What are surface plasmons?

86 downloads 398629 Views 6MB Size Report
Franzen, S. “Surface Plasmon Polaritons and Plasma Absorption in Indium Tin Oxide .... “Surface Plasmon Resonance in Conducting Metal Oxides” J Appl Phys  ...
What are surface plasmons?

NC State University

A plasmon is a collective oscillation of the conduction electrons The free electron optical response uses the Drude-Lorentz-Sommerfeld model. The influence of external forces is considered for one electron alone and then the response is multiplied by the number of electrons. All electrons act in phase in this model. 2  me r2 + me r = eE0e – it t t Force + Friction = Driving term

Dipole p = er0 Polarization P = np = ner0 Polarization driven by an electric l i fifield ld P = () ( ) 0E Suscepticility () = () - 1

Electron motion e

E = E0e-it

Electric vector

The plasmon frequency is the resonantt frequency f off frictionally f i ti ll damped p electron motion The forcing term is the electric field of the incident light. 2 2  E ne E – it  +  = E e t m e 0 0 t 2

–p2  = 2  + i

p =

E = E0e-it ne 2 m e 0

 2p   2p   =1 – 2 2 + i  +  2 + 2 Real part

Imaginary part

Dielectric constants for a f free electron l t conductor d t Imaginary part Out-of-phase Absorption

Real part In-phase Dispersion

Surface selection rules

For c < 0 the p-polarized image charge adds constructively const cti el to the incident field field. +

p polarization + s polarization 

+

rp = 1 -

c < 0

Ep = Ei(1 + rp) = Ei(1 – cos2)

For c < 0 the s-polarized image charge adds dd destructively d t ti l to t th the iincident id t field. fi ld p polarization + s polarization

+

-

rs = -1 m < 0

+ Es = Ei(1 + rs) = 0

Kretschmann configuration IRE > s +

+

p polarization s polarization

-

IRE c s

Thin film on a prism

Attenuated total reflection ( > c ) Condition for surface plasmon resonance rp = 1 rS = -1

+

p polarization s polarization +

-

IRE

-

c

s

Evanescent Wave in Medium

Dispersion relations from Drude n cz =

–  2c , n sz = c + s

–  2s s + c

, nx =

 c s s + c

Plasmon Dispersion Curve for ITO ωp = 17700 cm-1

Γ = 500 cm -1

k sp =  c

c  s  c  + s 

Surface Plasmon Resonance on Gold The intensity of the reflected light is reduced at a specific incident angle l producing d i a sharp h di dip-a surface f plasmon l resonance The surface plasmon resonance is related to the material adsorbed onto the thin metal film Visible electromagnetic radiation 2

ne p = m e 0

1/2

Plasma frequency n is charge carrier density me is effective mass

http://www.gwctechnologies.com/images/spreffect.gif

SPR Biosensor Incident Light

Reflected Light

I

Flow Cell

Coupling of the light into the Au thin film requires q ap prism to p provide wavevector matching (Kretschmann configuration).

SPR implementation Incident Light

Reflected Light II

Flow Cell

Molecules in solution induce changes in refractive index and g give rise to a measurable SPR signal when binding occurs.

For c = - 2s the plasmon can be excited resonantly tl tto yield i ld an enhancement h t off the th local field p polarization

+

? +-

m = -2s

Local field Ep = gEi

g=

m–- s0

m++2 20s

Absorption and dispersion in conductors

Franzen, S. “Surface Plasmon Polaritons and Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold” J. Phys. Chem. C 2008, 112, 6027-6032

Biosensing using surface plasmons Known methods: Fluorescence quenching (molecular beacon) Surface plasmon resonance (SPR) Kretschman configuration Nanoparticle plasmon resonance Thermographic detection Proposed methods: Surface enhanced Raman effect Surface enhanced fluorescence Surface enhanced infrared

Fluorescence quenching b plasmons by l Example: Quenching to Ru(bipy)32+

N N

N

Ru

N

N

N

SH

Glomm, Franzen et al. JPC B 2005, 109, 804

Molecular beacon approach

Tsourkas et al. Anal. Chem. 2003, 75, 3697

Plasmon Thermography Excite surface plasmons and detect heating by change h iin bl blackbody kb d radiation: di ti W = T T4

US p patent application pp US2004/0180369A1

Laser-Induced Temperature p Jump p Electrochemistry and Thermography Thermographic array imager

Anodic current for an ITO electrode off

on

ssDNA/gold nanoparticles

ssDNA/ITO

Lowe, Franzen, Feldheim JACS 2003. 125. 14258

Dynamic Range and Limit of Detection of Gold Particles Dropcast p Onto Nylon y Substrates

T T [K]

10

ABI White Nylon Coherent Antares Laser @ 532 nm Laser power: 1 W, beam diameter 2 mm

1 0.33 attomoles/cm2 of particles B k Background d

0.1

0.1

1

10

# of Gold Particles on Surface [amols]

100

Are gold g and silver silver the only SPR substrates? y Fixed charge carrier density: ~1023 electrons/cm3 Limited electrochemical range: Gold is oxidized above 0.8 V Thiol surface chemistry Conducting metal oxides offer possibilities not present on gold –No quenching of fluorescence –Stable electrochemistry over a wide range –Processible Processible surface –Many surface chemistries possible There are hundreds of mixed metal oxide substrates possible.

Indium Tin Oxide (ITO) Composition: 90% Indium Oxide and 10% Tin Oxide Commercial 1700Å thick 8-12 /□ Band Gap 3.7 eV St Structure: t Bi b it cubic Bixbyite bi crystal t l structure t t Tunability: C t i surfaces Customize f ffor specific ifi reactions ti Resistivity changes: Thickness change Alteration of annealling onditions Doping change Crystal orientation changes: Deposition temperature Change in annealling conditions

Type: sp type conductor Common Uses: Heat Shields Flat Panel Displays

Experimental and Calculated Reflectance of ITO Three Phase Fresnel Model (air/ITO/glass)

1  rp12 rp 23 e 2i Rp = rp

2

Reflectan nce, Power R Reflectivity

rp 

rp12  rp 23 e 2i

60º, p-polarization 0.8

06 0.6 7.6 square

0.4 9.7 0.2

13.8

0.0 4

6

8

3

10 -11

12

Wavenumbers (x10 ) (cm )

In 2002, Brewer and Franzen predicted that ITO would have a surface plasmon 1. Alloys and Compounds, 2002, 338, 73-79 2. J. Phys. Chem. B. 2002, 106, 12986-12992

Tunable Parameters

• Thickness: - deposition time

• Carrier Concentration: - First Annealing Process: 5%H2/95%N2 (Forming gas) - Second Annealing Process: Varies the Partial Pressure of Oxygen 7x10-7mTorr to 50mTorr •

Mobility: - Sputtering gas gas, Argon: 6mTorr to 20mTorr

• Composition: p - Sn:In ratio 0 – 10%

Fourier-Transform SPR

Steve Weibel, GWC Technologies, Inc. 1. Rhodes C.; Franzen, S.; Maria, J-P.; Losego, M.; Leonard, D.N.; Laughlin, B. ; Duscher G.; Weibel, S.; “Surface Surface Plasmon Resonance in Conducting Metal Oxides” Oxides J. J Appl Appl. Phys Phys. 2006, 2006 100, 100 Art. Art No. No 054905 2. Rhodes, C.L. ; Cerruti, M. ; Efremenko, A. ; Losego, M. ; Aspnes, D.E. ; Maria, J.-P.; Franzen, S. “Dependence of Plasmon Polaritons on the Thickness of Indium Tin Oxide Thin Films” J. Appl. Phys. 2008, 103, Art. No. 093108

Sputtering p g ITO Sputter S t System

Process Parameters Sputter Pressure (Ar) Power Input Power Type (RF vs DC) Substrate Distance Substrate Temperature p Time/Thickness O2/Ar Plasma

Sputtering p g POWER ON Cathode

Ar Ar+ Substrate

Ar+ Ar

Argon

---–-

Target (ITO)

Ar Ar+ Ar+

Ar

Sputtering p g POWER ON

In

In

Sn O ITO Film

Argon

---–-

O

ITO Angle Dip in Air: Single wavenumber representation

40

42

44

46

48

50

Surface Plasmon Resonance on ITO Calculated

Angle Range: 42°-53°

Surface Plasmon Resonance on ITO Experimental

Angle Range: 42°-53°

Capacitive CPR

Surface SPR _ +

Orthogonal

In‐plane

+ _

Optical Resonances Observed in Thin Films Electron Volts (eV) SPR R Reflectanc ce (a.u.)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Capcitive plasmon resonance: (CPR) • appears in i thi thinner fil films • narrow appearance • weak angle dependence • near-IR near IR range

160nm

100 80 60 40 20 0 5000

6000

7000

8000

9000

10000

-1

Wavenumber (cm )

Surface Plasmon Polariton (SPP) • optimum film thickness 160 nm • strong angle dependence • mid-IR range

SPR R Reflectanc ce (a.u.)

0.6

0.7

ElectronVolts Electron Volts (eV) 0.8

0.9

1.0

1.1

1.2

100 80 60

30nm

40 20 0 5000

6000

7000

8000 -1

Wavenumber (cm )

9000

10000

The planar limit of LSPR as a limiting case of an oblate spheroid

+

+

+

+

+

+

-

-

-

-

-

-

Sphere

Oblate ellipsoid

Planar limit

The planar limit of LSPR as a collection of nanoparticles

+ + + +

+

+

+

- -

-

-

-

-

-

Annealing Controlled Atmosphere Annealing XRD of ITO Films B f Before and d Aft After A Annealing li g

Intensity

Gas Inlet (N2 & H2)

In-situ s tu Transfer

ITO After Aft Anneal A l

Process Parameters

ITO As Deposited

Temperature Time p Atmosphere

10

20

30

40

50

60

70

2 ( )

Losego, S.; Efremenko, A.; Rhodes, C.; Cerruti, M.; Franzen, S.; Maria, J.-P. “Conductive Oxide Thin Films: Model Systems for Understanding and Controlling Surface Plasmon Resonance” J. Appl. Phys. 2009, 106, 024903

80

Plasma frequency is inversely correlated l t d with ith resistivity i ti it Shift in p plasma frequency q y Measured using FT-SPR

Change g in Film Conductivity y with Annealing Atmosphere -4

5 10

-4

2 ne p = m e 0

1/2

Re esistivity ( *cm)

4 10

-4

3 10

-4

2 10

-4

1 10

0

0 10

-18 18

10

-16 16

10

-14 14

10

-12 12

10

-10 10

10

-8 8

10

~Oxygen Partial Pressure of Annealing Atmosphere (Torr)

0.6

Carrier Concentration Series:

0.8

0.9

1.0

1.1

1.2

0.6

Electron Volts (eV)

0.7

0.8

pO2 0.01mTorr A

0.9

1.0

1.1

1.2

Theory pO2 0.01mTorr E

2

2

1 1. Oxygen fills vacancies 2. Sn and O trap e3. n decreases 4. ωp also decreases 5. SPP shifts into the mid-IR

p =

Electron Volts (eV)

0.7

-4

pO2 10 mTorr B

ne 2  0

-4 4

Theory pO2 10 mTorr F

-5

-5

pO2 10 mTorr C

Theory pO2 10 mTorr G -

5

2

-7

Carrier Concentrations cm-3: A. 3.948x1020 B 5 B. 5.659x10 659x1020 C. 7.136x1020 D. 1.120x1021

Theory pO2 10 mTorr H

-7

pO2 10 mTorr D 5

6 7 83 Wavenumber (x10 cm-1)

Experimental

9

10

5

6

7

8

9

Wavenumber (x10

3

Theoretical

-1

cm )

10

AFM Measurement of Grain Size Ar+ 10 mTorr

Ar+ 20 mTorr

Grain Size: 100 nm

Grain Size: < 40 nm

Mobility: ob ty 35 cm2/Vs

Mobility: ob ty 7 cm2/Vs

100 Reflectanc ce (a.u.)

Reflectanc ce (a.u.)

100 80 60 40 20 0

5000 6000 7000 8000 9000 10000 -1 Wavenumber (cm )

80 60 40 20 0

5000 6000 7000 8000 9000 10000 -1 Wavenumber (cm )

Hall Effect Measurements Mobility

21

1.5 10

40

1.5x Change

Mobility ((cm /V*s)

21

1 10

2

-3

Carrier Concentration (cm m )

Carrier Concentration

20

5 10

0 6

8

10

12

14

16

18

20

Sputter Pressure (mTorr)

22

35 30 25 20 15 10

5x Change

5 0 6

8

10

12

14

16

18

20

22

Sputter Pressure (mTorr)

Although sputter pressure affects the carrier concentration, it has a much larger impact on mobility of the charge carriers

0.6

Electron Volts (eV)

0.7

0.8

0.9

1.0

1.1

1.2

0.6

Electron Volts (eV)

0.7

0.8

0.9

M bilit Series: Mobility S i

e  me  Mobilities cm2/Vs: A. 23.7 B. 30.0 C 21 C. 21.2 2 D. 9.385

6

7

1.2

9mTorr B

Th Theory 9mTorr F

12mTorr C

Theory 12mTorr G

Theory y 15mTorr H

15mTorr D

5

1.1

Theory 6mTorr E

6mTorr A

1. Peaks around 9 mTorr 1. Decreases going away from maxima 2. Damping constant increases 3. Peaks broaden

1.0

8

Wavenumber (x10

Experimental

3

9 -1

cm )

10

5

6

7

8

Wavenumber (x10

Theoretical

3 -1 cm )

9

10

Hybrid plasmons

50 nm Au

50 nm Nano Au

80 nm  80 nm ITO

80 nm  80 nm ITO

1. Franzen. S; Rhodes C.; Cerruti, M.; Efremenko, A.Y.; Gerber, R.W.; Losego, M.; Maria, J.-P.; Aspnes D.; “Equivalences between Gold and Indium Tin Oxide as Plasmonic Materials” Opt. Lett., 2009, 34, 2867-2869 2. Gerber, R.W.; Leonard, D.N.; Franzen. S; “Conductive thin film multilayers of gold on glass formed by self-assembly of multiple size gold nanoparticles” Thin Solid Films, 2009, 517, 6303-6308

Multilayer composite films 12 nm and 2.6 nm particles

Indium tin oxide (ITO) Intermediate thickness: no CPR or SPR

80 nm  ITO

Perpendicular polarization

Rp/Rs

CPR

30 nm

ITO

Parallel polarization NR

SPR

160  nm ITO

Indium tin oxide (ITO) Intermediate thickness: no CPR or SPR

80 nm  ITO

Quench SPR, Activate CPR

Rp/Rs

CPR

50 50 nm A Au 80 nm  ITO

Activate SPR, Quench CPR NR

SPR

50 nm Nano Au Nano Au

80 nm  ITO

Comparison of Hybrid and Thickness

Plasmonic amplification: Pl i lifi ti What is possible for a Raman process? p p

Surface-enhanced resonance Raman Spectroscopy (SERS) and heme • Observation of large Raman signals for molecules associated with ith noble bl metals, t l particularly ti l l silver il and d gold. ld First Fi t observed b d in 1974 for pyridine on rough silver electrode. • Electromagnetic and chemical mechanisms. The chemical mechanism could be resonant Raman. • Enhancement factors have increased from 106 to 1015 throughout a year period.

A resonance Raman spectrum is obtained by a laser light scattering experiment Detector Lens Sample Laser

S t Spectrograph h

Inelastic light scattering produces a frequency shift. There is exchange of energy between the vibrations of the molecule and the incident photon. photon

Resonance Raman is a two photon process Incident photon from a laser. h

Scattered photon has an energy shift shift.

The difference is because the molecule is left in an excited vibrational state.

Raman scattering g Raman scattering is an inelastic i l ti lilight ht scattering process. In the resonant picture it involves evolution in the excited state so it also depends on the FC factor and the t transition iti di dipole l moment. On the left a sum-over-states picture is shown.

An optimistic view of enhancement Z + + +

First enhancement E0



r

a X

Second enhancement Y

g= g=

m–- s0

m++2 20s

-

-

-

Static approximation  >> a

m–- s0

m++2 20s

Enhancements as large as 1015 ! Local field I = ½ e0 g2 E02 IIncident id t intensity i t it I = ½ e0 E02

Scattered intensity I = ½ e0 g2 g2 E02

O Overall ll enhancement h t th thought ht tto b be g4

Two questions about g4 enhancement: 1 Is this correct? 1. - Experimental SERS increases as |E|2, not |E|4 - Conservation of energy must be satisfied 2. How big is g? - g is can be calculated directly using Drude model - There must be a bandwidth to the SERS effect

A

First enhancement Z + + +

d +

Y

y

x +

X

-

z

r

a

-

Second enhancement

-



E0

B

-

Static approximation  >> a

Planar image approx. a >> d

-

Surface Enhancement on NPs • Local Field Treated by Clausius‐Mosotti Relation () ( )–1 (sphere) () + 2 () – 1 (cylinder) g() = 2 () ( )+1 () – 1 g() = (plane) () g() = 3

• g() is the enhancement factor for an applied field ( )i h h f f li d fi ld • Implicitly spheres are treated most often in SERS  lit t literature

Generalized Clausius‐Mosotti • The Clausius‐Mosotti relation connects the molecular  polarizability with the dielectric function N = 0

() – 1

 () + 1/ – 1 • • The parameter  is the depolarization factor  • The range is 0