Unidimensional solute transport incorporating ... - Wiley Online Library

3 downloads 0 Views 668KB Size Report
transport. The tracer undergoes both sorption and first-order loss. Sorption is via a linear Freundlich isotherm in tandem with rate-limited exchange (after Lapidus ...
WATER RESOURCES RESEARCH, VOL. 24, NO. 3, PAGES 343-350, MARCH

1988

Unidimensional Solute Transport Incorporating Equilibrium and Rate-Limited

1.

Isotherms

With

First-Order

Loss

Model Conceptualizations and Analytic Solutions KEITH

R. LASSEY

Institute of Nuclear Science,Lower Hurt, New Zealand

I derive analytic solutionsto the advection-dispersion equation for unidimensionalsolute or tracer

transport.The tracerundergoes both sorptionand first-order loss.Sorptionis via a linearFreundlich isothermin tandemwith rate-limitedexchange(afterLapidusand Amundson). An arbitrarytracerinput

is postulated, with pulseinputandstepinputspecializations givendetailedconsideration. Many distinct conceptual modelsof unidimensional transportare mathematically equivalentto this formulation,includinga modelof exchange betweenmobileand immobilewater,andincluding modelswith selective first-orderremovalprocesses. Ambiguities in interpreting modelsimulations of experimental data have two origins:morethan one conceptual modelis a contending simulator;a conceptual modelmay be mathematically overspecified with parameters. The implications of suchambiguities arediscussed.

ingnumerical results for a downstream positionL, thefollowvariables are moreuseful' Thispaperconsiders analyticalsolutionsto the unidi- ingdimensionless mensional dispersion-advection equationfor soluteor tracer X = x/L r = ut/RL (4) INTRODUCTION

transport

The two setsare related by

•-- PX

where C and Q are to within multipliersthe concentrations of mobileand immobilizedtracer along the flow path. It is con-

venient to specify a multiplierwhichnormalizes C to the level 0fmobiletracerin unit volume(macroscopic)of the bulk flow

r = PT

(5)

with P ---uL/D the P6cletnumberfor the problem,and RT --= *F= ut/L is the volumeratio of displacedfluid to pore occu-

pancyby mobilefluid.The"retardation factor"R is discussed later.

Equations (1)and(2) includefirst-order losswith a (dimensystem; thenormalization of Q depends uponthe conceptual sionless) removalrate A. Althoughit is presentedas a univermodel of the transportprocess,as is demonstrated in the next section.

Sorption is presumed to be kineticallycontrolled according to

sal removal(suchas radioactiveor microbial decayor irreversiblechemicaldegradation),the problem is not further

complicated by anyselective first-order removal.Thisis clarified in the next section,which examinesconceptualmodelsof

Pr

Q = K•C - (K2+ A)Q

(2)

dispersive flowmathematically equivalent to (1),{2). I employa generalnomenclature whichavoidsunnecessary specificity to anexperimental setting. Thespecies whose trans-

I referto (2) as a LA isothermafter Lapidusand Aroundson portisofinterest isthe"tracer." Morespecifically, it istermed [1952],whoapparentlyfirst appliedit to a dispersive prob- the'bdispersant" or "adsorbate" whenin the mobilephaseor lem.The merits of this and other isotherms are discussedin a when immobilized,with "dispersantlevel" C or "adsorbate survey by Travis and Etnier [ 1981].

level"Q, respectively. The "mobilefluid" is the dispersant-

In theaboveequations,• and r are dimensionless distance bearingfluidwhose"ttowpath"is througha porousor aggre-

{position alongtheflowtrajectory) anddimensionless elapsed time. Thereareseveralwaysto selectnormalizing lengthand timescales fromamongthe interstitialflow speedu, the hydrodynamic dispersion coefficient D, anda longitudinal length scale L relevantto the problemin hand.In developing the

gatedconfining medium termedthe"sorptive medium." The

mathematics I use u, D as scalesand thereby avoid encumbrance with the arbitrarylengthL. Thus

modelassumptions. Whilstgroundwater or surfacewaterway

whole,both fluid and solid,is termedthe "flow system."A

glossary ofnotation appears aftertheappendix. The usefulness of a model suchas (1), (2) as an interpretive

tooldepends on theconformity of theexperimental setting to

trajectories wouldrarelybe longitudinally homogeneous as themodelsupposes, suchflowsarenevertheless oftenmodeled • =- x r =---- t •3) in thisway,sometimes with the simplifying assumption of D RD equilibrium isotherm (•', t,'2-* ,:cin (2)),sometimes withthe Inproceeding to theasymptotes u/D-, 0 or cr,,or in provid- complication of axialdiffusion intothe surrounding matrix [e.g.,Thackston andSchnelle, 1970'Tanget al., 1981'Ma/1

II2

loszewskiet al., 1983' Maloszewskiand Zuber, 1982, 1985'

LeGrand-Marcq andLaurielout, 1985].Of particularimportis

Copyright 1988by theAmerican Geophysical Union.

the simulatedradionuclide leachingfrom hypotheticalnuclear

Paper number7W4844.

wastedepositories [e.g.,Neretnieks et al., 1982].A recent

,01143!397/88/007W-4844505.00 343

344

LASSEY'UNIDIMENSiONAL SOLUTE TRANSPORT, 1

reviewembracing solutetransportmodelsis suppliedby Niel-

At type2 sites (adsorbate levelQA),adsorbate dynarnically

competes for desorptionto the mobilefluid and irreversible into a sink (representing any first-orderremoval All solutionsto (1), (2) reported in this paper employ assimilation sites). Therespective transfer ratesare(1 - q)k., and boundaryconditions(bc's)for a semi-infiniteflow region;i.e., fromsuch of type2 the flow path is confinedto 0 < • < oo (with entranceat qk2, so that p = 1 -q and q are the proportions • = 0), and bc'sare imposedonly at •-, 0+, •. This math- adsorbate so transferred. ematicalidealizationcannot,in principle,be compatiblewith Thisassimilative sinkrepresents first-order lossselectiveI3 experimentsin laboratory columnsbecauseof their short fromonetracerreservoir. An alternative or supplementary processmight envisageassimilationdirectlyfrom lengths.In practicethis incompatibilityseemsto be of no conceptual consequence for sufficiently longcolumnsandfor modelsimu- the dispersant(or type 1 site)as describedby lations which incorporatethe correct (flux) concentrations [e.g.,van Genuchten and Parker, 1984; Parker, 1984]. SoluQt• = q'k•C i11} tions for finite-lengthbc'sare more complicated;somehave beenpresented in respectof equilibriumisotherms[e.g.,Bren- This doesnot further complicatethe mathematics. ner,1962;ClearyandAdrian,1973],but analogues for the LA The followingtransformationof (6)-(9) produces(1•3):

sen et aL [1986].

isotherm seem unavailable. Solutions for the semi-infinite flow

l•2

1l2

region are commonlyemployedto analyzebreakthrough curves(BTC's)fromlabora.tory columns[e.g.,Nkedi-Kizza et

=5

+ ^)

=

+ ^)

al., 1983; Nielsen et al., 1986]. p---l--q= CONCEPTUAL

(•C1 q- A)(•:2 4- A)

MODELS

(i2}

I considersomeconceptualmodelsmathematicallyequivalent to (1), (2) in order to illustratethe generalityof these

Q•t =

R(•c• + A)

equations. First,surfaceadsorptionmodelswithselective first-

/41

R=I+K

order tracer removal illustrate the mathematical equivalence

Q

a

of any first-orderremovalprocess.! then examinea popular As is well known [e.g., Hashimoto et al., 1964; Cameronand modelof tracerexchangebetweenmobileand immobilefluid KIute, !977'1,the Freundlichisotherm(7) is manifested onlyin zones.

a "retardation factor" R, which, in the absenceof kineticinflu-

ences,is just the ratio of the hostftuid'sadvectionrateto the

Model 1: SurfaceAdsorptionModels

Considera model of dispersiveflow characterizedby the equations

migration rate of solute. It is evident that the selective assimilation (nonzero q• is

mathematicallyequivalentto a universalremoval rate,along with rescaled transfer rates and adsorbate level. In general,the

D••.,c--u•.x

•-•(C+ S+ Q,t+ Qv) S = KdC

(6) relationshipbetweenQ,t and Q

dependsupon the detailed

kinetics assumed in the model.

(7) Model 2' ExchangeBetweenMobile and Immobile

)-•QA= klC--k2Q,• 8t

Qv = qkzQA

(8)

Fluid Zones

A modelproposed by Deans[1963] and CoatsandSmith [1964],andfurtherdeveloped by Wierengaandothers [ran

(9) Genuchten and Wierenga,1976,1977;Gaudetet al., 1977;De

in which 0 '+•[o(yt) dr d(x,y)=

=e-•+x•o •e-•+•[•(xu)du t52t

postulate f= 0,•/0 (or, equivalently, R = 0i,•/0•,•), leaving/• (rather than Kin) as the appropriately averageddistribution coefficient.With fm + f•,• and Km/K•mno longerspecified,there is greater flexibility in interpreting an empirical dependenceof K upon flow parameters.

The difficulty and ambiguity in empirically parameterizing laboratory-sourceddata suggeststhat prospectiveanalysesof field data might be quite forlorn. Nevertheless,field tracer data do need quantitative interpretation, even if the interpretive model has obvious imperfection at the outset. And models based on (!), (2) or on (19) have found favor. Analyses of groundwater data by Maloszewski and Zuber [1982] and by Maloszewskiet al. [1983] indicate that a weighting function derived from a dispersion-advectionmodel {actually the FL (40) as weighting function (44)) was marginally superior to other contenders examined. Thackston and Schnelle [1970'] and LeGrand-Marcq and Laudelout [1985] found the MIF model a usefulinterpretivetool for streamflowdata.

e-{•+t)[o{yt)dt

Interrelationships

J{x, y) + K{x, y) = I

(53•

J(x, y)= K(y, x) + e-{•'+Y•[o(Xy) Small-argumentexpansions

J(x,y)=e-• + e-{x+y) •• •yn• Xm •=1

K(x, y)=e-{•+•'• • • n=l

m=l

m=O

m• '

Neumann expansions

J(x,y)=e-{'+Y> •

y•r•(xy)

•=o

K(x,y) = e- •+ y• • x•-l•(xy)'

'

LASSEY' UNiDIMENSIONAL SOLUTE TRANSPORT, 1

349 tration of dispersantand companion

Asymptotes K(x, co} -- J{ :c, y) = 0

adsorbate.

(56)

Superscripts NOTATION

P, S (on C, Q, •P, (I)) specificto pulse,stepinput. FL (on C,Q) specializationin the Freundlich limit

Dimensions are in squarebracketswith L, T, G denoting dimensions of length,time,and tracermeasure.AbsentdimenAcknowled.qments. I acknowledgeuseful discussionswith colsions imply a dimensionless quantity. A definingequation leagues Mike Stewart(INS), BrentClothier!Plant Physiology Divinumberis shown where appropriate.The glossaryis in- sion,DSIR) and FreemanCook (NZ Soil Bureau,DSIR). exhaustive and excludesterms specificto an individualconREFERENCES

ceptual model.

b,/• attritionfactors dueto loss,(48). C(•, r)

dispersantlevel (per volume of flow

system)'[GL- 3]. C(•, r)

dispersantconcentration,(21), (22)'

[GL- 3]. Co(r) "input stream"of injectedtracer,(25)' [GIœ3]. D hydrodynamic dispersioncoefficient' [L2T- •]. H(r)

Heaviside function, (26).

I,•(z), I,•(Z) modifiedBesselfunction,(31). J{x, y), K{x, y) Goldstein'sfunction, appendix. L length scale' [L]. M

P = uL/D

mobile fraction in flowless, lossless

equilibrium, (50). Pficlet number.

Q(•, r) adsorbatelevel' [GL-3]. Q(•, r) scaledadsorbatelevel, Qa = Q/0m,(24), [GL-3]. R

retardation factor, (12) or (16).

RFt' "furtherretardation"factorin the t

Freundlich limit, (20). elapsedtime; IT].

T = •/R dimensionless elapsed time,(4). 7•= ut/L cumulative porevolumedisplacement of fluid from length L.

u interstitialflowspeed'[LT- •]. x longitudinal positions; [L]. X = x/L dimensionless longitudinal position,{4). fli combineddimensionless rate constants, (34), (46).

F0 reduced pulseinput,{28)'[GL-3]. 6(t) Dirac (5function'[dimensions of t-•]. •,'•, •:2 dimensionless exchangerates,{2). A

dimensionlessremoval rate, (1), (2).

0,• fractional occupation (cm3/cm 3)of flow systemby mobile fluid.

0 fluid content(cm3/cm 3) of flow system (equalto 0•, if no immobilefluid), ß (r, y), (1){r,y) "pistonflow"(PF) functions, (33),{39), (42),(45); [GL- 3]. •

dimensionless longitudinallength, (3), (5).

r dimensionless elapsedtime, (3), (5). fl(•, r) "dispersivespread"(DS) function,(35).

Suly•cripts

R,F (onC, Q,fl) pertains to "resident," "flux"concen-

Brennen H., The diffusion model of longitudinal mixing in beds of finite length' Numerical values,Chem.En.q.Sci., 17, 229-243, 1962. Brigham•W. E., Mixing equationsin short laboratory columns,Soc. Pet. En,q.J., 14, 91-99, 1974. Cameron, D. R., and A. Klute, Convective-dispersivesolute transport with a combinedequilibrium and kinetic adsorption model, Water Resour. Res., 13, 183-188, 1977.

Cleary, R. W., and D. D. Adrian, Analytical solution of the convection-dispersive equation for cation adsorption in soils, Soil Sci. Soc. Am. Proc, 37, 197-199, 1973.

Coats, K. H.• and B. D. Smith, Dead end pore volume and dispersion in porous media, Soc.Pet. Eng. J., 4, 73-84, 1964. Danckwerts, P. V., Continuous flow systems:Distribution of residencetimes,Chem.En•. Sci.,2, 1-13, 1953. Davidson, J. M., P.S. C. Rao, R. E. Greem and H. M. Selim, Evalu-

ation of conceptualprocessmodels for solute behaviour in soilwater systems,in Agrochemicalsin Soils,edited by A. Banin and U. Kafkafi, pp. 241-251, Pergamon,New York, 1980. Deans, H. A.• A mathematicalmodel for dispersionin the direction of flow in porous media, Sot'. Pet. Eng. J., 3, 49-52, 1963. De Smedt,F., and P. J. Wierenga,Mass transferin porous media with immobile water, J. Hydrol., 41, 59-67, 1979a. De Smedt, F., and P. J. Wierenga, A generalized solution for solute flow in soils with mobile and immobile water, Water Resour. Res, 15, 1137-1141, 1979b.

De Smedt,F., and P. J, Wierenga,Solutetransfer through columnsof glassbeads, Water Resour.Res.,20, 225-232, 1984. De Smedt, F., F. Wauters, and J. Sevilla, Study of tracer movement through unsaturatedsand,J. Hydrol.,85, 169-181, I986. Gaudet, J.P., H. J•gat, G. Vachaud, and P. J. Wierenga, Solute transfer, with exchange between mobile and stagnant water, throughunsaturatedsand,SoilSci.Soc.Am. J., 41,665-671, 1977. Gershon,N. D., and A. Nir, Effectsof boundary conditionsof models on tracer distribution in flow through porous mediums, Water Resour. Res., 5, 830-839, 1969.

Goldstein, S., On the mathematicsof exchangeprocessesin fixed columns, I, Mathematical solutions and asymptotic expansions, Proc. R. Soc. London, Set. ,4,219, 151-171, 1953.

Hashimoto,I., K. B. Deshpande,and H. C. Thomas, Pecletnumbers and retardation factorsfor ion exchangecolumns, Ind. Eng. Chem. Fundam., 3, 213-218, 1964.

Hubert, J., A. Lenda, and A. Zuber, A solution of the dispersion-

adsorptionequationwith linear adsorptionisotherm,Nukleonika, 16, 271-278, 1971.

Jury,W. A., G. Sposito,and R. E. White, A transferfunctionmodelof solute transport through soil, 1, Fundamental concepts, Water Resour. Res., 22, ,43-,47,

1986.

Kreft, A., and A. Zuber, On the physicalmeaning of the dispersion equationand its solutionsfor differentinitial boundaryconditions, Chem.En,q.Sci.,33, 1471-1480, 1978. Kreft, A., and A. Zulx•r, On the use of the dispersionmodel of fluid flow,lnt. J. Appl.Radiat.lsot.,3(I, 705-708, 1979. Kreft, A., and A. Zuber, Comments on "Flux-averaged and volumeaveragedconcentrations in continuumapproachesto solutetrans-

port" by J. C. Parkerand M. Th. van Genuchten,Water Resour. Rtrs.,22, 1157-! 158, 1986.

Lapidus, L., and N. R. Amundson,Mathematics of adsorption in beds,V!, The effect of longitudinaldiffusion in ion exchangeand chromatographiccolumns,J. Phys.Chem.,56, 984•-988,!952. Lassey,K. R., On the computationof certainintegralscontainingthe modifiedBesselfunctionIo1•),•tatt•. Cornput., 39, 625-637, 1982.

350

LASSEY: UN1DIMENSIONAL SOLUTE TRANSPORT, 1

Lassey,K. R., Conceptuallysimplemathematicalmodelsof filtration (and exchange)processes, Ecol. Modefl., 18, 1-26, 1983. (Erratum, Ecol. Modefl, 19, 71, 1983.)

LeGrand-Marcq,C., and H. Laudelout,Longitudinaldispersionin a foreststream,J. HydroL, 75,317-324, 1985. Lindstrom,F. T., Pulseddispersionof trace chemicalconcentrations in a saturatedsorbing porous medium, Water Resour.Res., 12, 229-238,

1976.

Lindstrom,F. T., R. Haque,V. H. Freed,and L. Boersma, Theoryon the movementof some herbicidesin soils, Environ.Sci. Technol.,1, 561-565, 19.67.

Luke,Y. L., Inte•qrals •/' Bessel Functions, 419pp.,McGraw-Hill,New York,

1962.

Maloszewski,P. and A. Zuber, Determiningthe turnover time of groundwater systems with the aid of environmental tracers, 1,

Modelsand their applicability,d. Hydrol.,57, 207-231, 1982. Maloszewski, P., and A. Zuber,On the theoryof tracerexperiments in fissuredrockswith a porousmatrix, d. Hydrol.,79, 333-358, 1985.

Maloszewski, P., W. Rauert,W. Stichler,and A. Herrmann,Applicationof flow modelsin an alpinecatchmentareausingtritiumand deuteriumdata, d. Hydrol., 66, 319-330, 1983. Neretnieks, I., T. Eriksen, and P. T•ihtinen, Tracer movement in a

singlefissurein graniticrock: Someexperimentalresultsand their interpretation,Water Resour.Res.,18, 849-958, 1982. Nielsen,D. R., M. Th. van Genuchten,and J. W. Biggar,Water flow and solute transport processesin the unsaturated zone, Water Resour. Res., 22, 89S-108S, 1986.

Nkedi-Kizza, P., J. W. Biggar,M. Th. van Genuchten,P. J. Wierenga, H. M. Selim,J. M. Davidson,and D. R. Nielsen,Modelingtritium and chloride 36 transport through an aggregatedoxisol, Water Resour. Res., 19, 691-700, 1983.

averaged concentrations in continuum approaches to solute tran• port, Water Resour. Res., 20, 866-872, 1984.

Parker, J.C.,andM. Th.vanGenuchten, Reply, Water Resour. Res• 22, 1159-1160, 1986. Rao,P.S.C.,D. E.Rolston, R.E.Jessup, andJ.M. Davidson, Solute transport in aggregated porous media: Theoretical andexper/. mentalevaluation, SoilSci.Soc.Am.J., 44, 1139-i 146,1980.

Rubin,J.,Transport of reacting solutes in porous media:Relation between mathematical natureof the problemformulation and chemical natureof the reactions, WaterResour. Res.,19,12311252, 1983.

Selim, H. M., andR. S. Mansell, Analytical solution of theequaticm

for transport ofreactive solutes through soils, WaterResour. Res., 12, 528-532, 1976.

Selim,H. M., J. M. Davidson, andR. S. Mansell,Evaluation ofa two-site adsorption-desorption modelfor describing solute trans. port in soil,Proc.SummerCornput. Simul.Conf.,444-448,1976.

Tang,D. H.,E. O. Frind,andE. A. Sudicky, Contaminant transport in fractional porous media: Analytical solution fora single fracture, Water Resour.Res., 17, 555-564, 1981.

Thackston, E. L., and K. B. Schnelle, Predicting the effects ofdead

zones on stream mixing, J. Sanit.Eng.Div.Am.Soc.Cie.E•., 96(SA2), 319-331, 1970.

Travis,C. C.,andE. L. Etnier,A survey ofsorption relationships for reactivesolutesin soil,J. Environ.Qual.,10, 8-17, 1981.

vanGenuchten, M. Th.,Analytical solutions forchemical transport with simultaneousadsorption,zero-orderproductionand firstorder decay,J. Hydrol., 49, 213-233, 1981.

van Genuchten,M. Th., and J. C. Parker, Boundarycondition for

displacement experiments throughshortlaboratory soilcolumns,

Soil Sci. Soc.Am. J., 48, 703-708, 1984.

van Genuchten,M. Th., and P. J. Wierenga,Mass transferstudies in sorbingporousmedia,I, Analyticalsolutions, SoilSci.Soc.Am.

Nkedi-Kizza,P., J. W. Biggar,H. M. Se!im,M. Th. van Genuchten,P. 40, 473-480, 1976. J. Wierenga,J. M. Davidson,and D. R. Nielsen,On the equivalence van Genuchten,M. Th., and P. J. Wierenga,Mass transferstudies in of two conceptualmodelsfor describingion exchangeduringtranssorbing porous media, II, Experimentalevaluation with tritium port through an aggregatedoxisol, Water Resour.Res., 20, 1123(SH20),SoilSci.Soc.Am.J., 4], 272-278,1977. 1130, 1984.

Ogata,A., Mathematicsof dispersion with linearadsorptionisotherm, K. R. Lassey,Instituteof Nuclear Sciences, Private Bag,Lower U.S. Geol.Surv.Prof. Pap.,41I-H, 9 pp., 1964. Hutt, New Zealand. Ogata, A., and R. B. Banks,A solutionof the differentialequationof longitudinaldispersionin porousmedia,U.S. Geol.Surv.Prof Pap., 411-A, 7 pp., 1961. Parker, J. C., Analysis of solute transport in column tracer studies, Soil Sci. Soc. Am. d., 48, 719-724, I984.

Parker,J. C., and M. Th. van Genuchten,Flux-averagedand volume-

(Received March 2, 1987; revisedOctober 26, 1987; acceptedNovember 4, 1987.)