Two Major Cenozoic Episodes of ... - Wiley Online Library

20 downloads 0 Views 2MB Size Report
Uranium and thorium contents are low and total rare earth element (REE) contents are generally high. REE ratios and shale-normaiized patterns demonstrate ...
PALEOCEANOGRAPHY,VOL. 8, NO. 2, PAGES293-311,APRIL 1993

TWO MAJOR CENOZOIC

EPISODES OF

PHOSPHOGENESIS RECORDED LN EQUATORIAL PACIFIC

SEAMOUNT

DEPOSITS

James R. Hein,1 Hsueh-Wen Yeh,2 Susan H. Gunn, 1 William

V. Sliter, 1LauraM. Benninger, 3andChung-Ho Wang, 4

rareearthelement(REE) contentsaregenerallyhigh. REE ratiosand shale-normaiized patternsdemonstrate thatthe

accumulation of dissolved phosphorus in thedeepseaduring relativelystableclimaticconditions whenoceanic circulation wassluggish.Fluctuations in climate,sealevel, andupwelling thataccompanied theclimatetransitions mayhavedriven cyclesof enrichment anddepletionof thedeep-sea phosphorus reservoir.As temperature gradients in theoceansincreased, Antarcticglaciafionexpanded andoceaniccirculation and upwelling intensified.Expansion andintensification of the oxygenminimumzonemayhaveincreased thecapacity for midwaterstorageof phosphorus supplied by dynamic upwellingaroundseamounts; however,thebottomwaters neverbecameanoxicduringthephosphogenic episodes. Fluctuations in the CCD andlysocline,CO2 fluxes,and changes in bottomwatercirculation andtemperatures may

REEs and host CFA were derived from seawater. Strontium

have bathed the seamount carbonatesin more corrosive waters

isotopic compositions compared withinferredCenozoic seawater curvesdefinetwomajorepisodes of Cenozoic phosphafization: LateEocene/early Oligocene (39-34Ma) and lateOligocene/early Miocene(27-21Ma); threeminorevents arealsoindicated.The majorepisodes occurred at timesof climatetransition,thefirstfroma nonglacialto glacialearth andthesecond froma predominantly glacialto warmearth. Thepaleoceanographic conditions thatexisted at thosetimes initiatedandsustained development of phosphorite by

which,coupled withincreased supplies of dissolved phosphorus, promoted replacement processes. Thelate Eocene/early Oligocenephosphogenic episoderecorded in seamount deposits is notmatchedby largephosphofite deposits in thegeologicrecord,whereas thelate Oligocene/early Mioceneepisode andmiddleMioceneevent arematched by largedeposits distributed globally.The seamount phosphorires areexposed at thesurface of the

Abstract.Sea_mount phosphorites havebeenrecognized sincethe 1950s,but thisis the first studyto providean in depthexploration of theoriginandhistoryof thesewidespread

deposits.Representative samples fromequatorial Pacific Cretaceous s•mountswereanalyzedfor chemical, mineralogical, andstableisotopecompositions. The phosphorites occurin a widevarietyof forms,butmost commonly carbonate fluorapatite (CFA) replaced middle Eoceneand oldercarbonatesedimentin a deepwater environment(>1000 m). Elementratiosdistinguish seamount

phosphorites fromcontinental margin,plateau, andinsular phosphorites. Uraniumandthoriumcontents arelowandtotal

seamountsand have beenfor mostof the Neogeneand

Oligocene.Thephosphorires donotshowsignsof etching that would indicate substantial undersaturation of seawater

phosphate withrespect toCFA. Massbalance calculations

1U.S.Geological Survey, MenloPark,CA 94025.

indicate thatabout 5.4-19x 1012gofP205arelocked upin

2Hawaii Institute ofGeophysics, University ofHawaii,

equatorialPacificseamount phosphorires. Thatamountis equivalentto about2-7 yearsof thepresentannualinputfrom

Honolulu.

3Geology Department, University ofCalifornia, Davis.

rivers.

4Institute of EarthSciences, Academia Sinica,Taipei, Republicof China.

INTRODUCTION

Copyright1993

Phosphorites generallyoccurin fourgeographic-tectonic settingsin thepresent-day oceanbasins:(1) The beststudied phosphorites occuron continental shelvesandslopes, primarilyoff thewestcoastof continents.Typicalexamples includePeru-Chilemargin,southernCaliforniacontinental

by theAmericanGeophysical Union Papernumber93PA00320 0883-8305/93/93PA-00320510.00

294

Heinetal.: Equatorial Pacific Episodes ofPhosphogenesis

borderland, andNamibiamargin[e.g.,Burnett,1977;Birch, 1979;Loebneret al., 1987]. Thesedeposits formedbeneath zonesof coastalupwellingfromearlydiagenetic processes veryneartheseawater-sediment interfacein an organic matter-richenvironment[Burnett, 1977; Froelichet al., 1988;

studiedof the marinephosphorites.Thesedepositshavebeen recognizedsincethe 1950sandarethoughtto resultfrom replacementof carbonates by carbonatefiuorapatite(CFA) [HamiltonandRex, 1959],but hydrothermal depositionand submerged insularguanodepositshavealsobeenproposed

GlennandArthur,1988]. (2) Phosphorites occurextensively

[Kharin, 1974; Cullen and Burnett, 1986; Rao and Burnett,

on somesubmarineplateaus,ridges,andbanks,thebest studiedbeingBlakePlateauoff the southeastern UnitedStates andChathamRiseoff New Zealand[e.g.,Manheimet al., 1980;yonRadandROsch,1984;Riggs,1989]. Plateau

1992]. Relativelycompletequantitative chemicalanalyses haveonly recentlybeenprovided[Bezrukovet al., 1969; CullenandBurnett,1986;Burnettet al., 1987],andprecise age(s)of phosphatization of seamount phosphorites havenot beendetermineduntilnow. Phosphorites in thePacificand adjacentseashavethusfar beenidentifiedon seamounts locatedbetweenlatitudesof about35øSand42øN [Karpoffet

phosphorires formedfromcementation andreplacement of carbonates in an organicmatter-richenvironment.Several stagesof reworkingof thedepositsarecommon.(3) Phosphorites formon islands,atolls,andwithinatolllagoons [WhiteandWarin, 1964;Tracey,1980]. Theseinsular depositsreplaceandcementreef carbonates withinthe freshwater lens,or withintheseawater-freshwater mixing zone,andmaymarkperiodsof sealevelchange[Roeand Burnett,1985;Piperet al., 1990]. Marine lakesand meromicticlakesmay alsobe environments of insular phosphatization [Bourrouilh-LeJanet al., 1985;Burnettet al., 1989]. The sourceof phosphorus is primarilyguano,butmay alsoincludeweatheringof volcanicrocksandhumicand sapropelic organicmatter[BurnettandLee, 1980;Rodgers, 1989;Piperet al., 1990]. (4) Phosphorites formonmid-plate seamounts andmaybe themostwidelydistributed but least

al., 1980; Heezen et al., 1973; Slater and Goodwin, 1973].

Water depthsof nonreworked depositsvary from several hundredto severalthousandmeters. Seamountphosphorites are also common in the Atlantic and Indian oceans and

adjacentseas[Marlowe, 1971;Kharin, 1974;Baturin,1978; Jonesand Goddard, 19791.

This is the first studythatsystematically determines agesof phosphatization for a suiteof seamountphosphorites that occurovera largepartof the centralPacific. Agesof phosphatization are determined by strontiumisotope stratigraphyandoxygenisotopestratigraphyis testedasa possibleagedatingtool for phosphorites.Depositionalagesof phosphatized limestones weredetermined by CFA-replaced

156 ø

156 ø 25' 19 ø

o

Mariana Is.



JohnstonI. ß Guam

Federated

States

'

ß

ß

""o •..,,, . '*. . ß..:..'...:.,'..:.,.,...:. Marshall Is. of Micronesia

C.I. 500

19 ø 30'

' ß

23 ø

I C.I.=1000 mI

14 ø

o

• o



20 ø Atoll

'

.

",?-.,

•0o

,o ,0 . 100km

REPUBLIC

OF THE

MARSHALL

160 ø

165 ø

165 ø

C.I. 50•)rn

164 ø

ISLANDS

170 ø

• 170 ø

Fig. 1. Generallocationof foursamplingareas,bathymetry of samplingsites,andlocationof 12 dredgehaulsfrom ninevolcanicedificesin theequatorialPacificlistedin Table 1' bathymetrymodifiedfromChaseandMenard [1973].

16 ø

165 ø

Heinetal.: Equatorial Pacific Episodes ofPhosphogenesis

295

foraminiferaassemblages. We providedetailedchemical analyses includingmajoroxides,rareearthelements, uranium,

extractCFA for analysis.Six additionalsampleswith 0-15%

thorium,fluorine, chlorine,sulfur,and carbondioxide. We

isotopiccompositionof sampleswith about44d

12.3'N

6.0'N

87e 84e

4.3'N 8.3'N

2.7'S 1.7'N

4.0'N

3.0'S

(•ruise F2-88-HW, Hawaii

D12

155'58.2'W

2900-2490

CruiseL9-84-CP. Marshall Islands

D6 D18

L6kkw6rkw6r Seamount 08'46.1' W6den-K6pakut Guyot 13'54.0'

169'45.3'E 167'38.8' E

2900 1600

CruiseF 10-89-CP, Marshall Islands

D22

Mij-LepSeamount

08'43.7'

163'12.2' E

1270-1245

-_80 f

aSaitoandOzima [1977].

bSchlanger etal.[1984]. CHeinet al. [ 1990b].

dBased onforaminifera age(seeTable3). eDavis et al.[ 1989].

fBased onageofnearby seamounts [Davis etal.,1989; Heinetal.,1990b; Lincoln etal.,1993].

296

Heinetal.:Equatorial Pacific Episodes ofPhosphogenesis

Heinetal.:Equatorial Pacific Episodes ofPhosphogenesis TABLE 3. Semiquantitative X RayDiffractionMineralogy of Seamount Phosphorites Listedin Table2

Sample Number

X RayMineralogy (%) Cruise L5-83-HW

D5-A3-2

100 CFAa

D18-B3-7A

81 CFA, 19 barite

D18-B3-7B

95CFA,5calcite (100CFA) b

D29-Al-la D29-Al-lb D29-Al-lc D29-Al-ld D29-Al-le D29-Al-lf

100 100 100 100 100 100

D29-A7

84 CFA, 14 phillipsite+plagioclase, 2

CFA CFA CFA CFA CFA CFA

calcite(85 CFA, 15

phillipsite+plagiocase) Cruise F7-$6-HW

CD1-6B CD6-12B

65 goethite,35 CFA 55 CFA, 37 plagioclase, 6 smectite, 2 clinoptilolite

CD14-2D CD19-1A

100 CFA 100 CFA

CD21-7H CD21-7I

97 CFA, 3 calcite(100 CFA) 98 CFA, 2 calcite(100 CFA)

CD21-7J

100 CFA

CD21-7K

70 CFA, 30 barite

CD2!-7L

73 CFA, 27 phillipsite+plagioclase

297 Shackleton,1986;Miller et al., 1987;Wright et al., 1992; Zachoset al., 1993]. Thesecurvescommonlydid not yield a uniqueageand if morethanoneagewaspossible,the age closestto that determinedusingstrontiumisotopeswas recordedin Table2. For agedating,it is assumed that structuralcarbonatebehavesisotopicallyexactlylike calcite and thatCFA formedin deepwater. Major oxidecontentsof phosphorite sampleswere determined by X ray fluorescence spectroscopy (Table4) [Taggattet al., 1987]. Carbondioxidecontents were determined by coulometric titration[Englemanet al., 1985], H2O+ by waterevolvedat 950øCasdetermined coulometrically by Karl-Fischertitration[Jackson et al., 1987],andH20- by sampleweightdifferenceat 110øCfor greaterthan1 hour[Shapiro,1975]. Fluorineandchlorine weredetermined by specificion electrodemethodsandsulfur by combustion andinfraredspectroscopy (Tables4 and5) [Jacksonet al., 1987]. Rare earthelementswere determined by inductivelycoupledplasmamassspectrometry (Table6) [Lichte et al., 1987]. Uranium and thoriumwere determined by delayedneutronactivationanalysis(Table4) [McKown and Millard, 1987].

X ray diffractionmineralogy wascompleted ona Philips diffractometer usingCuKc•radiationanda curved-crystal carbonmonochromator (Table 3). The usualPearsonproduct moment correlation coefficient was used to calculate the

correlationcoefficientmatrix. Foraminiferaassemblages were identifiedfrom thin sectionsof thephosphorite samplesand thetime scaleof Berggrenet al. [1985] wasused. RESULTS

Cruise F2-88-HW

D 12-1A D12-5

99 CFA, 1 quartz >99 CFA, < 1 quartz

D6-3A D6-3B D6-3D D18-3E D18-3F

86 CFA, 14 calcite(100 CFA) 68 CFA, 32 calcite(100 CFA) 66 CFA, 34 calcite(100 CFA) 77 CFA, 23 calcite(100 CFA) 63 CFA, 37 calcite(100 CFA)

Cruise L9-84-CP

Cruise F 10-89-CP

D22-1E-A

>99 CFA,