resistance   stress   lay   between   the   predicted   values   for   full   and   no   buoyancy,   perhaps   indicating  that  the  lubrication  regime  at  Gilford  was  not  as  effective  as  that  in  Tullamore.     It   is   seen   that   UCS   serves   as   a   useful   basis   for   predicting   the   expected   face   resistance   before   a  drive  is  started.  An  investigation  of  more  advanced  rock  mass  rating  systems  (RMR,  RQD,   QTBM,   RSR)   and   their   application   to   microtunnelling   work   is   considered   worthwhile,   but   was   outside   the   scope   of   this   research.   It   would   also   be   worthwhile   to   undertake   research   to   quantify  the  effect  of  lubricants  in  pipe  jacking  on  hard  rock.     The  availability  of  microtunnelling  machines,  such  as  the  Herrenknecht  AVN  range  fitted  out   with   appropriate   roller   cutting   wheels   and   cutting   wheel   changing   facilities,   has   greatly   improved  the  prospects  for  microtunnelling  in  hard  rock.  It  is  the  author’s  opinion  that  the   availability  of  such  machines  should  discourage  attempts  to  excavate  rock  using  traditional   pick-­‐and-­‐scraper-­‐based  microtunnelling  machines.      

 

 

227  

Chapter  8  

 

Conclusions  

8 Conclusion    

8.1 Introduction   As   urban   populations   around   the   world   grow   and   sensitivity   to   the   disruption   and   environmental   damage   caused   by   traditional   construction   methods   increases,   trenchless   technologies,   including   pipe   jacking   and   microtunnelling,   must   continue   to   improve   and   adapt   to   meet   the   new   challenges   imposed.   Ever   more   complex   microtunnelling   solutions   are  being  conceived  for  projects  such  as  long  sea  outfalls,  seawater  abstraction  intakes  and   ambitious   undersea   oil   and   gas   pipelines.   These   projects   are   increasingly   demanding   deeper,   longer   and   more   sharply  curved   pipe  jacking   drives,   all   factors  which  increase  the   jacking   forces   required.   A   thorough   understanding   of   the   mechanism   of   skin   friction   reduction   due   to   the   injection   of   lubricant   slurries   is   important   in   solving   the   problems   that   will  be  faced.       This   thesis   described   a   field,   experimental   and   analytical   study   carried   out   to   further   the   understanding   of   the   mechanisms   of   skin   friction   reduction   due   to   the   injection   of   lubricant   slurries  into  the  overbreak  during  pipe  jacking.  From  a  review  of  the  literature  in  the  area,   three  main  mechanisms  have  been  determined  which  may  give  rise  to  the  desired  beneficial   effect:       1. Boundary   lubrication   reducing   the   sliding   resistance   of   the   interface   between   the   soil  and  the  pipeline.   2. Reduction  of  the  radial  effective  stress  acting  on  the  pipeline.   3. Rendering  of  the  pipeline  fully  or  partially  buoyant  in  the  lubricant  slurry.     The   present   research   sought   to   clarify   the   extent   of   the   contribution   of   each   of   these   mechanisms   to   the   measured   skin   friction   stress   reductions   observed   in   the   field   through   the   analysis   of   field   case   history   data   and   the   physical   modelling   of   the   phenomena   in   the   laboratory.  In  this  chapter,  the  main  findings  and  conclusions  of  the  field  and  experimental   work   are   summarised,   the   practical   applications   of   the   research   are   highlighted   and   areas   where  further  work  may  be  worthwhile  are  recommended.      

228  

Chapter  8  

 

Conclusions  

8.2 Conclusions   8.2.1 Field  case  histories   Observations   on   eight   lubricated   microtunnelled   pipelines   in   soft   soil   and   two   lubricated   microtunnelled   pipelines   in   hard   rock   have   been   presented.   The   jacking   forces   during   the   construction   of   these   pipelines   have   been   analysed,   and   the   factors   and   operational   parameters  that  may  have  affected  the  jacking  forces  have  been  described.     For   the   soft   soil   drives,   which   were   all   lubricated,   it   was   found   that   the   skin   friction   resistances   observed   were   generally   low,   and   all   were   below   10kPa,   which   is   a   rule-­‐of-­‐ thumb  established  for  estimating  the  skin  frictional  resistance  in  pipe  jacking.  Unfortunately   it   was   not   possible   to   differentiate   between   lubricated   and   unlubricated   skin   friction   resistances,  as  records  of  lubrication  procedures  were  not  kept  during  the  reported  drives.   Face   resistance   stresses   were   quite   low   for   all   cases,   and   were   at   the   lower   end   of   observed   values   reported   by   other   researchers.   It   was   concluded   that   the   face   resistance   stress   was   dependent   on   the   driving   style   of   the   microtunnelling   machine   operator,   as   well   as   soil   conditions,   with   consistencies   being   established   between   operators   of   similar   experience.   The  examination  of  field  case  histories  in  soft  soils  analysed  by  other  authors  indicated  that,   in  ideal  conditions,  reductions  of  up  to  93%  in  the  skin  frictional  resistance  were  achievable   with   the   injection   of   bentonite-­‐based   lubricants,   with   reductions   up   to   and   including   90%   being  commonplace.     A   method   of   estimating,   within   a   broad   range,   the   likely   magnitude   of   the   face   resistance   and   the   skin   friction   resistance   stress   during   lubricated   pipe   jacking   based   on   the   type   of   soil   expected   during   a   drive   was   proposed,   where   the   face   resistance   and   skin   frictional   resistance   from   a   number   of   projects   carried   out   in   Ireland   and   Northern   Ireland   were   plotted  against  each  other  and  grouped  by  a  description  of  the  dominant  soil  type  during  the   drive.   The   data   were   subsequently   plotted   in   a   similar   manner   to   cone   penetration   test   results   and   this   plot   was   compared   with   a   well-­‐known   chart   for   the   interpretation   of   soil   behaviour  from  CPT  results.  The  comparison  suggested  that  the  injection  of  bentonite-­‐based   lubricants  during  pipe  jacking  altered  the  behaviour  of  the  soil  around  the  pipeline,  with  the   soil-­‐bentonite  mixture  near  the  interface  behaving  like  a  sensitive,  fine-­‐grained  soil.     The   jacking   forces   recorded   during   two   drives   in   rock   were   back   analysed.   The   total   jacking   forces  were  separated  into  face  resistance  and  skin  frictional  resistance  components,  as  for   the   soft   soil   sites.   It   was   seen   that   skin   friction   resistance   played   only   a   minor   role   in   the   resistance   to   advance   of   the   jacked   pipeline   in   hard   rock   compared   to   soft   soil,   while   face    

229  

Chapter  8  

 

Conclusions  

resistance  was  higher.  It  was  shown  that  the  uniaxial  compressive  strength  of  rock  served  as   a  useful  basis  for  predicting  the  expected  face  resistance  during  a  drive.       The  beneficial  effects  of  lubrication  in  hard  rock  were  shown  in  so  far  as  the  skin  frictional   resistance   for   one   project   was   very   close   to   that   value   predicted   based   on   the   assumption   that   the   pipeline   was   buoyant   in   the   lubricant   within   the   bore.   For   the   other   project,   the   measured   skin   frictional   resistance   was   between   predictions   made   for   the   case   of   full   pipeline   buoyancy   in   lubricant   and   for   the   case   of   no   lubrication,   indicating   that   the   lubricant  had  a  significant  beneficial  effect  in  reducing  the  skin  frictional  resistance.  It  was   concluded   that   Mechanism   3   quoted   in   Section   2.1,   which   was   the   rending   of   the   pipeline   partially  or  completely  buoyant  in  the  lubricant  slurry,  was  the  dominant  mechanism  of  skin   friction  reduction  due  to  the  application  of  lubricants  in  hard  rock  pipe  jacking.       It  was  shown  that  modern  microtunnelling  machines,  such  as  the  Herrenknecht  AVN  range   fitted  with  roller  cutting  wheels  and  cutting  wheel  changing  facilities,  were  very  effective  in   advancing   pipe   jacks   through   very   hard   rock.   It   was   suggested,   based   on   the   examination   of   case  history  data  presented  by  other  authors,  that  the  availability  of  such  machines  should   discourage   attempts   to   excavate   even   soft   rock   using   traditional   pick-­‐and-­‐scraper-­‐based   microtunnelling  machines.  

8.2.2 Physical  modelling     8.2.2.1 Unpressurised  lubricants   In   Chapter   4,   the   results   of   a   series   of   unlubricated   and   lubricated   direct   shear   interface   tests   on   a   number   of   coarse-­‐grained   and   fine-­‐grained   soils   and   a   rough   concrete   surface,   similar  in  roughness  to  a  typical  concrete  jacking  pipe,  were  presented.       It  was  found  that  for  a  fine  to  medium,  silica  sand,  known  as  IGB  sand,  the  roughness  of  the   concrete  interface  used  in  testing  was  great  enough  that  the  full  angle  of  internal  shearing   resistance  of  the  sand  was  mobilised  in  the  interface.  In  the  case  of  the  medium  to  coarse,   calcareous  sand,  known  as  Banagher  sand,  the  full  angle  of  internal  friction  resistance  of  the   sand   was   not   mobilised   because   the   particle   size   of   the   sand   was   larger.   This   was   explained   in  the  context  of  Uesugi  and  Kishida’s  “critical  roughness”  model  (1986a).     The  presence  of  an  unpressurised  layer  of  a  bentonite-­‐based  lubricant  was  found  to  have  a   modest  beneficial  effect  in  reducing  the  shearing  resistance  between  the  test  sands  and  the   concrete   interface.   However,   no   measureable   beneficial   effect   with   regard   to   reducing   the   shearing   resistance   was   observed   in   the   case   of   fine-­‐grained   soils   in   either   drained   or    

230  

Chapter  8  

 

Conclusions  

undrained   conditions.   It   was   thought   that   this   difference   in   behaviour   was   due   to   the   particle  size  differences  of  the  soils,  in  that  the  lubricant  slurry  could  permeate  the  coarse-­‐ grained  soils  and  form  a  filter  cake,  whereas  the  void  sizes  present  in  the  fine-­‐grained  soils   did  not  allow  this.     The   interface   friction   resistance   between   the   concrete   interface   and   the   Banagher   sand,   placed   at   a   relative   density   of   70%,   was   reduced   by   6%   when   the   concrete   interface   was   coated   in   a   2mm   layer   of   8%   Hydraul-­‐EZ,   while   peak   shear   stresses   were   eliminated   during   shearing.   In   the   case   of   IGB   sand   placed   at   a   relative   density   of   70%,   a   2mm   layer   of   8%   Hydraul-­‐EZ   lowered   the   shearing   resistance   of   the   interface   by   12.5%,   while   no   reduction   was  seen  with  4%  Hydraul-­‐EZ.  Peak  shear  stresses  were  also  eliminated  during  shearing  of   IGB   sand   against   the   rough   concrete   interface   when   4%   Hydraul-­‐EZ   was   applied   to   the   interface,  but  peak  shear  stresses  are  present  in  shearing  following  consolidation  of  the  8%   Hydraul-­‐EZ.     For   the   coarse-­‐grained   soils   under   test,   it   was   shown   that   the   beneficial   effect   of   shearing   against   a   smoother   interface   outweighed   the   beneficial   effect   of   coating   a   rough   interface   with   unpressurised   lubricant.   In   the   case   of   a   very   smooth   interface,   which   was   a   Perspex   sheet,   the   mobilised   angle   of   shearing   resistance   was   around   two   thirds   of   the   angle   of   internal  resistance  of  each  sand  under  test.       In   summary,   the   results   obtained   using   unpressurised   lubricants   were   not   satisfactory   in   explaining  the  reductions  in  interface  shearing  resistance  obtained  in  the  field,  in  the  case  of   either  coarse-­‐grained  or  fine-­‐grained  soils.  

8.2.2.2 Pressurised  lubricants   In   order   to   investigate   the   effects   of   pressurised   lubricants   on   the   shearing   resistance   of   the   pipe-­‐soil   interface,   a   novel   triaxial   testing   procedure   was   developed   that   allowed   for   the   injection   of   pipe   jacking   lubricants   under   pressure   into   the   interface   between   a   soil   specimen   and   a   concrete   specimen,   while   shearing   was   ongoing   between   them   under   constant  volume  conditions.  The  development  and  commissioning  of  the  apparatus  and  the   development   of   the   associated   testing   procedure   were   described   in   Chapter   5.   The   establishment   of   constant   volume   shearing   conditions   in   the   novel   apparatus   was   considered   important,   as   the   soil   around   an   advancing   jacked   pipeline   was   considered   to   be   shearing   at   constant   volume   conditions,   given   the   very   large   displacements   involved.   The   results   obtained   from   direct   shear   testing   carried   out   under   constant   volume   conditions,   which   were   presented   in   Chapter   4,   were   used   in   calibrating   the   results   of   the   initial,    

231  

Chapter  8  

 

Conclusions  

unlubricated,   testing   carried   out   with   the   novel   apparatus.   The   application   of   the   novel   triaxial  testing  procedure  to  the  simulation  of  lubrication  in  pipe  jacking  was  then  described,   and   the   three   lubrication   strategies   implemented   were   explained.   These   included   static   injection,   where   the   lubricant   was   injected   prior   to   shearing;   injection   at   4%   axial   strain,   where  the  lubricant  was  injected  during  shearing  at  constant  volume;  and  constant  pressure   injection,   where   a   constant   lubricant   injection   pressure   was   maintained   throughout   the   shearing  stage  of  the  test.     In  Chapter  6,  the  results  of  testing  carried  out  using  the  novel  triaxial  testing  apparatus  with   a  preformed  failure  plane  were  presented  and  the  considerations  taken  into  account  when   interpreting   the   results   were   explained.   It   was   concluded   that   the   novel   apparatus   accurately  simulated  the  constant  volume  shearing  of  IGB  sand  in  the  interface  with  rough   concrete,   however   the   behaviour   of   the   Banagher   sand   within   the   test   procedure   was   not   fully  clarified.     The   magnitudes   of   reductions   in   the   interface   friction   stress   attributed   to   the   injection   of   lubricants   in   the   field   were   successfully   replicated,   and   it   was   shown   that   the   primary   mechanism   responsible   for   these   reductions   was   Mechanism   2   given   in   Section   8.1,   the   reduction   of   the   radial   effective   stress   acting   on   the   surface   of   the   concrete   interface.   This   was  attributed  the  general  increase  in  the  pore  fluid  pressure  near  the  interface  due  to  the   injection  of  either  water  or  lubricant.       Longer   lasting   interface   friction   reduction   effects   were   seen   when   using   viscous   lubricant   slurries  than  water,  due  to  the  lubricant  slurries’  ability  to  clog  the  pores  in  the  soil  near  the   interface   and   hence   allow   for   the   retention   of   the   lubricant   pressure   at   the   interface,   even   when  the  pressure  in  the  lubricant  system  had  been  reduced.  Polymer-­‐  and  bentonite-­‐based   lubricants,  mixed  at  viscosities  which  resulted  in  Marsh  funnel  times  of  between  40  and  100   seconds,  were  both  shown  to  be  effective  in  clogging  the  pores  in  coarse-­‐grained  soils  and   facilitating  the  transfer  of  fluid  pressures  from  the  lubricant  to  the  soil  skeleton.  The  effect   of  differences  in  viscosity  within  this  range  was  minor.     The  deviator  stress  ratio,  which  was  the  ratio  of  the  lubricated  deviator  stress  at  4%  axial   strain  to  the  unlubricated  deviator  stress  at  that  same  strain,  was  the  parameter  by  which   the   effectiveness   of   the   lubricants   during   testing   were   compared.   In   static   injection   tests   using  IGB  sand,  reductions  in  the  deviator  stress  ratio  of  47%  and  7%  were  observed  when   Hydraul-­‐EZ  and  MX  Polymer  lubricants,  respectively,  were  injected  prior  to  shearing.  In  the   case   of   Banagher   sand,   the   reductions   of   the   deviator   stress   ratio   obtained   during   static    

232  

Chapter  8  

 

Conclusions  

injection   tests   were   94%   and   78%   for   Hydraul-­‐EZ   and   MX   Polymer   respectively.   This   showed   that   the   lubrication   process   worked  more  effectively  within   the   Banagher   sand,   and   that   the   bentonite-­‐based   Hydraul-­‐EZ   was   the   more   effective   lubricant   in   the   case   of   both   sand   types.   For   tests   where   lubricants   were   injected   at   4%   axial   strain   while   the   soil   specimen  was  shearing  under  constant  volume  conditions,  reductions   in  the  deviator  stress   ratio   of   at   least   94%   were   observed   in   all   cases.   Constant   volume   lubricant   injection   was   only   carried   out   with   Banagher   sand   and   in   this   case   a   95%   reduction   in   deviator   stress   ratio   was   achieved   with   Hydraul-­‐EZ,   while   an   85%   reduction   was   achieved   with   MX   Polymer.  Again,  the  Hydraul-­‐EZ  was  more  effective  in  reducing  the  interface  friction  stress   in   the   case   of   Banagher   sand,   however   both   lubricant   types   produced   results   that   were   broadly  in  line  with  the  reductions  obtained  in  the  field.      

8.3 Summary   This  thesis  has  presented  the  results  of  a  field  and  experimental  study  into  the  influence  of   lubricants   in   reducing   the   skin   friction   resistance   in   pipe   jacking.   The   mechanisms   of   lubrication   in   soft   soil   microtunnelling   have   been   shown   to   be   both   the   boundary   lubrication  of  the  pipeline  surface  and  the  reduction  of  the  radial  effective  stress  acting  on   the  pipeline  due  to  the  increase  in  the  pore  fluid  pressure  near  the  pipeline  surface.  It  was   shown  that  boundary  lubrication  was  responsible   for   up   to   20%   of   the  obtainable  reduction   in   interface   shearing   resistance   due   to   lubrication   in   pipe   jacking,   with   the   remaining   majority  of  the  reduction   being   due   to   effective   stress   reduction   at   the   pipe-­‐soil  interface.  In   hard   rock   microtunnelling,   it   was   concluded   that   the   buoyancy   imparted   to   the   pipeline   due   to  the  filling  of  the  overcut  with  lubricant  was  the  dominant  mechanism  for  the  reduction  of   the  skin  frictional  resistance.     The   novel   triaxial   interface   friction   testing   apparatus   presented   has   provided   a   more   comprehensive  picture  of  the  mechanisms  of  lubrication  than  previous  research,  involving   constant   volume   shearing   and   the   testing   of   two   lubricants,   one   bentonite-­‐based   and   the   other  polymer-­‐based.  The  physical  model  developed  simulates  the  behaviour  of  the  soil  near   an   advancing   pipe   jack   in   a   more   complete   way   than   is   possible   using   direct   shear-­‐based   testing   methods,   allowing   for   the   control   and   measurement   of   pore   fluid   pressures   near   the   interface.     A   number   of   recommendations   towards   practice   have   been   made,   in   particular   that   the   monitoring   of   lubricant   pressure   during   jacking   should   be   made   a   routine   part   of   the   management   of   pipe   jacking   operations,   and   that   lubricant   strategies   employed   should   be    

233  

Chapter  8  

 

Conclusions  

based  on  the  maintenance  of  a  constant  lubricant  pressure  around  the  pipeline,  rather  than   the   injection   of   a   prescribed   quantity   of   lubricant.   The   traditional   absence   of   documented   procedures   in   practice   for   this   very   important   aspect   of   pipe   jacking   is   unfortunate,   as   lubrication,   correctly   applied,   has   the   potential   to   reduce   the   frictional   component   of   the   jacking  force  by  greater  than  90%.    

8.4 Recommendations  for  future  research   Although  the  research  presented  in  this  thesis  has  contributed  to  the  knowledge  of  the  effect   of  lubricants  on  interface  friction  in  pipe  jacking,  more  research  is  required  to  enable  the  full   exploitation  of  the  advances  in  pipe  jacking  and  microtunnelling  technology  that  have  been   made  in  recent  decades.  Opportunities  for  further  investigation  have  been  identified  in  the   following  areas:     •

While   the   mechanisms   of   action   of   pipe   jacking   lubricants   in   coarse-­‐grained   soils   have   been   clarified,   the   suitability   of   different   lubricant   types   for   different   soil   conditions   has   not   been   fully   evaluated.   Hence,   further   research   is   needed   into   matching  the  lubricant  properties  with  the  soil  conditions.  



Further   investigations   into   the   influence   of   lubricants   on   the   behaviour   of   fine-­‐ grained  soils  in  the  interface  with  jacking  pipes  are  recommended.  



The   clogging   effect   of   bentonite-­‐based   lubricant   in   particular   is   likely   to   be   time   dependent.  It  is  recommended  that  consolidometer  tests  be  carried  out  on  bentonite   lubricants   and   mixtures   of   lubricants   and   soils   using   low   normal   stresses   to   investigate  time-­‐dependent  effects  in  pipe  jacking  lubrication.    



Further  field  observation  and  back  analysis  is  suggested,  where  lubricant  pressure  is   continuously   monitored   at   the   injection   port   and   at   specific   intervals   along   the   pipeline,   so   the   pressure   dependency   of   the   lubrication   mechanisms   may   be   validated.  This  would  also  allow  a  pressure  profile  to  be  built  up  along  the  pipeline   so  that  the  zone  of  influence  of  an  individual  lubricant  port  may  be  obtained.  



Expansion   of   the   triaxial   interface   shear   testing   programme   may   be   worthwhile,   using  a  larger  test  specimen  incorporating  a  one  or  more  extra  pressure  transducers   to  obtain  further  information  on  the  behaviour  of  lubricant  within  the  specimen.    



The   ability   of   a   proprietary   polymer   product   to   clog   the   pores   of   a   coarse-­‐grained   soil   has   been   shown,   however   it   is   advised   that   further   research   look   at   the   manufacture  of  an  experimental  polymer  for  use  in  physical  modelling,  such  that  its   ingredients  are  known.  

   

234  

 

References     Akram,   M.   &   Bakar,   M.   Z.   A.   (2007).   Correlation   between   Uniaxial   Compressive   Strength   and   Point   Load   Index   for   Salt-­‐Range   Rocks.   Pakistan   Journal   of   Engineering   and   Applied  Sciences,  1,  1-­‐8.   Al-­‐Mhaidib,  A.  I.   (2006).   Influence   of   shearing   rate   on   interfacial   friction   between   sand   and   steel.  Engineering  Journal  of  the  University  of  Qatar,  19.   Anagnostou,   G.   &   Kovari,   K.   (1996).   Face   stability   in   slurry   &   EPB   shield   tunnelling.   In:   Mair,   R.   T.,   N.   (ed.)   Geotechnical  aspects  of  underground  construction  in  soft  ground.   London:  Balkema.   ASTM  (2002).  ASTM  D5321-­‐02.  Standard   Test   Method   for   Determining   the   Coefficient   of   Soil   and   Geosynthetic   or   Geosynthetic   and   Geosynthetic   Friction   by   the   Direct   Shear   Method.  ASTM  International,  PA,  USA.   ASTM   (2007).   ASTM   D7012-­‐07.   Standard  Test  Method  for  Compressive  Strength  and  Elastic   Moduli   of   Intact   Rock   Core   Specimens   under   Varying   States   of   Stress   and   Temperatures.  ASTM  International,  PA,  USA.   Baggeridge,   P.   (2010).   Personal   communication   re.   the   construction   of   the   Liffey   Services   Tunnel.   Barla,   M.,   Camusso,   M.   &   Aiassa,   S.   (2006).   Analysis   of   jacking   forces   during   microtunnelling   in   limestone.   Tunnelling   and   Underground   Space   Technology,   21,   668-­‐683.   Barton,  N.  (2000).  TBM  tunnelling  in  jointed  and  faulted  rock.  Rotterdam:  A.A.  Balkema.   Bateman,  G.  (2008).  Risk  management  at  the  Drogheda  microtunnelling  project.  Trenchless   Australia,  June  2008.   Beckmann,  D.,  Stein,  R.,  Fabri,  T.  &  Uhlenbroch,  A.  (2007).  CoJack  -­‐  A  new  statics  method   of   computing   and   controlling   pipe   jacking.   Tunneling   and   Underground   Space   Technology,  22,  587-­‐599.   Bieniawski,  Z.  T.  (1989).  Engineering  rock  mass  classifications.  New  York:  Wiley.   Bishop,  A.  W.  &  Henkel,  D.  J.  (1962).  The  measurement  of  soil  properties  in  the  triaxial  test.   London:  Edward  Arnold  (Publishers)  Ltd.  

 

235  

  Bolton,  M.  D.  (1979).  A  Guide  to  Soil  Mechanics.  London:  MacMillan.   Bolton,  M.  D.  (1986).  The  strength  and  dilatancy  of  sands.  Géotechnique,  36,  65-­‐78.   Borghi,  F.  X.  (2006).  Soil  conditioning  for  pipe-­‐jacking  and  tunnelling.  PhD  Thesis,  University   of  Cambridge.   Bowden,  F.  P.  &  Tabor,  D.  (1958).  The  Friction  and  Lubrication  of  Solids.  Oxford  University   Press.   British   Standards   Institute   (1990a).   BS   1377-­‐7:1990.   Methods   of   test   for   soils   for   civil   engineering  purposes  —  Part  7:  Shear  strength  tests  (total  stress).  London:  BSI.   British   Standards   Institute   (1990b).   BS   1377-­‐8:1990.   Methods   of   test   for   soils   for   civil   engineering  purposes  —  Part  8:  Shear  strength  tests  (effective  stress).  London:  BSI.   British   Standards   Institute   (2002).   BS   5911-­‐1:2002+A2:2010   -­‐   Concrete   pipes   and   ancillary   concrete   products.   Specification   for   unreinforced   and   reinforced   concrete   pipes  (including  jacking  pipes)  and  fittings  with  flexible  joints.  London:  BSI.   British   Standards   Institute   (2004).   BS   EN   ISO   14688-­‐2:2004.   Geotechnical   investigation   and   testing   -­‐   Identification   and   classification   of   soil   -­‐   Part   2:   Principles   for   a   classification.  London:  BSI.   British   Standards   Institute   (2010).   BS   1134:2010.   Assessment   of   surface   texture   -­‐   Guidance  and  general  information.  London:  BSI.   Broms,  B.  B.  &  Bennermark,  H.  (1967).  Stability  of  clay  at  vertical  openings.  Journal  of  Soil   Mechanics  and  Foundation  Division,  ASCE,  93,  71-­‐95.   Budhu,  M.  (2011).  Soil  Mechanics  and  Foundations,  3rd  edition.  Wiley.   Çetin,   D.,   Yıldırım,   S.   &   Kılıç,   G.  (2011).  A  New  Approach  for  Determination  of  Adhesion   Coefficient   in   Pipejacking   Method   by   Experimental   and   Numerical   Analysis:   An   Example  from  Istanbul.  Experimental  Techniques,  37,  49-­‐65.   Chandler,   R.   J.   (1966).   The   measurement   of   residual   strength   in   triaxial   compression.   Géotechnique,  16,  181-­‐186.   Chapman,   D.   N.   &   Ichioka,   Y.   (1999).   Prediction   of   jacking   forces   for   microtunnelling   operations.  Tunnelling  and  Underground  Space  Technology,  14,  31-­‐41.   Colliat-­‐Dangus,  J.  L.,  Desrues,  J.  &  Foray,  P.   (1988).   Triaxial   testing   of   granular   soil   under   elevated  cell  pressure.  In:  Donaghe,  R.  T.,  Chaney,  R.  C.  &  Silver,  M.  L.  (eds.)  Advanced   Triaxial  Testing  of  Soil  and  Rock,  ASTM  STP  977.  Philadelphia,  PA:  ASTM.   Craig,  R.  N.  (1983).  Pipe-­‐jacking:  a  state-­‐of-­‐the-­‐art  review.  London:  CIRIA.  

 

236  

  Curran,   B.   G.  (2010).  Analysis   of   jacking   loads   and   ground   movements   for   microtunnelling   in   Irish  ground  conditions.  MEngSc  thesis,  National  University  of  Ireland,  Galway.   Curran,   B.   G.   &   McCabe,   B.   A.   (2011).   Measured   jacking   forces   during   slurry-­‐shield   microtunnelling   in   a   boulder   clay   at   Kilcock,   Ireland.   Proceedings   of   the   15th   European  Conference  on  Soil  Mechanics  and  Geotechnical  Engineering.  Athens,  1627-­‐ 1632.   Dansk  Ingeniørforening   (1984).   DS   415:   Code   of   Practice   for   Foundation   Engineering.   3rd   edition,  Translation  of  Dansk  Standard  DS  415.  Copenhagen.   Deere,  D.  U.,  Coon,  R.  F.  &  Merritt,  A.  H.  (1967).  Engineering  classification  of  in-­‐situ  rock.   Illinois  University  at  Urbana.   Dietz,   M.  (2000).  Developing   an   holistic   understanding   of   interface   friction   using   sand   within   the  direct  shear  apparatus.  PhD  thesis,  University  of  Bristol.   Filz,   G.   M.,   Adams,   T.   &   Davidson,   R.   R.  (2004).  Stability  of  long  trenches  in  sand  supported   by   bentonite-­‐water   slurry.   Journal   of   Geotechnical   and   Geoenvironmental   Engineering,  130,  915-­‐921.   FP  McCann  (2011).  Jacking  and  Microtunnelling  Products.  Magherafelt,  Northern  Ireland.   French  Society  for  Trenchless  Technology   (2006).   Microtunneling  and  Horizontal  Drilling   Recommendations.  ISTE  Ltd.   Gavin,   K.   (1999).   Experimental   investigation   of   open   and   closed   ended   piles   in   sand.   PhD   Thesis,  Trinity  College  Dublin.   Glossop,   N.   H.,   Saville,   D.   R.,   Moore,   J.   S.,   Benson,   A.   P.   &   Farmer,   I.   W.   (1979).   Geotechnical   aspects   of   shallow   tunnel   construction   in   Belfast   estuarine   deposits.   Tunelling  '79.  London,  45-­‐56.   Gómez,   J.   E.,   Filz,   G.   M.   &   Ebeling,   R.   M.  (1999).  Development  of  an  improved  numerical   model  for  concrete-­‐to-­‐soil  interfaces  in  soil-­‐structure  interaction  analyses.  US  Army   Corps  of  Engineers  Waterways  Experiment  Station.   Gong,   Q.   M.   &   Zhao,   J.  (2007).  Development  of  a  rock  mass  characteristics  model  for  TBM   penetration   rate   prediction.   International   Journal   of   Rock   Mechanics   and   Mining   Sciences,  46,  8-­‐19.   Haslem,  R.  F.  (1986).  Pipe  jacking  forces:  from  theory  to  practice.  Infrastructure,  Renovation   and  Waste  Control  Centenary  Conference.  North  West  Association,  ICE.   Head,   K.   H.   (1998a).   Manual   of   Soil   Laboratory   Testing,   Volume   2:   Permeability,   shear   strength  and  compressibility  tests.  Chichester:  Wiley.   Head,   K.   H.   (1998b).   Manual   of   Soil   Laboratory   Testing,   Volume   3:   Effective   stress   tests.   Chichester:  Wiley.  

 

237  

  Herrenknecht   AG.   (2013).   AVN   Machine.   http://www.herrenknecht.com/en/products/core-­‐products/tunnelling-­‐ pipelines/avn-­‐machine.html  [3  July  2013].  

URL:  

Hoek,   E.   &   Bray,   J.  (1981).  Rock  Slope  Engineering.  London:  The  Institution  of  Mining  and   Metallurgy.   Hungr,   O.   &   Morgenstern,   N.   R.   (1984).   High   velocity   ring   shear   tests   on   sand.   Géotechnique,  34,  415-­‐421.   International   Society   for   Rock   Mechanics   (1985).   Suggested   method   for   determining   point   load   strength.   International   Journal   of   Rock   Mechanics   and   Mining   Sciences   &   Geomechanics  Abstracts,  22,  55-­‐60.   Irish   Drilling   Ltd.   (2011).   Tullamore   Waste   Water   Treatment   Plant   site   investigation   report.   Iscimen,   M.   (2004).   Shearing  Behavior  of  Curved  Interfaces.   MS   thesis,   Georgia   Institute   of   Technology.   ITA/AITES   (2007).   Settlements   induced   by   tunneling   in   Soft   Ground.   Tunnelling   and   Underground  Space  Technology,  22,  119-­‐149.   Jefferis,   S.   (1992).   Slurries   and   grouts.   In:   Doran,   D.   (ed.)   Construction  Materials  Reference   Books.  Oxford:  Butterworth-­‐Heinemann.   Jefferis,   S.   (2013).   Personal   communication   re.   the   behaviour   of   bentonite-­‐   and   polymer-­‐ based  lubricants  in  pipe  jacking.   Kabir,   M.   E.   &   Chen,   W.   W.   (2010).   Dynamic   triaxial   test   on   sand.   In:   Proulx,   T.   (ed.)   Proceedings   of   the   2010   Annual   Conference   on   Experimental   and   Applied   Mechanics.   Indianapolis,  IN,  7-­‐8.   Kirsch,  A.  (2010).  Experimental  investigation  of  the  face  stability  of  shallow  tunnels  in  sand.   Acta  Geotechnica,  5,  43-­‐62.   Kishida,  H.  &  Uesugi,  M.  (1987).  Tests  of  the  interface  between  sand  and  steel  in  the  simple   shear  apparatus.  Géotechnique,  37,  45-­‐52.   Klein,   S.   J.  (1991).  Geotechnical  aspects  of  pipe  jacking  projects.  ASCE  Specialty  Conference   on  Pipeline  Crossings.  Denver,  CO,  113-­‐128.   Knapett,  J.  A.  &  Craig,  R.  F.  (2012).  Craig's  Soil  Mechanics,  8th  Edition.  London  &  New  York:   Spon  Press.   La   Rochelle,   P.,   Leroueil,   S.,   Trak,   B.,   Blais-­‐Leroux,   L.   &   Tavenas,   F.   (1988).   Observational   approach   to   membrane   and   area   corrections   in   triaxial   tests.   In:   Donaghe,   R.   T.,   Chaney,   R.   C.   &   Silver,   M.   L.   (eds.)   Advanced  Triaxial  Testing  of  Soil   and  Rock,  ASTM  STP  977.  Philadelphia,  PA:  ASTM.  

 

238  

  Lambe,  T.  W.  &  Whitman,  R.  V.  (1969).  Soil  Mechanics.  New  York,  London:  Wiley  &  Sons.   Lehane,   B.   M.  (1992).  Experimental   investigations   of   pile   behaviour   using   instrumented   field   piles.  PhD  thesis,  Imperial  College,  University  of  London.   Leroueil,   S.,   Tavanas,   F.   &   Le   Bihan,   J.-­‐P.  (1983).  Propriétés  caractéristiques  des  argiles  de   l’est  du  Canada.  Canadian  Geotechnical  Journal,  20,  681-­‐705.   Liu,   S.   H.,   Sun,   D.   Ä.   &   Matsuoka,   H.  (2005).  On  the  interface  friction  in  direct  shear  test.   Computers  and  Geotechnics,  32,  317-­‐325.   Lochaden,  A.  L.  E.  (2012).  Experimental  investigation  of  arching  in  sand  using  a  trapdoor  and   miniature  tunnel  boring  machine.  PhD  Thesis,  Trinity  College  Dublin.   Lochaden,   A.   L.   E.,   Farrell,   E.   R.   &   Orr,   T.   L.   L.  (2008).  Comparing  numerically  modelled   tunnel  induced  ground  movements  with  field  measurements.  In:  E.  Cannon,  R.  West   &   Fanning,   P.   (eds.)   Bridge   and   Concrete   Research   in   Ireland   Conference.   2008.   Galway:  Galileo  Editions,  409-­‐416.   Loganathan,   N.   &   Poulos,   H.   G.  (1998).  Analytical  prediction  for  tunnelling-­‐induced  ground   movements  in  clays.  Journal  of  Geotechnical  and  Geoenvironmental   Engineering,  124,   846-­‐856.   Lupini,   J.   F.,   Skinner,   A.   E.   &   Vaughan,   P.   R.   (1981).   The   drained   residual   strength   of   cohesive  soils.  Géotechnique,  31,  181-­‐213.   Maidl,   B.,   Schmid,   L.,   Ritz.,   W.   &   Herrenknecht,   M.   (2008).   Hard   Rock   Tunnel   Boring   Machines.  Berlin:  Ernst  &  Sohn.   Majano,   R.   E.,   O'Neill,   M.   W.   &   Hassan,   K.   M.   (1994).   Perimeter   Load   Transfer   in   Model   Drilled  Shafts  Formed  under  Slurry.  Journal   of   Geotechnical   Engineering,  120,  2136– 2154.   Marshall,   M.   A.   (1998).   Pipe-­‐jacked   tunnelling:   jacking   loads   and   ground   movements.   PhD   thesis,  University  of  Oxford.   McCabe,   B.   A.,   Orr,   T.   L.   L.,   Reilly,   C.   C.   &   Curran,   B.   G.   (2012).   Settlement   trough   parameters   for   tunnels   in   Irish   glacial   tills.   Tunnelling   and   Underground   Space   Technology,  27,  1-­‐12.   McGillivray,   C.   (2009).   Lubrication   mechanisms   and   their   influence   on   interface   friction   during  installation  of  subsurface  pipes.  PhD  thesis,  Georgia  Institute  of  Technology.   Meehan,  C.,  Tiwari,  B.,  Brandon,  T.  &  Duncan,  J.  (2011).  Triaxial  shear  testing  of  polished   slickensided  surfaces.  Landslides,  8,  449-­‐458.   Mesarovic,  S.  D.,  Padbidri,  J.  M.  &  Muhunthan,  B.  (2012).  Micromechanics  of  dilatancy  and   critical  state  in  granular  matter.  Géotechnique  Letters,  1,  61-­‐66.  

 

239  

  Milligan,   G.   W.   E.   (2000).   Lubrication   and   soil   conditioning   in   tunnelling,   pipe   jacking   and   microtunnelling:  a  state-­‐of-­‐the-­‐art  review.  London:  Geotechnical  Consulting  Group.   Milligan,  G.  W.  E.  &  Marshall,  M.  A.  (1998).  The  functions  and  effects  of  lubrication  in  pipe   jacking.   In:   Negro   Jr,   A.   &   Ferreira,   A.   A.   (eds.)   ITA   World   Tunnel   Congress   1998   -­‐   Tunnels  and  Metropolises.  Sao  Paulo:  Balkema,  749-­‐744.   Milligan,   G.   W.   E.   &   Norris,   P.   (1996).   Site-­‐based   research   in   pipe   jacking‚   objectives,   procedures   and   a   case   history.   Tunnelling   and   Underground   Space   Technology,   11,   Supplement  1,  3-­‐24.   Milligan,  G.  W.  E.  &  Norris,  P.  (1999).  Pipe-­‐soil  interaction  during  pipe  jacking.  Proceedings   of  the  Institution  of  Civil  Engineers  -­‐  Geotechnical  Engineering,  27-­‐44.   Muir,   A.   J.   (1971).   Effect   of   shear   strength   parameters   on   slope   stability   analyses   in   the   Winnipeg  area.  MSc  thesis,  University  of  Manitoba.   Muir   Wood,   D.   (1990).   Soil   behaviour   and   critical   state   soil   mechanics.   Cambridge:   Cambridge  University  Press.   Nicholls,  H.  (1929).  The  construction  of  a  tunnel  under  the  River  Liffey.  Transactions  of  the   Institution  of  Engineers  of  Ireland,  60,  185-­‐230.   Norris,   P.  (1992).  The   behaviour   of   jacked   concrete   pipes   during   site   installation.  PhD  thesis,   University  of  Oxford.   O'Kelly,  B.  C.  &  Naughton,  P.  J.  (2008).  On  the  interface  shear  resistance  of  a  novel  geogrid   with  in-­‐plane  drainage  capability.  Geotextiles  and  Geomembranes,  26,  357-­‐362.   O'Reilly,  M.  P.  &  New,  B.  M.  (1982).  Settlement  above  tunnels  in  the  United  Kingdom  -­‐  their   magnitude   and   prediction.   Tunnelling   1982   Symposium.   London:   Institution   of   Mining  and  Metallurgy,  173-­‐181.   O'Sullivan,   D.  (2010).  Personal   communication   re.   Bord   Gáis   Éireann   gas   pipelines   under   the   River  Liffey  in  Dublin.   Orr,   T.   L.   L.   &   Farrell,   E.   R.   (1996).   Geotechnical   aspects   of   tunnelling   in   soft   ground   in   Ireland.   In:   Mair,   R.   T.,   N.   (ed.)   Geotechnical   aspects   of   underground   construction   in   soft  ground.  London:  Balkema,  301-­‐305.   Pellet-­‐Beaucour,   A.-­‐L.   &   Kastner,   R.   (2002).   Experimental   &   analytical   study   of   friction   forces   during   microtunneling   operations.   Tunnelling   and   Underground   Space   Technology,  17,  83-­‐97.   Phelipot,   A.,   Dias,   D.   &   Kastner,   R.   (2003).   Influence   of   overcut   and   lubrication   during   microtunneling.  ISTT  International  No-­‐Dig  2003.  Los  Angeles.   Pipe   Jacking   Association   (2007).   An   introduction   to   pipe   jacking   and   microtunnelling   design.  London:  Pipe  Jacking  Association.  

 

240  

  Plaxis  bv  (2011).  Plaxis  2D  2011  Manual.  Delft.   Potyondy,   J.   G.   (1961).   Skin   friction   between   various   soils   and   construction   materials.   Géotechnique,  11,  339-­‐353.   Powrie,  W.  (2002).  Soil  Mechanics:  Concepts  and  Applications.  London:  Spon  Press.   Reilly,  C.  C.,  McCabe,  B.  A.  &  Orr,  T.  L.  L.   (2012).   Analysis   of   microtunnel   jacking   forces   in   alluvium  and  glacial  till  in  Mullingar,  Ireland.  In:  Phienwej,  N.  &  Boonyatee,  T.  (eds.)   ITA-­‐AITES  World  Tunnelling  Congress  2012.   Bangkok,   Thailand:   Engineering   Institute   of  Thailand  (EIT),  Reilly-­‐C.C_fp_0411.pdf.   Robertson,   P.   K.,   Campanella,   R.   G.,   Gillespie,   D.   &   Grieg,   J.   (1986).   Use   of   piezometer   cone  data.  ASCE  Specialty  Conference,  In-­‐situ  86.  Virginia,  USA,  1236-­‐1280.   Rogers,   C.   D.   F.   &   Yonan,   S.   J.   S.  (1992).  Experimental  study  of  a  jacked  pipeline  in  sand.   Tunnels  &  Tunnelling,  24,  35-­‐38.   RPS   Consulting   Engineers   (2008).   Dublin   Bay   Project   Contract   5.1b   Site   Investigation   Report.  Dublin.   Rusnak,   J.   &   Mark,   C.   (2000).   Using   the   point   load   test   to   determine   the   uniaxial   compressive   strength   of   coal   measure   rock.   Proceedings   of   the   19th   International   Conference  on  Ground  Control  in  Mining.  Morgantown,  WV:  West  Virginia  University.   362-­‐371.   Sadrekarimi,   A.   &   Olson,   S.   M.  (2011).  Critical  state  friction  angle  of  sands.  Géotechnique,   61,  771-­‐783.   Schoesser,  B.,  Thewes,  M.,  Peters,  M.  &  Praetorius,  S.  (2011).  Practice-­‐oriented  guideline   for   the   choice   of   an   adequate   bentonite   suspension   for   lubrication   in   pipe   jacking.   ISTT  International  No-­‐Dig  2011.  Berlin,  3A-­‐3-­‐1  -­‐  3A-­‐3-­‐12.   Sevastopulo,  G.  D.  (2011).  Report  on  two  rock  samples  from  Tullamore.   Sheng,  D.,  Westerberg,  H.,  Mattsson,  H.  &  Axelsson,  K.  (1997).  Effects  of  end  restraint  and   strain  rate  in  triaxial  tests.  Computers  and  Geotechnics,  21,  163-­‐182.   Shimada,   H.,   Khazaei,   S.   &   Matsui,   K.   (2004).   Small   diameter   tunnel   excavation   method   using  slurry  pipe-­‐jacking.  Geotechnical  and  Geological  Engineering,  22,  161-­‐186.   Shou,   K.   &   Yen,   J.   (2010).   On   the   behaviour   of   a   stuck   curved   pipe   jacking.   Journal   of   GeoEngineering,  5,  77-­‐85.   Shou,  K.,  Yen,  J.  &  Liu,  M.  (2010).  On  the  frictional  property  of  lubricants  and  its  impact  on   jacking   force   and   soil-­‐pipe   interaction   of   pipe-­‐jacking.   Tunnelling  and  Underground   Space  Technology,  25,  469-­‐477.   Skempton,  A.  W.  (1964).  Long-­‐term  stability  of  clay  slopes.  Géotechnique,  14,  75-­‐102.    

241  

  Staheli,   K.   (2006).   Jacking   Force   Prediction:   An   Interface   Friction   Approach   Based   On   Pipe   Surface  Roughness.  PhD  thesis,  Georgia  Institute  of  Technology.   Standing,   J.   R.   &   Potts,   D.   M.   (2008).   Contributions   to   Géotechnique   1948-­‐2008:   Tunnelling.  Géotechnique,  58,  391-­‐398.   Stein,   D.,   Möllers,   K.   &   Bielecki,   R.   (1989).   Microtunneling:   Installation   and   Renewal   of   Non-­‐Man   Size   Supply   and   Sewage   Lines   by   the   Trenchless   Construction   Methods.   Berlin:  Ernst  and  Sohn.   Stein,   R.   &   Beckmann,   D.  (2011).  Quality  assurance  for  long  distance  and  curved  jacking.   ISTT  International  No-­‐Dig  2011.  Berlin,  4C-­‐1-­‐1  -­‐  4C-­‐1-­‐15.   Sugimoto,   M.   &   Asanprakit,   A.  (2010).  Stack  Pipe  Model  for  Pipe  Jacking  Method.  Journal  of   Construction  Engineering  &  Management,  136,  683-­‐692.   Tan,  S.  A.,  Chew,  S.  H.  &  Wong,  W.  K.   (1998).   Sand   and   geotextile   interface   shear   strength   by  torsional  ring  shear  tests.  Geotextiles  and  Geomembranes,  16,  161-­‐174.   Terzaghi,  K.  (1943).  Theoretical  soil  mechanics.  New  York:  Wiley.   Terzaghi,   K.,   Peck,   R.   B.   &   Mesri,   G.   (1996).   Soil  Mechanics  in  Engineering  Practice.  New   York:  Wiley.   Thomson,  J.  C.  (1993).  Pipejacking  and  microtunnelling.  London:  Blackie.   Tomlinson,  M.  J.  (2001).  Foundation  Design  and  Construction.  Harlow:  Prentice  Hall.   Tracey  Concrete  Ltd.  (2013).  Jacking  products  brochure.  Enniskilen,  Northern  Ireland.   Uesugi,   M.   &   Kishida,   H.  (1986a).  Friction  resistance  at  yield  between  dry  sand  and  mild   steel.  Soils  and  Foundations,  26,  139-­‐149.   Uesugi,   M.   &   Kishida,   H.   (1986b).   Influential   factors   of   friction   between   steel   and   dry   sands.  Soils  and  Foundations,  26,  33-­‐46.   Uesugi,   M.,   Kishida,   H.   &   Tsubakihara,   Y.  (1988).  Behaviour  of  sand  particles  in  sand-­‐steel   friction.  Soils  and  Foundations,  28,  107-­‐118.   Uesugi,   M.,   Kishida,   H.   &   Tsubakihara,   Y.  (1989).  Friction  between  sand  and  steel  under   repeated  loading.  Soils  and  Foundations,  29,  127-­‐137.   Uesugi,   M.,   Kishida,   H.   &   Uchikawa,   Y.   (1990).   Friction   between   dry   sand   and   concrete   under  monotonic  and  repeated  loading.  Soils  and  Foundations,  30,  115-­‐128.   Ulkan,  A.   (2013).   Development   in   trenchless   technologies   at   Herrenknecht.   GSTT  1st  No  Dig   Berlin  2013.  Berlin,  2A-­‐1-­‐1  -­‐  2A-­‐1-­‐6.  

 

242  

  Ván,   P.   &   Vásárhelyi,   B.   (2010).   Centenary   of   the   first   triaxial   test   –   recalculation   of   the   results   of   Kármán.   In:   Zhao,   J.,   Labiouse,   V.,   Dudt,   J.   P.   &   Mathier,   J.   F.   (eds.)   Rock   Mechanics  in  Civil  and  Environmental  Engineering.   Lausanne,   Switzerland:   Taylor   &   Francis.   Wang,   S.   Y.,   Chan,   D.   H.,   Lam,   K.   C.   &   Au,   S.   K.   A.  (2010).  Effect  of  lateral  earth  pressure   coefficient   on   pressure   controlled   compaction   grouting   in   triaxial   condition.   Soils   and  Foundations,  50,  441-­‐445.   Washbourne,   J.   (1986).   The   use   of   thixotropic   slurries   in   the   tunnelling   industry.   Ground   Engineering,  19,  33-­‐36.   White,   D.   J.   (2008).   Contributions   to   Géotechnique   1948-­‐2008:   Physical   modelling.   Géotechnique,  58,  413-­‐421.   Zong-­‐Ze,   Y.,   Hong,   Z.   &   Guo-­‐Hua,   X.   (1995).   A   study   of   deformation   in   the   interface   between  soil  and  concrete.  Computers  and  Geotechnics,  17,  75-­‐92.    

 

243  

 

Appendix  A  –  Micro  concrete  mix  design    

Micro Concrete Mix Design Proserve Ltd.

Recommended Micro Concrete Mix 2:1 Sand:Cement ratio with the following mix proportions Cement Sand—Fine sharp washed. Zone 3 to 4 Water (mixing water:cement ratio 0.7, varies to suit sand grading)

556 kg/ m 1,112 kg/ m 387 kg/ m

Typical Strength Range 30—40 N/mm

80 Priory Road, Kenilworth, Warwickshire, CV8 1LQ, England UK: 01926 512222 Int: 00 44 1926 512222 [email protected] www.proserveltd.co.uk Fabriform

Recommended Sand Washed river or sea sand that is well graded within B.S. 822 Zone F. The sand grading line should fall inside the green zone on the graph below. 100 %

Percentage Passing (%)

90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0

0.075 mm

0.15 mm

0.3 mm

0.6mm

1.18 mm

2.36 mm

5 mm

Sieve Size (mm)

Flow Cone

The water:cement ratio varies with the exact granulometry of the sand used and should be determined on site using the Proserve Flow Cone. The water: cement ratio is adjusted to give a discharge time of 2733 seconds Proserve Flow Cone Volume 1.75 litres

Strength (kN/mm )

Free Water Bleed & Strength 41.4

Fabric Formwork

27.6

Conventional Formwork

13.8

0

14

28

The porous fabric allows the concrete to bleed, giving off its free water and thus reduces the pressures acting upon it. This allows the strength of the concrete to be higher than normal for a given concrete mix whilst retaining fluidity during placement B65

Days

 

 

 

 

244  

 

Appendix  B  –  Hydraul-­‐EZ  technical  data  sheet    

Hydraul-EZ Horizontal Directional Drilling Fluid

Description:

Hydraul-EZ is a high yield, 200-mesh sodium bentonite clay with a special dry polymer additive. It is designed to maintain borehole integrity in horizontally drilled boreholes. Hydraul-EZ is certified to NSF/ANSI Standard 60, Drinking Water Treatment Chemicals - Health Effects.

Recommended Use:

Hydraul-EZ is specially designed for conditions encountered in angle and horizontal drilling. It can be used for all types of freshwater mud rotary drilling and as a jacking lubricant.

Characteristics:

Mixing and Applications:

Mixes quickly. Requires less material due to low fluid loss properties. Concentrated for high yield. Forms a tight, thin filter cake in unstable formations. Maintains borehole integrity in horizontal and vertically drilled holes. Eliminates clay and shale swelling, bit balling and sticking problems. Mixing ratios are based on the use of fresh water. Water purity will affect bentonite performance. For best results, make-up water should be pre-treated with soda ash to a pH of 8.5-9.5. Hydraul-EZ should be added slowly through a jet/hopper mixer. Hydraul-EZ mixing ratios in pounds per 100 gallons of water: Normal conditions……………….20-30 lbs. Sand and gravel………………….30-40 lbs. Fluid loss control…………………40-60 lbs.

Bulk Density:

54 lbs/ft.3

Packaging:

50 lb. multiwall, water-resistant bags, 48 bags per pallet. All pallets are plastic-wrapped.

1500 West Shure Drive • Arlington Heights, IL 60004 • PH 847.392.5800 • FX 847.506.6150 The information and data contained herein are believed to be accurate and reliable. CETCO makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information. REV 9/04

   

 

 

245  

 

Appendix  C  –  MX  Polymer  technical  datasheet     Product data sheet MX LIQUID POLYMER SeaSafe for EPB.pages Issued: February 2009 Page 1 of 1

MX LIQUID for EPB in clean granular face Thixotropic, biodegradable, safe, ultra high performance polymer gel which conditions granular muck for proper support and flow Background and use MX LIQUID POLYMER for EPB meets the requirement for EPB face support in granular face. Very small additions of concentrate into the head produce a powerful gelling and lubricating effect. MX LIQUID POLYMER for EPB is effective in fresh and salt water. Formulation for most conditions would be 1 litre of MX LIQUID POLYMER per cubic metre of chamber volume.

Specific benefits True EPB pressure transmission Reduces torque Allows normal progress 100% biodegradable and non-toxic Waterproofing effect Highly effective in fresh or salt water Excellent stabilisation and carrying capacity in sands and gravels Excellent suspension properties when static or moving Safe for injection through the bulkhead

EPB this!

MX POLYMER was first developed to provide a superior replacement for bentonite slurry: Effective at very low concentrations No bulk mixing or transfer piping required Unlikely to compromise muck classification MSDS sheet on request.

Compatible with: All Morrison EPB products

Health and Safety

Packaging, form, availability

MX POLYMER has been specifically manufactured for safety in use, and is a very low-hazard formulation requiring no special labelling. CONSULT MSDS SHEET and assess safe use policy before use.

20 kg pails 200 kg drums Totes (IBC’s)

For further guidance, and specific recommendations and costings for your project, kindly contact your Supplier or: Mudtech Ltd - Morrison Mud Division, Wyburn House, 1 Crab Lane STAFFORD ST16 1SB United Kingdom [email protected] www.mudtech.co.uk Tel: 44 1929 551 245 Fax: 44 1929 554 361

   

 

 

246  

 

Appendix  D  –  Triaxial  testing  procedure     This   Appendix   sets   out   in   detail   the   procedure   used   for   the   preparation   of   the   specimens   used   in   Chapter   5   “Interface   friction   reduction   with   pressurised   lubricants   –   experimental   apparatus  and  procedures”.  Reference  is  made  to  Figure  5.13,  which  is  reproduced  below  as   Figure  D.1.  

  Figure  D.1  –  Test  set  up  for  preformed  failure  plane  triaxial  compression  tests  

  The  procedure  was  as  follows:   1. The  tightly-­‐fitting  plastic  tube  was  inserted  into  the  pedestal  of  the  triaxial  cell  and   the  concrete  specimen  with  the  preformed  failure  plane  was  set  into  place.   2. A   piece   of   loose   mesh,   which   was   packaging   material   from   supplies   of   laboratory   filter   paper,   was   loosely   inserted   into   the   tightly   fitting   plastic   tube.   This   was   to   block  the  ingress  of  sand  during  the  placing  of  the  sand  specimen  later.  

 

247  

  3. The   60ml   syringe   was   filled   with   approximately   40ml   of   lubricant   or   water.   Care   was   taken   that   the   injection   pressure   line   was   free   of   foreign   materials.   With   the   valves  on  the  injection  pressure  line  opened,  the  lubricant  or  water  was  introduced   to   the   circuit   until   it   was   just   noticed   escaping   through   the   filter.   Any   excess   lubricant  was  cleaned  away  using  a  paper  towel.     4. The   valve   between   the   specimen   and   the   injection   pressure   transducer   was   closed   and   the   injection   pressure   transducer   zeroed.   The   volume   of   lubricant   or   water   remaining  in  the  syringe  was  noted.   5.  A   membrane   stretcher   was   used   to   place   the   thin   latex   membrane   around   the   specimen  and  the  membrane  was  secured  around  the  pedestal  using  two  rubber  O-­‐ rings.   6. A   split-­‐mould   was   set   in   place   around   the   specimen   and   membrane.   The   top   edge   of   the   split   mould   was   inspected   for   sharp   edges   and,   if   found,   sharp   edges   were   smoothed   using   sand   paper   so   that   the   membrane   wasn’t   subsequently   punctured.   The   loose   end   of   the   membrane   was   then   stretched   tightly   over   the   outside   of   the   split  mould.   7. De-­‐aired  water  was  poured  into  the  membrane  until  it  was  filled  to  the  top.     8. A  specimen  of  dry  sand  was  prepared  by  weighing  out  the  mass  of  dry  sand  required   to   fill   the   specimen,   which   had   volume   of   45cm3,   to   the   predetermined   relative   density  for  the  test.   9. The   dry   sand   was   placed   in   a   beaker   and   sufficient   water   was   added   to   more   than   cover  it.  The  sand  specimen  was  saturated  and  deaired  in  a  vacuum  dessicator.     10. The   entire   quantity   of   saturated   sand   in   the   beaker   was   transferred   to   the   triaxial   setup   using   a   teaspoon.   The   sand   was   pluviated   under   water   to   avoid   the   entrainment   of   air   during   placement.   Excess   water   was   removed   from   the   mould   using  a  wash  bottle  as  the  sand  displaced  the  water  already  in  the  mould.   11. A  glass  rod  was  used  to  compact  the  sand  to  a  uniform  relative  density  in  three  equal   layers.   The   compactive   effort   required   was   established   by   experience   with   the   particular  sand  under  preparation.   12. Once  placed,  any  loose  sand  sticking  to  the  membrane  or  the  split  former  was  rinsed   away  using  a  wash  bottle.   13. A  saturated  and  de-­‐aired  sintered  bronze  porous  disc  was  placed  on  top  of  the  sand   specimen.   14. At  this  point  it  was  convenient  to  stretch  two  rubber  O-­‐rings  over  the  top  cap  and  let   them  run  freely  on  the  flexible  drainage  line.     15. The  pore  fluid  circuit  was  evacuated  to  ensure  that  there  was  no  air  in  the  line,  and   the  top  cap  was  placed  in  contact  with  the  porous  disc.    

248  

  16. The  membrane  was  gently  stretched  up  over  the  top  cap,  and  the  two  rubber  O-­‐rings   were  brought  down  over  the  membrane  to  secure  it.  The  loose  end  of  the  membrane   was  neatly  lapped  down  over  the  two  rubber  O-­‐rings.   17. The   split   former   was   removed.   Due   to   the   fact   the   soil   was   saturated   and   compacted   to   a   relatively   high   relative   density,   it   was   possible   to   leave   the   specimen   temporarily  free  standing  while  the  cell  was  assembled.   18. The  cell  was  placed  over  the  specimen,  the  air-­‐bleed  valve  was  opened  and  the  cell   was   filled   with   water,   before   the   air-­‐bleed   was   closed   so   that   the   cell   could   be   pressurised.   19. The   test   was   ready   to   commence.   The   test   procedures   followed   are   described   in   detail  in  Chapter  5.    

 

249  

  6S 6S 6S 6S 6S 6S 6S

;MOV ;MTW ;MSW ;MOO ;MT6 ;MTO ;MOV

NUM6 NUM6 NUMT NUMN NUMN NUM= NUMN

;OMO ;TMS ;SMS ;OM= ;TM; ;TMN ;OMO

W;MT ;U6M; 6WMW T;MV VSMN VWMU WUMS

UMWOO UMWOO UMWOO UMWOO UMWOO UMWOO UMWOO

250  

U7 U7 U7

U7

I@RUR; IY3 UMS71@] I@RURN IY3 UMS71@] I@RUR= IY3 UMS71@]

d%D"B

d%D"B

671EC' /4&.D%&D

671EC' 671EC'

IdRUR; IY3

IdR/R; IY3

IER/R; IY3

IE6R6R; IY3 IE6R6RN IY3

67 67

/4&.D%&D

U7 U7 U7 U7 U7 U7

67

U7 U7

U7

671EC' 671EC' 671EC' 671EC' 671EC' 671EC'

UMS71@]

UMS71@] UMS71@]

U7

67 67

;MS ;

=MS

; 6MS W

WMS O ; TMS OMS ;N

W

W 6

=

=

S V

SN SN

SU

6N 6N 6N

SU SU SU SN SN SN

6S

6U 6U

;UUc

6N 6N

S6 ;U=

SU

SU

;UU

OU ;NU ;WU

;SU TS SU ;SU N=U ;6O

;6=

;ST ;U;

WU

;=U

;=U NUU

S6 ;U=

6VMO

S;

T

SU S;MO SN

TNM6 SNMS 6OMN ;UM6 ;VU SUMS

;U

6NMS= ;WM;

;N

SU

;U ;U

SU W=

6VM;

6VM;

;U

==M= =TMW 6=MV

OVMOW =WMUT N=MTS TMV; ;OOMT6 SU

;6=

NUMSV ;=M;N

W

6U

;NW ;V=

SU SU

SU

SU

SU

SU SU SU

SU SU SU SU SU SU

SU

SU SU

SU

SU

SU SU

S; S;

SN

SN

S;

S; SU S=

S; S; SN SN SU S;

SN

S; S;

SN

S=

S; 6W

= SM;

;VM6

OMS

;TN

SUM;W 66MTO NVM;N

WM;= O;M6 V=MT WSMW =TMV VM;

U

;UU ;U;MW

;=6M6

WO

=V OMW

;U ;U

;;

;;

;U

;; ;; ;;

;; ;; W W ;; ;;

N;

;; V

W

;;

;; ;6

66 6OM;

OUM6

6TMS

N;=

VUM;W W=MTO T;M;N

6WM;= ;U;M6 ;=TMT ;NVMW TOMV 6VM;

=;

;6U ;6=MW

;TWM6

;NW

TV 6UMW

6; 6;

6;

6;

6;

6U =V 6N

6U 6U 66 66 =V 6U

=;

6U 6N

66

6N

6U =6

UMUN= UMU=V

UM;6W

UMU6V

;M=UW

UM=WN UM=6U UMNN;

UMUON UM6OT UMT;= UMOSN UMNWW UMUOV

UMUUU

UMVNW UMV66

;MN6T

UMTVW

UM=ON UMUO=

;MUT= NMNOW

UMVS;

UMVS;

NM;VS

;MNNS NMTVS 6MUN6

=M6TS ;MOUU UMVSS =MNNT SMO;S =M=TS

=MV=S

=MOSU NM;VU

;MO=O

NMW==

NMVTS SM6T;

;MUT= NMNOW

UMV6;

UMVTO

RUMUT=

UMVTS ;MU6; UMVTO

;MS=S ;MU=W UMWOW UMUSS 6MSVU UMVWW

RUM=SS

UMTWW UMN;T

UMUV;

UMVNV

RUMUNS RUM;;W

UMVTO ;MTWU

UMVNV

UMVNV

UMUUU

UMSSW UMOWT UMTW=

;M6OT UMOTT UM=SW RUMUUN =MVV= UMVTS

=MV=S

UMN6U UMUVW

UMUUU

UMOVU

NMVNS SMNOS

NSMU NSMU

N=MO

N=MO N=MS NSMW

NOMT N=MU N=MU N=MS N6MW NOMN

N=M=

N6MN N6MS

N=MV

NNMW

NNMO N=M=

UMOOO UMOOS

UMONW

UMONW UMONS UMOWT

UMT;; UMO;N UMO;; UMONS UMOSV UMOVW

UMO;N

UMO=O UMO6=

UMONW

UMOU;

UMSV6 UMO;N

TSMT TTMW

T6M=

T6M= T6M= T6M=

TNMT WUM6 TOMS W=MN T=MN TSMN

T;MW

T=M; OTMS

T;MV

T;MV

T;MW OVMS

;VMO ;VMO

;VMW

;VMW ;VMW ;VMS

;VM= ;VMV ;VMV ;VMW ;VMO ;VM6

;VMT

;VMO ;VMS

;VMO

;VMW

;VMW ;VMT

TO TO

TO

TO TO TO

TO TO TO TO TO TO

TOMS

TO T6MS

TO

TO

TO TO

6S 6S

6S

6S 6S 6S

6S 6S 6S 6S 6S 6S

6=M6

6S 6NMN

6S

6S

6S 6S

;MOW ;MT=

;MOS

;MOS ;MOS ;MOS

;MON ;MTV ;MTU ;MWS ;MO= ;MOT

;MOO

;MON ;MOU

;MOU

;MOU

;MOU ;MS6

NUMU NUMU

NUMN

NUMN NUMN ;VMW

;VMT NUM= NUM= NUMN NUMU ;VMW

NUM;

NUMU ;VMV

NUMU

NUMN

NUMN NUM;

;OMS ;TMU

;OMN

;OMN ;OMN ;OMN

;SMW ;TMS ;OMT ;WM; ;OMU ;OM6

;OMN

;SMV ;SMT

;SMT

;SMT

;SMT ;SMN

TWMT V;MN

TUMU

TUMU TUMU TUMU

SVMO WUMU W=MS WUMU ONMV TSMO

V=MS

W;MN TUM;

TUM;

TUM;

UMS UMS

UMS UMS UMS UMS UMS UMS

; ; ;

UMWOO UMWOO UMWOO UMWOO UMS UMS

UMS

UMS UMS

;

;

UMS UMS

IY3 IY3 IY3 IY3 IY3 IY3

TO TO TO TO TO TO TO

IE6RUR; IE6RURN IE6RUR= IE6RUR6 IE6RURS IE6RURO

NUMU NUMU NUM= ;VMW ;VMW ;VMV ;VMW

L-I

TOMN WUM; T;M; T6MO TWMS TV TO

L@R6R;

UMSVV UMSVW UMS6V UMONT UMONW UMO;S UMO=6

d%D"B

NNMS NNMS NUMO N=MO N=MO N=M; N=MW

L-I L-I

8%%&+1')*'3".0 IY31Z1I%&%FG"B1.%&' EC'1Z1EC'B%9?R[\ @]1Z1@]104?C*"B

L-I

6N V; ;=V 6; V; ;== V;

L@RUR; L@RURN

;OW NWO =W6 ;TW NTT =SW NVT

LdRUR;

;; ;; ;; ;; ;; ;V ;;

AB $K""' 275 2**P*+&5 TUM; UMWOO TUM; UMWOO TUM; UMWOO TUM; UMWOO TUM; UMWOO TUM; UMWOO

O71EC'

;NO ;VS N6S ;=T ;WO NNS NUO

ABC1*%.. $%D1'"&.+DC E"+FGD H4?9*" I9?J1'"&.+DC (.%D)D".D (')D".D 2F5 2J3P*=5 2**5 2Q*=5 2JFP@F=5 2J3P*=5 2J3P*=5 T;MV ;VMS TO 6S ;MOU ;VMV ;SMT T;MV ;VMS TO 6S ;MOU ;VMV ;SMT T;MV ;VMS TO 6S ;MOU ;VMV ;SMT T;MV ;VMS TO 6S ;MOU ;VMV ;SMT T;MV ;VMS TO 6S ;MOU ;VMV ;SMT T;MV ;VMS TO 6S ;MOU ;VMV ;SMT

LEORUR; L-I

S= ;UN ;SU SN ;UN ;SN ;UN

UMOSU UMOSU UMOSU UMOSU UMOSU UMOSU

"#

OVMN 6OMW

SU ;UU ;SU SU ;UU ;SU ;UU

>+&%?1@/ 275 N6MT N6MT N6MT N6MT N6MT N6MT

671EC' 671EC'

4+5-*3-6+7+&+"(+. "MFM1LE6RUR= L L-I E EC'B%9?R[\ 6 671Q4&Q"&DB%D+4& U L&^"QD1%D1U71.DB%+& = _".D1&9*X"B1=

/01234*5 /012675 812675 912675 :;< :=< 2J0%5 2J0%5 2J0%5 2J0%5 2J0%5 2J0%5 ;SU ;S; =VU ;; S=U ;6U ;UU ;UN N=OMT W ==UMT V6 SU SN ;UTMO W ;S;MO 66 ;UU VV N=OMS W =NTMS V; ;SU ;S= =SSMO V 6VVMO ;66 SU SN ;UW W ;SN 66

LE6R6R; L-I LE6R6RN L-I

IY3 IY3 IY3 IY3 IY3 IY3 IY3

IR; IRN IR= IR6 IRS IRO IRT

-. NMO= NMOO

!"#$%&'()*+,-)1+&)2+-,+1')*3&-.*&+..0 L-I1819&?9X)1SU ;UTMW L-I1819&?9X)1;UU N=OMO I%&%FG"B1819&?9X)1SU ;=;MS

(')*%, ;OM6 ;TM=

AB $K""' 275 2**P*+&5 WUM= UMS S=MW UMS OOM= UMS O6M6 UMS

L-I L-I L-I L-I L-I L-I

LRS LR= LR; LR6 LRO LRN

/)*)0 $%&' (')*+& L-I ;6MN I%&%FG"B ;6M;

-.*&)'" !"# $%&' `9XB+Q%&D L&^"QD1a H4?9*" #9&&"? b2?9X)G5 b2?9X)+5 b2?9X)675 /01234*5 /012675 812675 912675 :;< :=< 82?9X5P8 b