Typhoid Fever, Water Quality, and Human Capital Formation

1 downloads 0 Views 964KB Size Report
Typhoid Fever, Water Quality, and Human Capital Formation. Brian Beach, Joseph Ferrie, Martin Saavedra, and Werner Troesken. NBER Working Paper No.
NBER WORKING PAPER SERIES

TYPHOID FEVER, WATER QUALITY, AND HUMAN CAPITAL FORMATION Brian Beach Joseph Ferrie Martin Saavedra Werner Troesken Working Paper 20279 http://www.nber.org/papers/w20279

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 July 2014

The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2014 by Brian Beach, Joseph Ferrie, Martin Saavedra, and Werner Troesken. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Typhoid Fever, Water Quality, and Human Capital Formation Brian Beach, Joseph Ferrie, Martin Saavedra, and Werner Troesken NBER Working Paper No. 20279 July 2014 JEL No. I0,J0,N0 ABSTRACT Investment in water purification technologies led to large mortality declines by helping eradicate typhoid fever and other waterborne diseases. This paper seeks to understand how these technologies affected human capital formation. We use typhoid fatality rates during early life as a proxy for water quality. To carry out the analysis, city-level data are merged with a unique dataset linking individuals between the 1900 and 1940 censuses. Parametric and semi-parametric estimates suggest that eradicating early-life exposure to typhoid fever would have increased earnings in later life by 1% and increased educational attainment by one month. Instrumenting for typhoid fever using the typhoid rates from cities that lie upstream produces similar results. A simple cost-benefit analysis indicates that the increase in earnings from eradicating typhoid fever was more than sufficient to offset the costs of eradication.

Brian Beach Department of Economics University of Pittsburgh Pittsburgh, PA 15260 [email protected]

Martin Saavedra Department of Economics Oberlin College Oberlin, OH 44074 [email protected]

Joseph Ferrie Department of Economics Northwestern University Evanston, IL 60208-2600 and NBER [email protected]

Werner Troesken Department of Economics University of Pittsburgh Pittsburgh, PA 15260 and NBER [email protected]

 

I.  INTRODUCTION    

Poor   water   quality   remains   a   major   threat   to   human   health.  

Approximately  780  million  people  do  not  have  access  to  improved  water   sources,   leaving   them   vulnerable   to   typhoid   fever,   cholera,   and   other   waterborne   diseases. 1  Each   year   21.5   million   persons   contract   typhoid   fever   while   5   million   contract   cholera.2  Furthermore,   diarrheal   diseases   alone   account   for   1.8   million   deaths   each   year   or   4.7   percent   of   deaths   worldwide.3    

There   is   a   large   economic   literature   analyzing   the   impact   of   water  

purification  on  disease  rates  and  early-­‐‑life  health  outcomes,  notably  infant   mortality.   Perhaps   the   central   finding   of   this   research   is   that   water   purification   has   large   and   diffuse   health   effects,   accounting   for   roughly   fifty   percent   of   the   decrease   in   U.S.   mortality   between   1900   and   1950   (Cutler   and   Miller   2005;   Ferrie   and   Troesken   2008).   While   the   extant   literature   has   done   a   thorough   job   identifying   and   measuring   the   short-­‐‑ term   health   effects   of   improving   water   quality,   economists   have   yet   to   identify  the  long-­‐‑term  economic  effects  of  water  purification.  There  is,  in   particular,   no   evidence   on   how   drinking   impure   water   in   childhood   impairs  human  capital  attainment  twenty  to  thirty  years  later,  nor  is  there   any  evidence  regarding  labor  market  outcomes.  Accordingly,  our  goal  in                                                                                                                    Estimates  for  access  to  improved  water  sources  taken  from  UNICEF:   http://www.unicef.org/wash/index_watersecurity.html   2  Typhoid  and  Cholera  estimates  from  CDC:   http://www.cdc.gov/nczved/divisions/dfbmd/diseases/typhoid_fever/technical.html  and   http://www.cdc.gov/cholera/general/index.html  respectively.     3  1.8  diarrheal  deaths  from  WHO:   http://www.who.int/water_sanitation_health/diseases/burden/en/   1

 

2  

 

this   paper   is   to   analyze   how   early-­‐‑life   exposure   to   impure   water   affects   adult   outcomes,   particularly   in   terms   of   educational   attainment   and   income.   Our  analysis  is  predicated  on  a  linkage  procedure  that  allows  us  to   identify   how   exposure   to   contaminated   water   during   the   in   utero,   neonatal,   and   postnatal   periods   affects   later   life   economic   outcomes.   We   use  typhoid  fever  fatality  rates,  a  waterborne  disease,  as  a  proxy  for  water   quality.4  We   link   city-­‐‑year   level   typhoid   fatality   rates   to   children   in   the   1900  Census,  which  is  then  linked  to  adult  outcomes  in  the  1940  Census.   Parametric   and   semi-­‐‑parametric   results   indicate   that   the   eradication   of   typhoid  fever,  which  cities  achieved  by  purifying  their  water,  would  have   increased  educational  attainment  by  one  month  and  increased  earnings  by   about  one  percent.    

Of  course,  one  might  be  concerned  that  investing  in  water  quality  is  

correlated   with   unobserved   variables   that   might   also   influence   human   capital   formation.     Given   this,   we   implement   an   instrumental   variables   strategy.   Because   typhoid   is   a   waterborne   disease,   cities   that   dump   their   sewage   into   a   river   will   increase   future   typhoid   rates   for   cities   downstream.   Using   typhoid   rates   from   the   nearest   upstream   city   as   an   instrument,   we   find   results   that   are   larger.   Specifically,   these   results   indicate   that   if   typhoid   had   been   eradicated,   schooling   would   have   increased   by   nine   months   and   earnings   would   have   increased   by   about   nine   percent.   However,   only   the   estimate   for   schooling   is   statistically                                                                                                                    We  justify  the  use  of  typhoid  fever  fatality  rates  as  a  proxy  for  water  quality  in  section   two.  

4

 

3  

 

significant.   We   also   find   some   evidence   that   high   typhoid   rates   during   early-­‐‑life  impaired  geographic  mobility.    

This   paper   complements   the   existing   literature   on   the   benefits   to  

water   purification.   Culter   and   Miller   (2005)   show   that   the   adoption   of   water   purification   technologies   decreased   total   mortality   by   13   percent,   infant   mortality   by   46   percent,   and   child   mortality   by   50   percent.   Furthermore,   those   of   lower   socioeconomic   status   might   have   been   the   primary  beneficiaries  to  water  purification  efforts.  Troesken  (2004)  shows   that   water   filtration   reduced   typhoid   rates   among   African   Americans   by   52  percent,  but  reduced  white  disease  rates  by  only  16  percent.    Currie  et   al.   (2013)   analyze   birth   records   and   water   quality   in   New   Jersey   from   1997-­‐‑2007.   They   find   that   exposure   to   contaminated   water   during   pregnancy  is  associated  with  lower  birth  weights  and  higher  incidence  of   premature  birth  for  the  children  of  less  educated  mothers.    

As  impressive  as  these  short-­‐‑term  benefits  are,  the  benefits  to  water  

purification   are   likely   understated.   A   growing   literature   has   shown   that   early-­‐‑life  exposure  to  disease  and  deprivation  has  adverse  effects  on  adult   health   and   economic   outcomes,   lowering   educational   attainment,   earnings,   and   mortality   (see   Almond   and   Currie   (2011)   for   a   detailed   overview).   Because   the   diseases   that   accompany   contaminated   water   are   manifold   and   often   severe   in   their   consequences,   it   is   reasonable   to   hypothesize  that  early-­‐‑life  exposure  to  contaminated  water  will  have  long-­‐‑ run   effects.   Consistent   with   the   literature,   we   find   that   exposure   to   contaminated   water   decreased   educational   attainment   and   earnings.   Our   findings   are   particularly   relevant   for   policymakers   in   the   developing   world.  Many  developing  countries  have  yet  to  undertake  efforts  to  purify    

4  

 

their   water,   possibly   because   water   purification   is   costly.   Cutler   and   Miller  (2005)  estimate  the  social  return  to  water  purification  to  be  23  to  1.   Our   results   indicate   that   the   discounted   increase   in   earnings   alone   was   sufficient  to  offset  the  costs  of  water  purification.     II.  TYPHOID  FEVER   II.a.  Typhoid  as  an  indicator  of  water  quality    

In   this   paper,   our   primary   indicator   of   water   quality   is   typhoid  

fever.  Before  the  advent  of  formal  water  testing,  typhoid  fever  was  taken   as  an  indicator  of  water  quality  among  public  health  experts.  For  example,   George   F.   Whipple   argued   that   “the   relation   between   [water   quality   and   typhoid]  is  so  close  that  the  typhoid  death-­‐‑rate  has  been  often  used  as  an   index  of  the  quality  of  the  water.  Generally  speaking  .  .  .  a  very  low  death   rate   indicates   a   pure   water,   and   a   very   high   rate,   contaminated   water”.5   Similarly,  a  report  on  water  quality  in  New  York  City  in  1912  stated  that   “the  death  rate  from  typhoid  fever  is  commonly  taken  as  one  index  of  the   quality   of   a   water   supply.” 6  This   same   report   noted,   however,   that   typhoid   was   an   imperfect   indicator   of   water   quality   because   typhoid   epidemics  could  sometimes  be  caused  by  milk,  shellfish  or  other  sources,   and   because   the   absence   of   typhoid   did   not   guarantee   the   water   in   question   was   free   from   other   pathogens   that   might   cause   diarrhea,   cholera,  or  other  diseases.                                                                                                                   5 6

 

 Whipple  (1908),  p.  228.    Engineering  News,  May,  1913,  p.  1087  

5  

 

 

While  it  is  true  that  typhoid  could  be  spread  by  means  other  than  

water,   in   the   era   before   water   treatment   those   sources   of   infection   accounted  for  only  a  tiny  fraction  of  all  typhoid  outbreaks  (Troesken  2004;   Whipple   1908,   pp.   131-­‐‑33).   In   addition,   as   explained   below,   typhoid   was   eradicated   not   through   shellfish   inspection   or   milk   pasteurization   but   through  improvements  in  water  quality.  It  is  well  established  in  historical   demography   that   water   filtration   and   chlorination   were   by   far   the   most   important  in  the  eradication  of  typhoid  (Ferrie  and  Troesken  2005;  Melosi   2000,  pp.  138-­‐‑47;  Troesken  2004).  As  for  the  idea  that  typhoid  did  not  fully   reflect   all   possible   pathogens   in   the   water,   typhoid   fever   rates   were   correlated  with  the  death  rate  from  cholera  and  diarrhea  (Fuertes  1897).    

To  demonstrate  that  typhoid  fatality  rates  are  correlated  with  water  

quality,   we   take   data   from   thirteen   cities   in   North   Carolina.   This   data   reports   typhoid   fatality   rates   for   whites   and   water   bacteria   counts   for   41   city-­‐‑year   pairs.   Regressing   bacteria   counts   on   typhoid   fatality   rates   (see   column   one   of   Table   1)   reveals   a   positive   but   insignificant   relationship.   However,  collapsing  this  data  at  the  city  level  and  comparing  the  average   typhoid   rate   by   city   to   the   city’s   average   bacteria   count   reveals   a   strong   positive  relationship.  The  p-­‐‑value  is  0.051  or  0.007  depending  on  whether   the   observations   are   weighted   by   the   number   of   years   included   in   the   sample.   Because   typhoid   fatality   rates   vary   from   year   to   year,   average   typhoid  rates  are  a  better  predictor  of  bacterial  counts  than  instantaneous   typhoid  rates.  This  observation  has  implications  for  our  empirical  analysis                     below.    In  particular,  instead  of  using  typhoid  rates  from  an  individual’s   year  of  birth,  we  use  average  typhoid  rates  from  the  prenatal  to  neonatal   period  as  a  proxy  for  water  quality  during  early  life.  

 

6  

 

 

During   the   late   nineteenth   and   early   twentieth   century,   the  

waterborne   disease   that   posed   the   most   serious   threat   to   American   populations   was   typhoid   fever—as   of   1900,   probably   one   of   every   three   Americans  would  have  contracted  typhoid  at  one  point  in  his  or  her  life.7   Typhoid  was  caused  by  the  bacterium  Salmonella  typhi,  and  was  typically   contracted   by   drinking   water   tainted   by   the   fecal   wastes   of   infected   individuals.  A  common  transmission  might  have  gone  something  like  this.   The  family  of  a  typhoid  victim  dumped  the  patient’s  waste  into  a  cesspool   or   privy   vault.   If   the   vault   was   too   shallow   or   had   leaks,   it   seeped   into   underground   water   sources.   In   turn,   if   these   water   sources   were   not   adequately   filtered,   people   who   drew   their   water   from   them   contracted   typhoid.   Typhoid   rates   in   a   given   city   or   region   were,   therefore,   highly   correlated   with   the   quality   and   extensiveness   of   water   and   sewerage   systems.8   II.b.  Living  and  dying  with  typhoid    

Once  they  entered  the  body,  typhoid  bacilli  had  a  one  to  three  week  

incubation  period.  During  incubation,  an  infected  individual  experienced   mild   fatigue,   loss   of   appetite,   and   minor   muscle   aches.   After   incubation,   the  victim  experienced  more  severe  symptoms:    chills,  coated  tongue,  nose   bleeds,   coughing,   insomnia,   nausea,   and   diarrhea.   At   its   early   stages,   typhoid’s   symptoms   often   resembled   those   of   respiratory   diseases   and   pneumonia   was   often   present.   In   nearly   all   cases,   typhoid   victims                                                                                                                    Troesken  (2004).    This  paragraph  is  based  on  George  C.  Whipple,  Typhoid  Fever:  Its  Causes,  Transmission,   and  Prevention,  New  York:  John  Wiley  &  Sons,  1908,  especially  pp.  21-­‐‑69.  

7 8

 

7  

 

experienced   severe   fever.   Body   temperatures   could   reach   as   high   as   105º   Fahrenheit.      

Three   weeks   after   incubation,   the   disease   was   at   its   worst.   The  

patient   was   delirious,   emaciated,   and   often   had   blood-­‐‑tinged   stools.   One   in   five   typhoid   victims   experienced   a   gastrointestinal   hemorrhage.   Internal   hemorrhaging   resulted   when   typhoid   perforated   the   intestinal   wall  and  sometimes  continued  on  to  attack  the  kidneys  and  liver.  The  risk   of   pulmonary   complications,   such   as   pneumonia   and   tuberculosis,   was   high   at   this   time.   The   high   fever   associated   with   typhoid   was   so   severe   that   about   one-­‐‑half   of   all   victims   experienced   neuropsychiatric   disorders   at   the   peak   of   the   disease.   These   disorders   included   encephalopathy   (brain-­‐‑swelling),   nervous   tremors   and   other   Parkinson-­‐‑like   symptoms,   abnormal  behavior,  babbling  speech,  confusion,  and  visual  hallucinations.   If,   however,   the   patient   survived   all   of   this,   the   fever   began   to   fall   and   a   long  period  of  recovery  set  in.  It  could  take  as  long  as  four  months  to  fully   recover.  Surprisingly,  given  the  severity  of  typhoid’s  symptoms,  90  to  95   percent  of  its  victims  survived.9    

That   typhoid   killed   only   5   to   10   percent   of   its   victims   might   lead  

one   to   wonder   just   how   significant   this   disease   could   have   been   for   human   health   and   longevity.   But   typhoid’s   low   case   fatality   rate   understates   the   disease’s   true   impact,   because   when   typhoid   did   not   kill   you  quickly  and  directly,  it  killed  you  slowly  and  indirectly.  

                                                                                                                 Whipple  (1908),  Curschmann  and  Stengel  (1902,  pp.  37-­‐‑42),  Sedgwick  (1902,  pp.  166-­‐‑68).   See  also,  Troesken  (2004,  pp.  23-­‐‑36).    

9

 

8  

 

A  simple  way  to  illustrate  this  last  point  is  by  looking  at  the  results   of   a   study   conducted   by   Louis   I.   Dublin   in   1915.   Dublin   followed   1,574   typhoid  survivors  over  a  three-­‐‑year  period.  Comparing  the  mortality  rates   of  typhoid  survivors  to  the  mortality  rates  of  similarly-­‐‑aged  persons  who   had  never  suffered  from  typhoid,  he  found  that  during  the  first  year  after   recovery,   typhoid   survivors   were,   on   average,   three   times   more   likely   to   have  died  than  those  who  had  never  been  exposed  to  typhoid,  and  that  in   the   second   year   after   recovery,   typhoid   survivors   were   two   times   more   likely   to   have   died   than   non-­‐‑typhoid   survivors.   By   the   third   year   after   recovery,   however,   typhoid   survivors   did   not   face   an   elevated   risk   of   mortality.   The   two   biggest   killers   of   typhoid   survivors   were   tuberculosis   (39  percent  of  all  deaths)  and  heart  failure  (23  percent).  Other  prominent   killers  included  kidney  failure  (8  percent)  and  pneumonia  (7  percent).   More   recently,   Case   and   Paxson   (2009)   present   econometric   evidence   that   early-­‐‑life   exposure   to   diarrhea   and   typhoid   fever   impairs   cognitive   functioning   later   in   life.   This   finding   is   particularly   important   for   the   results   presented   in   this   paper,   which   show   that   increased   exposure   to   typhoid   as   a   child   is   associated   with   lower   incomes   and   reduced   educational   attainment   in   adulthood.   Along   the   same   lines,   Almond  et  al.  (2012)  and  Costa  (2000)  show  early-­‐‑life  exposure  to  disease   can   raise   the   probability   of   contracting   diabetes,   heart   disease,   and   other   chronic  health  problems  later  in  life.   II.c.  The  eradication  of  typhoid  fever    

For  much  of  the  nineteenth  century,  people  believed  typhoid  arose  

spontaneously   or   spread   through   miasmas   —   miasmas   were   poisonous  

 

9  

 

atmospheres  thought  to  rise  from  swamps,  decaying  matter,  and  filth.  In   1840,  William  Budd  challenged  these  ideas,  showing  that  typhoid  spread   through  water  and  food.  Budd  recommended  investment  in  public  health   infrastructure   to   halt   the   spread   of   typhoid.   However,   scientists   who   continued  to  espouse  the  idea  that  typhoid  arose  spontaneously,  or  spread   through  miasmas,  vigorously  attacked  Budd  and  his  new  theory.  Because   of   their   attacks,   Budd’s   recommendations   were   not   soon   implemented,   and   typhoid   rates   in   Europe   remained   as   high   as   500   deaths   per   100,000   persons.   It   took   more   than   three   decades   for   Budd’s   theories   and   recommendations  to  take  hold  in  England.  In  1875,  the  British  government   passed   the   Public   Health   Act   and   began   improving   its   public   health   systems.  Ten  years  later,  typhoid  rates  in  England  had  fallen  50  percent.10    

With  the  development  of  Budd’s  ideas  in  particular,  and  the  germ  

theory  of  disease  in  general,  public  health  officials  in  America  and  Europe   came   to   agree:   to   control   typhoid,   cities   needed   to   assure   purity   of   drinking   water   through   filtration   and   chlorination,   and   through   sanitary   sewage   disposal.   The   experience   of   Pittsburgh,   Pennsylvania   highlights   the  effectiveness  of  water  filtration  in  controlling  typhoid  fever.  Pittsburgh   drew   its   water   from   the   Allegheny   and   Monongahela   Rivers.   Upstream   from  the  city,  seventy-­‐‑five  municipalities  dumped  their  raw  and  untreated   sewerage  into  the  rivers,  leaving  Pittsburgh’s  typhoid  rate  higher  than  any   other  major  U.S.  city.  Pittsburgh  held  this  distinction  throughout  the  late   nineteenth   century.   Then,   in   1899,   Pittsburgh   voters   approved   a   bond   issue   for   the   construction   of   a   water   filtration   plant.   Unfortunately,                                                                                                                    Budd  (1918)  and  Melosi  (2008,  pp.  1-­‐‑42;  60-­‐‑61;  and  110-­‐‑13).  

10

 

10  

 

political   bickering   delayed   completion   of   the   plant   until   1907.   Once   the   plant  was  in  operation,  though,  typhoid  rates  improved,  and  by  1912,  they   equaled  the  average  rate  in  America’s  five  largest  cities.11    

As  Figure  1  shows,  in  the  years  before  the  introduction  of  filtration,  

typhoid  rates  in  Pittsburgh  averaged  about  100  deaths  per  100,000.  Within   two   years,   filtration   had   reduced   typhoid   rates   in   Pittsburgh   by   roughly   75  percent.  And  through  subsequent  improvements  and  extensions  in  the   city’s  water  supply,  typhoid  rates  were  brought  down  to  around  6  deaths   per  100,000  by  1920.  This  represented  a  reduction  of  about  95  percent  from   pre-­‐‑filtration   levels.   As   impressive   as   the   Pittsburgh   example   is,   it   represents  a  typical  response  of  typhoid  fever  to  filtration.12   Water  filtration  was  not  the  only  effective  mechanism  at  decreasing   typhoid   fever.   The   other   panels   of   Figure   1   show   that   typhoid   fell   following  the  introduction  of  chlorination  in  Detroit,  and  the  extension  of   water  intake  cribs  away  from  the  shoreline  in  Cleveland.  In  all  cities,  the   introduction   of   water   purification   technologies   was   followed   by   sharp   reductions  in  the  death  rate  from  typhoid  fever  (Melosi,  2002;  Ellms  1913;   Cutler  and  Miller,  2005).    The  introduction  of  sewers  also  had  an  effect  on   mortality  rates  (Kestenbaum  and  Rosenthal,  2014;  Beemer,  Anderton,  and   Leonard,   2005;   and   Ferrie   and   Troesken,   2005).   Because   cities   used   different   technologies   to   purify   their   water,   and   because   implementation                                                                                                                    For  a  survey  of  the  effectiveness  of  water  filtration  (and  other  modes  of  improving   water  quality)  in  reducing  typhoid  rates,  see  Whipple  (1908,  pp.  228-­‐‑66).  On  the   Pittsburgh  experience,  see  Troesken  (2004,  pp.  27  and  56).     12  See  Cutler  and  Miller  (2005);  Melosi  (2008,  pp.  136-­‐‑48);  Whipple  (1908,  pp.  228-­‐‑72);   Fuertes  (1897);  Sedgwick  and  MacNutt  (1910).   11

 

11  

 

dates   are   not   reported   consistently,   we   use   typhoid   as   a   proxy   for   clean   water  rather  than  these  technologies  themselves.   Some   observers   have   argued   that   just   looking   at   typhoid,   as   we   have   done   here,   understates   the   benefits   of   water   filtration   because   eradicating   typhoid   has   broad   benefits.   Specifically,   eradicating   typhoid   affected   mortality   from   a   broad   class   of   diseases   and   illnesses.   The   non-­‐‑ typhoid   death   rates   that   were   the   most   responsive   to   improvements   in   water   quality   were   infantile   gastroenteritis   (diarrhea),   tuberculosis,   pneumonia,  influenza,  bronchitis,  heart  disease,  and  kidney  disease.13     The   experience   of   Chicago   nicely   illustrates   how   improving   water   quality  not  only  reduced  deaths  from  typhoid  fever  but  also  a  broad  class   of   diseases   not   usually   considered   waterborne.   From   the   late-­‐‑nineteenth   century   onward,   Chicago’s   primary   water   source   was   Lake   Michigan.   Unfortunately,  Lake  Michigan  was  also  frequently  polluted  with  sewage,   which  carried  disease-­‐‑causing  pathogens.  This  pollution  occurred  because   for   much   of   the   nineteenth   century   the   city   dumped   its   sewage   directly   into  the  lake,  or  into  the  Chicago  River  which  flowed  into  the  lake.  Over   the   course   of   the   nineteenth   and   early   twentieth   century,   Chicago   took   two  important  steps  in  trying  to  prevent  fecal  pollution  from  entering  the   city’s  water  mains.  The  first  step  occurred  in  1893,  when  the  city  opened   the  Four-­‐‑Mile  water  intake  crib,  the  Sixty-­‐‑eighth  Street  water  intake  crib,   and  permanently  closured  all  shoreline  sewage  outlets.14  The  second  step                                                                                                                    Cutler  and  Miller  (2005),  Sedgwick  and  MacNutt  (1910),  Ferrie  and  Troesken  (2008).    For  these  projects  and  dates,  see  Chicago  Bureau  of  Public  Efficiency  (1917);  and  The   Daily  Inter-­‐‑Ocean  (Chicago),  January  1,  1894,  p.  13.  

13 14

 

12  

 

occurred   in   1917,   when   the   city   opened   the   Wilson   Avenue   water   intake   crib  and  completed  its  citywide  chlorination  of  the  public  water  supply.15       The  completion  of  these  projects  corresponded  with  sharp  drops  in   the   city’s   death   rate   from   typhoid   fever.   This   can   be   seen   in   Figure   2,   which   plots   typhoid   rates   in   Chicago   from   1865   to   1925.   There   are   two   vertical   lines,   each   corresponding   to   the   aforementioned   technological   improvements   promoting   water   purity.   Note   in   particular   the   dramatic   effects   of   the   Four   Mile   and   Sixty-­‐‑eight   street   water   intake   cribs   and   the   closure   of   shoreline   sewage   outlets   in   1893.   Before   1893,   typhoid   rates   averaged  73  deaths  per  100,000,  and  death  rates  were  often  as  high  as  100   to   150.   After   1893,   death   rates   never   rose   above   50,   and   shortly   after   the   opening  of  the  Chicago  drainage  canal  in  1900,  rates  never  rose  above  25.   The   installation   and   extension   of   chlorination   around   1917   drove   down   typhoid  rates  still  further  until  rates  were  hovering  around  0  by  the  early   1920s.16      

These   improvements   in   water   quality   were   also   associated   with  

large   reductions   in   deaths   from   diseases   other   than   just   typhoid   fever.   This   can   be   seen   in   the   second   panel   of   Figure   2,   which   plots   the   total   death   rate   excluding   deaths   from   typhoid   fever.   Again,   the   vertical   lines   correspond   to   the   two   regime   changes   in   the   city’s   water   supply.   The                                                                                                                    See  Cain  (1977,  pp.  57);  Municipal  and  County  Engineering,  Vol.  LVI,  No.  1  (Jan.-­‐‑June   1918),  p.  6;  Chicago  Bureau  of  Public  Efficiency  (1917).   16  The  link  between  improvements  in  the  city’s  water  supply  and  reductions  in  typhoid   rates  did  escape  notice  in  the  medical  press.  See  the  Medical  News,  November  21,  1896,  p.   586;  The  Daily  Inter-­‐‑Ocean  (Chicago),  January  1,  1894,  p.  13;  and  Bulletin  of  the  Chicago   School  of  Sanitary  Instruction  (Chicago  Department  of  Public  Health),  Vol.  XV,  No.  9,  Feb.   27,  1921,  p.  34.   15

 

13  

 

patterns   are   striking.   Although   death   rates   appear   to   be   trending   downward   almost   from   the   start   of   the   time   series,   that   trend   is   modest   and   highly   variable.   The   two   most   prominent   changes   in   the   death   rate   are   associated   with   improvements   in   the   city’s   water   supply.   After   the   closure   of   shoreline   sewage   outlets   and   the   opening   of   two   new   intake   cribs   in   1893,   the   total   death   rate   quickly   fell   to   1500   per   100,000,   and   never   again   even   remotely   approached   levels   between   2000   and   2500,   which   were   commonplace   before   1893.   Another   sharp   discontinuity   is   observed   in   1917   when   death   rates   fell   to   around   1100.   The   year   1917,   moreover,   coincides   with   the   completion   of   the   city’s   water   chlorination   system.   One   might   argue   that   the   decline   in   non-­‐‑typhoid   deaths   was   the   result   of   other   public   health   investments.   However,   Cutler   and   Miller   (2005)  show  that  death  rates  from  pneumonia,  diphtheria,  and  meningitis   fell  following  the  adoption  of  water  purification  technologies.  Specifically,   they  estimate  that  for  every  one  typhoid  fever  death  prevented  by  water   purification   there   were   four   deaths   from   other   causes   that   were   also   prevented.   Ferrie   and   Troesken   (2008)   present   similar,   though   somewhat   stronger,  evidence  along  these  lines.    The  available  evidence  suggests  that   these   diseases   improved   with   water   filtration   because   typhoid   was   a   virulent  disease  that  left  a  person  vulnerable  to  secondary  infections  even   if  he  or  she  survived  its  direct  effects.       III.  DATA  

 

14  

 

Given   the   large   literature   showing   how   early-­‐‑life   exposure   to   disease   impairs   human   capital   formation,   and   given   the   observation   that   typhoid   had   large   and   diffuse   health   effects,   one   expects   that   typhoid   would   have   also   had   large   and   diffuse   effects   on   economic   and   social   outcomes.   To   identify   these   effects   we   combine   city-­‐‑year   level   typhoid   fatality   data   with   a   linked   sample   of   males   from   the   1900   and   1940   censuses.   We   obtain   typhoid   fatality   rates   in   the   late   nineteenth   and   early   twentieth  centuries  for  75  cities.  This  data  was  transcribed  from  Whipple   (1908)  as  well  as  the  10th  annual  Census  mortality  statistics.  Figure  3  maps   the  cities  used  in  our  analysis.  These  cities  tend  to  fall  within  the  top  100  in   terms   of   population.   In   1900,   they   had   an   average   population   of   225,364   and   a   median   population   of   94,969.   The   cities   are   predominantly   located   in   the   Northeast   and   the   Midwest   but   include   all   regions   of   the   continental  United  States.   As   a   measure   of   early-­‐‑life   exposure   to   contaminated   water,   we   average  typhoid  rates  during  the  year  of  birth,  the  year  before  birth,  and   the  year  after  birth.  Figure  4  visually  displays  typhoid  rates  and  the  three-­‐‑ year   moving   average   for   Boston,   New   York,   Philadelphia,   and   St.   Louis   between  1890  and  1910.  Our  analysis  will  focus  on  the  three-­‐‑year  moving   average.  This  has  two  advantages.  First,  because  typhoid  rates  are  volatile,   the  moving  average  provides  a  better  proxy  for  average  water  quality.  As   shown   in   Table   1   and   discussed   in   section   two,   typhoid   rates   averaged   over   several   years   are   a   better   predictor   of   water   bacterial   counts   than   instantaneous   typhoid   rates.   Second,   the   three-­‐‑year   moving   average   roughly   corresponds   with   the   prenatal,   neonatal,   and   postnatal   periods,    

15  

 

which  captures  exposure  during  early  life.  Figure  5  plots  the  distribution   of  average  typhoid  rates  during  early  life.  The  distribution  is  skewed  right   with   a   mean   of   41.72   deaths   per   100,000.   The   domain   ranges   from   10.39   deaths  per  100,000  to  217.96  deaths  per  100,000.     We   merge   this   typhoid   fatality   data   to   linked   micro   data.   This   dataset  links  individuals  observed  in  the  1940  and  1900  censuses  that  were   born  between  1889  and  1900.  We  restrict  our  analysis  to  males  who,  at  the   time  of  the  1900  census,  were  living  in  a  city  for  which  we  have  typhoid   data.   Because   we   treat   the   city   of   residence   in   1900   as   the   birth   city,   we   drop   any   individual   that   was   born   in   a   state   other   than   their   state   of   residence  in  1900.  We  believe  this  assumption  is  reasonable  given  that  the   sample  would  be  at  most  eleven  years  old  in  1900.   Summary  statistics  are  reported  in  Table  2.  Age,  education,  income,   homeownership   status,   and   whether   the   individual   moved   from   their   birth   city   are   taken   from   the   1940   census.   These   outcome   variables   are   measured  during  peak  earning  years  (ages  40-­‐‑51).  The  percent  of  blacks  is   small  because  we  are  looking  at  individuals  born  in  cities  before  the  Great   Migration.  The  average  individual  in  our  sample  spent  their  early  life  in  a   city  with  an  average  typhoid  rate  of  42  deaths  per  100,000.       IV.  RESULTS   IV.a.  OLS  results   In   Table   3   we   estimate   the   relationship   between   early-­‐‑life   typhoid   and  adult  outcomes  using  the  following  equation:    

16  

 

 

𝑦!"# = 𝛼 + 𝛽𝑇𝑦𝑝ℎ𝑜𝑖𝑑!" + 𝛾𝟏 𝑏𝑙𝑎𝑐𝑘! + 𝑏𝑖𝑟𝑡ℎ  𝑐𝑖𝑡𝑦  𝐹𝐸′𝑠  

(1)  

+  𝑏𝑖𝑟𝑡ℎ  𝑦𝑒𝑎𝑟  𝐹𝐸′𝑠 + 𝑏𝑖𝑟𝑡ℎ  𝑜𝑟𝑑𝑒𝑟  𝐹𝐸′𝑠   +   𝜖!   where   the   outcome   for   individual   i   born   in   city   j   during   year   k   is   either   years   of   schooling,   ln(income),   homeownership   status,   or   mover/stayer   status   in   1940.   Typhoid   is   the   average   typhoid   rate   during   early   life   for   individuals  born  in  city  j  during  birth  year  k,  where  early  life  is  defined  as   the  year  before  birth  until  the  year  after  birth.  We  cluster  standard  errors   at  the  birth-­‐‑city  level.  Each  regression  includes  fixed  effects  for  each  birth   city,  birth  year,  and  birth  order.  Because  outcomes  are  taken  from  the  1940   census,   controlling   for   birth   year   automatically   controls   for   age.   We   find   that  typhoid  during  early  life  decreases  educational  attainment  and  adult   income,   but   we   find   no   effect   on   homeownership   status   or   geographic   mobility  (mover/stayer  status).  These  results  indicate  that  if  typhoid  were   eradicated,  years  of  schooling  would  have  increased  by  nearly  one  month   and  income  would  have  increased  by  one  percent.   To  illustrate  that  these  results  are  driven  by  early-­‐‑life  exposure  and   not  exposure  during  other  ages  we  estimate  a  variant  of  equation  (1)  that   includes   typhoid   rates   during   the   following   years:   7   to   5   years   before   birth;   4   to   2   years   before   birth;   2   to   4   years   after   birth;   5   to   7   years   after   birth,  as  well  as  our  measure  of  early-­‐‑life  exposure  (1  year  before  birth  to  1   year  after  birth).  Figure  6  plots  the  95  percent  confidence  interval  for  these   estimates.   Consistent   with   Table   3,   Figure   6   illustrates   that   early-­‐‑life   typhoid   rates   are   associated   with   a   decline   in   education   and   income   in   adulthood.   No   other   periods   are   significant.   Furthermore,   the   estimated   relationship   between   early-­‐‑life   typhoid   exposure   and   adult   outcomes   is   similar   to   the   estimates   presented   in   Table   3.   Although   not   presented   in    

17  

 

Figure   6,   the   effect   on   homeownership   status   and   mobility   remains   insignificant.     IV.b.  Semi-­‐‑parametric  results   A   concern   with   the   analysis   above   is   that   it   imposes   a   linear   relationship   on   the   data   when   the   data   might   in   fact   be   related   in   non-­‐‑ linear   ways.     To   address   this   concern,   we   estimate   the   relationship   between  typhoid  and  adult  outcomes  semi-­‐‑parametrically.  Specifically,  we   estimate  the  following  equation:    

𝑦!" = 𝛼 + 𝑓 𝑇𝑦𝑝ℎ𝑜𝑖𝑑!" + 𝛽 𝑏𝑙𝑎𝑐𝑘!" + 𝛾 𝑏𝑖𝑟𝑡ℎ  𝑜𝑟𝑑𝑒𝑟!"  

(2)  

+ 𝑏𝑖𝑟𝑡ℎ  𝑐𝑖𝑡𝑦  𝐹𝐸′𝑠   +  𝑏𝑖𝑟𝑡ℎ  𝑦𝑒𝑎𝑟  𝐹𝐸′𝑠 +   𝜖!"   this   equation   is   similar   to   equation   (1)   except   that   it   does   not   impose   a   linear   relationship   between   early-­‐‑life   typhoid   exposure   and   adult   outcomes.  We  non-­‐‑parametrically  estimate  the  relationship  between  early-­‐‑ life  typhoid  exposure  and  adult  outcomes  using  linear  partial  regression.   However,   this   requires   a   strict   ordering   of   early-­‐‑life   typhoid   rates.   We   achieve   this   by   collapsing   the   data   at   the   city-­‐‑year   level. 17  Since   we   collapse   at   the   city-­‐‑year   level,  𝑏𝑙𝑎𝑐𝑘!"  becomes   the   percent   of   the   cohort   born   in   city   j   during   year   k   that   is   black,   and  𝑏𝑖𝑟𝑡ℎ  𝑜𝑟𝑑𝑒𝑟!"  becomes   the   average  birth  order  for  individuals  born  in  city  j  during  year  k.       Figure   7   presents   the   non-­‐‑parametric   estimates   of   𝑓 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 .   Early-­‐‑life   exposure   to   typhoid   decreases   adult   earnings   and   educational                                                                                                                    Linear  partial  regression  requires  that  we  can  sort  typhoid  rates  from  lowest  to  highest.   If  we  did  not  collapse  at  the  city-­‐‑year  level,  then  there  would  be  many  individuals  with   the  same  early-­‐‑life  typhoid  rates,  and  the  estimates  would  be  sensitive  to  the  sorting   order.  

17

 

18  

 

attainment  above  the  10th  percentile  of  the  early-­‐‑life  typhoid  distribution.   Moreover  the  relationship  is  approximately  linear.  Moving  from  the  top  of   the  typhoid  distribution  to  eradication  would  have  increased  educational   attainment   by   one-­‐‑third   of   a   year   and   increased   earnings   by   about   four   percent.   There   does,   however,   appear   to   be   a   positive   relationship   between  zero  and  20  deaths  per  100,000,  but  this  constitutes  less  than  ten   percent   of   our   sample.18     Overall   then,   it   appears   that   the   linear   model   adopted  in  section  IV.a.  is  appropriate.   IV.c.  Two-­‐‑stage  least  squares  results    

One   might   be   concerned   that   typhoid   during   early   life   is  

endogenous.   For   example,   investment   in   water   filtration   might   be   correlated   with   unobservable   investments   that   also   increase   human   capital.  To  address  this  concern,  we  implement  an  instrumental  variables   strategy.  This  strategy  builds  on  the  following  logic:  because  typhoid  is  a   waterborne  disease,  cities  that  dump  their  sewage  into  a  river  will  increase   future  typhoid  rates  for  cities  downstream.  Additionally,  the  typhoid  rates   in   cities   upstream   should   be   exogenous   to   human   capital   investments   in   the  receiving  city.    

Eighteen   of   the   75   cities   used   in   the   previous   analysis   lie  

downstream   from   another   city   for   which   we   have   typhoid   data.   We   confirm   flow   direction   for   each   river   using   data   from   the   United   States  

                                                                                                                 This  could  also  be  due  to  survivorship  bias  (see  Bozzoli,  Deaton,  and  Quintana-­‐‑ Domeque,  2009).  

18

 

19  

 

Geological  Survey.19  Cities  that  are  upstream  (the  feeder  cities)  dump  their   sewage   into   the   river.   This   increases   the   typhoid   rates   in   cities   downstream  (the  receiving  city).  Thus,  we  use  typhoid  rates  in  the  feeder   city   an   instrument   for   typhoid   rates   in   the   receiving   city.   Whether   we   should  use  contemporaneous  typhoid  rates  or  the  rates  lagged  by  one  year   depends   on   the   distance   between   the   two   cities   and   the   flow   rate   of   the   river.   We   find   similar   results   regardless   of   whether   we   use   the   contemporaneous   or   lagged   typhoid   rate,   but   lagged   typhoid   rates   produce  a  stronger  first  stage.    

Table   4   presents   our   results   using   lagged   typhoid   rates   in   the  

feeder  city  as  an  instrument  for  typhoid  rates  in  the  receiving  city.  Lagged   typhoid  rates  in  the  feeder  city  are  a  strong  predictor  of  typhoid  rates  in   the   receiving   city;   an   additional   100   deaths   per   100,000   in   the   feeder   city   increases  the  typhoid  death  rate  in  the  receiving  city  by  8  in  the  following   year.   The   F-­‐‑statistics   associated   with   this   estimate   range   from   517.81   to   671.12  and  therefore  suggest  that  lagged  typhoid  rates  from  the  feeder  city   are   a   strong   instrument.   In   the   second   stage   we   find   that   typhoid   rates   during   early   life   decrease   educational   attainment   and   earnings,   although   only   the   first   estimate   is   statistically   significant   at   the   five   percent   level.   The  estimate  on  earnings,  while  imprecisely  estimated,  is  consistent  with   the   OLS   estimates   presented   in   Table   3.   These   results   indicate   that   the   eradication   of   typhoid   would   have   increased   schooling   by   nine   months.   Table   4   also   indicates   that   high   typhoid   rates   during   early   life   reduced                                                                                                                    Specifically,  we  identified  flow  direction  using  the  USGS/National  Map  Streamer  tool.   This  information  is  available  as  a  web  app  at:   http://nationalmap.gov/streamer/webApp/welcome.html    

19

 

20  

 

mobility,  i.e.  the  likelihood  that  the  individual  would  reside  in  their  birth   city  as  an  adult.     V.  COST-­‐‑BENEFIT  ANALYSIS    

The   previous   section   illustrates   that   eradicating   typhoid   fever  

would  have  increased  educational  attainment  by  one  to  nine  months  and   income   by   one   to   nine   percent.   These   estimates   raise   the   question   of   whether   the   net   present   value   of   the   increase   in   wages   was   enough   to   offset   the   costs   associated   with   eradicating   typhoid   fever.   Cutler   and   Miller   (2005)   have   analyzed   the   benefits   of   adopting   water   purification   technologies  using  the  value  of  a  statistical  life  and  find  that  the  benefits   outweigh   the   costs   by   a   ratio   of   23   to   1.   In   our   analysis,   we   ignore   the   gains   from   additional   life   years   and   instead   focus   on   whether   the   discounted   increase   in   earnings   would   have   been   sufficient   to   cover   the   costs  of  eradicating  typhoid  fever.    

To   analyze   the   benefits   from   typhoid   eradication,   we   need   the  

following   information:   the   probability   that   an   individual   survives   to   a   given  age  with  and  without  the  intervention,  average  income  by  age  with   and   without   the   intervention,   and   the   number   of   individuals   in   a   cohort   who  would  benefit  from  the  water  infrastructure.  To  analyze  the  costs,  we   need   to   know   the   total   costs   of   municipal   water   systems   and   how   frequently   these   systems   need   to   be   replaced.   Lastly,   to   compare   the   net   present  values,  we  need  real  interest  rates.    

 

21  

 

The   survival   probability,  𝑆! ,   is   the   probability   that   an   individual   survives  to  age  a.  We  use  the  survival  probabilities  for  males  born  in  1900   from   the   Social   Security   life   tables.   Cutler   and   Miller   (2005)   find   that   mortality   fell   by   13%   after   the   introduction   of   clean   water   technologies.   Accordingly,   we   adjust   the   1900   survival   probabilities   to   reflect   this   change.   We   use   the   1940   census   to   obtain   the   wage   profile   for   males.   Specifically,   we   obtain   average   earnings   by   age   using   a   local   polynomial   smooth   for   all   males.   For   the   counterfactual   wage   distribution,   we   scale   these  averages  by  one  to  nine  percent,  which  corresponds  to  the  OLS  and   IV   estimates   reported   in   Tables   3   and   4.   Figure   8   plots   the   baseline   and   counterfactual   survival   probabilities   as   well   as   the   baseline   and   counterfactual  wages.  Eradicating  typhoid  fever  has  two  effects  on  wages.   First,   it   increases   the   average   wage.   Second,   it   increases   the   probability   that  an  individual  will  survive  until  that  age.   We  assume  that  the  average  cohort  of  males  born  in  a  city  is  20,000,   which   is   approximately   the   number   of   males   born   in   Chicago   in   1900.20   Finally,   to   obtain   the   costs   we   use   the   numbers   reported   in   Cutler   and   Miller  (2005),  which  assumes  that  the  average  cost  of  the  waterworks  for  a   large   city   was   22.8   million   dollars   in   1940   and   that   the   waterworks   must   be  replaced  every  ten  years.     The   previous   assumptions   underestimate   the   gains   from   eradicating   typhoid   fever.   First,   we   assume   that   female   earnings   were   unaffected   by   typhoid.   Second,   we   assume   that   the   only   benefit   from                                                                                                                    We  obtain  20,000  by  taking  the  number  of  males  in  Chicago  that  were  age  0  in  the   IPUMS  5%  sample  of  the  1900  census  and  multiplying  it  by  20.  

20

 

22  

 

reduced   mortality   was   increasing   the   probability   of   receiving   future   earnings.   Third,   we   assume   that   the   entire   waterworks   must   be   replaced   every   ten   years,   when   in   reality   many   parts   are   likely   to   function   for   longer.   Furthermore,   we   assume   that   the   construction   of   the   waterworks   was   necessary   to   eradicate   typhoid   fever,   but   one   could   argue   that   the   marginal  cost  of  chlorinating  or  filtering  water  was  sufficient  to  eradicate   typhoid  fever.   We   calculate   the   benefits   to   eradicating   typhoid   fever   using   equation   three,   where  𝑆! !  is   the   counterfactual   survival   probability   and   𝑊! !  is   the   counterfactual   wage.   The   waterworks   lasts  𝑇  years,  𝑁  is   the   cohort  size,  and  𝑟  is  the  real  interest  rate.      

!

𝑁𝑃𝑉 = !!!

𝑁 ∗ 1+𝑟 !

!"!

!!!

𝑆! ! 𝑊! ! − 𝑆! 𝑊!   1+𝑟 !

(3)  

Figure  9  graphs  these  benefits  for  various  interest  rates  for  both  the  OLS   and   IV   counterfactual   wages.   The   horizontal   line   corresponds   to   the   cost   of  eradicating  typhoid  fever,  22.8  million  in  1940  dollars.  Figure  9  shows   that  for  our  OLS  estimates  and  any  real  interest  rate  under  seven  percent,   the   increase   in   earnings   alone   was   sufficient   to   offset   the   cost   of   eradicating   typhoid   fever.   For   our   IV   estimates,   the   break-­‐‑even   real   interest  rate  increases  to  ten  percent.     VI.  DISCUSSION  AND  CONCLUSION    

Between  1900  and  1940  mortality  in  the  United  States  fell  by  nearly  

40  percent.  Approximately  half  of  this  decline  was  the  result  of  investment    

23  

 

in   water   purification   technologies   and   the   eradication   of   waterborne   diseases   such   as   typhoid   fever.   There   have   been   a   number   of   previous   studies  estimating  the  social  rate  of  return  to  water  purification  measures,   but   all   of   these   studies   focus   on   the   gains   associated   with   reductions   in   mortality  (e.g.,  Cutler  Miller  2005;  Ferrie  and  Troesken  2008).    Yet  because   typhoid  was  such  a  virulent  disease  and  had  such  a  low  case  fatality  rate,   there  is  good  reason  to  believe  that  its  effects  on  morbidity  and  long-­‐‑term   human  capital  formation  were  substantial.    Accordingly,  in  this  paper,  we   explore   how   eliminating   early-­‐‑life   exposure   to   typhoid   fever   affected   economic   outcomes   in   later   life.     Our   laboratory   consists   of   urban   residents   in   large   American   cities   during   the   late-­‐‑nineteenth   and   early   twentieth  century.    

In  our  analysis,  we  explore  how  early  life  exposure  to  typhoid  fever  

(our  primary  indicatory  of  water  quality)  influenced  later  life  outcomes  in   terms   of   income,   educational   attainment,   home   ownership,   and   geographic   mobility.     Using   parametric,   semi-­‐‑parametric,   and   IV   approaches,   our   results   indicate   that   the   eradication   of   typhoid   fever,   which   cities   achieved   by   adopting   clean   water   technologies,   would   have   increased   educational   attainment   by   one   to   nine   months   and   earnings   would   have   increased   by   between   one   and   nine   percent.   A   simple   cost-­‐‑ benefit   analysis   reveals   that   the   increase   in   earnings   from   eradicating   typhoid   fever   was   more   than   sufficient   to   offset   the   costs   of   eradication.     When  one  considers  that  our  calculations  ignore  the  changes  in  mortality   captured  by  Cutler  and  Miller  (2005)  and  other  researchers,  the  evidence   that  investments  in  water  purification  have  very  high  rates  of  social  return   seems  unassailable.    These  results  have  important  policy  implications  for  

 

24  

 

developing   countries   that   have   yet   to   adopt   water   purification   technologies.     REFERENCES    

Almond,  Douglas  and  Janet  Currie.  "ʺHuman  capital  development  before   age  five."ʺ  Handbook  of  labor  economics  4  (2011):  1315-­‐‑1486.   Almond,  Douglas,  Janet  Currie,  and  Mariesa  Herrmann.  "ʺFrom  infant  to   mother:  Early  disease  environment  and  future  maternal   health."ʺ  Labour  Economics  19,  no.  4  (2012):  475-­‐‑483.   Beemer,  Jeffrey  K.,  Douglas  L.  Anderton,  and  Susan  Hautaniemi  Leonard.   "ʺSewers  in  the  city:  A  case  study  of  individual-­‐‑level  mortality  and   public  health  initiatives  in  Northampton,  Massachusetts,  at  the  turn  of   the  century."ʺ  Journal  of  the  history  of  medicine  and  allied  sciences  60,  no.  1   (2005):  42-­‐‑72.   Bozzoli,  Carlos,  Angus  Deaton,  and  Climent  Quintana-­‐‑Domeque.  "ʺAdult   height  and  childhood  disease."ʺ  Demography  46,  no.  4  (2009):  647-­‐‑669.   Budd,  William  “Typhoid  fever:  Its  nature,  mode  of  spreading,  and   prevention.”  Reprinted  in  American  Journal  of  Public  Health  8,  no.  8   (1918)  610-­‐‑612.   Bulletin  of  the  Chicago  School  of  Sanitary  Instruction.    (various  issues)   Louis  P.  Cain,  Sanitation  Strategy  for  a  Lakefront  Metropolis,  DeKalb:   Northern  Illinois  University  Press,  1977   Case,  Anne,  and  Christina  Paxson.  "ʺEarly  life  health  and  cognitive   function  in  old  age."ʺ  The  American  Economic  Review  (2009):  104-­‐‑109.   Chicago  Bureau  of  Public  Efficiency.  1917.  The  Water  Works  System  of  the   City  of  Chicago.  No  publisher  listed.   Chicago  Daily  Inter-­‐‑Ocean  (newspaper,  various  issues)   Costa,  Dora  L.  "ʺUnderstanding  the  twentieth-­‐‑century  decline  in  chronic   conditions  among  older  men."ʺ  Demography  37,  no.  1  (2000):  53-­‐‑72.  

 

25  

 

Currie,  Janet,  Joshua  Graff  Zivin,  Katherine  Meckel,  Matthew  Neidell,  and   Wolfram  Schlenker.  "ʺSomething  in  the  water:  contaminated  drinking   water  and  infant  health."ʺ  Canadian  Journal  of  Economics  46,  no.  3  (2013):   791-­‐‑810.   Curschmann,  Heinrich,  and  Alfred  Stengel.  Typhoid  fever  and  typhus  fever.   W.B.  Saunders,  1902.   Cutler,  David,  and  Grant  Miller.  "ʺThe  role  of  public  health  improvements   in  health  advances:  the  twentieth-­‐‑century  United   States."ʺ  Demography  42,  no.  1  (2005):  1-­‐‑22.   Dublin,  Louis  I.  "ʺTyphoid  fever  and  its  sequelae."ʺ  American  Journal  of   Public  Health  5,  no.  1  (1915):  20-­‐‑27.   Ellms,  Joseph  W.    1913.    “Disinfection  of  Public  Water  Supplies:  Why  the   Purification  of  Drinking  Water  Should  be  Supplemented  by   Disinfection—the  Uses  of  Chlorine,  Ozone,  and  Ultra-­‐‑Violet  Light.”     The  American  City,  22:  564-­‐‑68.   Engineering  News,  May,  1913,  p.  1087   Ferrie,  Joseph  P.,  and  Werner  Troesken.  Death  and  the  City:  Chicago'ʹs   Mortality  Transition,  1850-­‐‑1925.  No.  w11427.  National  Bureau  of   Economic  Research,  2005.   Ferrie,  Joseph  P.,  and  Werner  Troesken.  "ʺWater  and  Chicago’s  mortality   transition,  1850–1925."ʺ  Explorations  in  Economic  History  45,  no.  1  (2008):   1-­‐‑16.   Fuertes,  James  Hillhouse.  Water  and  Public  Health:  The  Relative  Purity  of   Waters  from  Different  Sources.  J.  Wiley  &  sons,  1897.   Kesztenbaum,  Lionel,  and  Jean-­‐‑Laurent  Rosenthal.  "ʺIncome  versus   Sanitation;  Mortality  Decline  in  Paris,  1880-­‐‑1914."ʺ   Medical  News  (various  issues)   Melosi,  Martin  V.  The  sanitary  city:  Environmental  services  in  urban  America   from  colonial  times  to  the  present.  Johns  Hopkins  University  Press,  2000.    

 

26  

 

Municipal  and  County  Engineering  (various  issues)   Sedgwick,  William  Thompson.  Principles  of  sanitary  science  and  the  public   health:  with  special  reference  to  the  causation  and  prevention  of  infectious   diseases.  Macmillan  Company;  London,  Macmillan  and  Company,   Limited,  1902.   Sedgwick,  William  T.,  and  J.  Scott  MacNutt.  "ʺOn  the  Mills-­‐‑Reincke   Phenomenon  and  Hazen’s  Theorem  Concerning  the  Decrease  in   Mortality  from  Diseases  Other  than  Typhoid  Fever  Following  the   Purification  of  Public  Water-­‐‑Supplies."ʺ  Journal  of  Infectious  Diseases  7,   no.  4  (1910):  489-­‐‑564.   Troesken,  Werner.  Water,  race,  and  disease.  MIT  Press,  2004.   Whipple,  George  Chandler.  Typhoid  fever;  its  causation,  transmission  and   prevention.  J.  Wiley  &  sons,  1908.          

 

 

27  

 

FIGURES  AND  TABLES     Figure  1:  Typhoid  death  rates  

100 50

Filtration begins

0

Deaths2per2100,000

150

Pi:sburgh

1895

1900

1905

Year

1910

1915

1920

1915

1920

1915

1920

25 20 15 10

Chlorination begins

5

Deaths2per2100,000

30

Detroit

1895

1900

1905

Year

1910

50

Extended intake2tunnel

0

Deaths2per2100,000

100

Cleveland

1895

1900

1905

Year

1910

 

Data  from  Whipple  (1908)  and  the  10th  annual  census  report  on  mortality  statistics.  

 

28  

 

Figure  2:  Death  rates  in  Chicago  

150

Typhoid'death'rate

50

100

Chlorination'begins

0

Deaths'per'100,000

Intake'cribs'and'closure of'shoreline'sewage'outlets

1865

1880

1895 Year

1910

1925

Intake'cribs'and'closure of'shoreline'sewage'outlets

1500

2000

2500

Chlorination'begins

1000

Deaths'per'100,000

3000

NonETyphoid'death'rate

1865

1880

1895 Year

1910

1925

 

       

 

Data  from  Whipple  (1908)  and  the  10th  annual  census  report  on  mortality  statistics.  

29  

 

Figure  3:  Cities  and  rivers  

Duluth Portland MinneapolisSt Paul

Lowell Lynn Utica Troy RochesterSyracuse Boston Albany Buffalo Hartford New Haven Erie Detroit Hoboken Newark Toledo Cleveland New York Reading Camden PittsburghAllegheny Wilmington

Milwaukee Chicago Omaha San FranciscoOakland

Dayton

Denver

Baltimore Washington

Cincinnati Saint Louis Louisville Evansville

Richmond

Nashville

Los Angeles Memphis

Atlanta

Charleston

New Orleans

 

   

 

30  

 

Figure  4:  Typhoid  rates  

10

10

15

20

20

30

25

30

New4York

40

Boston

1890

1895

1900 Year

1905

1910

1890

1895

1905

1910

1905

1910

St.4Louis

20

40

60

20 40 60 80 100

80

Philadelphia

1900 Year

1890

1895

1900 Year

1905

1910

1890

1895

1900 Year

3Ayear4moving4average Typhoid4rate

 

Notes:  Data  from  Whipple  (1908)  and  the  10th  annual  census  report  on  mortality  statistics.   Typhoid  fatality  rate  is  the  number  of  deaths  per  100,000.  

 

0

.005

Density .01

.015

.02

Figure  5:  Distribution  of  typhoid  rates  during  early  life  

0

50

100 150 Average2typhoid2rate

200

250

 

Notes:  Average  typhoid  rate  during  early  life  is  the  average  typhoid  rate  during  the  year   before  birth,  the  year  of  birth,  and  the  year  after  birth.  The  average  typhoid  fatality  rate  is   the  number  of  deaths  per  100,000.    

 

31  

 

Figure  6:  The  relationship  between  average  typhoid  rates  at  various   stages  and  adult  outcomes   ln(Income)

!8

!4

0 Years.since.birth

4

8

!.0006

!.003

!.0004

!.002

!.0002

!.001

0

0

.001

.0002

.002

.0004

Education

!8

!4

0 Years.since.birth

4

8

 

Notes:  Each  regression  includes  fixed  effects  for  city  of  birth,  year  of  birth,  race,  and  birth   order.  

7.3 7.15

9.3

9.4

7.2

ln(Income)

Years-of-schooling 9.5

7.25

9.6

9.7

Figure  7:  Semi-­‐‑parametric  estimates  of  the  relationship  between   typhoid  and  adult  outcomes  

0

50 100 150 Average-typhoid-rate-during-early-childhood

200

0

50 100 150 Average-typhoid-rate-during-early-childhood

200

Notes:  This  figure  presents  the  semi-­‐‑parametric  estimates  from  equation  (2).  The  average   typhoid  rate  during  early  life  is  the  average  typhoid  rate  during  the  year  before  birth,  the   year  of  birth,  and  the  year  after  birth,  and  rate  is  the  number  of  deaths  per  100,000.      

 

32  

 

 

0

0

200

.2

.4 .6 Survival/rate

.8

Wage/in/1940/dollars 400 600 800 1000

1

1200

Figure  8:  Earnings  profile  and  survival  curve  

0

20

40

Age

Wage/smooth Survival/rate

60

80

100

IV/counterfactual/wage Counterfactual/survival/rate

  Notes:  Survival  rate  obtained  from  Social  Security  Administration  life  tables  for  the  1900   male  birth  cohort.  Wage  obtained  from  IPUMS  one  percent  sample  of  males  in  1940.  The   counterfactual  survival  rate  is  adjusted  using  the  estimated  13%  decline  in  mortality  rates   reported  in  Cutler  and  Miller  (2005).  The  IV  counterfactual  wage  is  adjusted  using  the  9%   estimate  from  Table  4.      

 

33  

 

0

Millions+of+dollars 200 400

600

Figure  9:  Net  present  value  of  typhoid  eradication  

0

5

10 Interest+rate IV+estimate

15

20

OLS+estimate

Notes:  The  net  present  value  of  the  benefits  is  obtained  from  equation  (3)  for  various   interest  rates.  The  horizontal  line  corresponds  to  the  estimated  cost  of  the  waterworks,   22.8  million  dollars  in  1940  (obtained  from  Cutler  and  Miller,  2005).  

 

34  

   

   

Table  1:  Bacteria  counts  and  typhoid  rates      

Typhoid  fatality  rate       Mean  typhoid  fatality  rate       Constant       Collapsed     Weighted     Observations   R-­‐‑squared  

Bacteria   count  

Mean   bacteria   count  

Mean   bacteria   count  

21.8050   (14.4928)           396.4265   (793.3535)             41   0.0662  

      18.1953*   (8.3253)     907.6234   (939.2506)     Y         13   0.0461  

      18.9262***   (5.7220)     602.7608   (692.9056)     Y     Y     13   0.0757  

Notes:  Robust  standard  errors  in  parenthesis.  In  column  one  each   observation  is  a  city-­‐‑year.  In  columns  two  and  three  each  observation  is   the  mean  bacterial  counts  and  mean  typhoid  rates  by  city.  Column  three   weights  each  city  by  the  number  of  years  in  the  average.  *  p