Ultrasonic Degradation of Polymers in Solution

1 downloads 0 Views 171KB Size Report
Physicochemical Actions of Ultrasound on Macromolecules . 97. 3.1. ..... Mark, H.: Some applications of ultrasonics in high-polymer research. J. Acoust. Soc. Am.
Ultrasonic Degradation of Polymers in Solution

Arno Max Basedow and Klaus Heinrich Ebert Institut fiir Angewandte Physikalische Chemie, Universitat Heidelberg, D-6900 Heidelberg

Table of Contents 1.

Introduction

84

2. 2.1. 2.2. 2.3. 2.4.

Effects of High Intensity Ultrasonics in Liquids . Elementary Physics of Ultrasonic Waves Generation of Ultrasound in Liquids Cavitation . . . . . . . . . . Shock Waves Produced by Cavitation .

84 84

3. 3.1. 3.2. 3.3."

Physicochemical Actions of Ultrasound on Macromolecules . Chemical Effects . . . . Depolymerization Formation ofMacroradicals

4. Parameters Affecting the Degradation of Polymers in Solution . 4.1. Quantities Characterizing Ultrasound . . 4.2. Properties of the Solution . . . . . . .

86 88 95 97 97 99 101 l 03 l 03 l 06

5. 5 .1. 5.2. 5.3. 5 .4.

Experimental Investigation of Degradation . Kinetic Analysis of the Degradation Reaction Evaluation of Molecular-Weight Averages . . Determination of Molecular-Weight Distributions Degradation Models . . . . . . . . .

6. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7.

Mechanisms of Ultrasonic Degradation . . . Fundamentals of Mechanochemical Reactions Force Necessary to Rupture Covalent Bonds. Direct Action of Ultrasonic Waves on Macromolecules Shear Degradation . . . . . . Pulsating Resonant Bubbles . . . Flow Fields Produced by Cavitation Shock Waves Produced by Cavitation

110 110 112 114 120 125 125 127 129 132 134 136 140

7.

Concluding Remarks.

142

8.

References . .

145

. .

A. M. Basedow and K. H. Ebert

118

sJ.m ''03

dM''' 4

3

2

0

20

1.0

60

80

100

Fig. 23. Differential molecularweight distribution curves of ultrasonically degraded dextran (M w = 39700,Mw!Mn = 1.05 in water at 24 watts/cm 2 and 20 kc/sec). Times of irradiation (min): e: 0 •: I 0 o: 20 •: 40 +: 80•: 160 !Ref. (2, J)l dm/dllf =differential molecular weight distribution; dm = mass of polymer having a molecular weight between Mand M + dM

m

TO

5

2

5

2

,._.~~~~~...,__~~~~6~0--0 20 40 80 160 I (mm}

Fig. 24. First-order degradation rate plot of dectran (molecular-weight distribution curves from Fig. 23). Ordinate: weight fraction (m); abscissa: time of irradiation(!). Parameter of lines is molecular weight x 10-J (Ref. (2, J)]

is represented in Fig. 24. In dilute solutions the reaction order of ultrasonic degradation is found to be pseudo first order in most cases. The true reaction order is certainly more complex, since the rate constants decrease with increasing concentration in a nonlinear fashion (24). This is attributed by some investigators to entanglements and the building up of polymer networks, which slow down the degradation process.

Ultrasonic Degradation of Polymers in Solution

119

From the slopes of the lines in Figure 24 the rate constants of degradation of dextran, having a definite molecular weight, can be calculated. A typical set of degradation constants is shown in Fig. 25, which demonstrates that the rate constants



12

rmi!i-

1

.10

• 08

06

04

02

Fig. 25. Dependence of degradation rate constants (k) on molecular weight (M) of dextran in different

o~~~~~~~~~~~~_J

10

50

30

70

M 70-

90 1

solvents. Ultrasonic intensity 24 watts/cm2 at 20 kc/sec. Solvents are: .A: water e: solution of 10% MgS04 in water+: formamide (Ref. (2)1

increase linearly with increasing molecular weight. An extrapolation of the lines, which represent the dependence of the rate constants on the molecular weight, to the rate constant zero should give in principle the limiting molecular weight, below which degradation ceases. For dextran the values thus obtained for several different solvents are of the order of 20000. Long-time investigations of degradation, however, showed that the limiting molecular weight of dextran in water was only approxi-

:::-20 ·c:

.§_ ": 16

·7

"' Q

0

Vi

12

16 5 4 15 • 13 •

74

08

04 11

0 0

2

2

3

4 5 k 50 10 2 (min~'J

Fig. 26. Plot of slopes of straight lines, which give dependence of degradation rate constants on molecular weights (Fig. 25), versus degradation constant of dextran with molecular weight of 50.000 (k5 0 ). Numbers refer to different solvents: 2 1: water (ultrasonic intensity 24 watts/cm } 2: 2 water (ultrasonic intensity 5 watts/cm ) 3: water (different initial molecular-weight distribution) 4: deuterium oxide 5: dimethylsulfoxide 6: formamide 7: ethylene glycol 8: glycerin 9: ethanolamine JO: 20% methanol in. water 11: water saturated with diethyl ether 12: water with 0.1% potassium palmitate 13: 1% MgS04 in water (20 °C) 14: 1% MgS04 in water (50 °C) 15: 10% MgS04inwater16: 10% glucose in water 17: 10% urea in water 18: 10% urea in dimethylsulfoxide. If not indicated, ultrasonic intensity was 24 watts/cm 2 at 20 kc/sec (Ref. (2, 3)1

I

A. M. Basedow and K. H. Ebert

124

Fig. 29. Calculated molecular-weight distributions of degraded dcxtran in water, for f3 = 1 and assuming variable fragmentation ratios. Initial molecular weight Mw = 39 700, Mw!Mn = 1.05; degradation time 80 min at 24 watts/cm 2 and 20 kc/sec. Numbers indicate different fragmentation ratios: I= 1: 12=2:13=3:14=9:1 .... : experimental curve (Ref. (100)1

dm.7(] dM I.

2

0

20

1.0

60

Fig. 30. Calculated molecular-weight distributions of degraded dextran in water, for fragmentation ratio of 1: 1 and assuming variable values of IJ. Initial molecular weight Mwf = 5 3 200, Mw!M n = 1.08; degradation time 40 min at 24 watts/cm 2 and 20 kc/sec. Numbers indicate different values of {3: I: f3 = 0.5 2: f3 = 1 3: f3 = 1.5 4: f3 = 2.5 .... : experimental curve (Ref. (100)1

Ultrasonic Degradation of Polymers in Solution

145

8. References 1. Alexander, P., Fox, M.: The role of free radicals in the degradation of high polymers by ultrasonic and by high-speed stirring. J. Polym. Sci. 12, 533 (1954). 2. Basedow, A. M., Ebert, K. H.: Zurn Mechanismus des Abbaus von Polymeren in Losung durch U!traschall. Makromol. Chem. 176, 745 (1975). 3. Basedow, A. M.: Untersuchungen iiber den Abbau von Dextran durch Ultraschall in verschiedenen Losungsmitteln. Thesis, University of Heidelberg, Faculty of Chemistry 1973. 4. Basedow, A. M., Ebert, K. H., Ederer, H., Hunger, H.: Die Bestirnmung der Molekulargewichtsverteilung von Polymeren durch Permeationschromatographie an porosem Glas. Makromol. Chem. 177, 1501 (1976). 5. Bergmann, L.: Der Ultraschall. Hirzel Verlag (1954). 6. De Boer, J. H.: The influence of van der Waals forces and primary bonds on binding energy, strength and orientation. Trans. Far. Soc. 32, 10 (1936). 7. Bohn, L.: Schalldruckverlauf und Spektrum bei der Schwingungskavitation. Acustica 7, 201 (1957). 8. Blandamer, M. J .: Introduction to chemical ultrasonics. Academic Press 1973. 9. Bradbury, J. H., O'Shea, J.M.: The effect of ultrasonic irradiation on proteins. Austral. J. Biol. Sci. 26, 583 (1973). 10. Bueche, F.: Mechanical degradation of high polymers. J. Appl. Polymer Sci. 4 (10), 101 (1960). 11. Butyagin, P. Y.: Kinetics and nature of mechanochemical reactions. Russ. Chem. Rev. 40 (11), 901 (1971). 12. Chandra, S., Roy-Chowdhury, P., Biswas, A. B.: Ultrasonic degradation of sol rubber in solution. J. Appl. Polym. Sci. 8, 2653 (1964). 13. Chandra, S., Roy-Chowdhury, P., Biswas, A. B.: Ultrasonic degradation of macromolecules in solution. J. Appl. Polym. Sci. 10, 1089 (1966). 14. Chendke, P. K., Fogler, H. S.: Second-order sonochemical phenomena: extensions of previous work and applications in industrial processing. Chem. Eng. J. 8, 165 (1974). 15. Davison, P. F., Levinthal, C.: Degradation of deoxyribonucleic acid under hydrodynamic shearing forces. J. Mol. Biol. 3, 674 (1961). 16. Davison, P. F., Freifelder, D.: Studies in the sonic degradation of deoxyribonucleic acid, Biophys. J. 2, 235 (1962). 17. E:t'Piner: Ultrasound: Physical, Chemical and Biological Effects. Consultants Bureau ( 1964). 18. El'Tsefon, B. S., Berlin, A. A.: Investigations in the mechanochemistry of polymers XIII. Vysokomolekul. Soedin. 4, 1033 (1962). 19. Fliigge, S.: Encyclopaedia of Physics 11/2 - 2. Springer Verlag ( 1962). 20. Flynn, H. G.: Physics of Acoustic Cavitation in Liquids. In: Physical acoustics Vol. 1-B. Mason, W. (ed.), p. 51. Academic Press 1964. 21. Fujiwara, H., Okazaki, K., Goto, K.: Mechanochemical reaction of polymers by ultrasonic irradiation I. J. Polym. Sci. 13, 953 (1975). 22. Glynn, P.A., Van der Hoff, B. M., Reilly, P. M.: A general model for prediction of molecular weight distributions of degraded polymers. J. Macromol. Sci. A6 (8) 165 3 (1972). 23. Glynn, P.A., Van der Hoff, B. M.: Degradation of polystyrene in solution by ultrasonation. A molecular weight distribution study. J. Macromol. Sci. A7 (8), 1695 (1973). 24. Glynn, P.A., Van der Hoff, B. M.: The rate of degradation by ultrasonation of polystyrene in solution. J. Macromol. Sci. AS (2), 429 (1974). 25. Gooberman, G.: Ultrasonics: Theory and application. Hart Publishing Co. 1969. 26. Gooberman, G.: Ultrasonic degradation of polystyrene. Part 1. J. Polym. Sci. 42, 25 ( 1960). 27. Gooberman, G., Lamb, J.: Ultrasonic degradation of polystyrene. Part 2. J. Polym. Sci. 42, 35 (1960). 28. Gooberman, G.: Ultrasonic degradation of polystyrene. Part 3. J. Polym. Sci. 47, 229 (1960). 29. Gueth, W.: Zur Entstehung der Sto11wellen bei der Kavitation. Acustica 6, 526 (1956). 30. Gueth, W., Mundry, E.: Kinematographische Untersuchungen der Schwingungskavitation. Acustica 7, 241 (1957).

146

A. M. Basedow and K. H. Ebert

31. Harrington, R. E., Zimm, B. H.: Degradation of polymers by controlled hydrodynamic shear. J. Phys. Chem. 69 (1), 161 (1965). 32. Harrington, R. E.: Degradation of polymers in high speed rotary homogenizers. J. Polym. Sci. 4, 489 ( 1966). 33. Henglein, A.: Die Auslosung und der Verlauf der Polymerisation des Acrylamids unter dem Einflull. van Ultraschallwellen. Makromol Chem. 14, 15 (1954). 34. Henglein, A.: Die Reaktion des DPPH mit langkettigen freien Radikalen. Makromol. Chem. 15, 188 (1955). 35. Henglein, A.: Die Kombination van freien makromolekularen Radikalen, die